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Abstract

A major part of human scientific endeavour aims at making causal inferences of ob-

served phenomena. While some of the studies conducted are experimental, others are

observational, the latter often making use of recorded data. Since temporal data can

be easily acquired and stored in todays world, time-series causality estimation mea-

sures have come into wide use across a range of disciplines such as neuroscience, earth

science and econometrics. In this context, model-free/data-driven methods for causal-

ity estimation are extremely useful, as the underlying model generating the data is

often unknown. However, existing data-driven measures such as Granger Causality

and Transfer Entropy impose strong statistical assumptions on the data and can only

estimate causality by associational means. Associational causality, being the most rudi-

mentary level of causality has several limitations. In this thesis, we propose a novel

Interventional Complexity Causality scheme for time series measurements so as to cap-

ture a higher level of causality based on intervention which until now could be inferred

only through model-based measures. Based on this interventional scheme, we formu-

late a Compression-Complexity Causality (CCC) measure that is rigorously tested on

simulations of stochastic and deterministic systems and shown to overcome the limita-

tions of existing measures. CCC is then applied to infer causal relations from real data

xviii



mainly in the domain of neuroscience. These include the study of brain connectivity

in human subjects performing a motor task and a study to distinguish between awake

and anaesthesia states in monkeys using electrophysiological brain recordings.

Through theoretical and empirical advances in causality testing, the thesis also

makes contributions to a number of allied disciplines. A causal perspective is given for

the ubiquitous phenomenon of chaotic synchronization. One of the major contributions

in this regard is the introduction of the notion of Causal Stability and formulation (with

proof) of a novel Causal Stability Synchronization Theorem which gives a condition for

complete synchronization of coupled chaotic systems. Further, we propose and test for

techniques to analyse causality between sparse signals using compressed sensing. A real

application is demonstrated for the case of sparse neuronal spike trains recorded from

rat prefrontal cortex. The area of temporal-reversibility detection of time-series is also

closely linked to the domain of causality testing. We develop and test a new method to

check for time-reversibility of processes and explore the behaviour of causality measures

on coupled time-reversed processes.
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Chapter 1

Introduction

This chapter provides a brief introduction to the field of causal inference in science. This

is followed by a more detailed description of time-series based causality testing methods.

Important research gaps identified in the domain of time-series causality estimation are

then outlined building up to a discussion on the focus of this thesis. The thesis is divided

into two parts: Part I and Part II. A brief synopsis of each of the Chapters in Part I

and Part II of the thesis is given.

1.1 Introduction

Making causal inferences of observed phenomena is a major and important aspect of

scientific studies. Methods for discovery of causal relationships lie on a broad spectrum

from experimental to observational studies. While simpler and smaller systems can be

experimented with by use of interventions which can be repeated, for larger and more

complex systems observational studies are more practical. In the present day, with

increased technology for data acquisition and storage, discovery of causal relations using

available temporal data recorded from several variables of desired systems has become
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immensely popular. Several time-series causality estimation methods are being used

for this purpose. The research in this thesis is centred around the theme of time series

causality estimation – placing the existing techniques in a mathematical framework,

improving the methodology of estimation and overcoming the limitations of existing

methods. Along with proposing a novel scheme and estimation technique towards this

end, the thesis also makes significant theoretical and empirical contributions to other

scientific domains that intersect the field of causality estimation.

1.2 Literature Review

1.2.1 Causality in Sciences

Most studies in natural as well as social sciences are centred around the theme of deter-

mining cause-effect relationships between processes or events. Such studies are being

conducted from the early 20th century onwards. While some studies are observational,

others involve experiments to understand the nature of dependencies. Examples of ob-

servational studies involve, studying the particle size and fertility of soil, availability

of water, diseases or pests in a particular place in order to study their effect on crop

yield; or observing the death rates of smoking vs non-smoking people to determine its

influence on mortality. On the other hand, an example of experimental study would be

studying a diseased group of people who are being administered medication to check

its efficacy against a control group.
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1.2.2 Three types of statistical causality

Cox and Wermuth have given three notions (levels) of statistical causality based on

existing approaches for estimating causality [1]. The zero-level view of causality is

basically a statistical association, i.e. non-independence with the cause happening

before the effect. This association cannot be done away with by conditioning on other

features or variables of the system that could be potential causes for the perceived

effect. For example, when looking at the causal influence that greenhouse gases in

the atmosphere have on increasing temperature of earth’s surface, other features such

as solar output which are also potential causes of the effect in question need to be

conditioned. Only then can greenhouse gases be said to have an effect on earth’s

temperature. In mathematical terms, it is essentially a multiple-regression like analysis

showing a dependence that is not explained away by other appropriate explanatory

variables. This type was studied by Good (1961,1962) [2, 3] and by Suppes (1970) [4].

In a time-series context, it was formalized as Wiener-Granger causality by Granger

(1969) [5] and later, formulated in a more general context by Schweder (1970) [6] and

by Aalen (1987) [7].

In the first-level view of causality, the aim is to compare the outcomes arising under

different interventions, given two or more (possible) interventions in a system. For

example, consider the case of two medical interventions, D1 and D0 – a treatment

drug and a control respectively, only one of which can be used on a particular patient.

The outcome observed with D1 use is compared with the outcome that would have
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been observed on that patient had D0 been used, other things being equal. If there is

evidence that use of D1 instead of D0 causes a change in outcome, then it can be said

that D1 causes that change. The key principles of such kind of experimental design for

randomized control trials were developed mainly at Rothamsted (Fisher, 1926, 1935;

Yates, 1938, 1951) [8, 9]. This way of inferring causation may have a decision-making

objective or may require the conduction of a controlled experiment, although that

is not always the case. For example, when trying to check whether an anomalous

gene causes a particular disease, the intervention as between the abnormal and normal

version of the gene is hypothetical (since explicit intervention is not possible) and

moreover no immediate decision-making process is generally involved. Rubin (1974) [10]

adapted the notions of causality to observational studies using a representation similar

to Fisher’s. The definition of causality in the above discussed first-level view is explicitly

comparative and has been the most widely used in scientific studies.

Suppose that preliminary analysis in a scientific context has established a pattern of

dependencies or associations or have provided reasonable evidence of first- or zero-level

causality. Second-level causality is used for explaining how these dependencies arose or

what underlying generating process were involved for the causal relationships observed.

On several occasions, this will require incorporating information from previous studies

in the field or by doing laboratory experiments. Attempts in this regard started with

graphical representations of causal path diagrams by Sewall Wright (Wright, 1921,

1934) [11, 12] and was later advocated by Cochran (1965) [13]. Currently, Non Para-

metric Structural Equations Models (NPSEMs) (Pearl, 2000) [14] which provide a very
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general data-generating mechanism suitable for encoding causation, dominate the field.

Each of the above types for determining causality have their own pros and cons and

their use depends on the motive and the nature of the study. While first-level causal

estimation, that mostly involves randomization experiments, may make the conclusions

of the study more secure, it fails to reveal the biological, or psychological, or physical

processes working behind the effect observed. On the other hand, zero-level causality

suffers from the criticism that there is no intervention involved to observe the causal

effect of doing something on the system. The second-level of causality requires field

knowledge and cannot be solely data driven.

1.2.3 Causation as against Correlation

We have often heard the saying ‘Correlation does not imply Causation’. But even to

this date, there are several scientific studies which make erroneous conclusions regarding

a variable being a cause of another, merely on the basis of observed correlation value.

Thus it becomes necessary to clarify the meaning and use of these two terms.

Correlation is a statistical concept which tells how strongly are a pair of variables

linearly related and change together. It does not tell us the ‘why’ and ‘how’ behind the

relationship but it just tells that a mathematical relationship potentially exists. For

example, Pearson’s correlation coefficient for a pair of random variables (X, Y ) is given

as:

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
, (1.1)

where, the numerator is the covariance of variables X, Y and σX , σY are the standard
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Figure 1.1: Positive, negative and zero correlation between two variables. The variation
of one variable is shown in yellow (grey in print) while that of the other is shown in blue
(black in print). In case of positive correlation, both the variables change in the same
direction (i.e., increase or decrease together). In case of negative correlation, the two
variables change in the opposite direction (when one increases the other decreases). In
case of zero correlation, there is no relationship between the trend of variation observed
in the two variables.

deviations of X and Y respectively. E is the expectation and µX , µY are the means of

X and Y respectively. Note that: −1 ≤ ρX,Y ≤ +1 and is always symmetric ρX,Y =

ρY,X . The closer the magnitude is to 1, the stronger is the relationship between the

variables. Figure 1.1 illustrates two signals with positive, negative and zero correlation.

An example of positive correlation would be between temperature in a region and sale of

coolers – as temperature increases (decreases), sale of coolers also increases (decreases).

However, as temperature increases (decreases), the sale of heaters decreases (increases),

indicating negative correlation. An example of zero correlation would be between the

amount of tea consumed by an individual and his/her level of intelligence.

In contrast, causation indicates that one event is a direct or indirect result of the

occurrence of another event. A variable X can be said to be a cause of another variable
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Y if it makes a difference to Y and the difference X makes must be a difference from

what would have happened without it. This definition is adapted from the definition

of a ‘cause’ given by philosopher David Lewis [15]. As discussed in the previous sec-

tion, there are several means for estimating causality. Unlike correlation, causation is

asymmetric.

Interestingly, for conventional statistics, causation was a non-scientific concept and

as per the ideas prevalent in the late 19th and early 20th century, all analysis could

be reduced to correlation. Since correlation got rigorously mathematically defined first

(when scientist Galton was in search of a tool for causation) and causation seemed to

be only a limited category of correlation, the latter became the central tool. Moreover,

the pioneers of statistics such as Pearson felt that causation is only a matter of re-

occurrence of certain sequences and science can in no way demonstrate any inherent

necessity in a sequence of events nor prove with certainty that the sequence must be

repeated [15].

However, later on, since most studies were in search of causal inferences and agents

for their experimental/observational data and were at the same time using the famous

statistical tool of correlation, they ended up incorrectly deducing the existence of cau-

sation based on results from correlation measures. Of the several infamous studies, an

example is of the 2012 paper published in the New England Journal of Medicine claim-

ing that chocolate consumption could enhance cognitive function. The basis for this

conclusion was that the number of Nobel Prize laureates in each country was strongly

correlated with the per capita consumption of chocolate in that country. One error that
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Figure 1.2: High correlation between ‘sale of fans’ and ‘consumption of ice-creams’ as
a result of a confounding variable, ‘temperature in a region’.

the authors of the paper made was deducing individual level conclusions (regarding en-

hancement of cognitive level) based on group level (country) data. There was no data

on how much chocolate Nobel laureates consumed. It is possible that the correlation

between the two variables arose because of a common factor – the prosperity of the

country which affected both the access to chocolate as well as availability of higher

education in the country.

