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ABSTRACT

Bauxite is a heavily-mined aluminum ore that forms through the relative depletion of

silica to aluminum. In North Mississippi, bauxite occurring within the Upper Midway and Lower

Wilcox groups has been the subject of study for over a century. Despite the abundance and

duration of research, controversy surrounds the subjects of bauxite genesis and economic value.

The last detailed study of North Mississippi bauxite was in the 1980’s, so the goal of this project

is to apply newly available technologies and modern hypotheses on bauxite formation to refine

and obtain new data. Fieldwork observations yielded pisoliths, horizonation, and possible

rhizoliths, which support a lateritic genesis at the most well exposed outcrop, which is located in

Pontotoc County and mapped as the Upper Midway Group. Additionally, stratigraphic trends in

percentages of SiO2, Al2O3, and Fe2O3 at this location closely resembled that of a typical lateritic

bauxite profile reflecting the depletion of SiO2 and enrichment of Fe2O3 upsection. Abundances

of chromium (Cr) and nickel (Ni) as well as percentages of zirconium (Zr), gallium (Ga), and

chromium (nickel) (Cr(Ni)) determined the bauxite protolith was acidic and/or sedimentary and

that bauxites were of the high-iron lateritic variety. This aligned with the occurrence of siderite

(iron carbonate) in the interpreted protolith as well as ratios of lanthanum to yttrium that

indicated an acidic paleoenvironment throughout the section. Lastly, stable isotope data

confirmed prior hypotheses of a warm paleoclimate and indicated subaerial exposure of the

interpreted parent material. A comparison with the reworked bauxite of the Lower Wilcox Group

found that pisoliths were different in regards to structure and chemistry, supporting the

hypothesis that these originated in a separate event or under different conditions.
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1. INTRODUCTION

Bauxite is a sedimentary rock that has been enriched in Al-hydroxides, kaolinite,

Fe-oxyhydroxide, and titanium-oxide due to the chemical weathering of an aluminosilicate

parent rock (Mondillo et al., 2020).  Berthier (1821) was the first to recognize bauxite and

defined it as a rock with high Al content in the vicinity of Les Baux, France.  Bauxite textures

range from massive or earthy, nodular, pisolithic, oolitic, brecciated, botryoidal, cellular, platy, to

vermicular (Patterson, 1967).  The mineralogy of most bauxites is dominated by gibbsite,

boehmite, and diaspore with subordinate amounts of goethite, hematite, kaolinite, and quartz

(Hao et al., 2010; Mondillo et al., 2020). Galena, covellite, zircon, pyrite, calcium plagioclase,

orthoclase, and albite may be present, but are less common (Hao et al., 2010; Mondillo et al.,

2020).  Such mineralogy will produce a weight percent (wt. %) of Al2O3, Fe2O3, and TiO2 greater

than 50% (Mondillo et al., 2020).  The term ‘bauxite’ can be used in an economic context to

describe an array of valuable materials based on their mineralogic and production of Al, Al 2O3,

and high-refractory materials (e.g., mullite, spinel; Valeton, 1972; Thompson, 1981).  Elemental

and mineralogical compositions of bauxites depend on parent rock chemistry and superimposed

processes, respectively (Bogatyrev et al., 2009). The process by which bauxite forms

(bauxitization) is accompanied by one or more of the following processes, each of which will

yield different major oxide compositions: destruction of kaolinite, preservation of kaolinite,

deferruginiztion, and dehydration (Beauvais, 1991).

There is abundant research dating back to the 1800s pertaining to the bauxites of north

MS, yet there is still controversy regarding their stratigraphic position, genesis, and economic
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value.  Detailed research has not been conducted since 1981 (Thompson, 1981), so in this work,

newly available technologies and updated theories on bauxite formation will be applied to

reinterpret deposits in north MS.

Bauxite deposits are typically divided into three major genetic groups: sedimentary,

lateritic, and karst.  Shared properties of each group include the accumulation of Al caused by

the separation of Al and Si, as well as chemical weathering being the of cause removal of silica,

alkali earth metals, and Rare Earth Elements (REEs) from the parent rock or sediment

(Bogatyrev et al., 2009).  An alternative classification based on host rock geology and inferred

genetic model for deposit formation divides bauxite into two groups: lateritic and karst

(Mondillo et al., 2020).

Lateritic bauxites form as a result of in situ lateritic weathering typically occurring in

tropical climates (Mondillo et al., 2020).  Lateritization (the process by which rock is converted

to lateritic soil) enriches the eluvial horizon of the lateritic profile in Al2O3, Fe2O3, and TiO2

through leaching of soluble minerals (Freyssinet et al., 2005).  Illuviation results in the

accumulation of these leached minerals/ions in the lower portion of the profile (Freyssinet et al.,

2005).  Lateritic bauxites are divided into three categories based on pedogenic processes of

occurrence, near the top of the profile: orthobauxites, metabauxites, and cryptobauxites (Table 1;

Mondillo et al., 2020).  Textural, lithological, and mineralogical variability are indicative of

different degrees of leaching and hydration of unstable and soluble mineral phases (Freyssinet et

al., 2005). This characterizes several pseudo-horizons within the classic lateritic bauxite profile

(Fig. 2; Herrington et al., 2016).  The lateritic profile exhibits three distinct layers: (1) bedrock,

(2) basal clay-rich layer, and (3) upper lateritic residuum (Freeman and Donaldson, 2004).
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Bedrock is the lowermost unit and represents the unweathered parent rock (Freeman and

Donaldson, 2004).  The clay-rich layer is divided into three zones: (1) saprolith, which is further

Table 1.  The different types of lateritic and karst bauxites and their defining characteristics
(Mondillo et al 2020).

Figure 1.  A: Pseudo-horizons present in the typical lateritic bauxite profile.  B: Profile of the typical karst bauxite
profile.  Modified from Mondillo et al. (2020).
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divided into the saprock and saprolite, (2) plasmic zone, and (3) mottled zone (Freeman and

Donaldson, 2004; Mondillo et al., 2020).  A lower Friable Fragmental Unit (FFU), middle

duricrust, and upper lateritic gravel divides the upper lateritic residuum into three distinct layers

(Freeman and Donaldson, 2004; Mondillo et al., 2020). Granular and nodular gibbsitic zones

compose the lower and upper FFU, respectively (Freeman and Donaldson, 2004; Mondillo et al.,

2020).

Karst bauxites are the second major group and differ from lateritic bauxites.  Typically,

they do not exhibit a classic lateritic profile, overlie karstified bedrock, and are allochthonous in

origin (Fig. 1; Herrington et al., 2016; Mondillo et al., 2020).  They usually form through one of

three processes: (1) mechanical exhumation and transport of bauxite to a carbonate surface, (2)

Al being chemically transported from a weathered crust, or (3) lateritization of aluminosilicate

material that has accumulated on carbonate bedrock (Bárdossy, 1982; Combes, 1990).  These

deposits typically form in the strata directly above recent carbonate platforms on passive margins

(Mondillo et al., 2020).  Al-rich silicates and hydroxides transported from an adjacent

terrigenous source and subsequently infilling the karstified surface characterize the

allochthonous origin of these bauxites (Mameli et al., 2007; Torró et al., 2007).  Combes (1990)

hypothesized that in some cases, this infilling material could be lateritic bauxite, which has been

eroded, transported, and deposited on the karstified surface and subjected to in situ alterations.

The nature of the karst processes and the subsequent mineralogic composition divides karst

bauxites into six types: Mediterranean, Timan, Kazakhstan, Ariége, Salento, and Tulsk (Table 1;

Bárdossy, 1982).

Sedimentary bauxites represent a third genetic group and form as a result of surficial

flows mechanically washing out lateritic bauxites (Bogatyrev et al., 2009).  This precedes an
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accumulation of clastics on the slopes and foothills of plateaus and rises, characterizing deluvial

(valley slope) to proluvial (valley foot) facies or alluvial (ravine-gully) to ephemeral streamflow

facies on rare occasions (Bogatyrev et al., 2009). Nodular and colloform (oolites and pisoliths)

textures are abundant and indicate the transfer of Al, Fe, and Ti from upper portions of lateritic

bodies and subsequent deposition on the surface or within pores and cavities (Bogatyrev et al.,

2009).  Some sedimentary bauxites form through postsedimentary processes or secondary

lateritization (Tsekhovsky, 1987; Tsekhovsky et al., 2008).  Subaerial diagenesis (exodiagenesis)

is an essential component of secondary lateritization and can result in a kaolinitic clay protolith

or primary clastic ore refinement (Tsekhovsky, 1987; Tsekhovsky et al., 2008).

Figure 2.  The distribution of lateritic and karst bauxites through time.  Temperature: C = Cold, H = Hot; Humidity:
D = Dry, H = Humid.  Modified from Mondillo et al. (2020) and Bogatyrev et al. (2009).
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Bauxite is an important proxy for the typical accumulation of weathered continental crust

and paleoclimatic reconstruction (Valeton, 1972; Price et al., 1997).  Bauxite records various

climatic, biological, and pedogenic environmental conditions, and, as a result, its presence has

been used to test the validity of paleoclimatic maps and models (Bárdossy and Aleva, 1990;

Price et al., 1997; Bárdossy and Combes, 1999; Valeton, 1999).  In terms of climate, bauxite is

usually indicative of humid, high precipitation, and high-temperature paleoclimate (Fig. 2;

Akayemov et al., 1975; Tardy et al., 1991).  Geographically, bauxites are common within tropical

to subtropical latitudes in coastal regions (Mondillo et al., 2020).  Bauxites postulated to have

formed in a wet and cool to cold climate exist and have led to the hypothesis that an alternative

geological agent, i.e., the activity of microorganisms, could also cause elements to mobilize

during bauxitization (Bucher, 1921; Zajic, 1969; Taylor et al., 1990; Bird and Chivas, 1993;

Natarajan et al., 1997; Ehrlich, 2002).

