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Abstract: Development boards, Single-Board Computers (SBCs) and Single-Board Microcontrollers
(SBMs) integrating sensors and communication technologies have become a very popular and
interesting solution in the last decade. They are of interest for their simplicity, versatility, adaptability,
ease of use and prototyping, which allow them to serve as a starting point for projects and as reference
for all kinds of designs. In this sense, there are innumerable applications integrating sensors and
communication technologies where they are increasingly used, including robotics, domotics, testing
and measurement, Do-It-Yourself (DIY) projects, Internet of Things (IoT) devices in the home or
workplace and science, technology, engineering, educational and also academic world for STEAM
(Science, Technology, Engineering and Mathematics) skills. The interest in single-board architectures
and their applications have caused that all electronics manufacturers currently develop low-cost
single board platform solutions. In this paper we realized an analysis of the most important topics
related with single-board architectures integrating sensors. We analyze the most popular platforms
based on characteristics as: cost, processing capacity, integrated processing technology and open-
source license, as well as power consumption (mA@V), reliability (%), programming flexibility,
support availability and electronics utilities. For evaluation, an experimental framework has been
designed and implemented with six sensors (temperature, humidity, CO2/TVOC, pressure, ambient
light and CO) and different data storage and monitoring options: locally on a µSD (Micro Secure
Digital), on a Cloud Server, on a Web Server or on a Mobile Application.

Keywords: single-board computers; microcontroller boards; architectures; integrating sensors tech-
nologies; indoor comfort monitoring; IoT applications

1. Introduction

Single-Board Architectures (SBAs) are similar to a computer in terms of the basic
components that make them up on a single board: memory, input/output ports and
processor. These basic components are included in a single monolithic chip (System on
Chip, SoC) and makes SBAs increasingly develop in compact form and at low-cost, in
medium and low power, and with high, low and medium processing capacity, making
them very popular for data acquisition systems Integrating Sensor Technologies (ISTs)
in numerous applications. SBAs can be classified from different points of view, mainly
processor that integrate it, sensors that configure it, communication modules, programming
languages, cost, size and open or closed-source.
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The first architectures based on a single board were developed, commercialized and
began to be used in the 1970s, however it has been in the last 20 years when SBAs have
reached their greatest role in terms of use, mainly due to their low cost, consumption, small
size and great flexibility, which makes them an alternative in many applications.

These types of platforms integrating sensors, communication networks and data pro-
cessing are of interest in many engineering applications. Currently there are a large number
of sensors that can measure almost all the physical or chemical magnitudes of our environ-
ment, which results in a large amount of data to process to define these variables accurately.
Therefore, the sensors and the subsequent processing of the data provided are fundamental
in Electrical, Electronics, Chemical and Mechanical Engineering, Information Technology,
Robotics and Automation, Consumer Electronics as well as emerging applications such as
Internet of Things (IoT), Industry 4.0, Intelligent Vehicles and Smart Cities.

The interest in SBAs (and ISTs also) is reflected in the numerous publications and
sub-cited analysis, both from the academic, research and economic/business world [1–13]
as well as from industry and manufacturers publications [14–20]. The most recent forecasts
(taking into account pre-COVID and post-COVID scenarios) estimate that the market for
SBAs is expected to increase at a Compound Annual Growth Rate (CAGR) of 12.0% in
the next five years, from US$632.10 million in 2019 to US$1010.78 million in 2026 [21–36].
This growth is mainly due to sectors such as Do-It-Yourself (DIY) projects, academic world
for STEAM (Science, Technology, Engineering and Mathematics) skills and IoT, where
interconnected devices is a reality, including the transition from 4G to 5G technologies.
These estimates contemplate various aspects and point of view such as technology, service,
processor, application, end use, as well as increased of modules, embedded systems and
sensors integrating, the development of the end-use industries such as energy, transporta-
tion and medical. This focus on SBAs and ISTs applications has also led to the development
and commercialization of low-cost single board platform solutions by all electronics manu-
facturers and suppliers [37–86].

The applications of Single Board Architectures Integrating Sensors Technologies
(SBA-ISTs) cover a wide range in education, industrial and engineering sceneries, from ed-
ucational tools and entertainment to healthcare, medicine and hospitals, test and measure-
ment, aerospace, military and defense, research, industrial automation, logistics transporta-
tion and communication. In engineering, they allow the evaluation of the experimental
prototyping and design process. The ability to perform rapid prototyping and exploration
of ideas on an easy-to-use development platform is an important factor in software de-
velopment. In the industry, they allow rapid manufacturing and are part of embedded
systems. In test and measurement, they allow the prior validation of the processes. In
aerospace, military and defense a variety of designs based on SBAs and ISTs are developed.
In the training, education and academic world enables the implementation of project-based
learning and for STEAM skills, which enables to build and maintain technology. In health-
care, medicine and hospital facilities, they allow from customized medical monitoring
kits and remote monitoring to collects data and processing for tracking of blood pressure
sensors, recording lung and heart microphones, oximeters and temperature sensors. In
entertainment applications, SBA and IST platforms are a reality and suit a wide and diverse
group of potential projects, such as: game consoles, media servers, home security, digital
audio hubs, IoT and automation devices, remote desktop and sensor gateways. The growth
rate of the electronics industry has also been partially driven by SBAs and ISTs applications,
due to their increased demand.

The importance of single board architectures integrating sensors technologies and
their applications has led to different tutorials, overviews, reviews and surveys papers
being reported in the literature, included on-line publications, white papers, webinars and
different aspects, topics and points of view: SoC technologies, process capacity, charac-
teristics, power and number of I/O, in terms of cost, control flexibility, among others. In
this sense SBAs and ISTs for visual sensor networks are revised and analyzed in [87,88],
transport technologies and related applications in [89,90] including tracking, monitoring
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and lighting in [91–98], SBAs and ISTs for smart cities applications in [99,100], education
and research projects in [101–105], medical devices in [106–108], smart and advanced sen-
sors in [109–113], including wireless sensors [114], IoT applications in [115–118], smart
home in [119–122], energy in [123–125], engineering education in [126–128], Hybrid Elec-
tric Vehicle (HEV), Fuel Cell Electric Vehicles (FCEV) and Plug-in-Hybrid Electric Vehicle
(PHEV) in [129,130], while reviews and characteristics evaluation are addressed in [131,132].
Figure 1 presents a perspective of different applications where several SBAs and ISTs are
utilized.
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Figure 1. Applications of Single Board Architectures Integrating Sensors Technologies.

