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Abstract: In this work, we attempted to find a non-linear dependency in the time series of strawberry
production in Huelva (Spain) using a procedure based on metric tests measuring chaos. This study
aims to develop a novel method for yield prediction. To do this, we study the system’s sensitivity
to initial conditions (exponential growth of the errors) using the maximal Lyapunov exponent. To
check the soundness of its computation on non-stationary and not excessively long time series, we
employed the method of over-embedding, apart from repeating the computation with parts of the
transformed time series. We determine the existence of deterministic chaos, and we conclude that
non-linear techniques from chaos theory are better suited to describe the data than linear techniques
such as the ARIMA (autoregressive integrated moving average) or SARIMA (seasonal autoregressive
moving average) models. We proceed to predict short-term strawberry production using Lorenz’s
Analog Method.

Keywords: time series; nonlinear forecasting; yield production; chaos theory; Lyapunov exponents

JEL Classification: Q11; C15; C22; C53; C65

1. Introduction

The strawberry of Huelva (strawberry from Spain) belongs to the select group of
agricultural activities in which Spain is the absolute leader in the European Union [1].
Huelva accounts for 9% of world strawberry production and 25% of that of the European
Union; it is the second-largest area of production, technology, and research in the world
in this sector behind California [2] and contributes more than 400 million euros to the
province in direct total agricultural production value [3].

On the other hand, the evolution of strawberry production is sensitive to price fluc-
tuations [4,5]. Strawberry is a free-market crop with no entry or exit barriers, without
intervention prices or production controls. The price of strawberries is determined strictly
by the free interaction of supply and demand. Knowing the future productions of these
time series could mean a considerable increase in profitability for the strawberry-producing
sector [1], since a large distribution usually results in sales programs with heavy penalties
for non-compliance.

Yield forecast approaches are basically divided into single-factor time series models
and multi-factor models. The former considers time as an independent variable and builds
up mathematical models based on the yield time series to produce future predictions;
the latter also considers the main influential factors in the system under study. As a first
approach to the study of strawberry yield predictions, we considered only single-factor
models. Multi-factor models are generally more time consuming and require extensive
user intervention. In addition, external factors such as prices, costs, crop characteristics,
consumer behavior, or climatic conditions often require data that may be unavailable or
difficult to obtain. Finally, to use the forecasting model in the future, predictions for such

Mathematics 2021, 9, 3034. https://doi.org/10.3390/math9233034 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0219-2539
https://orcid.org/0000-0001-5198-380X
https://doi.org/10.3390/math9233034
https://doi.org/10.3390/math9233034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233034
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233034?type=check_update&version=2


Mathematics 2021, 9, 3034 2 of 18

factors are also required, the quality of which will depend on the accuracy of the forecasts.
Thus, it is worth considering whether single-factor models provide acceptable forecasts.

Typically, autoregressive integrated moving average (ARIMA) or seasonal autore-
gressive moving average (SARIMA) models have been widely used in recent years for
modeling and to make predictions in the livestock [6,7] and agricultural [8–10] sectors. In
this article, we discuss an alternative non-linear method for the cases in which the resulting
series is not stationary. Although we find many emerging non-linear techniques that can
be used to make both short-term and long-term predictions on non-stationary chaotic data,
such as the sparse identification of nonlinear dynamics (SINDy) algorithm [11] widely used
to model non-linear dynamic systems and make predictions on them [12–15], or non-linear
systems reconstruction techniques that allow the regeneration of time series subjected to
white noise, which would allow a new study of stationarity and eliminate the disturbances
associated with the observed variable [16,17], in this work, we focus on maximal Lyapunov
exponents.

Deterministic chaos theory has made possible the modeling and forecasting of many
time series traditionally considered as the noise of purely random behavior. There are many
fields in which the deterministic chaos methodology is being applied successfully, from
the climate [18] to COVID-19 [19]. For this reason, the construction and analysis of chaotic
predictive models are of special interest. However, the empirical detection of chaotic
dynamics is an extremely subtle problem because the strange attractor’s reconstruction
that originates the deterministic dynamics is sensitive to the parameters used in non-linear
tests [20].