Bauxite and the byproduct of its refinement (red mud) are the most significant global

sources of Al2O3 and Ga, respectively (Gibson and Hayes, 2011; Frenzel et al., 2016).  Al2O3 is

abundant in the Earth’s crust, however, it is mostly concentrated in its ore, bauxite.  As a

lightweight metal, Al serves many uses in society, such as for consumer products and

infrastructure.  Gallium is less concentrated in Earth's crust (< 19 mg/kg), and thus no primary

mines exist (Ujaczki et al., 2019).  Because Ga is present in bauxite in only trace amounts (<50

ppm), it is extracted from red mud (United States Department of Energy, 2010).

Gallium-containing compounds such as gallium arsenide (GaAs), gallium nitride (GaN), and

copper-indium-gallium selenide (CuIn(1-x)Ga(x)Se2) are semiconductive materials and serve an

essential role in the production of microelectronic components, the demand for which has

increased in past decades (Foley et al., 2017; Foley et al., 2013).  Bauxite is also a potential
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source of REEs, including scandium (Sc) (Reid et al., 2017).  One of the most well-researched

REEs, Sc, is also extracted from red mud (Ochsenkühn-Petropulu et al., 1994).  Shaoquan and

Suqing (1996) considered ore with Sc concentrations between 0.0002-0.0005% (20-50 mg/kg) to

be economically essential resources that warrant full exploitation.  Consequently, Binnemans et

al. (2013) attributed over 90% of the trace metal value in red mud to Sc.

Geologic Setting

The Mississippi Embayment (ME) is a broad, elongate, and southwest-plunging

sedimentary basin and extension of the Gulf of Mexico (GOM) coastal plain that began

expressing its modern geography during the Late Cretaceous (100.5-66 Ma) (Murray, 1961;

Cushing, 1964).  The Laramide Orogeny occurred simultaneously, producing the Rocky

Mountains in the area that was once the North American Western Interior Seaway and shed large

quantities of sediment to the ME.  Marine and deltaic Upper Cretaceous (Cenomanian;

100.5-93.9 Ma) to Upper Eocene (Priabonian; 37.8-33.9 Ma) sediments filled the trough

(Stearns, 1957; Autin et al., 1991; Hosman and Weiss, 1991).  Pliocene (Piacenzian; 3.6-2.58

Ma) to Quaternary fluvial deposits originating from the Mississippi River and its tributaries

locally overlie this fill (Stearns, 1957; Autin et al., 1991; Hosman and Weiss, 1991).

Sediment supply rate to the GOM throughout the Cenozoic varied widely and can be

described using 18 chronologically significant depositional episodes (deposodes) (Fig. 3;

Galloway et al., 2000).  The most pronounced increase in sediment supply to the GOM occurred

during the Paleocene.  A period of relative sediment starvation began in the early Paleocene and

lasted ~3 Ma.  The deposition of the thin marine mud-dominated Midway Group defined this

time and preceded an abrupt shift occurring during the late Paleocene at the onset of the
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Figure 3.  Depositional episodes and sediment supply to GOM sediment routing occurring from the Late Cretaceous
to the late Eocene.  Modified from Sharman et al. (2017).

sand-rich sediment of the Lower Wilcox deposode (Galloway et al., 2011).  The grain volume

rate exceeded ~150,000 km3/Ma, the highest value observed in any multi-million-year deposode

(Galloway et al., 2011).

The Midway and Wilcox Groups exhibit a fluvial-deltaic sequence prograding into an

arm of the ME (Dupplantis, 1975).  Deltaic deposits overlying thin carbonates and thick muds of

the Lower Midway are consistent with a steady continental transgression.  It was initially

hypothesized that the Midway-Wilcox contact represented a regional unconformity based on the

sparse occurrence of bauxite (Mellen, 1939).  This was refuted by evidence that supports a

hypothesis of localized unconformities, which were likely the result of storm surges, splays, and

channel incisions (Dupplantis, 1975).

Bauxite orebodies of Late Cretaceous, and early Paleogene age are present in the Gulf

Coastal Plain as well as Ridge and Valley regions of the Southeastern United States (Fig. 4).
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Four historically recognized bauxite outcrop belts occur in the (1) Cretaceous (contained in

Cambrian carbonate bedrock) of AL, GA, TN, and VA; (2) Cretaceous of GA, AL, MS, and TN;

(3) Paleocene of MS, AL, and GA; and (4) Eocene of Arkansas AR and MO (Gordon et al.,

1958).  Of these, the Pulaski-Saline in AR, Eufaula in AL, and Hall-Veneer in GA garner the

most attention and have the longest histories of mining activity.  Mississippi bauxites are unique

among those within the southeastern United States and the world.  Deposits are associated with

60-90 m of clays and underlie feldspar-poor fluvio-deltaic sediment.  Sediment source locations

were likely dominated by limestones, muds, sands, and marls (Thompson, 1981).  Bauxitic

material (bauxite or bauxitic clay) is present within the Upper Midway and Lower Wilcox

Groups, the boundary of which is exposed throughout much of MS (Fig. 5).  In MS, the Naheola

Fm of the Midway Group, as well as the Nanafalia Fm of the Wilcox Group, contain bauxitic

Figure 4.  Geographic distribution of bauxite mining districts within the Southeastern United States and associated
strata.  1 = Pulaski-Saline District, AR; 2 = Tippah-Benton District, MS; 3 = Pontotoc District, MS; 4 =

Winston-Noxubee-Kemper District; 5 = Eufaula District, AL; 6 = Springvale District, GA; 7 = Andersonville, GA; 8
= Irvington, GA; 9 = Margerum District, AL; 10 = Chattanooga District, TN. Modified from (Gordon, 1958).
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material.  The Coal Bluff and Oak Hill Mbrs, as well as the Gravel Creek Sand and Grampian

Hills Mbrs, make up the Naheola Fm and Nanafalia Fm, respectively.  Bauxite or bauxitic

material is present within the Coal Bluff and Gravel Creek Sand Mbrs (Thompson, 1995).

A white to dark gray carbonaceous clay with silt and fine sand interlaminations and

interbeds dominates the Oak Hill Mbr of the Naheola Fm, which conformably overlies the

Porters Creek Fm, a grayish-black massive clay.  The Oak Hill Lignite defines an upper lignitic

zone, which can be useful when correlating strata (Thompson, 1995).  The Oak Hill Mbr is ~52

m thick and unconformably underlies the Coal Bluff Mbr of the Naheola Fm.  Sands, silts, and

clays dominate the Coal Bluff Mbr (Coal Bluff Marl Mbr in AL) of the Naheola Fm.  The Coal

Bluff Mbr is ~21 m thick and unconformably underlies the Gravel Creek Sand Mbr of the

Nanafalia Fm.  It contains a distinct bedded kaolinite to bauxitic clay lithofacies also sparsely

present in the uppermost Oak Hill Mbr below the basal sands of the Coal Bluff (Thompson,

1995).  Mellen (1939) named the kaolinitic to bauxitic clay lithofacies the Betheden Fm or

Figure 5. Early Paleogene stratigraphy of Mississippi. Modified from Dockery (1996).
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Betheden Residuum, which is now obsolete and argued that residual processes (weathering of

soil horizons) at the top of the Midway Group produced the clays (Conant, 1948; MacNeil, 1951;

Thompson, 1981).  In addition to bedded kaolinite and bauxitic clays, lignite seams typically

measuring less than 30 cm in thickness and occurring within the upper two-thirds of the Coal

Bluff are useful when correlating strata (Thompson, 1995).

Sands, silts, and clays dominate the Gravel Creek Sand Mbr of the Nanafalia Fm.  A

section of the Gravel Creek Sand Mbr in East-Central MS will typically exhibit a 21-24-m-thick,

white to reddish-orange, fine- to very coarse-grained crossbedded sand interval, as well as a

6-9-m-thick interval of gray, interbedded to interlaminated clays, silts, and sand with sparse beds

of lignite (Thompson, 1995).  Thompson (1995) interpreted the depositional environment that

produced the Gravel Creek Sand Mbr in MS as an incised valley fill underlying a progradational

deltaic succession.

Economic Resources

The stratigraphic position of the north MS deposits makes them unique among bauxites

in both the southeastern United States and the world, and has made the determination of a

genetic history complex (Thompson, 1981).  Nearby deposits, Pulaski-Saline in AR and the

Eufaula in AL, are both within the Midway-Wilcox interval and are lateritic and karst,

respectively.  Despite being within the same discontinuous outcrop belt as the Eufaula deposits,

those in MS overlie neither an igneous saprolith, nor a karstified carbonate surface and therefore

do not represent a typical deposit (Thompson, 1981).