There are several cases in everyday life where we can observe that correlation be-

tween two variables increases because of a common cause variable influencing the ob-

served variables. This common cause variable is referred to as the confounding variable

which results in a spurious association between the two variables. Figure 1.2 shows the

example of the confounding variable ‘temperature in a region’ influencing the observed

variables ‘sale of fans’ and ‘consumption of ice-creams’, resulting in a high correlation

between the latter two variables.
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1.2.4 The Ladder of Causation

Judea Pearl, in his latest book, ‘The Book of Why’, gives three levels for a causal

learner [15]. His work on machine learning convinced him that for machines to learn to

make decisions like humans, they cannot continue to make associations based on data

alone but needed to have causal reasoning analogous to the human mind. In the ‘Ladder

of Causation’ that he proposes, the three levels are − (1) Association, (2) Intervention

and (3) Counterfactuals, when arranged from the lower rung to the higher rung.

Association involves observing regularities in the data to associate a past event with

a future one. Animals learn in this way, for example, this is what a cat does when it

observes a mouse and tries to predict where it will be a moment later. Pearl argues

that machine learning algorithms even till today operate in this mode of ‘association’.

Correlation based measures such as those discussed in Section 1.2.2 under zero-level view

of causality, work based on association. Intervention, at a higher level than association,

involves actively changing what is there and then observing its effect. For example,

when we take a paracetamol to cure our fever, it is an act of intervention on the drug

level in our body to affect the fever. Randomized control trials as well as model-based

causality measures (which aim to find the underlying generating mechanism) fall in this

category. These have been discussed in Section 1.2.2 as the first and second levels of

causality.

The highest rung on the Ladder of Causation is that of Counterfactuals. This

involves imagination. No experiment can actually change history (since time travel
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is not practical), but if I take paracetamol when I have fever and after a few hours

I ask ‘was it the paracetamol that cured my fever?’, then I am exercising the power

of my imagination to infer the cause of my fever being cured. To date, there is no

computational method to establish causality by such counterfactual reasoning.

1.2.5 Causality estimation from time-series

After describing the broad field of causal inference and the means to classify the existing

causality measures, let us move to the domain of time-series causality estimation which

is the main focus of this thesis. Several mathematical methods have been developed

that can be applied on temporal measurements that have been acquired and stored.

These methods can be broadly divided into two categories: model-free or data-driven or

non-parametric measures and model-based or parametric measures. Parametric/model-

based methods assume a fixed set of parameters and their distributions. Models with

these parameters are assumed for the given data and the best model is selected out

of the assumed models. Non-parametric/model-free methods, on the other hand, do

not make any assumptions on the data, its distribution and there are no fixed set of

parameters. Model-based measures can also be thought of as data-driven since the

model and its parameters are selected based on data. However, for the purpose of this

thesis, we refer to model-free methods as data-driven because they are so in the true

sense, they do not make any assumptions on the plausible underlying models. The

measures falling under each of these two categories are briefly discussed below:
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Data-driven causality measures

In the present day scenario, data is readily available and typically in large quantity.

Also, to infer certain kinds of cause-effect relationships, it may be difficult or impossible

to conduct intervention experiments. Thus, an increasing number of studies are now

using data-driven measures of causality testing. While model-based causality measures

would give more information about the underlying mechanism, when field knowledge is

not adequately available, it may not be feasible to design such models. In such scenarios

as well, model-free, data driven measures are useful. These are being employed in fields

such as neuroscience [16, 17], climatology [18, 19], econometrics [20, 21], physics and

engineering [22].

Several methods of causality which use time series data have been developed. One

of the earliest and popular methods in this regard is Granger Causality (GC) [5].

Other methods that were proposed later include Transfer Entropy (TE) [23], Non-linear

Granger Causality [24] and Information flow [25, 26]. All these methods are based on

Wiener’s idea [27], which defines a simple and elegant way to estimate causality from

time series data. According to Wiener, if a time series X causes a time series Y , then

past values of X should contain information that help predict Y above and beyond the

information contained in past values of Y alone. Wiener’s approach to causation and

the idea behind GC and TE which are based on it is given in Box 1.
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Box 1

Norbert Wiener (1894-1964) (left) and Clive W.J. Granger (1934-2009) (right) –

pioneers in the field of time series based causality estimation. Granger was

awarded the Nobel Memorial Prize in Economic Sciences in 2003 for his work on

methods for analyzing economic time series with common trends.

Wiener’s idea:

According to Wiener, if a time series X causes a time series Y , then past values of X

should contain information that help predict Y above and beyond the information

contained in past values of Y alone [27].

Several methods are based on this approach and the idea behind each one of them

is stated below. If, with the inclusion of past of X -

• prediction power of Y ↑, then there is a non-zero Granger Causality from

X to Y .

• uncertainty of Y ↓, then there is a non-zero Transfer Entropy from X to Y .
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Other model-free methods for causality testing from time series data include Con-

vergent Cross Mapping [28], Topological Causality [29] etc. These measures capture

causality based on the topological properties of dynamical systems. We discuss a few

important methods below along with their applications and limitations.

Granger Causality (GC) is a statistical concept of causality that is based on pre-

diction. This was the first method proposed directly based on Wiener’s approach and

hence is often referred to as Wiener-Granger Causality [27]. To check if a process

X Granger causes another process Y , two separate autoregressive processes of Y are

modeled for consideration –

Y (t) =
∞∑
τ=1

(aτY (t− τ)) +
∞∑
τ=1

(cτX(t− τ)) + εc, (1.2)

Y (t) =
∞∑
τ=1

(bτY (t− τ)) + ε, (1.3)

where t denotes any time instance, aτ , bτ , cτ are coefficients at a time lag of τ and εc, ε

are error terms in the two models. Assuming that X and Y are covariance stationary1,

whether X causes Y or not can be predicted by the log ratio of the prediction error

variances:

FX→Y = ln
var(ε)

var(εc)
. (1.4)

1A process is said to be covariance (or weak-sense) stationary if its mean does not change with
time and the covariance between any two terms of its observed time-series depends only on the relative
positions of the two terms, that is, on how far apart they are located from each other, and not on their
absolute position [30].
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This measure is called the F-statistic. If the model represented by equation (1.2) is

a better model for Y (t) than equation (1.3), then var(εc) < var(ε) and FX→Y will be

greater than 0, suggesting that X Granger causes Y . Though this concept of causality

uses an autoregressive model, in principle, the measure is applicable for a wide range

of covariance stationary processes [31, 32]. This led the method to be abundantly

applied for data-driven causality estimation in diverse disciplines [16,33,34]. In practice,

however, it has been shown that the method often fails to identify the correct causal

influences for nonlinear time series [35]. The method also suffers limitations when

applied to sub-sampled [36] and noisy [37] time-series.

Transfer Entropy (TE) quantifies the influence of a time-series J on transition

probabilities of a time-series I [23]. This method makes the assumption that the time-

series I and J are stationary markov processes in which the probability of an event

at any time point depends only on the state(s) attained by the processes in a limited

number of past time points. TE measures the penalty to be paid in terms of excess

amount of info-theoretic bits by assuming that the current state in+1 of a variable I is

independent of the past states j
(l)
n of a variable J , i.e. assuming its distribution to be

p(in+1|i(k)
n ) instead of p(in+1|i(k)

n , j
(l)
n ). Here k and l denote the number of past states of

I and J respectively, on which the probability distribution of any state in+1 of process

I is dependent. Mathematically,

TEJ→I =
∑
i,j

p(in+1, i
(k)
n , j(l)

n ) log2

p(in+1|i(k)
n , j

(l)
n )

p(in+1|i(k)
n )

bits. (1.5)
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If I and J are independent processes, then p(in+1|i(k)
n , j

(l)
n ) = p(in+1|i(k)

n ) for all n, k, l

and hence the above quantity will be zero. Intuitively, TEJ→I captures the flow of

information (in bits) from a process J to a process I. In general, TEJ→I 6= TEI→J .

Interestingly, TE and GC have been shown to be equivalent for Gaussian variables [38].

Just like GC, TE too is a very widely used measure of causality estimation across

disciplines [17,22,39]. In addition to the assumption on markovianity and stationarity

made by TE which reduce the scope of its application, the method suffers from a number

of limitations. Some of these include spurious performance of the measure in the case

of datasets with low temporal resolution and the presence of observational noise [40].

Non-linear Granger Causality – A number of extensions of Granger Causality have

come up in order to make its estimation non-parametric [41] or to improve it in terms

of applicability to non-linear data [24, 42, 43]. We allude here to the implementation

in [24], which has come into wide use and also shown to have better performance than

some of the other GC extensions [35]. This method is a kernel version of GC. Kernel

algorithms basically embed data into a Hilbert space, and search for linear relations in

that space. Hilbert spaces here are spaces of kernel functions, where these functions can

be thought of as correlation or covariance functions. The nonlinearity of the regression

model can be controlled by choosing different kernel functions such as a polynomial of

appropriate order or a Gaussian kernel. Another advantage of the method is that it

avoids the problem of overfitting which arises as the complexity of the model increases

by use of a strategy based on the geometry of reproducing kernel Hilbert spaces [44].
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Kernel based GC has been used for a number of applications with a majority of

them being in the domain of neuroscience [24, 45, 46]. While the method has been

demonstrated to perform well on autoregressive and simple deterministic chaotic cou-

pled systems, it shows false-positive couplings in case of complex systems comprising

of chaotic processes [35].