This study focuses on this sector and proposes a novel method for yield prediction
in relation to the recent literature on time series predictive models. First, we detected
deterministic chaos by computing the maximum Lyapunov exponents of the time-series
and observing that they are positive. Secondly, since these cannot be generated by linear
models such as ARIMA [21] or SARIMA [22], we used the analog method [23–25]—a
non-linear forecasting technique consisting of analyzing, for each of the final observations
of the series, the possibilities of short-term forecasting. We intended to study whether
the reconstructed phase space’s points behave according to the principle of prediction by
analogous occurrences; that is, we try to see if nearby points evolve in the short-term with
similar trajectories within the phase space.

Since the description of the method of analogs by Lorenz [26], this method has gained
popularity for forecasting and has been applied in many studies [27–30], offering even more
accurate results than other approaches that apply machine learning techniques [31,32].

The paper is organized as follows: in Section 2.1, the time series are described;
Section 2.2 analyzes stationarity; in Section 2.3, the spectral analysis is performed; in
Section 2.4, the maximum Lyapunov exponents are computed; in Section 3, analogous
occurrences are used to obtain the predictions; in Section 4, our conclusions are discussed
and presented.

2. Materials and Methods

This research uses R and Haskell programming languages, which are applied for time
series forecasting.

2.1. Description of the Data

We work with time series of the daily production of three large agri-food cooperatives
in the province of Huelva (coop1, coop2, and coop3) during a time interval ranging from
6 to 10 years. The time-series data refer to the total weight of strawberries, in kilograms,
picked in one day. The coop1 data were collected over 10 strawberry picking seasons, from
January 2011 to June 2020. The coop2 data cover 8 seasons, from January 2013 to June 2020.
Finally, the coop3 data cover 6 periods, from January 2015 to June 2020.

Since the fruit picking season begins on a different date each year, we handled the
datasets as follows: if for each company, d1 corresponds to the first day of the period that
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started earlier and d2 to the last day of the period that ended later, then we establish that
each period starts at d1 and ends at d2, filling in the days where there is no fruit picking
with zeros. Finally, we join the series of each period in chronological order, obtaining a
single time series for each company. The time series of coop1 contains 1642 data points, that
of coop2 2130 data points, and that of coop3 1633 data points, as represented in Figures 1–3.
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Figure 1. Coop1 time series.
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Figure 2. Coop2 time series.
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Figure 3. Coop3 time series.

2.2. Stationarity

One of the characteristics that distinguish time series from other types of statistical
data is that, in general, the data at different instants of time can be correlated. The most
classical methodology for the analysis of time series is that of Box and Jenkins [21,33–35],
which allows the identification and estimation of ARMA models (autoregressive and
moving averages). These models assume the hypothesis that the series is stationary (or
may become stationary from a simple transformation) and follow a linear model.

In this sense, and without carrying out an exhaustive analysis, as can be seen in
Table 1, for each period of the time series, the fluctuation of the sample means is greater
than the standard error, which shows that the series is not stationary.
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Table 1. Local means and standard errors of production.

Period
coop1 coop2 coop3

Mean Error Mean Error Mean Error

2011 42,202 3598 – – – –

2012 42,830 4382 – – – –

2013 46,837 4448 34,364 3321 – –

2014 47,946 4632 49,938 4088 – –

2015 31,378 2427 44,235 2961 35,621 3124

2016 34,875 2959 41,278 2814 47,378 3692

2017 33,340 2421 28,908 2166 53,099 4029

2018 34,422 2765 24,656 2106 44,588 3744

2019 28,095 2159 29,036 2119 43,042 3724

2020 28,791 1845 22,207 1474 30,708 2353

It was also not possible to obtain a stationary time series by taking differences or
logarithms or using seasonal autoregressive moving average (SARIMA) [36–40] as the
sources that manage daily data use a short seasonal component; that is, the seasonal
component is not very far from the data to be predicted, unlike in our work, where
the seasonal component has a lag of 317 days, which makes its use computationally
very expensive.