The United States Geological Survey (USGS) has designated mineral commodities as

critical; the United States is in a state of reliance on foreign producers (McCullough and Nassar,

2017; Fortier et al., 2018).  The United States’ reliance on China for its supply of REEs has been
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ever-increasing since 1990 (Haxel et al., 2002).  Consequently, most of the United States’

domestic supply comes from one source: the Mountain Pass Mine in the Mojave Desert,

California.  Due to 2018 tariffs imposed on Al and steel imports, domestic development of

bauxite resources may intensify (Van Gosen and Choate, 2019).  The price of REEs and rare

earth oxides increased from $300 to $3,600 per kg between the years 2010 and 2011 (United

States Environmental Protection Agency, 2012).  Van Gosen and Choate (2019) found that

despite being the most extensive and pure bauxite deposits in the United States, central AR

bauxites lack a significant concentration of critical trace elements and REEs.  North MS bauxites

are not characterized by a sufficient Al grade to warrant large-scale mining, however, no

information regarding trace and REE composition exists (Thompson, 1981).  Therefore, this

study will provide important information regarding potential economic value of north MS

bauxites as a possible source of critical trace elements and REEs.
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2. METHODS

Study Area

The study area is located in east-central, north-central, and northeastern MS, USA and is

enclosed by a rectangle with corners defined by the coordinates: 34.8°N, 89.3°W and 33.3°N,

89.0°W (Fig. 6).  Field sites are located within Pontotoc, Tippah, and Oktibbeha Counties.

Scanning Electron Microscopy

A JSM-7200F Field Emission Scanning Electron Microscope (SEM), along with an

Oxford Instruments X-MaxN 80 Energy Dispersive Spectroscopy (EDS) at the University of

Mississippi (UM), was used to determine the mineralogy and elemental chemistry of select

samples.  SEM-EDS was also used to determine pisolith morphology, the extent of cortex

development, as well as matrix and cortex major element geochemistry (e.g., Al, Si, Fe, Ti).

Figure 6. A map of the study area showing the locations where the Midway or Wilcox Group is exposed at the
surface. Localities: 1 = Shady Grove; 2 = Third Hill; 3 = Arrow Road; 4 = Sturgis.
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Sample Powdering

A Rocklabs Bench Top Ring Mill was used to powder samples.  Metal and rubber

components of the puck mill were sterilized with acetone and distilled water, respectively prior

to each use.  The mill was primed with a sample and sterilized a second time prior to sample

collection.

Loss-on-Ignition

A Cole Parmer Box Furnace at UM sequentially baked powdered samples in ceramic

crucibles at the following increments representing dehydration, combustion of organic carbon,

and evolution of carbonate to carbon dioxide, respectively: 24 hours at 105°C, 4 hours at 550°C,

and 2 hours at 950°C (Heiri et al., 2001).  Mass was recorded before and after each ignition

(once cooled in oven to 30°C) and percent loss-on-ignition (LOI) was calculated using the

following equations:

LOI550 = ((Mass105 - Mass550)/Mass105)*100 Eq. 1

LOI950 = ((Mass550 - Mass950)/Mass60)*100 Eq. 2

LOItotal = ((Mass950 - Mass105)/Mass105)*100 Eq. 3

X-Ray Diffraction (XRD)

Prior to the analysis of bulk, chemically-treated bulk, and clay mineralogy using a Rigaku

MiniFlex X-ray Diffractometer at UM, powdered samples were sieved to 45 μm.  Bulk samples

were run at 5°/minute, 40 kV, 15 mA, and 30 RPM, while chemically-treated samples and the

clay fraction were run at 1°/minute, 40 kV, 15 mA, and 30 RPM.

Chemical treatment used hydrochloric acid (HCl), hydrogen peroxide (H2O2),

citrate-dithionite (CD) to remove carbonate and soluble organic matter, insoluble organic matter,

and iron oxides, respectively.  After each treatment, the supernatant liquid was decanted and
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discarded and the samples were washed with two successive 40 mL aliquots of distilled water.

1-3 grams were treated for a period of 24 hours with 20 mL of 0.5 M HCl.  The residue was

treated with 20 mL aliquots of 3.0% H2O2 for three successive 24-hour intervals at which point

vigorous bubbling had subsided.  Samples were then treated for a period of three days with two

successive 40 mL aliquots of a 0.3 M sodium citrate and 0.1 M sodium dithionite CD solution

(timed 18 hours apart).

In order to separate particles finer than 1.5 μm, chemically-treated samples and 40 mL of

distilled water were centrifuged twice at 1500 RPM on an IEC floor centrifuge for 2 minutes and

30 seconds calculated using the equation found in (Jackson, 1979).  The pipette method was used

in order to mount suspended particles samples onto zero-background slides for XRD analysis.

Elemental Analyses

Inductively coupled plasma – optical emission spectrometry (ICP – OES) in combination

with inductively coupled plasma – mass spectrometry (ICP – MS) at Bureau Veritas in

Vancouver, Canada quantified major, minor, trace, and REE compositions of powdered samples

within a precision of 10-15%.  Prior to analysis, powdered samples were sieved to 150 μm at

UM and digested using a lithium metaborate/tetraborate flux at Bureau Veritas.  Gold (Au) and

volatile elements (e.g., copper, nickel, etc.) were digested using Aqua Regia, a method by which

a partial digestion is completed using nitric and hydrochloric acid.  Additionally, total C and S

were determined using the LECO method.

Isotopic Analyses

Prior to isotopic analyses, samples were sieved to between 300 and 250 μm.  A

ThermoFinnigan MAT 253 Isotope Ratio – Mass Spectrometer (IR – MS) at Southern Methodist

University (SMU) measured the oxygen (δ18O) and hydrogen (δD) isotope ratios of carbon
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dioxide (CO2) and hydrogen (H2) gas, from 12 kaolinitic samples.  Precisions for CO2 and H2

were 0.1‰ and 2‰, respectively.  Standard Mean Ocean Water (SMOW) served as the standard

for δ18O and δD.  An Elementar Isoprime100 IR – MS at SMU was used to measure the carbon

(δ13C) ratios in the same 12 samples with a precision of 0.1‰.  Vienna Peedee Belemnite

(VPBD) was used as the standard for calculating δ13C.
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3. RESULTS

Field Results

Pontotoc County

The Arrow Road locality, referred to as Randolph Road Metal Pit by Thompson (1981),

is a well-exposed outcrop of bauxite in north Mississippi and is located ~2.4 km northwest of

Randolph in Pontotoc County at 34.21°N 89.18°W.  Because of the thickness of the outcrop, I

use this location exclusively for analyses that rely on stratigraphic control for interpretation.  I

recognize five lithofacies: a lower pisolithic clay, a kaolin interval, mottled clays, friable bauxite,

and indurated bauxite (Fig. 7).  The first 1.3 m of the section comprises a clay-rich pisolithic

zone with a greenish-white color.  A white to light tan kaolinitic layer dominates the overlying

1.2 m and transitions into mottled yellowish-white clays, which measures 1 m thick.  Above is a

thin-layer of friable light yellow bauxite that is 0.4 m thick; it exhibits sharp contacts with

underlying and overlying strata as well as cross lamination and pisolihtic texture (Fig. 8).  A

massive dark yellow bauxite with a pisolithic texture and iron staining comprises the remaining

2.6 m of the section.  A sample collected from the uppermost bauxite layer contained several

vertically-oriented linear structures ~1 mm in width and ~1-5 cm in length (Fig. 9).  These

structures are light tan and penetrate through an apparent iron-filled fracture as well as pisoliths,

which appear throughout the sample.  Pisoliths vary in color between white, dark red, light

yellow, or dark green and most have a dark red outer rind.

Three bauxite-bearing localities are near the intersection of Big Hill Road and McDonald

Road, which is 7.7 km east of Toccopola, MS.  Third Hill is the most well-exposed of the three
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and is located 790 m southwest of the intersection (34.26°N 89.16°W).  A dirt road leading up

the hill intermittently exposes strata, but not well enough for a stratigraphic section to be

measured.  Bauxite has a dark red matrix and contains pisoliths varying in color between white,

dark yellow, dark orange, and dark red (Fig. 10).

Figure 7. A photograph (left) and section (right) of the Arrow Road outcrop with interpreted lateritic
pseudo-horizons (middle), modified from Platt, unpublished data.

Figure 8. Photographs of the lowermost portion of the upper pisolithic facies at the Arrow Road location in Pontotoc
County, MS. Liesegang banding geometry varies from flat to undulatory. Both the lower white and upper

yellowish-white units are friable.
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Figure 9. A photograph of sample CAR-14 showing tube-like structures interpreted as rhizoliths (green arrow; R);
one appears to be penetrating through a pisolith (blue arrow; P). Liesegang banding

(red arrow; L) appears to have formed after pisoliths and rhizoliths.

Tippah County

Shady Grove is the only bauxite-bearing location in Tippah County that was visited for

this study.  It is located 3.5 km east of Gravestown, MS on County Road 422 and 0.8 km east of

the intersection with County Road 429 (34.75°N 89.05°W). Strata are poorly exposed in a steep

roadside ditch.  Indurated bauxite was also found in float.  Exposed strata contain between 20 cm

of white-gray massive clay, 13 cm of white to yellow mottled pisolithic clay, and 15 cm of

massive light pink clay (Fig. 10).  Pisoliths and nodules range from 3-20 mm and are exclusively

light gray to orangish-brown.

19



Figure 10.  A: A photograph of bauxite from Third Hill.  B: A photograph of a pisolithic clay from Shady Grove.
Pisoliths measure between 3 and 10 mm, while rare nodules measure between 1 and 2 cm.

Float observed at Sturgis locality. Samples are distinctly different from those collected to the north in regards to
pisolith composition (clay) and structure (lacking rings) as well as matrix color (blueish gray).

Oktibbeha County
A single sample (ST-1) was collected from a locality ~2.3 km east of the town of Sturgis

in Oktibbeha County and 1.3 km past the intersection of Tom Street and Craig Springs Road

(33.35°N 89.02°W).  Bauxite is exposed on a single horizontal surface and exhibits a

blueish-gray silty matrix with light yellow pisoliths with no discernible outer rings (Fig. 10).