Convergent Cross Mapping (CCM) – While GC has been developed for stochas-

tic processes where the influences of different causal variables can be well separated,

Convergent Cross Mapping is developed for deterministic processes that are not com-

pletely random. Inspired from dynamical systems’ theory, it can be applied even when

causal variables have synergistic effects [28]. This method uses Takens’ embedding

theorem [47], in a fundamental way. According to this theorem, observations from a

single variable of the system can be used to reconstruct the attractor manifold of the

entire dynamical system. CCM exploits the fact that two variables will be causally

related if they are from the same dynamical system. If a variable X causes Y , then

the lagged (past) values of Y can help to estimate states of X. This is true because of

Taken’s theorem – manifold MY (or MX) of any one observed variable Y , will have a

diffeomorphism (one to one mapping that preserves differentiable structure) to the true

manifold, M and hence the manifolds of two variables MY and MX will be diffeomor-

phic. However, this cross mapping is not symmetric. If X is unidirectionally causing

Y , past values of Y will have information about X, but not the other way round. Thus,

the state of X will be predictable from MY , but Y not from MX .
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Though CCM doesn’t perform a detailed model based analysis, it is based on the

assumption that the data is from dynamical systems where Taken’s embedding theo-

rem holds. Hence, the method is invalid for time series such as those obtained from

autoregressive processes. Also, the method has a number of weaknesses which have

been demonstrated by its inability to detect correct causality strength and direction

in several instances of intermediate to strong coupling between dynamical systems and

also in the presence of noise [48, 49]. CCM has been applied to ecology studies [28, 50]

as well as climate science [51].

There are several other causality methods based on the GC principle such as Partial

Directed Coherence [52], Direct Transfer Function [53] and Modified Direct Transfer

Function [54]. There are also a number of other methods based on non-linear state

space analysis such as Predictability Improvement [55] and Topological Causality [29].

These methods are not as widely used as the above discussed methods. These have not

been used anywhere in the thesis. We leave it at the mention of these methods and do

not describe their working.

Model-based Causality Measures

In cases where domain-knowledge is available and it is easy to perform lab-experiments

to develop causal models underlying the generation of provided time series data, model-

based causality estimation methods can be used. These kind of methods are both

hypothesis (model) and data led and rest on performing a comparison between a set

of assumed models, selecting the best model and optimizing its parameters. Structural
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Equation Modeling (SEM) [14] and Dynamic Causal Modeling (DCM) [56] are examples

of these kinds of methods.

SEM includes a diverse set of computer algorithms, mathematical models and sta-

tistical methods that fit networks of constructs to data. The links between constructs

of an SEM model may be estimated with independent regression equations or some-

times through more complicated techniques. In addition to being used in medicine,

environmental science and engineering, SEM has also found applications in social sci-

ence disciplines such as accounting and marketing [14]. On the other hand, DCM was

developed in the context of neuroscience. Its objective is to estimate coupling between

different brain regions and to identify how the coupling is affected by environmental

changes (i.e. say, temporal or contextual). Models of interaction between different corti-

cal areas (nodes) are formulated in terms of ordinary or stochastic differential equations.

The activity of the hidden states of these nodes maps to the measured activity based

on another model. Bayesian model inversion is done to determine the best model and

its parameters for the system using the acquired data.

1.3 Important Research Gaps Identified

The three levels of statistical causality are useful as a broad framework for classifying

existing methods of causality analysis in the sciences – this includes experimental,

observational as well as those studying underlying causal mechanisms. On the other

hand, the ladder of causation was recently introduced in the context of machine learning

algorithms and to discuss their potential capabilities to make useful causal inferences.
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It provides a classification for all possible levels of understanding that a causal learner

is capable of. These levels of course are from a very human-centric understanding of

causation. However, as humans, this is the best standard for classification that we have

at our disposal. The ladder, hence, is a very useful tool to understand the futuristic

properties that we should expect and try to develop in machines and algorithms if we

want them to at least come to a level of causal understanding possible in humans.

In the context of time series causality estimation also, the ladder can be adapted to

categorize existing methods. This would be useful in knowing where we stand and where

we need to go. In fact, we can expect to develop the requisite causal capabilities in

automated machines only if we can decipher causal relations using simple mathematical

formulations and implement them as algorithms for given temporal data. We use the

ladder here to demonstrate where the existing time series causality methods stand

and to highlight the research gaps in literature. Figure 1.3 depicts the ladder, asking

relevant ‘Questions’ for causation from a time series perspective, giving ‘Examples’ from

everyday life and showing the time series analysis ‘Methods’ that fall in each category.

Data-driven measures such as GC and TE assume the inherent separability of ‘cause’

and ‘effect’ samples in time series data and are thus able to estimate only Associational

Causality (Figure 1.3), which is at the first rung on the ladder of causation. While

GC looks at the linear relationship between the cause-effect samples, TE uses the

Markovian property of dependence between the samples. Non-linear Granger Causality

is on the same boat as GC, instead of looking at linear relationship, it looks at non-linear

relationship between samples. CCM can be thought of as being partly model-based and
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Figure 1.3: The Ladder of Causation, adapted from [15], for time series analysis.

partly associational. After assuming a generic model of dynamical system, it looks at

the ability of the shadow attractor manifold of one time series to estimate the other time

series. The latter is accomplished by estimating the correlation between the original

and estimated time series.

Association being the most rudimentary form of estimating causation, associational

causality methods suffer from some very evident limitations. Many a times, cause and

effect may co-exist in blocks of measurements or a single measurement. This may

be the inherent nature of the dynamics of the process or a result of sampling being
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Figure 1.4: Associational Causality is based on cause-effect separability of samples. It
has limitations when cause-effect samples are overlapping. It may happen for contin-
uous time processes which when sampled may result in cause-effect information being
simultaneously present in blocks of data or even in a single sample.

done at a scale different from the spatio-temporal scale of cause-effect dynamics (for

example, during acquisition of measurements). Associational Causality measures are

not appropriate in such scenarios. For a pair of time series X and Y , with X causing

Y , an illustration of associatonal causality and its limitations are shown in Figure 1.4.

Model based causality methods can be said to be on the second level of Intervention

on the ladder of causation. While these methods do not directly intervene, they invert

the assumed model to obtain its various parameters based on the available data. The

complete model can then be helpful to intervene, such as to make predictions about

situations for which data is unavailable. However, the limitations of these methods is

21



that they are restricted to a few applications where domain-knowledge is available and

reliable models can be constructed.

One of the major methodological gaps in the existing literature of time series causal-

ity estimation methods is the absence of data-driven measures that can inform of

interventional causality. Further, each of the methods for data-driven causality es-

timation have their own specific limitations. While some methods are suitable for

stochastic processes, others are contained only to deterministic processes [35]. In ad-

dition, as discussed in the description provided in their specific sections, the meth-

ods show poor performance in the presence of noise, short length of signals and sub-

sampling [35–37, 48, 57]. With respect to applications to real-world datasets, each of

these methods can be improved in myriad ways [58].

The field of causal inference is still a developing field. The initial resistance to

causality as a science slowed down the progress and acceptance of the field (see Sec-

tion 1.2.3). In the recent years, though the developed techniques have seen numerous

applications, there are only a handful examples of the science being used to make the-

oretical and fundamental empirical advances in other disciplines. Of the existing few,

one of the well known active areas of research in this regard is towards improving and

innovating machine learning algorithms [15,59]. Others include applications in the field

of communication systems [60] and thermodynamics [61, 62]. There are however many

fields in which causality can make potential contributions. For instance, the field of

chaotic synchronization which deals with coupled chaotic systems has seen a number of

applications of causality measures [63,64], but has still not seen any fundamental con-
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tribution with respect to the mathematical aspects of synchronizing systems. Another

example is the field of coupled sparse signals. Many natural signals such as human

speech and natural images are sparse in some domain [65]. Model-based causality esti-

mation methods are used regularly to estimate coupling between sparse signals [66,67].

However, there is no literature investigating as to when and how data-driven methods

can be used to infer causal relationships between these signals.

1.4 Structure and Focus of this Thesis

This thesis is divided into two parts and aims to fill the research gaps outlined above.

In the first part of the thesis, we deal with the issues related to the methodology of

existing data-driven time-series causality estimation methods. All existing methods test

for causality by associational means and there is no measure to check for causality based

on the higher levels on the ladder of causation. In addition, the existing methods have

their specific limitations as discussed in Section 1.2.5. In order to infer higher levels of

causation, we propose a novel data-based interventional causality estimation scheme and

a practical implementation of a causality measure based on this scheme. This measure

called Compression-Complexity Causality (CCC) is tested on simulated datasets and its

performance is compared with existing methods. It is shown to overcome the limitations

of existing methods in a number of realistic scenarios of low temporal resolution, filtering

and missing samples. Post this, CCC is applied for some useful applications on real-

world datasets. Also, an extension of CCC is proposed for estimating causal influences

in networks.
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In the second part of the thesis, the science of causality helps us to make some

important contributions to other related disciplines especially those which deal with

coupled systems. For example, we provide a spatial interpretation to the phenomenon

of synchronization in coupled chaotic systems using the lens of causality testing. Syn-

chronization has all along been thought of as a temporal phenomenon with research

focusing on understanding the temporal conditions which lead systems to synchroniza-

tion [68, 69]. For the first time, in our work, we provide (spatial) causal conditions

to determine synchronizability of coupled chaotic systems. In this regard, we formu-

late and prove a causal stability synchronization theorem as a necessary and sufficient

condition for synchronization and also provide empirical conditions to determine which

variables of the given systems on coupling will lead the systems to synchronization.

Another domain which the thesis contributes to includes causality analysis of sparse

signals, where, to the best of our knowledge, only model-based methods have been

prevalent till date. We develop means that allow application of GC, a data-driven

measure, to determine causal relations between sparse signals. The method proposed

has the additional benefit of estimating causal relations in the compressive domain

when compressed sensing [65] techniques are used to acquire or store signals.

We also look at analysis of processes which have been time-reversed, as in are made

to exhibit reverse dynamics of the original process by flipping it along the temporal

direction. For these processes, the assumption of ‘cause preceding the effect’ no longer

holds. It thus becomes interesting to analyse and compare the behavior of time-series

causality estimation methods on these processes. We also develop a means to check
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whether the processes are time-reversible or time-irreversible (that is, whether or not

the statistical properties of time-series change on reversing them).

In the following subsections, we elaborate on the contents of all the chapters in the

two parts of the thesis.

1.4.1 Contents of Part I of the thesis

Part I of the thesis comprises of the following chapters. A synopsis of each of the

chapters is provided.

• Chapter 2 – Causality testing methods are being widely used in various disci-

plines of science. Model-free methods for causality estimation are very useful, as

the underlying model generating the data is often unknown. However, existing

model-free/data-driven measures assume separability of cause and effect at the

level of individual samples of measurements and unlike model-based methods do

not perform any intervention to learn causal relationships. These measures can

thus only capture causality which is by the associational occurrence of ‘cause’ and

‘effect’ between well separated samples. In real-world processes, often ‘cause’ and

‘effect’ are inherently inseparable or become inseparable in the acquired measure-

ments. In this chapter, a novel measure called Compression-Complexity Causal-

ity (CCC) is proposed that uses an adaptive interventional scheme to capture

causality which is not merely associational. The scheme is based on character-

izing complexities associated with the dynamical evolution of processes on short

windows of measurements. The proposed measure, CCC, captures not only the
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quantity (strength) of causality, but also its quality. The latter information is

provided by the sign of the CCC value. How positive and negative CCC values

result and the information they provide is also discussed in this chapter.