2.3. Fourier Analysis

To differentiate between random, stochastic, or chaotic non-linear deterministic pro-
cesses, we used the Fourier transform to compute the time series’ power spectra. Thus, a
series with very irregular temporal variability will have a smooth and continuous spectrum,
indicating that all frequencies in a certain range or band of frequencies are excited by this
process. On the contrary, a purely periodic or quasi-periodic process, or a superposition of
them, is described by a single “line” or a finite number of “lines” in the frequency domain.
Between these two extremes, chaotic non-linear deterministic processes can have peaks
superimposed on a continuous and highly rippled background.

The Fourier transform [21,41–46], which is a standard tool for time-series analysis in
both stationary and non-stationary series, provides a linear decomposition of the signal
into Fourier bases (i.e., sine and cosine functions of different frequencies) and establishes
a one-to-one correspondence between the signal at certain times (time domain) and how
certain frequencies contribute to the signal, as well as how the phase of each oscillation is
related to the phases of the other oscillations (frequency domain).

Figures 4–6 show the log–log analysis of the squared amplitude against the frequency
in cycles/day, presenting a broad spectrum for each company. Therefore, we can conclude
that the data are neither periodic nor quasi-periodic. Furthermore, the data do not cor-
respond to white noise. Wide peaks are observed at different frequencies, showing the
influence of the past in both the short and long term, representing a seasonal influence.
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Figure 4. Power spectrum log–log for coop1.

Figure 5. Power spectrum log–log for coop2.
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Figure 6. Power spectrum log–log for coop3.

2.4. Lyapunov Exponents

Now that we know that the time series studied are not stationary, periodic, quasi-
periodic, or stochastic, we study the series from the point of view of nonlinear deterministic
processes. This section discusses the sensitivity of these dynamic systems to initial condi-
tions by computing the maximal Lyapunov exponent of each series [47,48].

In chaotic systems, the distance between two neighboring points in phase space
diverges exponentially, and therefore, even if the system is deterministic, the prediction
is only possible for a short period in the future. The exponent that characterizes this
exponential divergence is the Lyapunov exponent [49,50]. In this way, only a positive
exponent can show sensitivity to initial conditions, so the long-term behavior of any
specified initial condition with uncertainty cannot be predicted.

Some non-linear techniques compatible with small data time series, such as the
Lyapunov maximal exponent calculation, are only guaranteed to work with stationary data.
This problem can be circumvented using over-embedding for sufficiently high embedding
dimensions and data that depend to some extent on some (unknown) parameters, and
techniques designed for stationary data can be applied [51–53]. Furthermore, whether
the series is appropriate to compute the exponent (and other non-linear quantities) can
be checked by observing how well the computation converges to the overall value when
increasingly large parts of the time series are used (for example, exponents for the first
and second half of the data must exist and should agree with the value computed for the
whole series). Finally, when a “smooth” transformation is applied to the series (such as
constructing the series of the differences), these quantities should not vary either.

Since the exact definition of the Lyapunov exponent involves limits of distances (and
thus points that are arbitrarily close) and we only have a finite time series, a finite approxi-
mation must be used. Several algorithms for the computation of Lyapunov exponents of
finite time series have been proposed in the literature ([48,54,55]). We use the algorithm by
Rosenstein et al. [56] and by [47], which is presented below.

Given a time series s1, . . . , sk, we use a time-delay embedding to form a series s1, . . . , sN
in Euclidean m-dimensional space [51,57,58]. We choose a distance ε > 0 and define
the map

S(∆n) =
1
N

N

∑
n0=1

ln

 1
| U (sn0)|

∑
sn∈U (sn0 )

d (sn0+∆n, sn+∆n)


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where U (sn0) is the ball centered at sn0 with radius ε and d is the Euclidean distance. If
the graph of S(∆n) shows a linear increase for some range of values of ∆n, then there is a
maximal Lyapunov exponent for s1, . . . , sN , and its value is the slope of the graph. This
value must be consistent for different choices of the embedding dimension and the radius
ε; that is, it should not differ for different values of ε provided it is small enough and for
dimensions above some dimension m0.