XRD Results

The lower pisolithic clay was found to contain kaolinite and siderite.  Chlorite was also

present however only in sample AR-2 (Appendix 2). The overlying kaolin interpreted as the

plasmic zone contained kaolinite, and chlorite.  The mottled clay (AR-8) contained muscovite,

kaolinite, and goethite.  Boehmite was found only within samples CAR-11, AR-11, and AR-D2,
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constituting the lower portion of the upper bauxitic zone.  The mineralogy of the upper bauxitic

zone is characterized by the clay minerals kaolinite and chlorite as well as gibbsite and goethite.

The pisolithic clay from the Shady Grove location was found to contain exclusively kaolinite,

while the bauxite from Sturgis contained kaolinite, quartz, and gibbsite.  The bauxites from Third

Hill, samples TH-3 and TH-5, had a mineralogy of kaolinite, boehmite, gibbsite, and goethite.

Scanning Electron Microscopy

Scanning electron microscopy confirmed prior reports of iron-rich nodules in the lower

pisolithic clay (Fig. 11).  These were contained within a clayey matrix.  Sample AR-6 was found

to have a homogenous clay-rich composition.  AR-8, contained Fe-rich mottles ~0.75 mm in

diameter; between these mottles are a clayey matrix (Fig. 11).  Sample AR-11, bauxite from the

lower portion of the upper bauxitic zone, contained pisoliths that were ~2-4 mm in diameter (Fig.

11).  Pisoliths have Al nuclei with cortices rich in Fe.  In one case, an Al-rich cortex separated

two Fe-rich ones.  Additionally, this pisolith had an internal structure defined by an abundance of

Al and Ti arranged in a dendritic pattern.  Pisoliths occur within a clay matrix.  Sample AR-D2

contained a higher concentration of pisoliths and pisolith matrices were dominated by an Al-rich

chemistry with rare occurrences of Fe-rich matrices and were 2-4 mm in diameter (Fig. 11).

Pisoliths with Al-rich matrices have Fe-rich cortices and have a matrix that is more concentrated

in Ti compared to the aluminosilicate matrix.  Sample CAR-14, collected from approximately the

same elevation as AR-12, contained what is interpreted as a rhizolith, Liesegang banding, and

pisoliths (Fig. 12).  Pisoliths were 2-6 mm in diameter and had matrices that were characterized

by Al and Si chemistry.  Additionally, pisolith cortices contained Al, Fe, as well as overlapping

Fe and Si (Fig. 12).  The interpreted rhizolith contained a slightly higher concentration of Si

compared to the surrounding material.  Within close proximity to the interpreted rhizolith were
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several small tube-like to plate-like carbonaceous structures between 20 μm and 30 μm in length

(Fig. 12).  A third rope-like structure was observed measuring ~150 μm in length and 3 μm in

width before extending into the interior of the sample (Fig. 13).

Sample ST-1 contained an Al- and Si-rich matrix as well as pisoliths ~2 to 3 mm in

diameter (Fig. 14).  These pisoliths were Al- and Si-rich and lacked any discernible cortices.

They do, however, contain an elevated concentration of Ti compared to the matrix.  The matrix

also contains very fine- to medium-grained sand quartz grains and minor occurrences of Fe

further distinguishing the two.

Samples TH-3 and TH-5 were collected from the Third Hill locality.  TH-3 contains 2-3

mm diameter Al-rich pisoliths in an Fe-rich matrix (Fig. 14).  One pisolith was observed that had

an Fe-rich matrix with a single Al-rich cortex.  A second pisolith contains a small zonation of Fe

within its dominantly Al matrix.  Within this Fe-rich zone is a small fracture that has been filled

with an Al-rich material.  TH-5 contains 2-3 mm in diameter Al-rich pisoliths in an Fe-rich

matrix (Fig. 14).  TH-3 contains a greater concentration of Si in its matrix compared to TH-5.
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Figure 11. SEM (top) and EDS images (bottom) of samples A = AR-1; B = AR-8; C = AR-11; D = AR-D2. Sample
AR-1 exhibits an Fe-rich nodule (Nod.), most likely siderite. This is interpreted as a possible cause for elevated Fe

in the lower clays. Sample AR-8 exhibits Fe-rich mottles (M) in an otherwise kaolinitic matrix. Sample AR-11
exhibits a pisolith with multiple discernible cortices and a complex internal structure. Sample AR-D2 showing 6

pisoliths, 5 of which are enriched in Al, 1 in Fe. All have an outer coating rich in Fe.
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Figure 12. SEM (top) and EDS images (bottom) of sample CAR-14 . A = SEM-EDS image of sample CAR-14
showing Fe-rich Liesegang banding (L) adjacent to the clay-rich matrix. B = SEM-EDS image of sample CAR-14

showing Fe-rich Liesegang banding adjacent to clay-rich matrix (Mat.) as well as a pisolith (Pis.) with Fe- and
Al-rich cortices. C = SEM-EDS image of sample CAR-14 showing Fe- and Al-rich cortices surrounding an Al- and

Si-rich pisolith. D = SEM-EDS image of sample CAR-14 showing tubular (red box) and plate-like (blue box)
carbonaceous structures.
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Figure 13. SEM image of a rope-like structure within sample CAR-14 interpreted as a fungal hyphae based on size
and morphology.
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Figure 14. SEM (top) and EDS images (bottom) of samples A = ST-1; B = TH-3; C = TH-5; D = TH-5. A =
SEM-EDS image of sample ST-1 showing an Al- and Si-rich pisolith within a Al- and Si-rich matrix with sparse
quartz grains. B = SEM-EDS image of sample TH-3 showing an Fe-rich pisolith with an Al-rich cortex within an

Fe- and Si- rich matrix. C =: SEM-EDS image of sample TH-5 showing an Al-rich pisolith within an Fe-rich matrix.
D = SEM-EDS image of sample TH-5 showing a possible fracture, which has been filled by an Al-rich mineral.
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Elemental Geochemistry

Major Element Geochemistry

Major oxide compositions for 15 bauxite and associated clay samples were obtained

using ICP-OES and are shown in Table 2.  At the main Arrow Road outcrop, samples analyzed

had an Al2O3 composition ranging from 16.41% in the upper bauxitic zone to 42.86% in the

lower clayey zone, however it did not noticeably increase or decrease going upsection (Fig. 15).

Fe2O3 ranged from 0.54% in the lower clayey zone to 59.18% in the upper bauxitic zone and

generally increased upsection.  SiO2 ranged from 6.47% in the upper bauxitic zone to 43.29% in

the lower pisolithic clay and generally decreased upsection.  Between samples AR-2-1 and

AR-2-3, Al2O3 increased from 40.86% to 44.52%, SiO2 decreased from 31.82% to 14.22%, and

Fe2O3 increased from 0.97% to 13.03%.  Between samples CAR-10 and CAR-11, Al2O3

decreased from 42.45% to 39.56%, SiO2 decreased from 31.89% to 30.6%, and Fe2O3 increased

from 3.98% to 8.45%. Sample ST-1 had the highest SiO2 composition of any sample at 49.6%,

an Al2O3 composition of 32.2%, and an Fe2O3 composition of 1.9%.

MgO, CaO, and MnO all decreased upsection.  TiO2 decreased upsection as well, albeit to

a lesser degree.  In addition, Na2O and K2O remained low throughout the section, but spiked

significantly at the contact of the lower clayey zone and the upper bauxitic zone.  Cr2O3 and P2O5

both increased.

Within the Arrow Road bauxites there was a strong positive correlation between TiO2 and

Al2O3 (r2 = 0.837; n = 6).  There is also a strong positive correlation between SiO2 and Al2O3 as

well as a strong negative correlation between Al2O3 and Fe2O3.
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Figure 15. Major oxide weight percentage as a function of stratigraphic position within the Arrow Road section.
Fluctuations closely resemble those present within the typical lateritic bauxite profile and reflect processes of

illuviation and eluviation.

Table 2. Major oxide compositions (weight %) measured using ICP-OES.

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

AR-1 36.36 32.01 12.61 0.39 0.38 0.04 0.1 2.15 0.05 0.06 0.033

AR-2 24.19 25.39 26.79 0.72 0.81 0.02 0.06 2.14 0.06 0.14 0.036

AR-6 32.38 42.86 1.41 0.1 0.06 0.03 0.03 3.79 0.04 <0.01 0.039

AR-7 27.71 41.66 0.54 0.09 0.05 0.03 0.01 2.12 0.08 <0.01 0.028

AR-8 24.86 21.18 37.8 0.24 0.04 0.05 0.51 1.55 0.04 0.04 0.02

AR-11 21.66 35.12 21.58 0.03 0.11 0.01 0.08 1.22 0.15 0.01 0.055

AR-12 16.82 28.41 33.87 0.05 0.03 <0.01 0.06 1.2 0.23 0.04 0.044

CAR-9 43.29 36.54 1.62 0.28 0.06 0.09 0.9 3.08 0.04 <0.01 0.04

CAR-10 31.89 42.45 3.98 0.09 0.04 0.06 0.19 1.96 0.08 <0.01 0.07

CAR-11 30.6 39.56 8.45 0.09 0.02 0.26 0.17 1.71 0.11 <0.01 0.059

AR-D2 6.47 16.41 59.18 0.02 0.01 <0.01 0.06 0.77 0.14 0.06 0.03

AR-D3 9.3 37.24 26.31 0.04 0.03 <0.01 0.06 1.88 0.27 0.02 0.058

AR-2-1 31.82 40.86 0.97 0.08 0.05 0.02 0.03 2.85 0.04 <0.01 0.04

AR-2-3 14.22 44.52 13.03 0.04 0.02 <0.01 0.04 2.8 0.13 <0.01 0.04

ST-1 49.6 32.2 1.9 0.04 0.15 <0.01 0.03 0.83 0.76 <0.01 0.029
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Lithologic Classification

Samples were classified based on Al2O3-Fe2O3-SiO2 composition using the methods of

Boulange et al. (1996), Aleva (1994), Bárdossy (1982), Schellman (1986), and Beauvais (1991).