• Chapter 3 – In this chapter, CCC is rigorously tested on simulations and its

performance is compared with that of existing measures, Granger Causality and

Transfer Entropy. Comparison with measures Convergent Cross Mapping and

Non-linear Granger Causality is also done for some datasets. The proposed mea-

sure is shown to be robust to the presence of noise, long-term memory, filtering

and decimation, low temporal resolution (including aliasing), non-uniform sam-

pling, finite length signals and presence of common driving variables. Also, CCC

is compared with model-dependent measure Dynamic Causal Modelling for a case

of simulated fMRI signals. This chapter also discusses parameter selection criteria

and rationale for CCC to be applied on different datasets. Analysis of computa-

tional time complexity as well as significance testing analysis for estimated CCC

values are also discussed in this chapter.

• Chapter 4 – Causality testing of time series data has numerous applications in

fields such as earth sciences, neuroscience, econometrics, epidemiology and engi-

neering. The strengths of CCC measure inherent in its formulation (discussed in

Chapter 2) and as revealed from simulation studies (in Chapter 3) are expected to

be useful in overcoming the limitations of existing measures for successfully deter-

mining causal relations from real-world datasets. In this chapter, CCC is applied
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for testing causal interactions between populations of organisms in a predator-

prey ecosystem as well as voltage-current recordings obtained from a squid giant

axon. Further, causality analysis was done for analysing brain connectivity during

fixation, instruction, planning and movement phases of a motor task presented to

5 human subjects. Motor tasks involve a complex process wherein signals are com-

municated between different brain regions. We use causality testing techniques

CCC and Nonlinear Granger Causality and apply it on electroencephalographic

time series data acquired from the subjects in order to understand connectivity

at different stages of motor planning and movement process.

Causality testing techniques also find applications in some approaches to measure

consciousness based on computing the strength of complex causal neural interac-

tions in the brain. In this chapter, we propose a novel quantitative measure of

consciousness - Network Causal Activity, which is based on CCC. This measure

is used to distinguish different states of consciousness (awake and anaesthesia)

based on analyzing electrocorticographic signals from the lateral cortex of four

monkeys.

• Chapter 5 – Most real-world systems are multivariate with complex network

relationships. Discovering correct causal relationships is very important for such

networks found in the study of fields such as climatology, epidemiology, neuro-

science, economics etc. In order to capture causality from one variable to another

in a network, in the presence of other variables which may or may not be having
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causal influences to the considered target variable, use of conditional CCC, dis-

cussed in Chapter 2 has limitations and may not give accurate results. This is

primarily because:

1. The formulation of conditional CCC does not allow us to capture the direct

causal influence between variables, removing the indirect effects by interme-

diate variables in the causal pathway.

2. It is difficult to compute joint ETC for large number of variables. The

large dictionaries constructed from the variables become difficult to handle,

making complexity estimation inadequate over short lengths of data taken.

To address the above two problems, the concepts of Effective CCC and Equivalent

ETC are introduced and defined in this chapter. Effective CCC is then used

to estimate causal connections in simulated networks of autoregressive processes

corrupted with measurement noise and having long term memory (simulated for

short length time-series) and its performance is compared with that of multivariate

Granger Causality.

1.4.2 Contents of Part II of the thesis

Part II of the thesis comprises of the following chapters. A synopsis of each of the

chapters is provided.

• Chapter 6 – Synchronization of chaotic systems is a ubiquitous phenomenon

that arises when these systems are coupled. Chaotic synchronization has found
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applications in living systems, human cognition and neuroscience as well as in

physics, chemistry and engineering. In many natural and physiological instances,

synchronization may occur desirably or undesirably. Causality testing has the

potential to offer useful analysis tools to identify and deal with these occurrences

in an appropriate manner. In this chapter, we deal with two-fold important

aspects of synchronization using causality as described below:

1. Synchronization has been understood as a temporal phenomenon. Here, we

use the lens of causality testing to provide a complementary spatial perspec-

tive to the phenomenon by introducing the novel idea of causal stability.

We also propose and prove a causal stability synchronization theorem and

propose an empirical criterion to identify synchronizing variables in coupled

identical chaotic dynamical systems. This is an important theoretical contri-

bution to the field of chaotic synchronization and causality testing and has

potential for real world applications, such as in the control of chaos.

2. Anticipating Synchronization (AS) is a counterintuitive form of synchroniza-

tion, where the slave (driven system) dynamics evolve ahead in time of the

master (driving system) dynamics. This phenomenon has been found to be

stable in several real systems. It is shown for the difficult case of an AS sim-

ulated system that Granger Causality fails in causality estimation. However,

CCC, when used with high resolution (large bin size) of the data can inform

correct causal relations.
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• Chapter 7 – Many naturally occurring signals such as human speech and natural

images are sparse in some domain. Compressed sensing enables sparse signals to

be acquired, stored and transmitted in a linearly compressed fashion and finds

applications in magnetic resonance imaging, photography, transmission electron

microscopy etc. Linear compression is achieved by matrix multiplication of the

input sparse signals with a random sensing matrix (for e.g., independent Gaussian

entries) and recovery is enabled by nonlinear optimization techniques. Causality

testing on such data is required to make useful inferences without reconstruct-

ing them to the sparse domain. Also, for some cases, it may be impossible to

determine causal structure for data in sparse domain without the assumption of

a model for given data. In this chapter, we design structured sensing matrices

having Toeplitz and Circulant structure that preserve causality (as measured by

Granger Causality) between sparse autoregressive coupled input signals in the

compressed domain. An application is also shown for real sparse neural signals,

where Granger Causality is unable to detect the correct causality in the sparse

domain, but the causality becomes discoverable in the compressed domain by

application of these structured sensing matrices.

• Chapter 8 – Detection of temporal reversibility of a given process is an in-

teresting time series analysis scheme. Apart from itself serving as a feature to

characterize time series processes (such as non-linear processes), it also gives in-

sights on the underlying processes generating the data. Moreover, time reversal
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of given data provides a promising tool for analysis of causality measures as well

as studying causal properties of processes. Reversibility detection measures have

been widely employed for the study of ecological, epidemiological and physiolog-

ical time series. Effort-to-Compress (ETC) is a well-established robust method

to characterize complexity of time series for analysis and classification. CCC, a

causality measure based on ETC, proposed in Chapter 2, captures data-driven

interventional causality. It is shown to give reliable performance for measure-

ments from stochastic, chaotic and real-world systems in Chapters 3 and 4. In

this chapter, we apply CCC on time-reversed coupled processes and show that

the measure is free of the assumption that ‘the cause precedes the effect’, making

it a great tool for causal analysis of reversible processes. Further, we propose a

novel measure for detection of temporal reversibility of processes, called the Com-

pressive potential based asymmetry measure. Compressive potential is computed

based on the ETC algorithm. The asymmetry measure compares the probability

of occurrence of patterns at different scales between the forward time and time-

reversed process. We test the performance of Compressive potential asymmetry

measure on a number of simulated processes.

Suggested reading order – It is suggested that Chapters 2 and 3 be read first in

that order. Chapters 2 and 3 are prerequisites for Chapters 4, 5, 6 and 8. Also, Chapter

5 is a prerequisite for Chapter 8. Chapter 7 is stand alone. Chapter 9 is to be read last.
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Part I

Contributions to Causal Inference
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Chapter 2

A Novel Measure:
Compression-Complexity Causality

Causality testing methods are being widely used in various disciplines of science. Model-

free methods for causality estimation are very useful, as the underlying model generating

the data is often unknown. However, existing model-free/data-driven measures assume

separability of cause and effect at the level of individual samples of measurements and

unlike model-based methods do not perform any intervention to learn causal relation-

ships. These measures can thus only capture causality which is by the associational

occurrence of ‘cause’ and ‘effect’ between well separated samples. In real-world pro-

cesses, often ‘cause’ and ‘effect’ are inherently inseparable or found to be inseparable

in the acquired measurements. In this chapter, a novel measure called Compression-

Complexity Causality (CCC) is proposed that uses an adaptive interventional scheme

to capture causality which is not merely associational. The scheme is based on char-

acterizing complexities associated with the dynamical evolution of processes on short

windows of measurements. The proposed measure, CCC, captures not only the quantity
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(strength) of causality, but also its quality. The latter information is provided by the sign

of the CCC value. How positive and negative CCC values result and the information

they provide is also discussed in this chapter.

2.1 Introduction

The ‘Ladder of Causation’ very rightly arranges hierarchically the abilities of a causal

learner [15]. The three levels proposed are − 1. Association, 2. Intervention and 3.

Counterfactuals, when arranged from the lower rung to the higher rung. Currently,

causality learning and inferring algorithms using only data are still stuck at the lower-

most rung of ‘Association’.

Measures such as Granger Causality (GC) [5] and its various modifications [24,

41], as well as, Transfer Entropy (TE) [23] that are widely being used across various

disciplines of science — neuroscience [16,17], climatology [18,19], econometrics [20,21],

engineering [22] etc., are largely ‘model-free’/ ‘data-driven’ measures of causality. The

working of these measures is briefly discussed in Chapter 1. These measures make

minimal assumptions about the underlying physical mechanisms and depend more on

time series characteristics [16]. Hence, they have a wider scope compared to specific

model assumptions made by methods such as Dynamic Causal Modelling [56] and

Structural Equation Modeling [14]. However, the assumptions made by these methods

are often ignored in practice, resulting in erroneous causality estimates on real world

datasets. These measures can accurately quantify the degree of coupling between given

time series only if assumptions (such as linearity, stationarity and presence of Gaussian
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noise in case of GC and stationarity, markovian in case of TE) are satisfied. Thus,

these methods, when correctly applied, can infer the presence of causality when it is

by ‘association’ alone and not due to higher levels on the Ladder of Causation. To

explain this better, consider a case where the ‘cause’ and ‘effect’ are inseparable. This

can happen even when the time series satisfies stationarity but is non-markovian or in

several instances when it is non-stationary. In fact, the stated assumptions are quite

unlikely to be met in practice considering that acquired data are typically samples

of continuous/discrete evolution of real world processes. These processes might be

evolving at spatio-temporal scales very different from the scales of measurements. As a

result, cause and effect may co-exist in a single measurement or overlap over blocks of

measurements, making them inseparable. In such a scenario, it would be incorrect to

estimate causality by means of correlations and/or joint probabilities which implicitly

assumes the separability of ‘cause’ and ‘effect’. Both GC and TE make this assumption

of separability. Circularly, to characterize a time series sample as purely a ‘cause’ or

an ‘effect’ is possible only if there is a clear linear/markovian separable relationship.