In Figure 7, we show the graphs of eS(∆n) on a logarithmic scale (which has the same
slope as S(∆n) on a linear scale, but the values on the y axis represent distances instead
of logarithms of distances) for the series of coop1, for ∆n varying between 0 and 90, with
embedding dimensions 2 to 13, ε = 2500, and a delay of 1 day [59]. There is a linear increase
for ∆n between 36 and 60 and dimensions 5 and above. This suggests the existence of
an attractor.
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Figure 7. eS(∆n) for coop1 (ε = 2500).

In Figure 8, we conducted the same analysis for coop2. We chose a delay of 2 days,
ε = 2000, a ∆n ranging from 0 to 100, and a dimension ranging from 2 to 13. We observe a
linear increase between 38 and 52 for dimensions 5 and above.
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Figure 8. eS(∆n) for coop2 (ε = 2000).



Mathematics 2021, 9, 3034 8 of 18

Finally, Figure 9 shows the graphs for coop3. The delay is 1 day, the dimensions
range from 2 to 13, ε = 1000, and ∆n is between 0 and 120. There is a linear increase for
dimensions above 4 and ∆n between 46 and 74.

0 20 40 60 80 100 120
150

400

1000

3000

8000

22,000

160,000

60,000

D
ist
an

ce

Figure 9. eS(∆n) for coop3 (ε = 1000).

Now, we verify that there are linear increases for other values of the radius and
compute the exponent. In Figure 10, we plotted the graphs of coop1 for ε = 2500, 5000,
7000, 9000, and 14,000 and dimensions between 10 and 13, again with a delay of 1 day.
Each group of curves corresponds to a value of ε. For the sake of visibility, we displaced
each curve a given amount upwards depending on ε.
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Figure 10. eS(∆n) for coop1 (ε = 2500, 5000, 7000, 9000, 14,000).

Using the least-squares method, we fitted lines to the five curves corresponding to di-
mension 10 and obtained Figure 11. Table 2 shows each value of ε, the ∆n interval where the
lines were fitted to S(∆n), the maximal Lyapunov exponent, and the correlation coefficient.
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Figure 11. Regression lines for coop1.

Table 2. Maximal Lyapunov exponents for coop1.

ε Range ∆n Exponent Coefficient

2500 [36, 60] 0.038733 0.999612

5000 [33, 50] 0.042351 0.999078

7000 [34, 50] 0.043439 0.999411

9000 [32, 47] 0.043454 0.999949

14,000 [27, 37] 0.049539 0.999453

Tables 3 and 4 show the exponents for both coop2 and coop3, respectively. We used
delays of 2 and 1 day, respectively, and the curves corresponding to dimension 10.

Table 3. Maximal Lyapunov exponents for coop2.

ε Range ∆n Exponent Coefficient

2000 [38, 52] 0.049485 0.999835

4000 [34, 44] 0.049351 0.999968

8000 [32, 45] 0.046593 0.999930

16,000 [30, 44] 0.044334 0.999872

Table 4. Maximal Lyapunov exponents for coop3.

ε Range ∆n Exponent Coefficient

1000 [46, 74] 0.040654 0.999546

2000 [44, 69] 0.040315 0.999373

4000 [43, 71] 0.038884 0.999604

8000 [40, 70] 0.037983 0.999479

12,000 [36, 71] 0.036804 0.998665

Since the series are non-stationary, we performed additional checks to ensure that
the exponent was correct. First, we computed the exponent for some parts of each series.
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We found that the exponents differed to some extent, but there was not a big difference.
For coop1, we divided the series into the first four seasons and the last six seasons, which
seemed to be stationary. Results are shown in Table 5. For coop2 (Table 6), we chose the
first four seasons and the last four seasons. For coop3, we chose seasons 1–3, 4–6, 1–4 y
1–5 (Tables 7 and 8). Since these series are shorter than the whole series and thus noisier,
sometimes we chose a different delay than the whole series to obtain a longer range of
linear increase.

Table 5. Maximal Lyapunov exponents for coop1 subseries.