The samples from the lower clayey zone at the main Arrow Road outcrop plot within the

kaolinite and argillo-ferruginous bauxite fields. Those collected from the area designated as the

upper bauxitic zone plot within the argillo-ferruginous bauxite field in the Al2O3-Fe2O3-SiO2

ternary diagram according to Boulange et al. (1996; Fig. 16).  Both samples from the second

Arrow Road outcrop plot within the argillo-ferruginous bauxite field.  Sample ST-1 plots within

the kaolinite field, despite its bauxite-like texture.

Figure 16. A ternary diagram with accompanying color code (top left) of the SiO2-Al2O3-Fe2O3 system (Boulange et
al., 1996). Circles denote samples from the main Arrow Road outcrop, triangles denote those from the second

outcrop at the Arrow Road location, and the square represents sample ST-1.
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Samples from the lower clayey zone at the main Arrow Road outcrop plot within the

kaolinite bauxite, bauxite kaolinite, and laterite fields.  Samples from the area designated as the

upper bauxitic zone plot within the kaolinite bauxite, bauxite, laterite, and bauxite ferrite fields in

the Al2O3-Fe2O3-SiO2 ternary diagram according to Aleva et al. (1994; Fig. 17).  Samples below

and above Liesegang banding at the second Arrow Road outcrop plot within the kaolinite bauxite

and bauxite fields, respectively.  Sample ST-1 plots within the laterite field.

Figure 17. A ternary diagram with accompanying color code (top left) of the SiO2-Al2O3-Fe2O3 system (Aleva,
1994). Circles denote samples from the main Arrow Road outcrop, triangles denote those from the second outcrop at

the Arrow Road location, and the square represents sample ST-1.
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Samples from the lower clayey zone at the main Arrow Road outcrop plot within the

bauxitic clay, clayey bauxite, and bauxitic clayey iron ore fields.  Samples from the area

designated as the upper bauxitic zone plot within the bauxitic iron ore, iron-rich bauxite, and

clayey bauxite fields in the Al2O3-Fe2O3-SiO2 ternary diagram according to Bárdossy (1982; Fig.

18).  Samples below and above Liesegang banding at the second Arrow Road outcrop plot within

the clayey bauxite and bauxite sandstone fields respectively. Sample ST-1 plots within the

bauxitic clay field.

Figure 18. A ternary diagram with accompanying color code (top left) of the SiO2-Al2O3-Fe2O3 system (Bárdossy,
1982). S.S. = Sandstone. Circles denote samples from the main Arrow Road outcrop, triangles denote those from the

second outcrop at the Arrow Road location, and the square represents sample ST-1.
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Degree of Lateritization

Samples from within the lower clayey zone plot within the weak lateritization and

moderate lateritization fields (Fig. 19).  Samples from the upper bauxitic zone plot within the

moderate and strong lateritization fields.  Samples below and above Liesegang banding at the

second Arrow Road outcrop plot within the moderate and strong lateritization fields respectively.

Sample ST-1 plots within the weak lateritization field.

Figure 19. A ternary diagram with accompanying color code (top left) of the SiO2-Al2O3-Fe2O3 system showing the
varying degrees of lateritization possible (Schellman, 1986). Circles denote samples from the main Arrow Road
outcrop, triangles denote those from the second outcrop at the Arrow Road location, and the square represents

sample ST-1.

32



Dismantlement Pathways

Using the Al2O3-Fe2O3-SiO2 ternary diagram as described in Beauvais (1991; Fig. 20), it

was determined that the dominating dismantlement pathway followed during bauxitization at the

Arrow Road outcrop was dehydration.  This was most apparent in the sequence of samples

CAR-9, CAR-10, CAR-11, AR-11, and AR-D2.  The transition from sample AR-D2 to sample

AR-D3 is marked by a drop in Fe2O3 content.  Samples AR-2-1 and AR-2-3 follow a similar

trend as CAR-10 and CAR-11, increasing in Fe2O3 content.

Figure 20. A ternary diagram with accompanying color code (top left) of the SiO2-Al2O3-Fe2O3 system showing the
possible geochemical dismantlement pathways that may have taken place during bauxitization (Beauvais, 1991).
Circles denote samples from the main Arrow Road outcrop, triangles denote those from the second outcrop at the

Arrow Road location, and the square represents sample ST-1. Red arrows indicate pathway followed upsection
starting at the top of the lower clay-rich zone. Blue arrows indicate pathway followed upsection starting at the base

of the lower clay-rich zone through the top of the lower clay-rich zone.

33



Weathering Indices

Of the 7 weathering indices used to analyze the data, Vogt’s Residual Index (V) and

Silica-Titania Index (STI) showed the most substantial changes upsection (Table 3-4; Fig. 21).

Both followed trends associated with increased weathering going upsection.  The Chemical

Index of Alteration (CIA), which is commonly used for analyzing bauxite and laterite deposits,

showed minimal change going upsection.  Both the Chemical Index of Weathering (CIW) and

the Plagioclase Index of Alteration (PIA) show the greatest change at the shift from the

interpreted saprolite to the lower clay horizon. The Weathering Index of Parker (WIP) showed

almost no change going upsection and only a minor spike occurring at the base of the upper

bauxitic zone.

Table 3. The chemical weathering indices that were used to determine the extent of weathering among samples
(Price and Velbel, 2003).

Index Formula Trend With Increased Weathering

R SiO2/Al2O3 Negative

WIP 100[(2Na2O/0.35) + (MgO/0.9) + (2K2O/0.25) + (CaO/0.7)] Negative

V (Al2O3 + K2O)/(MgO + CaO + Na2O) Positive

CIA 100[Al2O3/(Al2O3 + CaO + Na2O + K2O)] Positive

CIW 100[Al2O3/(Al2O3 + CaO + Na2O] Positive

PIA 100[(Al2O3 - K2O)/(Al2O3 + CaO + Na2O - K2O)] Positive

STI 100[(SiO2/TiO2)/((SiO2/TiO2)+(SiO2/Al2O3)+ (Al2O3/TiO2))] Negative
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Table 4. Chemical weathering indices calculated for each sample.

Sample R WIP V CIA CIW PIA STI

AR-1 1.14 200.48 39.64 98.40 98.70 98.70 51.35

AR-2 0.95 255.14 16.42 96.61 96.83 96.83 46.86

AR-6 0.76 60.83 225.74 99.72 99.79 99.79 41.46

AR-7 0.67 42.29 245.12 99.78 99.81 99.81 39.15

AR-8 1.17 468.95 65.73 97.25 99.58 99.57 51.94

AR-11 0.62 88.76 234.67 99.43 99.66 99.66 37.65

AR-12 0.59 57.84 355.88 99.68 99.89 99.89 36.61

CAR-9 1.18 811.11 87.07 97.21 99.59 99.58 51.86

CAR-10 0.75 202.00 224.42 99.32 99.76 99.76 42.06

CAR-11 0.77 297.43 107.38 98.88 99.30 99.29 42.81

AR-D2 0.39 51.65 549.00 99.58 99.94 99.94 27.91

AR-D3 0.25 56.73 532.86 99.76 99.92 99.92 19.78

AR-2-1 0.78 51.46 272.60 99.76 99.83 99.83 42.48

AR-2-3 0.32 39.30 742.67 99.87 99.96 99.96 23.85

ST-1 1.54 49.87 169.63 99.44 99.54 99.54 59.70
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Figure 21. Chemical weathering indices as a function of stratigraphic position at the Arrow Road site.
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Trace Element Geochemistry

Trace element compositions for 9 bauxites and 6 associated clay samples from Arrow

Road and Sturgis are shown in Tables 5 and 6.  Ga concentrations in bauxite at Arrow Road

range from 33.1 ppm to 74.2 ppm and remain relatively constant throughout the section.  Zr and

Nb both decreased upsection, Zr from 1726.9 ppm to 397 ppm and Nb from 70.2 ppm to 13.5 in

the lower clayey zone and the upper bauxitic zone, respectively.  Ni, Hg, and Sr were generally

low throughout the section with the exception of sample AR-8 located immediately below the

contact of the lower clayey zone and upper bauxitic zone. In a bivariate plot of Cr and Ni

concentrations, all samples plot within the high-Fe lateritic bauxite field (Fig. 22). Zr, Cr(Ni),

and Ga abundances plot within the acidic and metamorphic field of a ternary diagram related to

bauxite parent material (Fig. 23).  There exist strong positive correlations between TiO2 and high

field strength elements (i.e., Zr, Hf, Nb, and Ta) within bauxite samples.

Figure 22. Plot with accompanying color code (bottom right) showing likely bauxite protoliths based on Ni and Cr
abundances, based on Schroll and Schauer (1968). Circles denote samples from the main Arrow Road outcrop,

triangles denote those from the second outcrop at the Arrow Road location, and the square represents sample ST-1.