When cause and effect are inseparable, ‘associational’ measures of causality such as GC

and TE are insufficient and we need a method to climb up the ladder of causation.

Intervention based approaches to causality rank higher than association. It involves

not just observing regularities in the data but actively changing what is there and then

observing its effect. In other words, we are asking the question — what will happen if we

‘do’ something? Given only data and not the power to intervene on the experimental

set up, intervention can only be done by building strong, accurate models. Model-
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based causality testing measures, alluded to before and discussed in Section 1.2.5, will

fall in this category. They invert the model to obtain its various parameters, and then

intervene to make predictions about situations for which data is unavailable. However,

these methods are very domain specific and the models require specific knowledge about

the data. With insufficient knowledge about the underlying model which generated the

data, such methods are inapplicable.

Given only data that has already been acquired without any knowledge of its gen-

erating model or the power to intervene on the experimental/real-world setting, we can

ask the question — what kind of intervention is possible (if at all) to infer causality?

The proposed ‘interventional causality’ approach will not merely measure ‘associational

causality’ because it does not make the assumption that the cause and its effect are

present sample by sample (separable) as is done by existing model-free, data based

methods of causality estimation.

Even in cases where cause and its effect are inseparable, which is probably true

for most real-world processes, the change in the dynamics of processes would contain

information about causal influences between them. With this understanding, we pro-

pose the novel idea of data-based, model-free Interventional Complexity Causal-

ity (ICC). The notion of ICC is formalized using Compression-Complexity to define

Compression-Complexity Causality (CCC).

Other methods for causality estimation based on compression have been proposed in

literature [70, 71], but the very philosophy behind our method and its implementation

are very different from these existing methods.
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In this chapter, we first introduce the idea of Dynamical Complexity and its specific

realization Dynamical Compression-Complexity. These are discussed in Section 2.2.

ICC and its specific case CCC are discussed in Section 2.3. CCC shows some interest-

ing properties. The sign of CCC value helps to give information on the ‘qualitative’

nature of causality. How positive and negative CCC are a possibility and what are its

implication on the kind of causal influence is detailed in Section 2.4.

2.2 Dynamical Complexity (DC) and Dynamical

Compression-Complexity (CC)

There can be scenarios where cause and effect co-exist in a single temporal measurement

or blocks of measurements. For example, this can happen (a) inherently in the dynamics

of the generated process, (b) when cause and effect occur at different spatio-temporal

scales, (c) when measurements are acquired at a scale different from the spatio-temporal

scale of the cause-effect dynamics (continuous or discrete). In such a case, probabilities

of joint occurrence is too simplistic an assumption to capture causal influences. On

the other hand, the very existence of causality here is actually resulting in a change

of joint probabilities/correlations which cannot be captured by an assumption of static

probabilities. To overcome this problem, we capture causality using the idea of dynam-

ical complexity. Inseparable causal influences within a time series (or between two time

series) would be reflected in their dynamical evolution. Dynamical Complexity (DC)

of a single time series X is defined as below -

DC(∆X|Xpast) = C(Xpast + ∆X)− C(Xpast), (2.1)
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where ∆X is a moving window of length w samples and Xpast is a window consisting

of immediate past L samples of ∆X. ‘+’ refers to appending, for e.g., for time series

A = [1, 2, 3] and B = [p, q], then A + B = [1, 2, 3, p, q]. C(X) refers to complexity of

time series X. DC, thus varies with the temporal index of ∆X and can be averaged

over the entire time series to estimate its average DC.

It is important to note that dynamical complexity is very different from complexity

rate (CR), which can be estimated as follows -

CR(∆X|Xpast) = C(Xpast,∆X)− C(Xpast), (2.2)

where C(Xpast,∆X) is the joint complexity of Xpast and ∆X. Complexity rate can

be seen as a generalization of Shannon entropy rate [72], the difference being that the

former can be computed using any notion of complexity, not just entropy. As is evident

from the equation, CR is estimated based on the joint occurrences of ∆X and Xpast,

while DC captures temporal change in complexities on the evolution of the process. In

case of inseparability of cause and effect, it would be inappropriate to use CR to infer

causal relationships.

Now for this notion of “complexity”, that has been referred to in this section several

times, there is no single unique definition. As noted in [73], Shannon entropy [72] is

a very popular and intuitive measure of complexity. A low value of Shannon entropy

indicates high redundancy and structure (low complexity) in the data and a high value

indicates low redundancy and high randomness (high complexity). For ergodic sources,

owing to Shannon’s noiseless source coding theorem [72], (lossless) compressibility of
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the data is directly related to Shannon entropy. However, robustly estimating com-

pressibility using Shannon entropy for short and noisy time series is a challenge [74].

Recently, the notion of compression-complexity has been introduced [74] to circumvent

this problem. Compression-complexity defines the complexity of a time series by using

optimal lossless data compression algorithms. It is well acknowledged that data com-

pression algorithms are not only useful for compression of data for efficient transmission

and storage, but also act as models for learning and statistical inference [75]. Lempel-

Ziv (LZ) Complexity [76] and Effort-To-Compress (ETC) [77] are two measures which

fall in this category.

As per the minimum description length principle [78], that formalizes the Occam’s

razor, the best hypothesis (model and its parameters) for a given set of data is the one

that leads to its best compression. Extending this principle for causality, an estima-

tion based on dynamical complexity (compressibility) of time series would be the best

possible means to capture causally influenced dynamics.

Out of the complexity measures discussed before, ETC seemed to be most suitable

for estimation of dynamical complexity. It has been demonstrated that both LZ and

ETC outperform Shannon entropy in accurately characterizing the dynamical complex-

ity of both stochastic (Markov) and deterministic chaotic systems in the presence of

noise [73,74]. Further, ETC is shown to reliably capture complexity of very short time

series where even LZ fails [74], and for analyzing short RR tachograms from healthy

young and old subjects [79]. Recently, ETC has been used to propose a compression-

complexity measure for networks [80].
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Though we intend to use ETC as a compression-complexity measure for estimating

dynamical complexity, we briefly discuss the origin of ETC and its relation to data

compression. ETC is defined as the effort to compress the input sequence using the

lossless compression algorithm known as Non-sequential Recursive Pair Substitution

(NSRPS) [81]. An offline grammar based data compression algorithm, very similar to

the NSRPS scheme, called ‘Re-Pair’, has also been developed and used independently.

Re-Pair has been shown to achieve high lossless compression ratios and to offer good

performance for decompression but has the drawback of high memory consumption [82].

In order to faithfully capture the process dynamics, DC is required to be estimated

on overlapping short-length windows of time series data. Infotheoretic quantities (like

shannon entropy), which are based on computation of probability densities, are not the

ideal choice here (owing to finite-length effects). Compression-complexity measures are

more appropriate choices. Because of the advantages of ETC over LZ mentioned above,

we use ETC to formulate our measure of causality discussed in the next section. Before

that, we describe how individual and joint compression complexities are computed using

ETC [77] in the subsections below.

2.2.1 ETC measure for a time series: ETC(X)

Since ETC expects a symbolic sequence as its input (of length > 1), the given time

series should be binned appropriately to generate such a sequence. Once such a symbolic

sequence is available, ETC proceeds by parsing the entire sequence (from left to right) to

find that pair of symbols in the sequence which has the highest frequency of occurrence.
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This pair is replaced with a new symbol to create a new symbolic sequence (of shorter

length). This procedure is repeated iteratively and terminates only when we end up

with a constant sequence (whose entropy is zero since it consists of only one symbol).

Since the length of the output sequence at every iteration decreases, the algorithm will

surely halt. The number of iterations needed to convert the input sequence to a constant

sequence is defined as the value of ETC complexity. For example, the input sequence

‘12121112’ gets transformed as follows: 12121112 7→ 33113 7→ 4113 7→ 513 7→ 63 7→

7. Thus, ETC(12121112) = 5. ETC achieves its minimum value (0) for a constant

sequence and maximum value (m − 1) for a m length sequence with distinct symbols.

Thus, we normalize the ETC complexity value by dividing by m− 1. Thus normalized

ETC(12121112) = 5
7
. Note that normalized ETC values are always between 0 and 1

with low values indicating low complexity and high values indicating high complexity.

2.2.2 Joint ETC measure for a pair of time series: ETC(X, Y )

We perform a straightforward extension of the above mentioned procedure (ETC(X))

for computing the joint ETC measure ETC(X, Y ) for a pair of input time series X and

Y of the same length. At every iteration, the algorithm scans (from left to right) simul-

taneously X and Y sequences and replaces the most frequent jointly occurring pair with

a new symbol for both the pairs. To illustrate it by an example, consider, X = 121212

and Y = abacac. The pair (X, Y ) gets transformed as follows: (121212, abacac) 7→

(1233, abdd) 7→ (433, edd) 7→ (53, fd) 7→ (6, g). Thus, ETC(X, Y ) = 4 and normalized

value is 4
5
. It can be noted that ETC(X, Y ) ≤ ETC(X) + ETC(Y ).
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2.3 Interventional Complexity Causality (ICC) and

Compression-Complexity Causality (CCC)

To measure how the dynamics of a process Y influence the dynamics of a process X,

we intervene to create new hypothetical blocks of time series data, Ypast + ∆X, where

Ypast is a window of length L samples, taken from the immediate past of the window

∆X. These blocks are created by ‘surgery’ and do not exist in reality in the data that is

already collected. Interventional Complexity Causality (ICC) is defined as the change

in the dynamical complexity of time series X when ∆X is seen to be generated jointly

by the dynamical evolution of both Ypast and Xpast as opposed to by the reality of the

dynamical evolution of Xpast alone.