First 4 Seasons

ε Delay Range ∆n Exponent Coefficient

2500 2 [37, 60] 0.033932 0.999293

5000 2 [37, 53] 0.042953 0.999331

7000 2 [38, 53] 0.042915 0.998767

9000 2 [40, 50] 0.044363 0.996814

14,000 2 [39, 44] 0.052637 0.998350

Last 6 Seasons

ε Delay Range ∆n Exponent Coeficient

2500 2 [34, 60] 0.036119 0.999693

5000 2 [27, 52] 0.039526 0.999682

7000 2 [24, 51] 0.038135 0.999653

9000 2 [25, 48] 0.036410 0.999531

14,000 2 [22, 41] 0.036882 0.999364

Table 6. Maximal Lyapunov exponents for coop2 subseries.

First 4 Seasons

ε Delay Range ∆n Exponent Coefficient

2000 2 [38, 55] 0.051889 0.999930

4000 2 [37, 48] 0.049883 0.999755

8000 2 [35, 51] 0.048558 0.999732

16,000 2 [31, 44] 0.049202 0.999739

Last 6 Seasons

ε Delay Range ∆n Exponent Coeficient

2000 2 [45, 70] 0.034716 0.999751

4000 2 [41, 61] 0.035169 0.999702

8000 2 [38, 57] 0.034492 0.999950

16,000 2 [36, 49] 0.032439 0.999622
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Table 7. Maximal Lyapunov exponents for coop3 (first and second half).

Seasons 1–3

ε Delay Range ∆n Exponent Coefficient

1000 3 [44, 77] 0.043092 0.998316

2000 3 [41, 73] 0.043402 0.998516

4000 3 [38, 71] 0.042802 0.998661

8000 3 [33, 63] 0.042343 0.998135

12,000 3 [30, 61] 0.040764 0.998190

Seasons 4–6

ε Delay Range ∆n Exponent Coefficient

1000 2 [60, 97] 0.029172 0.999118

2000 2 [57, 91] 0.030104 0.999720

4000 2 [52, 85] 0.029541 0.999602

8000 2 [50, 81] 0.029783 0.999707

12,000 2 [45, 79] 0.029731 0.999593

Table 8. Maximal Lyapunov exponents for coop3 (seasons 1–4 and 1–5).

Seasons 1–4

ε Delay Range ∆n Exponent Coefficient

1000 2 [42, 69] 0.041033 0.996666

2000 2 [40, 69] 0.041306 0.997620

4000 2 [38, 69] 0.040852 0.999009

8000 2 [35, 69] 0.039491 0.998923

12,000 2 [33, 69] 0.038913 0.998336

Seasons 1–5

ε Delay Range ∆n Exponent Coefficient

1000 1 [45, 69] 0.039694 0.999392

2000 1 [43, 69] 0.039060 0.999476

4000 1 [43, 69] 0.037576 0.999617

8000 1 [41, 69] 0.036650 0.999072

12,000 1 [39, 69] 0.036414 0.998659

Next, we computed the maximal exponent for the series of the differences. The results
are shown in Tables 9–11. For these series, we fitted the lines to the curves corresponding
to dimension 13. In all cases, we used a delay of 2 days.
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Table 9. Maximal Lyapunov exponents for coop1 (differences).

ε Range ∆n Exponent Coefficient

1000 [44, 77] 0.025899 0.998097

2000 [42, 73] 0.028804 0.999045

4000 [39, 65] 0.030844 0.999562

8000 [36, 59] 0.032047 0.999483

12,000 [33, 54] 0.034171 0.998611

Table 10. Maximal Lyapunov exponents for coop2 (differences).

ε Range ∆n Exponent Coefficient

500 [66, 89] 0.030747 0.999539

1000 [60, 87] 0.028890 0.998904

2000 [54, 81] 0.028803 0.999281

4000 [48, 73] 0.028493 0.999873

8000 [47, 69] 0.027050 0.999313

12,000 [45, 60] 0.027428 0.999044

Table 11. Maximal Lyapunov exponents for coop3 (differences).