In this paper, we realized an overview analysis of the most important topics related to
SBA-ISTs comparing their potential based on their characteristics.

The work is organized as follows: Section 2 reviews the different single board architec-
tures integrating sensors based on Single-Boards Microcontrollers (SBMs), Single-Boards
Computers (SBCs) and Single-Boards with FPGAs (Field Programmable Gate Arrays) and
some of their characteristics are analyzed. Section 3 defines an experimental framework
and discuss the most important aspects that involves its design, development and imple-
mentation based on the obtained results. Low-cost single board architectures integrating
low-cost sensors commercially available are used. Finally in Section 4 some conclusions
are presented.

2. Single Board Architectures Integrating Sensors Technologies (SBA-ISTs)

A first classification of development systems with single-board architecture (SBAs)
can be made according to the type of processor used in their structure. Thus, three types of
SBA development systems can be distinguished: SBMs, SBCs and boards based on FPGAs,
as shown in Figure 2.
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Figure 2. Single Board Architectures classification and main platforms.

In general terms, SBCs are the most versatile and reliable, usually they support an
Operating System (OS) such as Linux or Windows; and have much higher computational
capacity than SBMs. In turn, the latter are more focused on electronics and are oriented to
the management of inputs and outputs ports. As an example, in IoT devices the equipment
connected to sensors for data collection should be governed by microcontrollers, while
those for processing the amount of input information will be a microcomputer.

The PCB (Printed Circuit Board), interconnection cables and development software
tools together form the development kit. These boards also usually include pins, connectors
and expansion sockets to interface the system with other devices.

On the other hand, there are a set of more or less common peripherals that allow
expanding the capacity of these systems, although there are very depending on the SBA
manufacturer. For each development board/platform there are different expansion boards
designed to properly plug into the pins/connectors. Therefore, expansion boards are
specific to a particular development kit and, to distinguish them from others, they are often
named with specifically names. As an example, Arduino expansion boards are named
“shield” and Raspberry Pi ones’ “hat”.

Regardless of the type of SBA considered, the manufacturer will try to cover any type
of needs that the user may have and will offer very low-cost systems with limited but
sufficient performances, high-capacity systems somewhat more expensive and of course
intermediate level systems. This means that the variety of possibilities offered by the
market is increasing and, in many cases, requires prior analysis to decide the best option for
a specific project. The tables below list some devices and a selection of their most important
features in an attempt to facilitate this task.

2.1. Hardware Development Platforms: Single-Board Microcontroller (SBMs)

The low-cost of microcontrollers together with the low cost of PCB manufacturing
has given rise to a large number of hardware development platforms, both proprietary
and open. The success of these platforms is based on two fundamental aspects: the first is
the low cost of the hardware; the second is the availability of an Integrated Development
Environment (IDE) software with a multitude of libraries and a community of developers
that facilitate the resolution of different problems.

The limited capabilities of this type of processors (small memory capacity, 8 or 16-bit
data bus) means that they are usually used in stand-alone applications: the microcontroller
regulates the operation of a relatively simple device by means of a small program recorded
in its memory that is executed continuously (also called “firmware”). Table 1 summa-
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rized the most popular proprietary SBMs available in the market and some important
characteristics.

Table 1. Main proprietary SBMs in the market.

ST Microcontroller (MCU) [76] Texas Instruments [78]

Processor STM32 STM8 MSP430 AM65x/AM572x/DRA821xM
Architecture / Bits Arm Cortex-M/32 Harvard MCU/8 RISC/16 Arm Cortex-M4F/32

Europe Prize (€) [44,49,54,72] <20 ~40 10–20 2.5–10
IDE STM32Cube STVD-STM8 Energia CCStudio

Open-Source HW No No No No
Open-Source SW Yes Yes Yes No

High Perform. Versions 386 - - -
Mainstream Versions 353 41 - 8
Low Power Versions 341 22 10 -

IST Yes Yes Yes Yes

Most Popular

STM32F103C8T6

STM8L15X

TMS320C6457

STM32F107V/C
STM32F303VCT6

STM32F439ZI
STM32F756ZI

STM8L152C6
STM32L010RB
STM32L4A6ZG

STM32L4R5ZI/-P

In addition to proprietary SBMs shown in Table 1, it is worth mentioning other
manufacturers and SBM families such as the development kits based on Microchip’s
8/16/32-bit PIC microprocessors [63], Intel’s 32-bit Galileo [56] or those marketed by
Maxim [61] or Cypress [47] to evaluate their chips. These SBMs are generally oriented more
towards evaluating and demonstrating the capabilities of the microprocessors that they
integrate, rather than using them as the basis for low-cost technology development. The
idea of the manufacturers is that the chips are integrated as such in the developments rather
than using the SBM as a part of the development. In the same way Table 2 summarized the
most popular open-source SBMs available in the market and some important characteristics.

Table 2. Main open-source SBMs in the market.

Wiring [85] Adafruit [38] Arduino/Genuino [42] Teensy [77]

Processor AVR8 Tensilica L106 AVR8 ARM Cortex-M0+ ARM
Cortex-M

Architecture/Bits AVR atmega/8 RISC/32 AVR atmega/8/32 Atmel SAMD21/32 MK20DX/32

Europe Prize (€) [44,49,54,72] - 10 10–35 20–40 10–30

IDE Wiring Arduino IDE
MicroPyton Arduino IDE Arduino IDE Teensyduino

Open-Source HW Yes Yes Yes Yes Yes

Open-Source SW Yes Yes Yes Yes Yes

Versions 3 1 10 11 8

IST No No Yes Yes No

Most Popular Huzzah
ESP8266

UNO Rev. 3 Teensy LC
Wiring V1.1 Mega 2560 MKR1000 Teensy 3.2

Wiring Mini V1.0 Leonardo MKR Zero Teensy 3.6
Wiring S Nano Every Zero Teensy 4.0

Micro Teensy 4.1

Among the free source SBMs, Arduino is the most distributed SBM platform all over
the world, being converted in almost a standard. There are many third-part Arduino-
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compatible SBMs having the same pinout, shape, size or characteristics, or including
increased performance because anyone can modify or adapt the original design to improve
it. In addition, there is a broad developer community that have created an enormous
number of libraries and resources for any project can be undertaken. This can say also for
the plethora of existing expansion boards, the named shield-boards.