37



Table 5. Trace element compositions (ppm) measured using ICP-MS.

Table 6. Volatile trace element compositions (ppm) measured using aqua regia digestion.
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Figure 23. A ternary diagram with accompanying color code (top left) of the Zr-Cr(Ni)-Ga system that will indicate
bauxite parent rock (Balasubramaniam et al., 1987). Circles denote samples from the main Arrow Road outcrop,

triangles denote those from the second outcrop at the Arrow Road location, and the square represents sample ST-1.

Rare Earth Element Geochemistry

Rare Earth Elemental compositions for 15 bauxite and associated clay samples are shown

in Table 7 and Table 8.  Within the Arrow Road section, the sums of REEs, LREE, and HREEs

range from 31.27 ppm to 170.03 ppm, 19.6 ppm to 83.94 ppm, and 18.4 to 86.09 ppm,

respectively.  The sample from Sturgis, MS had sums of REEs, LREEs, and HREEs of 45.44,

18.56, and 26.88, respectively.

At Arrow Road, REE, LREE, and HREE abundances decrease upsection from 77.94 to

45.44 ppm, 27.43 to 18.56, and 50.51 to 26.88, respectively (Fig. 24).  A sharp increase at the

stratigraphic position of 3.1 m (AR-8) is present. The La to Y ratio, which is used to determine

the relative soil solution pH, remains relatively constant and below 1.0 throughout the Arrow

Road section, however it increases from 0.17 to 0.55 between the stratigraphic positions 2.2 m

and 3.1 m (Fig. 25).  This ratio then drastically decreases to 0.21 at 3.2 m.
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Generally, all samples collected from Arrow Road displayed similar REE trends when

normalized to chondrite. At Arrow Road, chondrite-normalized REE trends gradually decreased

until reaching Sm, which is then followed by a downward-pointing Eu anomaly. Trends then

gradually increased from Gd to Lu.  Sample ST-1 has a chondrite-normalized REE trend that

decreases from La to Ce, increases from Ce to Nd, and decreases from Nd to Sm.  This is

followed by a downward-pointing Eu anomaly and then a decreasing trend between Gd and Lu.

Tb has strong positive correlations with both Al2O3 and TiO2.

Table 7. LREE compositions (ppm) measured using ICP-MS.

Sample La Ce Pr Nd Sm Sum LREE Sum REE

AR-1 6.6 11.4 1.24 4.4 1.06 27.43 77.94

AR-2 9.6 19.1 2.08 7.3 1.95 44.4 110.31

AR-6 9.3 16.5 1.74 6.3 1.25 37.32 106.66

AR-7 16.2 36 4.22 15.4 3.03 78.66 117.13

AR-8 4.3 7.7 0.91 3.9 0.94 19.6 58.3

AR-11 4.5 9.1 0.94 3.7 1.08 22.21 59.3

AR-12 4.1 8.1 0.88 3.2 0.71 18.56 45.44

CAR-9 20.9 37.1 3.95 13.8 2.86 83.94 170.03

CAR-10 7.3 13.1 1.42 5 1.24 30.59 74.18

CAR-11 5.4 9.6 1.07 3.9 0.95 23.15 62.43

AR-D2 2.8 5.8 0.63 2.2 0.47 12.87 31.27

AR-D3 4 8.8 0.93 3.8 0.94 20.76 64.15

AR-2-1 7.1 13.2 1.3 4.6 1.24 30.89 98.14

AR-2-3 4.8 9.8 0.99 3.9 1.18 23.83 85.38

ST-1 12.9 24.1 4.38 22.7 5.04 76.71 127.15
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Table 8. HREE compositions (ppm) measured using ICP-MS.

Sample Eu Gd Tb Dy Ho Er Tm Yb Lu Sum HREE Sum REE

AR-1 0.34 2.39 0.63 4.94 1.18 4.12 0.63 4.39 0.72 50.51 77.94

AR-2 0.56 3.81 1 7.72 2 6.59 1.06 7.3 0.84 65.91 110.31

AR-6 0.35 1.88 0.48 3.64 0.84 2.85 0.47 3.26 1.2 69.34 106.66

AR-7 0.67 3.14 0.67 4.79 1.04 3.54 0.53 3.76 0.54 38.47 117.13

AR-8 0.26 1.59 0.38 2.74 0.66 2.2 0.34 2.41 0.57 38.7 58.3

AR-11 0.31 2.58 0.7 5.53 1.36 4.43 0.73 5.12 0.42 37.09 59.3

AR-12 0.2 1.37 0.35 2.8 0.66 2.16 0.34 2.29 0.38 26.88 45.44

CAR-9 0.73 4.6 1.14 8.7 2.05 6.82 1.07 7.38 1.23 86.09 170.03

CAR-10 0.36 2.17 0.59 4.55 1.08 3.46 0.56 3.92 0.63 43.59 74.18

CAR-11 0.29 1.94 0.5 3.92 0.95 3.11 0.52 3.52 0.56 39.28 62.43

AR-D2 0.14 0.83 0.23 1.73 0.39 1.37 0.23 1.58 0.27 18.4 31.27

AR-D3 0.27 2.02 0.54 4.42 1.02 3.51 0.52 3.8 0.58 43.39 64.15

AR-2-1 0.4 3.05 0.81 6.67 1.62 5.15 0.87 5.76 0.97 67.25 98.14

AR-2-3 0.34 2.82 0.74 5.87 1.43 4.95 0.79 5.28 0.89 61.55 85.38

ST-1 1.15 6.44 1.08 6.48 1.33 3.66 0.51 3.2 0.48 50.44 127.15

Fig. 23. The sums of LREEs, HREEs, and REEs as a function of stratigraphic position at the Arrow Road location.
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Figure 25. La/Y as a function of stratigraphic position at the Arrow Road location.

Isotope Geochemistry

At Arrow Road, δ18O ranged from 6.1 to 17.8‰, while δD ranged between -98‰ to

-57‰ (Table 9).  Both δ18O and δD decreased upsection (Fig. 26).  The ratio of δD to δ18O

ranged from -0.33 to -0.06 and increased upsection. A significant decrease in δ18O and δD was

observed between the lower clayey zone and the upper bauxitic zone.  Sample ST-1 had δ18O and

δD values of 16.4 and -58‰.

All samples with the exception of AR-D2 plot to the right of the boehmite equilibrium

line in a bivariate plot of δ18O and δD (Fig. 27). All indurated bauxites plotted to the left of the

Supergene/Hypogene (S/H) line in a bivariate diagram of δ18O and δD, suggesting a supergene

origin. The remaining samples plotted to the right of this line, suggesting a hypogene origin (Fig.

28).  Paleotemperature of the basal kaolin at Arrow Road was found to be ~34°C to 36°C, while

the basal pisolithic clay was 30°C to 31°C (Fig. 29).

42



Table 9. Bulk isotope values obtained using IR-MS and an elemental analyzer.

Sample δ18O ‰ δD ‰ δ13C ‰

AR-1 16.9 -57 -9.2
AR-2 16.9 -67 -4.9
AR-6 17.8 -54 -19.9
AR-7 17.5 -64 -27.3
AR-8 12.8 -72 -7.9
AR-11 14.3 -63 -12.4
AR-12 12.2 -79 -12.7

CAR-10 17.1 -64 -18.8
CAR-11 16.1 -63 -20.3
AR-D2 6.1 -98 -7.4
AR-D3 10.9 -91 -14.6

ST-1 16.4 -58 -19.2

Figure 26. δD ‰, δ18O ‰, δD ‰/δ18O ‰, and δ13C ‰ as a function of stratigraphic position at the main Arrow
Road outcrop.
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Figure 27. A bivariate diagram of δD and δ 18O compositions showing the location of bauxite and clay samples in
relation to the boehmite and kaolinite equilibrium lines.

Figure 28. A bivariate diagram of δD and δ 18O compositions showing the location of bauxite and clay samples in
relation to a Supergene/Hypogene (S/H) line and kaolinite line, following Elahi et al. (2016).
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Figure 29. A bivariate plot of δD and δ 18O with kaolinite isotherm line denoting temperature at which the mineral
crystallizes, following Feng and Yapp, 2009.

δ13C ranged from -4.9 to -27.3‰ at the main Arrow Road outcrop and remained

relatively constant throughout the section.  The lowest value was observed within the interpreted

plasmic zone, while the highest was in the interpreted saprolite immediately above.  Sample ST-1

had a δ13C value of -19.2‰.

Loss-on-Ignition

At Arrow Road, total LOI (LOItotal) ranged from 12.50% to 24.47% and did not vary

substantially going upsection (Table 10; Fig. 30). The highest and lowest LOItotal percentages

belonged to samples AR-7 and AR-8, respectively, which were both located near the vertical

center of the outcrop.  LOItotal increased from 18.03% to 19.05% between samples CAR-10 and

CAR-11, while also increasing from 17.30% to 21.70% between samples AR-2-1 and AR-2-3.

Sample ST-1 had the lowest LOItotal of any samples analyzed at 11.78%.
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LOI after being heated to 550°C (LOI550) ranged from 10.85% to 21.59% at the main

Arrow Road outcrop.  It closely followed the trend observed in LOItotal and the highest and

lowest LOI550 also belonged to samples AR-7 and AR-8, respectively.  LOI550 increased from

16.07% to 16.27% between samples CAR-10 and CAR-11 and from 15.48% to 18.57% between

samples AR-2-1 and AR-2-3.  Sample ST-1 also had the lowest LOI550 at 9.47%.