ε Range ∆n Exponent Coefficient

250 [57, 87] 0.037408 0.999269

500 [55, 83] 0.036858 0.998921

1000 [51, 79] 0.037610 0.999470

2000 [48, 75] 0.037513 0.999424

4000 [45, 71] 0.035340 0.998392

Finally, we can estimate the noise level from the graphs of S(∆n). In Figure 10, we
observe a sharp increase at the beginning of the curve for ε = 2500 that is not present in the
other curves. This is probably due to measurement noise. Indeed, when ε is of the order
of the noise level, some points that are inside the balls of radius ε would be outside the
balls if the noise were suppressed. Then, their real distance is larger than ε, so they seem to
diverge faster than the other points in the balls, increasing the slope. After some time steps,
an exponential divergence of distances due to chaos dominates over noise, and the slope
decreases. Thus, the noise level for coop1 is probably around 1000. Applying the same
method to coop2 and coop3, we obtained similar noise levels.

3. Results

In the field of predictability research, the non-linear local Lyapunov theory also
involves analogs [23–25] to model predictive systems [60–64].

Given a series s1, . . . , sk, we construct a new series s1, . . . , sl in m-dimensional Eu-
clidean space by time-delay embedding, using a delay of d days [51,57,58]. To predict the
behavior of the series ∆n days ahead of day i, we choose a small ε > 0 and define

Pi(∆n) =
1

| U (si)| ∑
sj∈U (si)

sj+∆n (1)
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where U (si) is the set of the points sj of the sphere of radius ε centered at si such that j is
less than i− ∆n (so that we know sj+∆n) and less than i− q, where q is large enough to
prevent temporal correlations between sj and si. The radius should be as small as possible
but above the noise level. Furthermore, there should be enough points in U (si) to prevent
strong statistical fluctuations. Thus, we choose a threshold h and, if there are less than h
points in the sphere, we increase the radius for that sphere until it contains at least h points.

We split the series into two parts: the first part is used to obtain appropriate parameters
for the forecasting model, and the second part is used for a comparison of the real data to
the forecasts obtained from the model. In this case, for each series, we chose the second
part to be the last season and the first part to be the rest of the series.

The threshold q can be determined from the autocorrelation function. Thus, we
have only four adjustable parameters: the dimension m, the delay d, the radius ε, and the
minimum number of points h. To determine these parameters for each series, we performed
predictions from 1 to 14 days in the future for every day in the second-last season and
for some ranges of parameters. Next, we determined by least-squares the combination of
parameters that produces the smallest errors in the first week, and the same for the second
week and the two weeks. Thus, for each series, we obtained three sets of parameters.

The chaotic paradigm states that, despite the noisy appearance of the original series, a
correct adjustment of the immersion dimension m will give rise to a complex configuration
in phase space known as a strange attractor. These attractors, far from being randomly
distributed, have deterministic geometric and dynamic characteristics [65].

For all the series, dimensions [59] were in the range 3–10, the delay ranged from 1 and
14, and the minimum numbers of points were 10, 16, and 22. For coop1, the radiuses were
2000, 3250, 4500, 5750, 7000, 8250, 9500, 10,750, and 12,000. For coop2, the radiuses were
200, 925, 1650, 2375, 3100, 3825, 4550, 5275, and 6000. For coop3, the radiuses were 600,
1525, 2450, 3375, 4300, 5225, 6150, 7075, and 8000. The best parameters for coop1, coop2
and coop3 are listed in the tables 12, 13 and 14 respectively.

Table 12. Best parameters for coop1.

Days Dimension Delay Radius Threshold

1–7 4 4 7000 16
8–14 10 10 7000 22
1–14 4 4 3250 16

Table 13. Best parameters for coop2.

Days Dimension Delay Radius Threshold

1–7 10 3 3825 22
8–14 5 13 1650 16
1–14 7 6 6000 22

Table 14. Best parameters for coop3.