The hardware of Arduino boards is a PCB with an Atmel AVR microcontroller
(ATmega8, Atmega168, Atmega328, Atmega1280 depending on model) whose IO ports
are pin-accessible and includes a minimum of auxiliary components. The boards can be
acquired completely mounted or without components, but they can also be edited because
their technical files are freely web accessible. By other hand, the software is an IDE based
in Processing that can be downloaded freely from web. It uses Wiring, a programming lan-
guage based on C, to program the processor whose reference information is continuously
debugged and commented by an extensive developer community. The Arduino projects
can run without connecting to a computer if an interactive autonomous object is developed.
However, Arduino can also be connected to software as Processing, Max/MSP, Pure Data,
Java, JavaScript and others to run as an auxiliary object in a big comprehensive project.

Even though the Feather Huzzah ESP8266 from Adafruit has been included in Table 2
as if it were an SBM, it is actually a SoC that integrate an enhanced version of Tensilica’s
L106 Diamond series 32-bit RISC (Reduced Instruction Set Computer) processor and a
full Wi-Fi front-end (both as client and access point) and TCP/IP stack with DNS support
as well. On a 3 × 5 cm PCB there are 9 GPIO, analog input, USB, I2C, SPI and FDTI
communications. These features, the possibility of programming in the Arduino IDE and
its low price is that allows comparing it with the other SBMs.

2.2. Hardware Development Platforms: Single-Board Computers (SBCs)

In the last years, the microelectronics technological evolution has made possible to
manufacture hardware platforms similar to microcontroller, but with two main differences:
they include high memory capacity chips (up to Gigas) both RAM and non-volatile (using
Flash technology) and use SoC technology that in addition to high-capacity microprocessors
(32 and 64 bits) integrated in a single chip, a very large set of peripheral controllers, such as
graphical processors (HD or 4K), interfacing protocols (UART, I2C, SPI, GPIO, CSI, etc.),
wireless, audio, GPS, nine-axis accelerometer, gyroscope and compass, and much more.
These enhanced features allow these hardware platforms to run a complete OS without any
problem, so that they work practically as a general-purpose computer. These hardware
platforms are referred as SBCs. There are many commercial SBCs, and everyone has a
characteristic that makes unique. Even the engineers who regularly work with SBCs may
be overwhelmed by their expanding market.

Raspberry PI is, perhaps, the SBC that has had the greatest diffusion, becoming, such
as Arduino for SBMs, the benchmark of SBCs (see Table 3). Raspberry PI family is based
on ARM/Cortex architecture. The most widely used model, Raspberry Pi 3, is based on a
64-bit SoC ARM Cortex-A53 working at 1.2 GHz, and a GPU Broadcom Video Core 4. It has
1 GB of RAM at 900 MHz, and for storage uses µSD cards. They have mainly two different
models of Raspberry PI, named Model A (65 mm × 56 mm) and B (85 mm × 56 mm), in
addition there is also the Zero series which is half the A size (65 mm × 30 mm). However,
Raspberry PI is neither the only SBC nor the one with the highest performance (see Table 4
for comparison). Since 2012, many SBCs have been developed especially designed to work
as embedded systems in a multitude of different applications, many of them are completely
open designs and some, such as the Raspberry PI, only partially open. The industries of
mobile telephony, IoT or domotics, among others, have greatly favored the development of
these platforms, which increasingly have more memory capacity, include dual core, quad
core, SoCs, have wireless connectivity and are increasingly compact and inexpensive.
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Table 3. The SBC Raspberry PI Model B family [71].

Model Zero W 1 B+ 2 B 3 B+ 4 B

SoC BCM2835 BCM2835 BCM2836 BCM2837B0 BCM2711
Processor/Cores/Bits ARM11/1/32 ARM11/1/32 Cortex A7/4/32 Cortex A53/4/64 Cortex A72/4/64
Frequency (GHz) 1.0 0.7 0.9 1.4 1.5

RAM (GB) 0.5 0.5 1.0 1.0 2/8
Wireless Wi-Fi, BT, BLE No No Wi-Fi, BT, BLE Wi-Fi, BT, BLE

Connectivity HMDI, USB, µUSB,
Video RGB, CSI Cam

HMDI, USB 2.0,
Ethernet, Audio,

Video RGB

HDMI, USB 2.0,
Ethernet, Audio,

Video RGB, CSI Cam

HMDI, USB 2.0,
µUSB, Ethernet,

Audio, Video RGB,
CSI Cam

µHMDI, USB 3.0,
USB-C, Ethernet,

Audio, Video RGB,
CSI Cam

OS NOOBS and Linux
Europe Prize (€)

[44,49,54,72] 15 32 44 43 40/84

Table 4. Main open-source SBCs Linux based in the market.

Model BeagleBone Black [46] Odroid XU4 [66] Tinker Board 2 [79]

SoC Sitara AM3358 Exynos5422 Rockchip RK3288
Processor/Cores/Bits ARM Cortex-A8/1/32 ARM Cortex-A15/4/32 ARM Cortex-A17/4/64

Frequency (GHz) 1.0 2.0 1.8
RAM (GB) 0.5 2.0 2.0
Wireless - Wi-Fi (option) Wi-Fi, BT

Connectivity USB 2.0, Ethernet, UART, SPI,
I2C, HDMI, CAN

USB 2.0/3.0, Ethernet, UART,
SPI, I2C, HDMI

USB 2.0, Ethernet, UART, SPI,
I2C HMDI, SD 3.0

OS Debian and ROS Ubuntu 16.04 and Android
4.4.x Debian and Android

Europe Prize (€) [44,49,54,72] 65 60 70

As can be seen in Tables 4 and 5, most of the open-source SBCs on the market have 32
or 64 bit processors, at least 1 GB of RAM and a certain amount of flash memory to contain
the firmware, some kind of wireless connectivity, several options for connecting the most
commonly used peripherals such as cameras, audio, keyboards and displays, networking
capabilities, GPIO (General Purposed Input Output) pins to control devices such as those
that would be managed by an SBM, run Linux type or Windows OS and all this for a price
ranging from 50 to 100€ depending on the included features.

Table 5. Main open-source SBCs Windows based in the market.