LOI after being heated to 950°C (LOI950) ranged from 1.65% to 3.51% at the main Arrow

Road outcrop and generally increased upsection.  LOI950 increased from 1.97% to 2.78% between

samples CAR-10 and CAR-11 and from 1.83% to 3.13% between samples AR-2-1 and AR-2-3.

Sample ST-1 also had an LOI950 of 1.55%.

At Arrow Road, LOI values were used to predict Al 2O3 content in gibbsitic bauxite

samples based on the relationship proposed by Zhang et al. (2018):

Al2O3 Content = 10.55e0.056(LOI) Eq. 4

The values obtained from this equation showed a moderate correlation (r2 = 0.504; n = 6) with

values obtained through the use of ICP-OES.  LOI550 was found to have a stronger correlation

with Al2O3 (r2 = 0.737; n =6).

Organic carbon (OC) and inorganic carbon (IC) contents were calculated using the

equations discussed in Dean (1974, 1999):

OC = (LOI550)*0.5 Eq. 5

IC =(LOI950)*0.273 Eq. 6
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Table 10. Loss-on-ignition values for each sample.

Sample LOI105 (%) LOI550 (%) LOI950 (%) LOItotoal (%)

AR-1 1.50 13.15 1.66 14.81

AR-2 0.93 15.80 2.50 18.30

AR-6 1.03 16.66 1.81 18.47

AR-7 3.30 21.59 2.88 24.47

AR-8 1.14 10.85 1.65 12.50

AR-11 1.12 15.72 2.86 18.58

AR-12 2.00 14.85 1.94 16.79

CAR-9 0.42 11.42 2.03 13.46

CAR-10 0.27 16.07 1.97 18.03

CAR-11 0.54 16.27 2.78 19.05

AR-D2 1.98 12.65 2.53 15.17

AR-D3 1.70 17.91 3.51 21.43

AR-2-1 5.49 15.48 1.83 17.30

AR-2-3 1.82 18.57 3.13 21.70

ST-1 1.55 9.47 2.31 11.78

Figure 30. Percent LOI (105, 550, 950, and total) as a function of stratigraphic position at the main Arrow Road
outcrop.
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OC and IC were summed to approximate total carbon.  There was a weak correlation with total C

in bauxite samples (r2 = 0.107, n = 6), but a strong correlation with total C values in the clays

present at Arrow Road (r2 = 0.753, n = 6).  Among Arrow Road bauxite samples, LOI105 had the

strongest correlation with total C (r2 = 0.893, n = 6).  Similarly, LOI105 had the strongest

correlation with total C (r2 = 0.842, n = 6) in clay samples.

LOItotal and LOI550 in gibbsitic bauxite were found to have strong correlations with Ga (r2

= 0.855, n = 6; r2 = 0.848, n = 6).  Weak to moderate correlations were found between LOI105 and

Ga as well as LOI950 (r2 = 0.009, n = 6; r2 = 0.338, n = 6).

LOI550 had a moderate negative correlation with δ13C (r2 = 0.621, n = 12).  There was no

correlation observed between LOI105 and LOI950 and δ13C (r2 = 0.058, n = 12; r2 = 0.06, n = 12).
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4. DISCUSSION

Genetic Classification

The 5 distinct lithologic zones present in the Arrow Road section resemble horizons

present in a typical lateritic profile.  I interpret the three larger lithofacies that divide the section

as the parent material, the lower clay-rich zone, and upper bauxitic zone.  The lower clay-rich

zone can be divided into three distinct sub facies. I interpret the pisolithic clay at the base as the

saprolith, the kaolin as part of the plasmic zone, and the mottled clay as the mottled zone. The

upper bauxitic zone lithofacies can be divided into two observable sub facies, a friable

fragmental unit represented by the friable bauxite, and a lateritic duricrust represented by the

indurated bauxite. This supports a lateritic origin for the Arrow Road bauxite, whether it be

primary or secondary, as lateritization typically results in the separation of distinct horizons

(Mondillo, 2020).  Secondary lateritizations would result in a karst bauxite classification under

the 2-fold system and a sedimentary classification under the 3-fold.

The Arrow Road bauxite plots in the high-Fe lateritic bauxite field in a binary diagram of

Ni and Cr compositions, perhaps due to the underlying material being somewhat rich in Fe due

to the presence of siderite nodules (Fig. 23).  Major oxide data of the Arrow Road section

followed trends typically associated with lateritic profiles.  Percent available Al2O3 increased

starting from the base of the plasmic zone, peaked in the mottled zone, and then decreased until

the top of the lateritic gravel horizon.  Percent available Fe2O3 followed a similar trend,

increasing until it peaked near the contact of the duricrust and lateritic gravel horizons.  Percent

reactive SiO2 decreased sharply starting at the base of the plasmic zone, stabilized slightly (still
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decreasing) near the base of the mottled zone, and then decreased throughout the upper bauxitic

zone.

The Sturgis deposit was previously mapped as lower Wilcox Group and was described as

being a reworked bauxite (Pandya, 1973).  This hypothesis is supported by an abundance of

quartz sand in the matrix and crossbedding reported by Pandya (1973).  Additionally, the

variation between the Arrow Road orebody and the Sturgis bauxite suggests a difference in

genetic histories (Fig. 31).

There was a strong positive correlation between TiO2 and Al2O3 (r2 = 0.837; n = 6), which

suggests they are more concentrated in horizons that have experienced strong weathering.

Degree of Lateritization

As expected, the degree of lateritization increased upsection at Arrow Road.  This is

consistent with the typical lateritic profile in which silica decreases in proportion to Al2O3 and Fe

oxide.  This occurs as a result of chemical weathering of an in situ protolith and the subsequent

removal of mobile elements (MacLean et al., 1997).

I interpret the decrease in REE abundance upsection at Arrow Road as a result of

lateritization and horizonation.  The sharp increase in REE abundance occurring near the

boundary of the interpreted mottled zone and bauxitic zone could be due to a change in the

dominating process at that point in bauxitization and the formation of distinct eluvial and illuvial

horizons.

Dismantlement Pathway

The sample highest in REEs (CAR-9) plots in the “preservation of kaolinite field,” while

overlying samples plot forming in a linear pattern in the direction of the “dehydration” field

ending two meters above with sample AR-D2 (Fig. 20). The last two samples in the section
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(AR-D3 and AR-12) move in a retrograde fashion suggesting a change in the processes

dominating bauxitization (Fig. 20).  AAR-11 and AR-11 are also the only two bauxite samples

found to contain boehmite (Appendix 2).  Additionally, AR-D2 is the only sample that plots to

the left of the boehmite equilibrium line in a binary diagram of δ18O and δD (Fig. 27), indicating

that low-temperature diagenesis may have occurred. Indeed, the pisoliths also vary in

composition between samples AR-11 and AR-D2, which have an internal matrix composed of Al

and CAR-14, which are mostly Si.  The strong positive correlations between TiO2 and high field

strength elements within bauxite samples suggests that they share similar geochemical behaviors

and remain stable throughout bauxitization, which may reflect the overall trend towards

dehydration observed between the lower FFU and lower duricrust (Liu et al., 2010; Zarasvandi et

al., 2012).

Protolith

The interpreted protolith for the Arrow Road bauxite is the pisolithic clay at the base of

the profile.  δ13C was depleted at this location relative to the rest of the profile, suggesting

subaerial exposure and isotope exchange (Hajikazemi et al., 2010).  Additionally, normalized

REE values of pisolithic clay closely resemble those of the bauxite located upsection.

Chondrite-normalized REE values deviate from those observed from the Sturgis bauxite,

suggesting either a different origin or protolith (Fig. 31).  This is consistent with the Sturgis

bauxite being mapped as reworked bauxite within the lower Wilcox Group.

Thompson (1981) rules out genesis by terra rosa, lateritization of igneous materials,

and/or a saprolite complex due to association with units that bauxite is not usually associated

with (fluvial deltaic muds, and sands, as well as tidal flat and prodelta muds).  Given this

conclusion, it was expected that the data would plot between or near the sandstone, shale/slate,
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Figure 31. A: Chondrite-normalized REE trends associated with three bauxites from the Arrow Road location
juxtaposed beside the REE trend associated with the sample collected from the Sturgis deposit and one bauxite

sample from the Pulaski-Saline deposit. B: REE concentrations from an Arrow Road bauxite as well as sample ST-1
juxtaposed beside REE concentrations from two of the world’s premier sources of REEs (i.e., Mountain Pass and

Chinese Laterite). Additional data sourced from Van Gosen and Choat (2019) and Haxel et al. (2002).

and carbonate points (Fig. 23).  Instead, the data plotted within the “high-iron lateritic bauxite”

field and in close proximity to the sandstone and granite points.  It should be noted however that

there is no point within the bivariate diagram of Ni and Cr reflecting a bauxitic protolith, which

would be necessary in order to determine if the bauxite was the product of secondary

lateritization.  Additionally, the Sturgis bauxite plotted in close proximity to the sandstone

reference point within the high iron lateritic bauxite field despite being reworked and thus, by

definition, a karst bauxite.  It is therefore suggested that this diagram be reevaluated to take into

account sedimentary bauxites that do not overly carbonate bedrock.

Secondary lateritization of the pisolithic clay would imply that the pisolithic clay formed

due to lateritization of its underlying parent material. Stratigraphically, this would imply

successive periods of subaerial exposure, followed by erosion, and return to subaerial exposure

characteristic of a coastal setting.