Days Dimension Delay Radius Threshold

1–7 9 10 600 10
8–14 9 10 600 10
1–14 9 10 600 10

Finally, we used these parameters to perform predictions for each series’ last season
and to compute the errors. In detail, for each day in the last season, we forecasted two weeks
in the future; that is, for day i and prediction horizon ∆n, we made a prediction Pi(∆n) for
day i + ∆n. Then, for each ∆n, we computed the root mean squared error Pi(∆n)− si+∆n,
where si+∆n is the real data from the series, and we divided it by the standard deviation
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of the last season’s data. We summarize the results in Figures 12–14. Lines with circles
correspond to the parameters for days 1 to 7, lines with squares correspond to days 8 to 14,
and lines with diamonds correspond to days 1 to 14.
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Figure 12. Prediction errors for coop1 using nonlinear methods.
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Figure 13. Prediction errors for coop2 using nonlinear methods.
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Figure 14. Prediction errors for coop3 using nonlinear methods.

4. Discussion and Conclusions

We studied three time series of daily strawberry production data for an interval of
between 6 and 10 years. We discovered that the system is chaotic and therefore, even if the
data were stationary, linear methods such as Box–Jenkins could not have been applied.

First, we detected that the power spectra were all broadband, which is consistent
with chaos. Then, we studied the system’s sensitivity to the initial conditions (exponential
growth of the errors) using the maximal Lyapunov exponent (a metric model that studies
the growth of the distances between points of a strange attractor). To confirm the validity
of its calculation in short and non-stationary series, we used over-immersion and repeated
the calculation in sections of the series and transformed series.

Applying non-linear methods, such as the maximal Lyapunov exponent computation,
we observe ranges of exponential divergence of the distances, with maximal Lyapunov
exponents around 0.04. The Fourier analysis also shows the cyclical influences of the
weekday and the season. We also tried to compute the correlation dimension. However,
we did not obtain clear results, and we conjectured that the quasi-periodic influence of the
weekday and the season introduce strong temporal correlations that require longer time
series to compute a significant dimension. Finally, we estimate that the non-deterministic
noise is around 1000. We made forecasts for the last season of the series and compared the
real data results, obtaining an appropriate model for short-term prediction.

The results indicate that power spectra and the maximal Lyapunov exponent can be
used as effective methods to judge chaos characteristics [18,19]. We also conclude that
non-linear models are more suitable than linear models for the study of strawberry harvest
prediction in these companies, and that there is possibly a small-dimension attractor in this
dynamic system.

In the methodology described in this work, the existence of predictable structures is
also contrasted for each observation, since the unpredictability of an observation of the
series from the rest reveals the independence of the random variable that generates it with
respect to the rest and hence white noise, and predictability reveals non-linear determinism
and therefore chaos. Thus, with the production series, we have made local predictions for
analogous occurrences.

This deterministic and non-stochastic chaotic series has the characteristic that short-
term prediction is possible, while medium and long-term prediction is not possible with a
high degree of reliability. The practical implication from an economic perspective is the
impossibility of making long-term predictions that can reorient the company’s produc-
tive policy or the sector. However, short-term predictions will support the logistics and
commercial operations of a company and therefore the product profitability. The use of
machine learning techniques that try to find internal structures with the predictive power
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of certain characteristics of the series in the long term, instead of a detailed behavior in the
short term, thanks to deterministic chaos is perhaps a future objective to be investigated.
However, this requires a much longer data series than we currently have.

Another step to study will be to incorporate other variables into the model to verify if
the predictive result improves and determine the bifurcation points that will alert us to the
risks of catastrophes that may change the dynamics of the model.

Finally, in order to simplify the computational part of the resolution to our problem,
we have discarded other recent algorithms that identify implicit non-linearities or non-
linear systems reconstruction techniques on non-stationary chaotic data since the main idea
of our work was to find a simple solution to the stationarity problems encountered. For
example, if we apply the SINDy method [11], we must consider many non-linear functions
within the matrix of possible functions, which makes it computationally difficult. On the
other hand, we have obtained good results without having to rebuild the time series, such
as in [16], making the method lighter, although certainly less successful. However, we
leave these objectives as some very interesting future lines of research that can potentially
improve upon the typical linear research carried out on the modeling of primary sector
activities.
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