Model LattePanda 2G/32Gb [59] DragonBoard410c [44] Udoo x86 Ultra [82]

SoC Intel HD Gen8 Qualcomm APQ8016E Intel HD Graphics 405
Processor/Cores/Bits Intel Atom X5/4/64 ARM Cortex-A53/4/32/64 Intel Pentium x86/4/64

Frequency (GHz) 1.8 1.2 2.56
RAM (GB) 2.0 1.0 8.0
Wireless Wi-Fi, BT Wi-Fi, BT Wi-Fi slot

Connectivity
USB 2.0 / 3.0, Arduino GPIO,
Ethernet, UART, I2C, HDMI,

µSD, CAN, Audio

USB 2.0, Ethernet, UART, SPI,
I2C, HMDI, GPS

USB 3.0, Arduino GPIO,
Ethernet, UART, HDMI, µSD,

Audio

OS Windows 10 Android, Linux and Windows
IoT

Android, Linux and Windows
10

Europe Prize (€) [44,49,54,72] 60 60 250

The BeagleBone Boards, Blue and Black, are focused to hardware applications. The
BeagleBone Black has seven analog inputs up to 200 kS per second and an internal RTC
(Real Time Clock), making it a very compact and simple system for continuous acquisition
systems. Their main characteristics are: ARM Sitara AM3358 processor (1 GHz), 512 MB
RAM, Ethernet, SPI, I2C, 69 GPIO, 4 timers, 7 analog inputs and other for more specific
uses. The Analog-to-Digital Converter (ADC) or Touchscreen Controller, as is named in the
AM335x Technique Reference Manual, is a general purpose 12-bits 8-channel ADC with
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optional support for resistive touchscreens. Among the 8 analog-channels at processor, only
7 are addressable on the BeagleBone Black expansion port by P9 port. As the analog input
range is 0 to 1.8 V, a 1.8 V supply voltage pin is available. The C revision of BeagleBone
Black has Linux Debian as OS and natively includes a Pyton interpreter. The ease of
use of this language makes it a good choice for managing the main application of an
acquisition system.

The Tinker Board is equipped with a 4-core Rockchip RK3288 ARM processor, at 1.8 GHz,
and 2 GB of dual-channel LPDDR3 memory. In a size of 85.6 mm × 56 mm × 21 mm in-
cludes 1 GB Ethernet connectivity, Mali-T764 GPU with HD/UHD video play support,
H.264/H.265 decoding, 192 kHz/24-bits audio, 4 USB 2.0 ports, Bluetooth 4.0 and Wi-Fi
802.11b/g/n. The TinkerOS operating system is a Linux distribution based on the latest
Debian 9 kernel version. This OS provides a platform for basic tasks as web browsing,
video and music playback. In addition, the LXDE desktop includes a Chromium browser
and programming applications.

Udoo x86 Ultra is based in an Intel Pentium x86 processor and its performance is
comparable to a low-cost computer. It can run all the software available for a computer, in-
cluding 3D games, graphical editors, video streaming and more, because a Linux, Android
or Windows 10 OS can be loaded. However, it includes an Intel Curie as coprocessor, so
the word of Arduino 101 can be also accessed, with gyroscope and six-axis accelerometer
integrated. Such dual nature makes this SBC a highly versatile tool suitable for any type
of application.

With 8 GB of RAM and a quad-core Intel chip at 1.6 GHz, the Udoo x86 Ultra can run
an Office Suite, a web browser or an IDE in the same way that a conventional computer. It
can also run resource-intensive games at 720p and 20 or 30 Frames Per Second (FPS). The
Udoo x86 Ultra stands out as an SBC suitable for media streaming. With a GPU Intel HD
Graphics 405 can play 4K video at 30 Hz in three displays simultaneously, using HDMI
and two mini-DisplayPort ports. For storage, it has 32 GB of eMMC (embedded Multi
Media Card, a sort of SSD incorporated), but a µSD card can be added as additional storage
solution. Its cost is higher comparing with the ARM chip-based SBCs, 250€, and ~10€
should be added if a Wi-Fi antenna is needed, as the board does not have hardware for
wireless networking or Bluetooth.

In addition, there is a wide variety of industrial-grade SBCs that are used in automation
of processes, production systems and quality control, Industrial IoT or Industry 4.0, they
have technology protected by patent and we will not discuss in this work about them.

2.3. Hardware Development Platforms Based on Field Programmable Gate Arrays (FPGAs)

A FPGA is a chip including a matrix of logical gates whose inputs and outputs can
be interconnected by means of a program. This kind of circuit is widely used in digital
control equipment because it is a very compact way of having a large number of logical
gates and because, being programmable, it allows very easily configuring the response of
the circuit according to the requirements of the system. Moreover, being basically a parallel
processing system, its response time is much shorter than that of the best processor. Its
main disadvantage is that the programming tools provided by manufacturers are complex,
heavy, expensive and exclusive to each of them.

Since their appearance in the 80’s they have greatly increased their capacity and speed
and since the 2000’s they have started to use their great capacity to integrate other devices
such as clocks, communication controllers and microprocessors that can be programmed in
the FPGA matrix as it will be a SoC, this fact makes the development and programming
tools more and more complex. Until 2015 all this technology, both hardware and software,
was proprietary, but the IceStorm project [133] uses reverse engineering to release the
technology of Lattice’s iCE40 family. Since that time, the open-source community has
access to use this type of technology to develop projects, and very interesting open-source
development boards [134] and programming software have started to emerge that facilitate
access to this technology while keeping prices at a reasonable level. It is worth highlighting
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the iCEstudio IDE among the programming tools and the open FPGA-based SBAs listed in
Table 6.

Table 6. Open-source SBAs with FPGA.

Model Papilio DUO [135] Alchitry Au [136] Alhambra II [137] MKR Vidor 4000 [138]

Processor ATmega32U4 - - Cortex-M0 SAMD21
FPGA type Spartan 6 Artix 7 iCE40 Cyclone 10CL016
Flash (MB) 64 - 32 2
RAM (MB) 2 256 - 8
GPIO (pins) 54 102 12 22

IDE (processor) Arduino - - Arduino
IDE (FPGA) EDK, Chipscope, Impact EDK, Chipscope, Impact iCEstudio Quartus

Europe Prize (€)
[44,49,54,72] 300 85 50 63

As can be seen in Table 6, there are SBA having only the FPGA chip and the pe-
ripherals required for its operation: voltage regulator, memory, communication port for
programming, GPIO pins and others. On the other hand, there are manufacturers that, in
addition to the FPGA, include a microprocessor to give more flexibility and applicability to
the SBA. This option can facilitate FPGA programming by using the processor for support
and avoiding the FPGA programming IDE. Others such as Arduino go further and include
wireless communication (Wi-Fi and BT/BLE), video input and output ports (MIPI and
HMDI, respectively) and other functionalities. There are also manufacturers who choose to
maintain form and pinout compatibility with Arduino UNO in order to be able to use the
myriad of existing expansion boards (shields).