This formulation is actually in line with Wiener’s idea, according to which, time

series Y causes X, if incorporating the past of Y helps to improve the prediction of

X [27]. While GC is based on the notion of improved predictability and TE on reduction

of uncertainty, ICC is based on the notion of change in ‘dynamical complexity’ when

information from the past of Y is brought in, in order to check its causal influence on

X. The difference between existing approaches and the proposed measure is that the

effect of Y on X is analyzed based on ‘associational’ means in case of the former and

by ‘interventional’ means in case of the latter. With this formulation, ICC is designed

to measure effect, like GC and TE and not the mechanism, as in Dynamic Causal

Modelling [16, 83]. To elaborate on this aspect, ICC cannot explicitly quantify the

interaction coefficients of the underlying generative model (physical mechanism), but
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will only estimate causal influence based on change in dynamical complexities. It is,

however, expected that ICC will be closer to the underlying mechanism than existing

methods, because, by its very formulation, it taps on causes and their effects based on

dynamical evolution of processes.

Mathematically,

ICCYpast→∆X = DC(∆X|Xpast)−DC(∆X|Xpast, Ypast), (2.3)

where DC(∆X|Xpast) is as defined in Eq. 2.1 and DC(∆X|Xpast, Ypast) is as elaborated

below:

DC(∆X|Xpast, Ypast) = C(Xpast + ∆X, Ypast + ∆X)− C(Xpast, Ypast), (2.4)

where C(·, ·) refers to joint complexity. ICC varies with the moving temporal window

∆X and its corresponding Ypast, Xpast. To estimate average causality from time series

Y to X, ICCYpast→∆X obtained for all ∆Xs are averaged.

The above is the generic description of ICC that can be estimated using any com-

plexity measure. For the reasons discussed in Section 2.2, we would like to estimate

ICC using the notion of Dynamical Compression-Complexity estimated by the mea-

sure ETC. The measure would then become Interventional Compression-Complexity

Causality. For succinctness, we refer to it as Compression-Complexity Causality or

CCC. To estimate CCC, time series blocks Xpast, Ypast, Xpast + ∆X, and surgically cre-

ated Ypast+∆X are separately encoded (binned) — converted to a sequence of symbols

using ‘B’ uniformly sized bins for the application of ETC1. For the binned time series

1Henceforth, the same variables are used to denote the binned/encoded versions of the blocks.
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blocks, Xpast, Ypast, Xpast + ∆X, Ypast + ∆X, to determine whether Ypast caused ∆X or

not, we first compute dynamical compression-complexities, denoted by CC,

CC(∆X|Xpast) = ETC(Xpast + ∆X)− ETC(Xpast), (2.5)

CC(∆X|Xpast, Ypast) = ETC(Xpast + ∆X, Ypast + ∆X)− ETC(Xpast, Ypast), (2.6)

Eq. 2.5 gives the dynamical compression-complexity of ∆X as a dynamical evolution of

Xpast alone. Eq. 2.6 gives the dynamical compression-complexity for ∆X as a dynamical

evolution of both Xpast and Ypast. ETC(·) and ETC(·, ·) refer to individual and joint

effort-to-compress complexities. For estimating ETC from these small blocks of data,

short-term stationarity of X and Y is assumed.

We now define Compression-Complexity Causality CCCYpast→∆X as:

CCCYpast→∆X = CC(∆X|Xpast)− CC(∆X|Xpast, Ypast). (2.7)

Averaged CCC from Y to X over the entire length of time series with the window

∆X being slided by a step-size of δ is estimated as —

CCCY→X = CCCYpast→∆X = CC(∆X|Xpast)− CC(∆X|Xpast, Ypast), (2.8)

If CC(∆X|Xpast, Ypast) ≈ CC(∆X|Xpast), then CCCY→X is statistically not differ-

ent from zero, implying no causal influence from Y toX. At times, if obtained CCCY→X

is non-zero and high, that may also mean no causation. But, at this time CCCY→X

should be statistically significantly not different from the population of CCC values

obtained from surrogate data generated by random shuffling2 of observations of Y (X

2The aim here is to destroy the temporal structure in the driver or ‘cause’ time series (i.e., the time
series from which causal influence is to be checked to the other time series).
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can be kept intact in this case). The destruction of temporal structure in Y results in

an increase in CCCY→X compared to when the causal structure was intact. However,

if CCCY→X is statistically significantly different from zero and is also less than the

highest possible CCCY→X , obtained by surrogate analysis as described above, then we

infer that Y causes X. Random shuffling of Y provides an upper bound for CCC at

which there exists no causation. For details and demonstration of surrogate significance

testing analysis, please see Section 3.4.2. The reason for existence of data-dependent

upper bound for CCC is also discussed in the same section.

In general, for values of CCC between zero and the upper bound, a higher magnitude

of CCCY→X implies a higher degree of causation from Y toX. The length ofXpast, Ypast,

L is chosen by determining the correct intervention point. This is the temporal scale at

which Y has a dynamical influence on X. Detailed criteria and rationale for estimating

L and other parameters used in CCC estimation: w (length of ∆X), δ and B for any

given pair of time series are discussed in Chapter 3 (Section 3.3).

CCC is invariant to local/global scaling and addition of constant value to the time

series. As CCC is based on binning of small blocks of time series data, it is noise

resistant. Furthermore, it is applicable to non-linear and short term stationary time

series. Being based on dynamical evolution of patterns in the data, it is expected to be

robust to sub-sampling and filtering.

For multivariate data, CCC can be estimated in a similar way by building dictio-

naries that encode information from all variables. Thus, to check conditional causality

from Y to X amidst the presence of other variables (say Z and W ), two time varying
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dictionaries are built — D that encodes information from all variables (X, Y , Z, W )

and D′ that encodes information from all variables except Y (X, Z, W only). Once

synchronous time series blocks from each variable are binned, the dictionary at that

time point is constructed by obtaining a new sequence of symbols, with each possible

combination of symbols from all variables being replaced by a particular symbol. The

mechanism for construction of these dictionaries is discussed in the next subsection.

Subsequently, dynamical compression-complexities are computed as:

CC(∆X|D′past) = ETC(D′past + ∆X)− ETC(D′past), (2.9)

CC(∆X|Dpast) = ETC(Dpast + ∆X)− ETC(Dpast), (2.10)

where D′past + ∆X represents the lossless encoding of joint occurrences of binned time

series blocksXpast+∆X, Zpast+∆X, Wpast+∆X andD′past refers to the lossless encoding

of joint occurrences of binned time series blocks Xpast, Zpast and Wpast. Similarly,

Dpast + ∆X represents the lossless encoding of joint occurrences of binned time series

blocks Xpast + ∆X, Ypast + ∆X,Zpast + ∆X, Wpast + ∆X and Dpast refers to the the

lossless encoding of joint occurrences of binned time series blocks Xpast, Ypast, Zpast and

Wpast.

Conditional Compression-Complexity Causality, CCCYpast→∆X|Zpast,Wpast , is then es-

timated as the difference of Eq. 2.9 and Eq. 2.10. Averaged Conditional Compression

Complexity-Causality over the entire time series with the window ∆X being slided by

a step-size of δ is given as below:

CCCY→X|Z,W = CC(∆X|D′past)− CC(∆X|Dpast). (2.11)
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2.3.1 Dictionary building for conditional CCC

To estimate causality from time series Y to X, amidst the presence of other variables

(say Z and W ), two time varying dictionaries are built — D that encodes information

from all variables (X, Y , Z, W ) and D′ that encodes information from all variables

except Y (X, Z, W only). Suppose the time series blocks being considered at a time

t are Xpast, Ypast, Zpast and Wpast, then the dictionary at that time Dpast is built as

follows. Suppose (for example) 
Xpast

Ypast
Zpast
Wpast


blocks of length 4 time points take values

0 0 1 0
1 0 1 0
1 1 1 1
0 1 1 1

 ,

after each time series block (such as Xpast) is binned using 2 bins. Then encoding in

Dpast is done based on assigning a particular value to each column. As each row in the

first column can take 2 values, there exists a total of 16 possible combinations that the

4 rows can take together in a column. We encode information in 4 rows to a single row

by assigning combinations of different values in the 4 rows an encoding from ‘0’ to ‘15’.

In the dictionary Dpast, the above sequences are encoded as a single sequence —

(
6 3 15 3

)
.
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The second dictionary D′past at the same time constructed using all variables except Y

similarly encodes blocks  Xpast

Zpast
Wpast


taking values  0 0 1 0

1 1 1 1
0 1 1 1


as (

2 3 7 3
)

assigning each column one particular state out of 8 possible states. Thus, for the above

example, D = (6, 3, 15, 3) and D′ = (2, 3, 7, 3). ETC can now be applied on the two

dictionaries D and D′ as these sequences are now just 1-dimensional symbolic sequences.

2.4 Positive and Negative CCC

The dynamical compression-complexities estimated for the purpose of CCC estimation,

CC(∆X|Xpast) and CC(∆X|Xpast, Ypast), can be either positive or negative. For in-

stance, consider the case when CC(∆X|Xpast) becomes negative. This happens when

ETC(Xpast + ∆X) is less than ETC(Xpast), which means that with the appending of

∆X, the sequence Xpast has become more structured resulting in reduction of its com-

plexity. The value of CC(∆X|Xpast) is positive when appending of ∆X makes Xpast

less structured (hence more complex). Similarly, CC(∆X|Xpast, Ypast) can also become

negative when ETC realizes Xpast + ∆X, Ypast + ∆X to be more structured than Xpast,

Ypast. When the opposite is true, CC(∆X|Xpast, Ypast) is positive.
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Because of the values that CC(∆X|Xpast) and CC(∆X|Xpast, Ypast) can take, CCCYpast→∆X

can be both positive or negative. How different cases result with different signs of the

two quantities along with their implication on CCC is shown in Table 2.1. We see

that the sign of CCCYpast→∆X signifies the ‘kind of dynamical influence’ that Ypast has

on ∆X, whether this dynamical influence is similar to or different from that of Xpast

on ∆X. When CCCYpast→∆X is −ve, it signifies that Ypast has a different dynamical

influence on ∆X than Xpast. On the contrary, when CCCYpast→∆X is +ve, it signifies

that Ypast has a dynamical influence on ∆X that is similar to that of Xpast. On estimat-

ing the averaged CCC from time series Y to X, expecting that CCCYpast→∆X values

do not vary much with time, we can talk about the kind of dynamical influence that

time series Y has on X. For weak sense stationary processes, it is intuitive that the

influence of Y on X would be very different from that on X due to its own past when

the distributions of coupled time series Y and X are very different.

We verify this intuition by measuring probability distribution distances3 between

coupled processes Y and X using symmetric Kullback-Leibler Divergence (KL) and

Jensen-Shannon Divergence (JSD). The trend of values obtained by these divergence

measures is compared with the trend of CCC for different cases such as when CCC is

positive or negative.