Previous investigations show that neither upland nor underlying strata are igneous in

origin (Thompson, 1981).  Instead, upland and underlying strata are dominated by shales,
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sandstones, and carbonates.  The La to Y ratio of the interpreted protolith pisolithic clays is

below 1 (Fig. 25), which suggests that an acidic paleoenvironment was present at the time and

supports the conclusions made from the ternary diagram (Maksimovic and Panton, 1991; Ellahi

et al., 2016).  The strong positive correlation between Tb and Al2O3 may be associated with the

formation of heavy minerals (e.g. anatase, rutile, and titanite) (Karadag et al., 2009).  It should be

noted however that none of these were identified during XRD analyses discussed herein or

during the most recent study (Thompson, 1981)

Paleoenvironment

Thompson (1981) argued that the unique structure of the north Mississippi bauxites could

be due to pH fluctuations associated with facies changes between fluvial and paludal settings.

Additionally, pH fluctuations created conditions allowing for the selective precipitation and

differential flocculation of high Al clays and Fe (Thompson, 1981).  If this were true, the La to Y

ratio would fluctuate as a function of pH.  La/Y > 1 is indicative of basic soil solution pH, while

La/Y <1 is indicative of acidic conditions (Ellahi et al., 2016).  The ratios of La to Y remain

below 1 throughout the Arrow Road section, suggesting that an acidic soil solution was present

throughout bauxitization, although a sharp increase in this ratio from 0.17 to 0.55 occurs at the

transition from the interpreted plasmic zone to the mottled zone (Fig. 25).  This is believed to be

due to the differentiation of an eluvial and illuvial horizon as the ratio of LREEs to HREEs

follows a very similar trend.  The strong positive correlation between SiO2 and Al2O3 as well as a

strong negative correlation between Al2O3 and Fe2O3 suggests that the majority of Al2O3 is

contained within aluminosilicate minerals as opposed to gibbsite or boehmite, which supports the

hypothesis of an acidic paleoenvironment.
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The sum of REEs (ΣREE) decreases upsection, supporting the hypothesis of an acidic

paleoenvironment; REEs are more easily removed from the weathering profile under these

conditions (Nesbitt, 1979; Karadag et al., 2009). In addition, Thompson (1981) documented

lignitic bauxite at Arrow Road and proposed the possibility of a paludal environment dominated

by reed-like plants, which would likely have been acidic.  This hypothesis of a lowland swamp-

to bog-like environment is supported by the rhizoliths and geochemical data presented herein.

Concentrations of δ13C vary throughout the Arrow Road section, suggesting a complex

history in regards to photosynthetic uptake of CO2. Organic matter produced from atmospheric

CO2 through C4 and C3 photosynthesis typically have δ13C values near -14‰ and -27‰,

respectively (O’Larry, 1988; Kanduc et al., 2005). Among bauxite at Arrow Road, only sample

AR-7 (lower clayey zone) was characterized by a δ13C value (-27.3‰) consistent with that of

organic matter produced by C3 plants (Fig. 26).  Since C4 photosynthesis likely evolved between

30 and 20 Ma (Sage, 2004), the highly negative δ13C values must be the result of other processes.

Diagenetic History

Sample AR-D2 marks the only point within the upper bauxitic zone where δ13C is similar

to that of atmospheric CO2.  Additionally, it is the only sample where H and O isotope values lie

to the left of the boehmite equilibrium line.  Boehmite was only detectable in sample AR-D2 and

AR-11, but neither of the two above these, which suggest that this sample was subjected to some

form of diagenetic alteration after deposition.  Due to the absence of any erosional surface, it is

not believed that subaerial exposure occurred, but that some isotope exchange occurred at a

shallow depth.  Pisolith composition also varies between AR-D2 and CAR-14, while the matrix

remains the same, indicating that the pisolith matrices in samples AR-11 and AR-D2 are

boehmite as opposed to gibbsite.
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The Liesegang banding residing between samples CAR-10 and CAR-11 as well as

between CAR-2-1 and CAR-2-3 also marks a distinct geochemical and mineralogic boundary.

Due to the highly undulatory geometry of the banding, it is believed to be a result of fingered or

preferential flow of groundwater at the time of alteration. The Liesegang banding present within

sample CAR-14 crosscuts a rhizolith, which itself crosscuts a pisolith, which indicates that the

chronological series of events from first to last were as follows: (1) pisolith formation, (2) root

formation and mineralization, and (3) fracturing followed by precipitation of Liesegang banding.

In addition, the chemical indices V and STI suggest the chemical weathering subjected to the

material increased upsection.

Economic Value

Only samples CAR-10, AR-2-1, and AR-2-3 contain Al 2O3 in a concentration greater

than 40 %, the common cut-off grade (Fig. 32).  Additionally, only sample AR-D2 contains Sc in

concentrations greater than 0.002%, the ore cutoff grade estimate sufficient for extraction from

red mud following the removal of Al (Fig. 32).  None of the Arrow Road bauxites contained an

REE concentration significant enough to warrant mining for REEs.  Sample ST-1 contained a

significantly larger concentration of REEs perhaps as a result of its reworked genesis.

Historically notable REE orebodies such as the Mountain Pass carbonatite and a Chinese lateritic

deposit (see Haxel et al., 2002) as well as bauxite from the Pulaski-Saline district, which are not

considered to be a valuable source of REEs, each contained REEs in concentrations greater than

those discussed herein (Fig. 31).  90 percent of the world's Ga is reported to come from bauxite

residue, from which the ore had a concentration between 30 and 90 ppm (Rosi, 1980). All of the

bauxite samples analyzed herein contain a Ga concentration within that range (Fig. 31).  Thus,

neither Arrow Road, nor Sturgis appear to be viable primary sources of Ga, however the

55



byproduct of their refinement could be a secondary source.  As noted by Thompson (1981), the

orebodies in North Mississippi are not extensive enough to warrant extraction, and the results of

this research have demonstrated that the most well-exposed location lacks significant enough

concentrations to warrant extraction.  Because this research only serves as a pilot study in terms

of exploring economic potential, further research would be needed to generalize the entirety of

the North Mississippi bauxite regions in terms of REE composition.  In particular, my

recommendation is that geochemical data should be collected in the vicinity of Big Hill and

Smoky Top due to their historical mining activity if an exploratory study were to commence.

Figure 32. A: Bar graph showing the concentrations of Sc and Ga from bauxite samples studied herein. Blue Dashed
Line = 20 ppm Sc cutoff grade; Red Dotted Line = Ga 30-90 ppm cutoff range. B: Al concentration of bauxites
analyzed as part of this study with the Al ore cutoff grade (40 %) denoted by the green alternating dashed/dotted

line.
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Loss-on-Ignition

The correlation between LOI550 and Al2O3 could be due to the evaporation of water

contained within the crystal lattice of some minerals, mainly kaolinite.  Alternatively, a

relationship between LOI550 and the dehydroxylation of gibbsite could be responsible for this

correlation as this begins at a temperature of 220°C and is complete by 350°C (Kloprogge et al.,

2002).  I recommend that further studies be conducted to determine the relationship between

temperature specific LOI Al2O3 content in gibbsitic bauxite as this would provide a quick and

cost-effective solution during bauxite prospecting.
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5. CONCLUSIONS

The findings of this research demonstrate that the bauxites located at Arrow Road in

Pontotoc County, Mississippi were formed through in situ weathering of a sedimentary protolith

under warm and acidic conditions.  Pisolithic clay and kaolin near the base of the profile formed

at paleotemperatures of 30 to 31°C and 34 to 36°C, respectively.  Bauxites at the location have a

geochemical suite that closely resembles that from the typical lateritic bauxite profile, yet they

lack a significant enough concentration of Al2O3, Ga, or Sc to warrant any large-scale mining

operations.  The highest δ13C value was observed in the portion of the section interpreted as the

parent material, confirming that it had been exposed subaerially or shallow enough to allow for

isotopic exchange.  Fieldwork results in the form of horizonation and rhizoliths also support the

occurrence of lateritization taking place; it remains unclear whether this was primary or

secondary due to strata underlying the pisolithic clay being unexposed.  SEM-EDS data

confirmed that the Sturgis bauxite did not contain pisoliths with the same chemical composition

as those in Pontotoc and thus, they likely are not the parent material that is being reworked.  It is

recommended that future work be conducted to determine the REE composition and extent of

bauxite deposits in Mississippi in order to make a more complete interpretation of economic

viability.
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Appendix 1: Additional Field Photos

Figure 1.1. Photographs of the Arrow Road location in May 2018 (top) and December 2020 (bottom).
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Figure 1.2. A photograph showing the contact between the interpreted friable fragmental unit and the lateritic
duricrust.
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Figure 1.3. A photograph showing the second outcrop at Arrow Road.

Figure 1.4. Photographs of a second outcrop at the Arrow Road location. Although only partially-exposed, this
outcrop displays Liesegang banding at a greater wavelength than the main outcrop at Arrow Road.
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Figure 1.5. A photograph showing Third Hill. Bauxite is intermittently exposed by gullies.
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Appendix 2: X-Ray Diffractograms
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Appendix 3: Additional SEM-EDS Images

Figure 3.1. SEM-EDS image of sample TH-5 showing three Al-rich pisoliths in an iron-rich matrix.
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Figure 3.2. SEM-EDS image of sample TH-5 showing two Al-rich pisoliths in an iron-rich matrix.
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Fig. 3.3. SEM-EDS image of sample ST-1 showing an Al- and Si-rich pisolith in a Si-rich matrix.
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Fig. 3.4. SEM-EDS image of sample TH-5 showing one Al-rich pisoliths in an iron-rich matrix.
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