There are also some FPGA-based SoCs projects, which integrate the FPGA and some
peripherals in an only chip acquiring the maximum integration and saving size. Some of
them are listed in Table 7.

The ZPUino is not specifically a SoC but is a 32-bits soft processor that it was pro-
grammed on a FPGA. It uses a variation of the Arduino IDE for programming and is used
by the Papilio Pro and Papilio One FPGA evaluation boards as the inner processor over the
Xilinx Spartan 6 LX9 and 3E FPGA chips, respectively [139]. On the other hand, the CVA6
(formerly Ariane project) by PULP Platform [140] is not a FPGA but a SoC with a processor
that can emulate the FPGA working, by now only the Xilinx’s Genesys 2.

Table 7. SoCs that integrate a FPGA.

ORP SoC [141] ZPUino [142] CVA6 [143]

Processor OpenRISC 1k Zylin ZPU RISC-V
FPGA type Cyclone 3 Spartan 3E / 6 Genesys 2
Flash (MB) 16 - -
RAM (MB) 32 32 -

Peripherals Ethernet, UART, LCD/VGA,
SD/MMC, GPIO, Audio, PS2

UART, VGA, MMC, GPIO 128 pin,
Audio, SPI, I2C Ethernet, UART, DDR3, SPI

OS Linux ZPUino IDE Linux

3. Results and Discussion

In this Section we provide an analysis of the most important aspects that involves
the design, development and implementation of projects by means low-cost single board
architectures integrating low-cost sensors. Our goal is to highlight some of the main
features and possibilities that these architectures present today, as well as their evaluation
and comparison by means of a specific example.

Thus, we have defined an experimental framework that allows the integration of a
sufficient variety of low-cost sensors with different communication protocols, as well as the
monitoring of the measured variables, on different low-cost SBAs. In this sense, we have
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developed and implemented an indoor comfort monitoring system, which has allowed
carried out results during the development and monitoring phases.

3.1. Experimental Framework

In order to analyze SBAs with different features, we propose an experimental frame-
work that facilitates the use and comparison of the different SBAs in a common practical
environment. In this sense, an indoor comfort monitoring example project has been imple-
mented.

This framework focuses on defining the following issues:

1. Define the environmental variables that will be monitored to ensure environmental
quality.

2. Establish the sensors to be used according to different communication modes such
as SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit), 1-Wire protocols,
analog and digital signals.

3. Define different communication systems and storage methods for the information
provided from the sensors.

4. Consider the integration of the auxiliary modules and electronic components needed
to make the system functional for a specific SBA.

5. Define the process of monitoring, evaluation and analysis of results.

The paragraphs below show the details of each of these points in depth.
The environmental quality of a home or workplace is a very important factor for

the health of its tenants, parameters such as air quality, temperature or humidity and
light levels can be responsible for diseases or poor performance of people. The use of
sensors to measure these variables combined with Internet can help improve environmental
quality and comfort in homes. The variables that influence comfort are mainly related to
temperature, relative humidity, atmospheric pressure and the level of lighting. In regard to
air quality, carbon dioxide (CO2), total volatile organic compounds (TVOC) and carbon
monoxide (CO) are of interest and represent the best way to identify environmental quality.

In this sense, our approach addresses monitoring the following environmental variables:

• Temperature (◦C),
• Humidity (%),
• Atmospheric Pressure (hPa),
• Carbon Dioxide (CO2) (ppm),
• Carbon Monoxide (CO) (ppm),
• Total Volatile Organic Compounds (TVOC) (ppm),
• Lighting (lux = lumes/m2).

Respecting the selection of sensors for the monitoring of the defined environmental
parameters, we have tried to use commercial low-cost sensor modules. In order to select a
suitable sensor, its measurement range, time response, operating conditions, accuracy, cost,
weight and size are some important parameters that must be considered. We have also
considered the different connection options and communication protocols with the SBAs.
Thus, we have selected modules with digital and analog connection, SPI (Serial Peripheral
Interface), I2C (Inter-Integrated Circuit) and 1-Wire protocol.

Tables 8 and 9 show the six sensors selected for experimental framework and a
summary of their main features: measured variables, connection type, manufacturer,
supply voltage and cost.
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Table 8. Low-cost sensors used in experimental framework.

Sensor Measured Variable Connection Type Reference
Manufacturer

DS18B20 Temperature 1-Wire Maxim/Dallas [144]
DHT22 Humidity Digital Output Aosong [145]
CCS811 CO2/TVOC I2C Interface Ams AG [146]
BMP280 Pressure SPI Bosch Sensortec [147]
BH1750 Ambient Light I2C Interface Rohm [148]
MQ-7 CO Analog Output Hanwei [149]

Table 9. Power Consumption and Cost of sensors in experimental framework.

Sensor Supply Voltage (V) Supply Current
(mA) Module Cost (€)

DS18B20 +3.0 to +5.5 <1 mA@3.3V ≈2.00€
DHT22 +3.3 to +5.5 <1 mA@3.3V ≈3.00€
CCS811 +1.8 to +3.6 <1 mA@3.3V ≈5.00€
BMP280 +1.7 to +3.6 <1 mA@3.3V ≈1.00€
BH1750 +2.4 to +3.6 <1 mA@3.3V ≈1.00€
MQ-7 +2.5 to +5.0 80 mA@3.3V ≈1.50€

One of the selection criteria for sensors is their low-cost, and despite this they
have high-level technical characteristics. These sensors have a well-defined response
range [144–149] and they are suitable to measure parameters of typical atmospheric sam-
ples, i.e., habitable indoor ambients with contamination levels within the legally enabled
limits. Despite what has been said in general terms, some of the sensors have extended
response ranges enabling their use in non-habitual conditions. For example, the DS18B20
temperature sensor has a precision of ±0.5 ◦C in the range from −10 ◦C to +85 ◦C; the
humidity sensor DHT22 can read %RH from 0 to 99.9 with a precision of ±2% and the
BPM280 barometric pressure sensor can sense from 300 to 1050 hPa with an absolute preci-
sion of ±1 hPa. Moreover, the chemical and light sensors chosen, have a reliable response
if they work at a temperature within the range from −10 to +85 ◦C and relative humidity
from 10 to 95%, except the CO sensor MQ-7 that have an operation temperature somewhat
limited, from −20 ◦C to +50 ◦C, but enough for the purpose of this work. Manufacturers of
such sensors suggest their use in smartphones, GPS modules, watches, wearables, smart
homes, indoor and outdoor navigators or weather forecast but they explicitly warn that
the sensors should not be used in safety or emergency stop devices or any other occasion
that failure of sensor may cause personal injury or material losses.