Unidirectionally coupled autoregressive (AR) processes were generated as per Eq. 3.1.

Linearly (unidirectionally) coupled tent maps were generated as per Eqs. 3.3, 3.4 and

3It should be mentioned that strictly speaking KL and JSD are not distance measures since they
don’t satisfy the triangle inequality.
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Table 2.1: Sign of Dynamical Compression-Complexities, CC(∆X|Xpast) and
CC(∆X|Xpast, Ypast), and their resulting implication on the sign of estimated Com-
pression Complexity-Causality, CCCYpast→∆X .

CC(∆X|Xpast)

CC(∆X|Xpast, Ypast)

−ve +ve

−ve

Xpast + ∆X was more structured
than Xpast. Further, two cases arise.

1. When |CC(∆X|Xpast)| >
|CC(∆X|Xpast, Ypast)|,
CCCYpast→∆X < 0. Here,

intervention by Ypast in the joint
case degraded the structure by

bringing patterns different from
Xpast. Dynamical influence of Ypast

on ∆X is very different from the
dynamical influence of Xpast on ∆X.

e.g.: CCC from independent tent
map to dependent tent map.
2. When |CC(∆X|Xpast)| <
|CC(∆X|Xpast, Ypast)|,

CCCYpast→∆X > 0. Intervention by
Ypast in the joint case enhanced

the structure by bringing patterns
similar to Xpast. Dynamical

influence of Ypast on ∆X is very
similar to the dynamical influence of

Xpast on ∆X .e.g.: CCC from
independent autoregressive (AR)
process to dependent AR process.

CCCYpast→∆X is −ve always.
Xpast + ∆X was more structured

than Xpast. Intervention by Ypast in
the joint case degraded the

structure. Dynamical influence of
Ypast on ∆X is very different from
the dynamical influence of Xpast on
∆X. e.g.: CCC from independent
tent map to dependent tent map.

+ve

CCCYpast→∆X is +ve always.
Xpast + ∆X was less structured than
Xpast. Intervention by Ypast in the

joint case enhanced the structure
by bringing patterns similar to

Xpast. Dynamical influence of Ypast
on ∆X is very similar to the

dynamical influence of Xpast on ∆X.

Xpast + ∆X was less structured than
Xpast. Further, two cases arise. 1.

When |CC(∆X|Xpast)| >
|CC(∆X|Xpast, Ypast)|,
CCCYpast→∆X > 0. Here,

intervention by Ypast in the joint
case enhanced the structure by
bringing patterns similar to Xpast.

Dynamical influence of Ypast on ∆X
is very similar to the dynamical

influence of Xpast on ∆X.
2. When |CC(∆X|Xpast)| <
|CC(∆X|Xpast, Ypast)|,

CCCYpast→∆X < 0. Intervention by
Ypast in the joint case degraded

the structure by bringing patterns
different from Xpast. Dynamical
influence of Ypast on ∆X is very

different from the dynamical
influence of Xpast on ∆X .
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non-linearly (unidirectionally) coupled tent maps were generated as per Eqs. 3.3, 3.5.

Symmetric KL and JSD between distribution P and Q of coupled processes are esti-

mated as per Eq. 2.12 and 2.14 respectively.

DSymm KL(P,Q) = DKL(P‖Q) +DKL(Q‖P ), (2.12)

where,

DKL(P‖Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
,

DKL(Q‖P ) =
∑
i

Q(i) log

(
Q(i)

P (i)

)
.

(2.13)

JSD(P ‖ Q) =
1

2
D(P ‖M) +

1

2
D(Q ‖M), (2.14)

where, M = 1
2
(P +Q). Here, KL and JSD values are in units of nats.

Curves for KL, JSD and CCC estimated for increasing coupling between AR pro-

cesses of order 1 and linearly as well as non-linearly coupled tent maps are shown in

Figures 2.1, 2.2 and 2.3 respectively. The values displayed represent the mean over 50

trials. As the degree of coupling is varied for AR processes, there is no clear pattern in

KL and JSD values. CCC values increase in the positive direction for increasing cou-

pling, signifying that the dynamical influence from Y to X is similar to the influence

on X from its own past. Also, when we took larger number of trials for AR, the values

obtained by KL and JSD become confined to a smaller range and seem to converge

towards a constant value indicating that the distributions of X and Y are quite similar.

However, in case of coupled tent maps (both linear and non-linear coupling), as cou-

pling is increased, the divergence between the distributions of the two coupled processes

51



increases, indicating that their distributions are becoming very different. The values

of CCC grow in the negative direction showing that with increasing coupling the inde-

pendent process Y has a very different dynamical influence on X compared to X’s own

past. Subsequently, due to the synchronization of Y and X, KL, JSD as well as CCC

become zero. With these graphs, it may not be possible to find an universal threshold

for the absolute values of KL/JSD above which CCC will show negative sign. However,

if the distributions of the two coupled processes exhibit an increasing divergence (when

the unidirectional coupling parameter is varied) then it does indicate that the inde-

pendent process would have a very different dynamical influence on the dependent one

when compared with that of the dependent process’ own past, suggesting that the value

of CCC will grow in the negative direction. The fact that KL/JSD and CCC do not

have a one-to-one correspondence is because the former (KL and JSD) operate on first

order distributions while the latter (CCC) is able to capture higher-order dynamical

influences between the coupled processes. For non-stationary processes, our measure

would still be able to capture the kind of dynamical influence, though distributions are

not static.

Both positive and negative significant4 CCC values imply existence of causal in-

fluence, but the nature of the dynamical influence of the cause on the effect is very

different in these two cases. Causality turning ‘negative’ does not seem very intuitive

at first, but all that it signifies is that the past of the cause variable makes the dynamics

4Significance analysis should first be performed using surrogate analysis techniques, as discussed in
Section 3.4.2.
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Figure 2.1: Mean values of divergence between distributions of coupled AR(1) processes
using Symmetric Kullback-Leibler (KL) (subfigure (a)) and Jensen Shannon (JSD)
divergences (in nats) (subfigure (b)), and the mean causality values estimated using
CCC from Y toX (solid line-circles, black) andX to Y (solid line-crosses, magenta/grey
in print) (subfigure (c)), as the degree of coupling, ε is varied. CCC values increase
with increasing ε. There is no similarity in the trend of KL/JSD to CCC.
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Figure 2.2: Mean values of divergence between distributions of linearly coupled tent
maps using Symmetric Kullback Leibler (KL) (subfigure (a)) and Jensen Shannon (JSD)
divergences (in nats) (subfigure (b)), and the mean causality values estimated using
CCC from Y toX (solid line-circles, black) andX to Y (solid line-crosses, magenta/grey
in print) (subfigure (c)), as the degree of coupling, ε is varied. For ε < 0.5, CCC and
KL/JSD are highly negatively correlated.

of the effect variable less predictable than its (effect’s) own past. Such a unique feature

could be very useful for real world applications in terms of ‘controlling’ the dynamics of

a variable being effected by several variables. If a particular cause, out of several causes

that makes the caused ‘less predictable’ and has ‘intrinsically different’ dynamics from
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Figure 2.3: Mean values of divergence between distributions of non-linearly coupled tent
maps using Symmetric Kullback Leibler (KL) (subfigure (a)) and Jensen Shannon (JSD)
(subfigure (b)) divergences (in nats), and the mean of causality values estimated using
CCC from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta/
grey in print) (subfigure (c)), as the degree of coupling, ε is varied. For ε < 0.5, CCC
and KL/JSD are highly negatively correlated.

that of the effect, needs to be determined and eliminated, it can be readily identified by

observing the sign of CCC. Informed attempts to inhibit and enforce certain variables

of the system can then be made.

As the existing model-free methods of causality can extract only ‘associational

causality’ and ignore the influence that the cause has on dynamics of the caused, it

is impossible for them to comment on the nature of this dynamical influence, some-

thing that CCC is uniquely able to accomplish. Obviously, model based methods give

full-fledged information about ‘the kind of dynamical influence’ owing to the model

equations assumed. However, if there are no equations assumed (or known), then the

sign and magnitude of CCC seems to be the best choice to capture the cause-effect

relationship with additional information on the similarity (or its lack of) between the

two dynamics.
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2.5 Conclusions

In this chapter, we propose a novel data-based, model-free intervention approach to

estimate causality for given time series. The Interventional Complexity Causality

measure or ICC based on capturing causal influences from the dynamical complexities

of data is formalized as Compression-Complexity Causality or CCC with the following

properties —

• CCC operates on windows of the input time series (or measurements) instead of

individual samples. It does not make any assumption of the separability of cause

and effect samples.

• CCC doesn’t make any assumptions of stochasticity, determinism, gaussianity,

stationarity, linearity or markovian property. Thus, CCC can be applied to non-

stationary/ non-linear/ non-gaussian/ non-markovian, short-term and long-term

memory processes, as well as chaotic processes. CCC characterizes causal rela-

tionship based on dynamical complexity computed from windows of the input

data.

• CCC is uniquely and distinctly novel in its approach since it does not estimate

‘associational’ causality (first rung on Ladder of Causation) but performs ‘inter-

vention’ (second rung on the Ladder of Causation) to capture causal influences

from the dynamics of the data.

• The point of ‘intervention’ (length L for creating the hypothetical data: Ypast +
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∆X) is dependent on the temporal scale at which causality exists within and

between processes. It is determined adaptively based on the given data. This

makes CCC a highly data-driven/data-adaptive method and thus suitable for a

wide range of applications.

• Infotheoretic-based causality measures such as TE and others need to estimate

joint probability densities which are very difficult to reliably estimate with short

and noisy time series. On the other hand, CCC uses Effort-To-Compress or ETC

complexity measure over short windows to capture time-varying causality and it

is well established in literature that ETC outperforms infotheoretic measures for

short and noisy data [74,79].