Furthermore, we propose Bluetooth and Wi-Fi as the technologies that enable wireless
exchange of data with external devices (mobile phone, personal computer, laptop or cloud
platforms). On the other hand, the experimental framework establishes different data
storage and monitoring options: locally on a µSD (Micro Secure Digital), on a Mobile
Application, on a Web Server or on a Cloud Server. The transfer of this information is
carried out via Bluetooth or via Wi-Fi using an API that exchanges JSON (JavaScript Object
Notation) data between the different devices and the SBA.

As a fourth aspect, the framework enables to incorporate auxiliary modules needed
for a specific SBA that do not include certain functionalities (such as Bluetooth or Wi-Fi)
and additional electronic components (such as voltage dividers or level shifters) for the
proper functioning of the system.

Finally, the framework establishes the process of monitoring, evaluation and analysis
of results. The monitoring will consist of storing the information extracted from the sensors
in a µSD, visualizing them in a mobile application or a personal computer and storing them
in a cloud platform. For the evaluation and analysis of the results, the criteria established
are power consumption, reliability, flexibility programming, support availability and
electronic utilities.
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For this purpose, the different options regarding the programming, support and
electronic capabilities of the SBAs will be considered during the development phase. Once
the system is functional, it should be working under typical environmental conditions of a
home or workplace for at least one week, collecting every minute the information provided
by the sensors cyclically.

Figure 3 shows the scheme of the experimental framework developed, where all
the sensor modules are connected to the analyzed single-board, through their respective
connection interfaces.
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3.2. Single-Board Computers and Single-Board Microcontrollers Selection

Currently there is a wide variety of SBAs families on the market, as described in
Section 2 above, so we have established a selection criterion, trying to cover the differ-
ent alternatives and considering aspects as ease of acquisition, user-friendliness, cost,
architectures, formats, configurations, families, versions and providers.

In this sense, the analysis is carried out with six low-cost single boards: three Single-
Board Microcontrollers (SBMs) and three Single-Board Computers (SBCs), they are shown
in Figure 4.

The six selected low-cost SBAs are very current versions with cost less than 100€. They
will allow us to analyze the sensors on the experimental framework and determine their
virtues. Moreover, in a way, from our point of view, this selection of boards provides a
standardized comparison scenery of the capabilities and possibilities of the single-board
market.

In this sense Raspberry Pi 4 B is the latest version of one of the most popular SBC
families, it is very easy to acquire, as it is supplied by a wide variety of distributors and
electronics manufacturers. Raspberry Pi is used in IoT and sensor applications and a wide
range of projects developed by technology companies, universities and hobbyists/maker
community. It is a user-friendly platform with a lot of resources available. It has an ARM
(Advanced RISC Machine) architecture with a Linux based OS, which allows the use of
different programming languages and IDEs.
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Among the variety of single-board computers within the BeagleBoard family, one of
the most popular is the BeagleBone Black (BBB), although it is similar to the Raspberry
Pi and even they can often be interchangeably, however there are some important elec-
tronics characteristics that place them as the best solution in many applications. The most
remarkable features of the BBB are its wide set of inputs/outputs (69 GPIO pins), including
SPI and I2C bus, serial ports, PWM (Pulse Width Modulated) outputs and analog inputs,
which facilitate the direct connection of a wide number of sensors.

In the same way, we have selected the SBC LattePanda 2G/32G, within the SBAs that
can support a version of Windows OS, since it is one of the cheapest of them. The possibility
to implement projects integrating sensor technologies using Windows OS increases the
interest of this SBC for a wide variety of technology companies, universities and developers.
In addition, this SBC incorporates an Arduino Leonardo internally, which also facilitates
implementations based on this platform due to the wide use of Arduino.

In the selection of the three SBMs we have taken into account the size as the main
criterion, in contrast with the SBCs chosen. In this case, all the SBMs chosen are nano-sized
type. In this selection we have also tried to cover all the possibilities of the SBM market,
choosing boards of main manufacturer with different functionalities. Therefore, we have
selected Arduino Nano 33 BLE, Adafruit Feather HUZZAH ESP8266 and STM32F103C8T6
(Blue Pill).

The Arduino family is undoubtedly one of the best known and currently used plat-
forms in applications of single board architectures integrating sensors, thus we have chosen
Arduino Nano 33 BLE, since it is a small size board with Bluetooth Low Energy (BLE).

Adafruit Feather HUZZAH ESP8266 is a low-cost and small type microcontroller
board manufactured by Adafruit Industries [38] integrating a low-cost ESP8266 microcon-
troller of Espressif Systems Semiconductor Company [52] with Wi-Fi capacity.

The STM32F103C8T6 single-board microcontroller is one of the cheaper versions
of the STM family, with excellent electronic features. Even though it does not include
Bluetooth or Wi-Fi capabilities, its number of GPIO pins, SPI and I2C buses, serial ports
and analog inputs make it a suitable option for applications of single board architectures
integrating sensors.

Figures 5–10 present the analyzed low-cost Single Boards in the experimental frame-
work with the six sensor modules and all the auxiliary devices needed to analyze them as
well as the connection diagrams made to connect these SBAs with the set of sensors. More
information can be found in the paper’s GitHub repository [150].
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Figure 5. SBC Raspberry Pi 4 B in experimental framework (a) and hardware connections (b) [150]. 
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Figure 8. SBM Adafruit Feather Huzzah ESP8266 in experimental framework (a) and hardware
connections (b) [150].



Sensors 2021, 21, 6303 18 of 28
Sensors 2021, 21, 6303 18 of 28 
 

 

 
(a) 

 
(b) 

Figure 9. SBM Arduino Nano 33 BLE in experimental framework (a) and hardware connections (b) 

[150]. 

Arduino Nano 

33 BLE 

GND

Single-Board 
+VCC (5 V)

 1 Wire

 4 Wires

Connection Legend

DQ - AN33BLE P1_11 (D2)

CO2/TVOC 

Sensor 
BMP280 

Sensor 

Pressure

GND

+VDD (3.3 V)

DS18B20 

Sensor 

Temperature

+VDD

GND

Connection Legend

SCL - SCK - AN33BLE P0_13 (D13)

SDA - MOSI - AN33BLE P1_1 (D11)

CSB - CSS - AN33BLE P0_27 (D9)

SDO - MISO - AN33BLE P1_8 (D12)

+VDD

GND

MQ7 

Sensor 

CO

 1 Wire Connection Legend

A0 - AN33BLE P0_4 (A0)

BLE

 1 Wire

GND

  2 Wires

CO2/TVOC 

Sensor 
CCS811 

Sensor 

CO2/TVOC

GND

+VDD

GND

DTH22 

Sensor 

Humidity

+VDD

CO2/TVOC 

Sensor 
BH1750  

Sensor 

Ambient 

Light

+VDD

  2 Wires

Connection Legend

SCL - AN33BLE P0_2 (A5)

SDA - AN33BLE P0_31 (A4)

Connection Legend

TX - AN33BLE P1_10 (RX)

RX - AN33BLE P1_3 (TX) 

BLE/Wi-Fi 

BLE/Wi-Fi 

Wi-Fi 

Mobile 

Platform

PC/Laptop 

Platform

μSD

Cloud 

Platform

Wi-Fi
2 Wires

GND

+VDD

GND

+VDD

4 Wires

Connection Legend

SCK - AN33BLE P0_13 (D13)

MOSI - AN33BLE P1_1 (D11)

CS - AN33BLE P0_21 (D8)

MISO - AN33BLE P1_8 (D12)

Connection Legend

Out - AN33BLE P1_15 (D4)
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Figure 10. SBM STM32F103C8T6 (Blue Pill) in experimental framework (a) and hardware
connections (b) [150].

3.3. SBMs and SBCs Programming

As regards programming languages and development environments, it is necessary
to distinguish between SBCs and SBMs. SBCs can be programmed directly on the single-
board itself since they have an operating system. These developments can be carried out
with a wide variety of programming languages (C, C++, Java, Python, JavaScript and
other more) and with different IDEs. On the other hand, SBMs are more limited in this
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sense; generally, C programming language (or some derivative) is used, and IDEs such as
Arduino IDE [151] for a wide variety of SBMs, Mbed Compiler [152] for single-boards with
ARM microprocessors, or STM32 IDEs [153,154] for STM32 family.

In the experimental framework and once analyzed the advantages and disadvantages
of each of the available programming languages and IDEs, we have used Python as
programming language due to its advantages such as libraries, support, functionality
and we have used Visual Studio Code [155] for the three SBCs analyzed; while for the
SBMs we have used Arduino IDE and C programming language, mainly due to Arduino
community’s support. All developed source codes are available in a publish-only GitHub
repository [150].

In order to test the designed experimental framework, we have developed software
applications such as a Mobile App, a Web Interface and we have used a Cloud Service
that allow the connection with SBAs via Bluetooth and Wi-Fi, for the transfer of the data
obtained by the sensors.

The Mobile App has been developed with MIT App Inventor [156] of the Mas-
sachusetts Institute of Technology. The graphical interface of this application is shown in
Figure 11a. This App has been designed for monitoring the provided data by the SBAs via
Bluetooth or via Web.

Sensors 2021, 21, 6303 20 of 28 
 

 

generally, C programming language (or some derivative) is used, and IDEs such as Ar-

duino IDE [151] for a wide variety of SBMs, Mbed Compiler [152] for single-boards with 

ARM microprocessors, or STM32 IDEs [153,154] for STM32 family. 

In the experimental framework and once analyzed the advantages and disad-

vantages of each of the available programming languages and IDEs, we have used Python 

as programming language due to its advantages such as libraries, support, functionality 

and we have used Visual Studio Code [155] for the three SBCs analyzed; while for the 

SBMs we have used Arduino IDE and C programming language, mainly due to Arduino 

community’s support. All developed source codes are available in a publish-only GitHub 

repository [150]. 

In order to test the designed experimental framework, we have developed software 

applications such as a Mobile App, a Web Interface and we have used a Cloud Service 

that allow the connection with SBAs via Bluetooth and Wi-Fi, for the transfer of the data 

obtained by the sensors. 

The Mobile App has been developed with MIT App Inventor [156] of the Massachu-

setts Institute of Technology. The graphical interface of this application is shown in Figure 

11a. This App has been designed for monitoring the provided data by the SBAs via Blue-

tooth or via Web. 

  

(a) Mobile App (b) Web Interface 

Figure 11. Mobile App and Web Interface developed for the experimental framework. 

The Web Interface has been designed with standard web technologies: HTML (Hyper 

Text Markup Language), CSS (Cascading Style Sheets) and JavaScript. The interface has 

been developed for monitoring the provided data by the SBAs via an API Web as shown 

Figure 11b.  

Finally, we have used ThingSpeak [157] as Cloud Service. This open-source service 

is used on Internet of Things to store and collect data from objects connected through the 

Internet and the Hypertext Transfer Protocol (HTTP). With ThingSpeak, a record of the 

data provided by the sensors has been created, which allows the analysis, observation and 

evolution over time of the measured variables by mean a graphic representation. (Figure 

12). 

Figure 11. Mobile App and Web Interface developed for the experimental framework.

The Web Interface has been designed with standard web technologies: HTML (Hyper
Text Markup Language), CSS (Cascading Style Sheets) and JavaScript. The interface has
been developed for monitoring the provided data by the SBAs via an API Web as shown
Figure 11b.

Finally, we have used ThingSpeak [157] as Cloud Service. This open-source service
is used on Internet of Things to store and collect data from objects connected through the
Internet and the Hypertext Transfer Protocol (HTTP). With ThingSpeak, a record of the
data provided by the sensors has been created, which allows the analysis, observation
and evolution over time of the measured variables by mean a graphic representation.
(Figure 12).
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3.4. Experimental Results

In this Subsection we show the results obtained in the experimental framework
described in Section 3.1 with the six SBAs presented in Section 3.2 and we introduce the
most important characteristics to evaluate.

From a general viewpoint, there are some characteristics that should be analyzed when
choosing the most suitable SBA for a particular application. The most important character-
istics that we have considered in the experimental results are Power Consumption (mA@V),
Reliability (%), Programming Flexibility, Support Availability and Electronics Utilities.
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Since SBA based systems integrating sensors are usually powered by batteries and
should operate for long periods, power consumption is a relevant characteristic which
must be evaluated. Therefore, low power consumption systems are preferable.

On the other hand, in this experimental framework, we consider reliability as the
system’s tolerance to failures in the processing of the information provided by the sensors,
specifically calculated as the complementary (1 − ε) of the error number (ε) in sensor read-
ing or data transmission. When several sensors are connected the system must maintain
reliability, so obviously, systems with fewer errors are the most suitable.

In order to evaluate the programming flexibility of SBAs, we have considered the
availability of programming languages and libraries as well as development environments
and other utilities. This characteristic was assessed by means of a qualitative variable with
three grades: high, medium and low.

We are considered the support availability as the possibility of programming SBAs
with low prior knowledge, easy to learn and easy to handle, as well as the relevance of the
developer community around the platform and the links with developed projects. This
characteristic is also evaluated by means of a qualitative variable with three grades: high,
medium and low.

Each SBA has its own architecture including a specific number of GPIO, analog and
PWM pins, SPI and I2C buses, serial communication ports, output voltage pins and other
more. Thus, we consider electronics utilities characteristic as a measure of the electronic
capability of each SBA, evaluated as a qualitative variable with five grades: highest, high,
medium, low and lowest.

The experimental results have been obtained after a previous development and eval-
uation analysis. All the SBAs have been kept running for one week in the experimental
framework. As a conclusion, a summary of the results obtained is shown in Table 10, where
the main characteristics are presented: Power Consumption, Reliability, Programming
Flexibility, Support Availability and Electronics Utilities.

Table 10. Results obtained in the experimental framework with SBAs: Raspberry Pi 4 B (RPi 4),
BeagleBone Black (BBB), LattePanda 2G/32G (LP 2G/32G), Arduino Nano 33 BLE (AN 33 BLE),
Adafruit Feather HUZZAH ESP8266 (AF ESP8266) and STM32F103C8T6 (Blue Pill).

SBA Reliability Programming
Flexibility

Support
Availability

Electronics
Utilities

Power
Consumption

RPi 4 98% High High High ≈2.5 W
BBB 99% Medium Medium Highest ≈1.7 W

LP 2G/32G 95% High Low Medium ≈5.0 W
AN 33 BLE 99% Medium High High ≈700 mW
AF ESP8266 98% Medium Medium Medium ≈630 mW

Blue Pill 99% High Medium Highest ≈730 mW

Reliability has been measured by analyzing the number of errors during the operating
time. Programming flexibility has been considered from experience during development
time. Support availability has been obtained by taking into account the web positioning
on the Internet, of the families of SBAs established as the relevance of the community and
the number of developed projects. Electronics utilities characteristic has been determined
considering the different functionalities of each SBA. Finally, power consumption average
has been measured at supplied current conditions in relation to the supply voltage with
the six sensors, Wi-Fi and BLE devices connected to each of the SBAs, according to a
commercial power supply monitor (with 3.3 V and 5 V). We highlight that a current peak
occurs, which can be as high as 300 mA, at the start-up time of the Wi-Fi module.

3.5. Discusion

All SBAs and the sensors were analyzed in experimental framework by means de-
veloped prototypes. In this subsection, the results will be discussed. In this sense all
SBCs have integrated µSD, Wi-Fi and BLE modules. On the other hand, the SBMs have
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been expanded with a standard low-cost µSD card adapter connected with SPI protocol.
Moreover, the SBMs that do not have Wi-Fi and BLE functionalities have been extended
with ESP1 and HM-10 modules, respectively. ESP1 module contains a low-cost ESP8266
microcontroller with integrated Wi-Fi manufactured by Espressif [158]. HM-10 module
includes a low energy SoC based on CC2541 for BLE applications [159]. In the same way,
Raspberry Pi 4 does not have a way to read analog inputs. This causes the connection of
some sensors to require the use of an external ADC. Even though there are different solu-
tions, we have opted to use the ADS1115 device manufactured by Texas Instruments [160],
it is a low-power, I2C-compatible, 4-channel, 16-bits resolution converter. In addition,
the analog input pins of BBB and AF ESP8266 single-boards can only accept up to 1.8 V
and 1.0 V maximum voltage, respectively, this involves that the voltages produced by the
analog sensors must be adapted.

Taking into account the results obtained in the experimental framework and shown
in Table 10, our analysis concludes that the three most robust SBAs are BBB, AN 33 BLE
and Blue Pill since the error obtained in our analysis is less than 0.01%. LP 2G/32G, RPi 4
and Blue Pill single-boards present the most programming flexibility since they have a
wide variety of programming languages and libraries available as well as development
environments and other utilities. RPi 4 and AN 33 BLE provide the best support availability
since they allow the development of projects with low prior knowledge, easy to learn and
easy to handle, as well as the great relevance of the developer community around these
platforms. Additionally, both BBB and Blue Pill have the best electronic utilities due to
their greater capabilities and functionalities in project development. Finally, regarding the
measured power consumption average, and independently of the number of connected
sensors, the SBAs show a higher consumption, but they have also a higher number of
integrated resources (µSD, Wi-Fi and BLE); in this sense obviously, the three SBCs show
a higher consumption than the three SBMs analyzed, with the LP 2G/32G showing the
highest consumption.

Table 11 summarizes the expansion modules and devices that must be used to com-
plete the framework enabling that the same group of sensors can be implemented with the
SBAs selected in our analysis. As can be seen, each SBA needs its own solution, but all the
modules and devices used can be acquired by a low-cost and are fully compatible with
all sceneries.

Table 11. Modules used with each SBAs in experimental framework.

SBA µSD Wi-Fi BLE ADC Level Shifter Voltage Divider

RPi 4 X
BBB X

LP 2G/32G X
AN 33 BLE X X
AF ESP8266 X X X

Blue Pill X X X

4. Conclusions

In this paper we realized an analysis of the most important topics related with single-
board architectures integrating low-cost sensors. Our goal is to highlight some of the main
features and possibilities that these architectures present today, as well as their evaluation
and comparison. We analyze the most popular platforms based on characteristics as:
cost, processing capacity, integrated processing technology and open-source license, as
well as power consumption, reliability, programming flexibility, support availability and
electronics utilities. For evaluation, an experimental framework has been designed and
implemented with six sensors (temperature, humidity, CO2/TVOC, pressure, ambient
light and CO) and different data storage and monitoring options: locally on a µSD, on a
Cloud Server, on a Web Server or on a Mobile Application. The experimental framework
allows discussing the most important aspects that involves the design, development and
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implementation of a project by means low-cost single board architectures integrating
low-cost sensors based on the obtained results.
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