• CCC can be either positive or negative (unlike TE and GC). By this unique

property, CCC gives information about the kind of causal influence that is brought

by one time series on another, whether this influence is similar (CCC > 0) to or

different (CCC < 0) from the influence that the series brings to its own present.
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Chapter 3

CCC: Testing on Simulations,
Parameter Selection and
Significance Testing

In this chapter, CCC is rigorously tested on simulations and its performance is compared

with that of existing measures – Granger Causality and Transfer Entropy. Comparison

with measures Convergent Cross Mapping and Non-linear Granger Causality is also

done for some datasets. The proposed measure is shown to be robust to the presence of

noise, long-term memory, filtering and decimation, low temporal resolution (including

aliasing), non-uniform sampling, finite length signals and presence of common driv-

ing variables. Also, CCC is compared with model-dependent measure Dynamic Causal

Modelling for a case of simulated fMRI signals. This chapter also discusses parameter

selection criteria and rationale for CCC to be applied on different datasets. Analysis

of computational time complexity as well as significance testing analysis for estimated

CCC values are also discussed in this chapter.
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3.1 Introduction

A measure of causality, to be robust for real data, needs to perform well in the pres-

ence of noise, filtering, low temporal and amplitude resolution, non-uniformly sampled

signals, short length time series as well as presence of other causal variables in the

system. Low temporal resolution data is common in the case of functional magnetic

resonance imaging [84, 85] and other neurophysiological signals [86] as well as climate

data [87]. Sometimes, the data may not be evenly (or uniformly) sampled as is observed

in the case of financial time-series [88]. Also, many a times, low pass filtering is done

to smooth out the acquired signals [89].

In this chapter, we rigorously simulate these cases and evaluate the performance of

CCC measure by comparing with existing measures — Granger Causality (GC) and

Transfer Entropy (TE). Also, CCC is compared with model-dependent Dynamic Causal

Modeling (DCM) for a case of simulated fMRI signals. All these results are given in

Section 3.2. In all cases, we take the averaged value of CCC over entire time series

as computed by Eq. 2.8 (or Eq. 2.11 in the conditional case) and the parameters for

CCC estimation are chosen as per the selection criteria and rationale discussed in the

Section 3.3. GC estimation is done using the MVGC toolbox [31] in its default settings

and TE estimation is done using MuTE toolbox [90]. Akaike Information Criteria is

used for model order estimation with the maximum model order set to 20 in the MVGC

toolbox, except where specified. Maximum number of lags to take for autocorrelation

computation is done automatically by the toolbox. In the MuTE toolbox, the approach
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of non-uniform embedding for representation of the history of the observed processes

and of nearest neighbor estimator for estimating the probability density functions is

used for all results in this paper. The number of lags to consider for observed processes

was set to 5 and the maximum number of nearest neighbors to consider was set to 10,

except where specified.

Significance testing of results obtained using CCC is demonstrated in Section 3.4.

Since our implementation of CCC algorithm is not yet optimized, we give only an

indicative analysis of computational time complexity for bivariate CCC in Section 3.5.

3.2 Simulation Testing Results and Discussion

3.2.1 Varying unidirectional coupling

AR(1)

Autoregressive processes of order one (AR(1)) were simulated as follows. X and Y are

the dependent and independent processes respectively.

X(t) = aX(t− 1) + εY (t− 1) + εX,t

Y (t) = bY (t− 1) + εY,t,

(3.1)

where a = 0.9, b = 0.8, t = 1 to 1000s, sampling period = 1s. ε is varied from 0− 0.9 in

steps of 0.1. Noise terms, εY , εX = νη, where ν = noise intensity = 0.03 and η follows

standard normal distribution. Figure 3.1 shows the performance of CCC along with

that of TE and GC as mean values over 50 trials, (CCC settings: L = 150, w = 15,

δ = 80, B = 2). Standard deviation of CCC, TE and GC values are shown in Figure 3.2.

With increasing coupling, the causality estimated by CCC, TE as well as GC in-

creases.

59



0 0.2 0.4 0.6 0.8 1

0

0.04

0.08

0.12
C

C
C

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

T
E

0 0.2 0.4 0.6 0.8 1

0

0.5

1

G
C

(a) (b) (c)

Figure 3.1: Mean causality values estimated using CCC (a), TE (b) and GC (c) for
coupled AR(1) processes, from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta/ grey in print) as the degree of coupling, ε is varied. CCC, TE as
well as GC are able to correctly quantify causality.
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Figure 3.2: Standard deviation of causality values estimated using CCC (a), TE (b)
and GC (c) for coupled AR(1) processes, from Y to X (solid line-circles, black) and X
to Y (solid line-crosses, magenta/grey in print) as the degree of coupling, ε is varied.

AR(100)

Autoregressive processes of order hundred (AR(100): X dependent, Y independent)

were simulated as follows.

X(t) = aX(t− 1) + εY (t− 100) + εX,t

Y (t) = bY (t− 1) + εY,t,

(3.2)

where a = 0.9, b = 0.8, t = 1 to 1000s (first 100 transients were removed from the

simulated process), sampling period = 1s. ε is varied from 0− 0.9 in steps of 0.1. Noise
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terms, εY , εX = νη, where ν = noise intensity = 0.03 and η follows standard normal

distribution. Figure 3.3 shows the performance of CCC along with that of TE and GC,

as mean values over 50 trials. CCC settings were set as: L = 150, w = 15, δ = 80,

B = 2. Maximum model order was set to 110 in the MVGC toolbox while the number

of lags to consider for observed processes was kept as 5 for TE estimation. For AR(100)

processes, it is ideal to take lags greater than 100, in order to get correct causality

estimates. However, for any given real data with unknown order, there is no obvious

criterion to set these maximum lags. Further, TE computation for the settings used

by us in the MuTE toolbox, when coupled with higher lags requires a much higher

computational time compared to that taken by CCC and GC for the respective settings

used. Hence, TE values for higher lags (=110) at each value of coupling were only

computed using 20 trials and are included in Appendix A.
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Figure 3.3: Mean causality values estimated using CCC (a), TE (b) and GC (c) for
coupled AR(100) processes, from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta/ grey in print) as the degree of coupling, ε is varied. Only CCC
is able to reliably estimate the correct causal relationship for all values of ε while TE
and GC fail.

CCC values increase steadily with increasing coupling for the correct direction of
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causation. TE fails as it shows higher causality from X to Y for all ε. GC also

shows confounding of causality values in two directions. Thus, causality in coupled AR

processes with long-range memory can be reliably estimated using CCC and not using

TE or GC. However, TE performance becomes better when it is computed with higher

lags as shown in Figure A.1 in the Appendix. Range of standard deviation of CCC

values from Y to X is 0.0076 to 0.0221 for varying parameter ε and that from X to

Y is 0.0039 to 0.0053. These values are much smaller than the mean CCC estimates

and thus, causality estimated in the direction of causation and opposite to it remain

well separable. For TE, Y to X, standard deviation range is 0.0061 to 0.0090 and X to

Y , standard deviation range is 0.0082 to 0.0118. For GC, Y to X, standard deviation

range is 0.0012 to 0.0033 and X to Y , standard deviation range is 0.0015 to 0.0034.

Tent Map

Linearly and non-linearly coupled tent maps were simulated as per the following equa-

tions. Independent process, Y , is generated as:

Y (t) = 2Y (t− 1), 0 ≤ Y (t− 1) < 1/2,

Y (t) = 2− 2Y (t− 1), 1/2 ≤ Y (t− 1) ≤ 1.

(3.3)

The linearly coupled dependent process, X, is as below:

X(t) = εY (t) + (1− ε)h(t),

h(t) = 2X(t− 1), 0 ≤ X(t− 1) < 1/2,

h(t) = 2− 2X(t− 1), 1/2 ≤ X(t− 1) ≤ 1,

(3.4)

where ε is the degree of linear coupling.
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The non-linearly coupled dependent process, X, is as below:

X(t) = 2f(t), 0 ≤ f(t) < 1/2,

X(t) = 2− 2f(t), 1/2 ≤ f(t) ≤ 1,

f(t) = εY (t− 1) + (1− ε)X(t− 1),

(3.5)

where ε is the degree of non-linear coupling.
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Figure 3.4: Mean of causality values estimated using CCC (a) and TE (b) for linearly
coupled tent maps, from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta/ grey in print) as the degree of coupling is increased. With increasing coupling
(until synchronization), magnitude of CCC and TE values increases. CCC values are
negative while TE are positive.

The length of the signals simulated in this case was 3000, i.e. t = 1 to 3000s, sam-

pling period = 1s and the first 2000 transients were removed to yield 1000 points for

causality estimation. Figures 3.4 and 3.5 show the performance of CCC and TE for

linearly and non-linearly coupled tent maps respectively as ε is varied (CCC settings:

L = 100, w = 15, δ = 80, B = 8). The assumption of a linear model for estimation

of GC was proved to be erroneous for most trials and hence GC values are not dis-

played. As ε is increased for both linear and non-linear coupling, TEY→X increases

in the positive direction and then falls to zero when the two series become completely
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Figure 3.5: Mean of causality values estimated using CCC (a) and TE (b) for non-
linearly coupled tent maps, from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta/ grey in print) as the degree of coupling is increased. With
increasing coupling (until synchronization), magnitude of CCC and TE values increases.
CCC values are negative while TE are positive.

synchronized at ε = 0.5. The trend of the magnitude of CCC values is similar to

TE, however, CCCY→X increment is in negative direction. This is because of the fact

that with increasing coupling the kind of dynamical influence from Y to X becomes

increasingly different than the dynamical influence from the past values of X to itself.

In case of linear coupling, range of standard deviation of CCC values from Y to X is

0.0050 to 0.0087 for different values of ε and that from X to Y is 0.0051 to 0.0100. For

TE, Y to X, standard deviation range is 0 to 1.4851 and X to Y , standard deviation

range is 0 to 1.4225. For non-linear coupling, the range of standard deviation of CCC

values from Y to X is 0.0057 to 0.0087 for different values of ε and that from X to Y

is 0.0057 to 0.0102. For TE, Y to X, standard deviation range is 0 to 1.2854 and X to

Y , standard deviation range is 0 to 1.0479.

For both CCC and TE, standard deviation values obtained indicate that there might
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be confounding in the causality values in the direction of causation and the direction

opposite to causation for low values of ε.

3.2.2 Varying process noise

The performance of causality measures as process noise is varied is shown in Figure 3.6

for coupled AR processes simulated as in Eq. 3.1, where a = 0.9, b = 0.8, ε = 0.8,

t = 1 to 1000s, sampling period = 1s, number of trials = 50. Noise terms, εY , εX = νη,

where ν = noise intensity is varied from 0.01 to 0.1 and η follows standard normal

distribution. CCC settings: L = 150, w = 15, δ = 80, B = 2. The range of standard

deviation of CCC values from Y to X is 0.0162 to 0.0223 for different values of ε and

that from X to Y is 0.0038 to 0.0058. For TE, Y to X, standard deviation range is

0.0182 to 0.0267 and X to Y , standard deviation range is 0.0063 to 0.0104. For GC,

Y to X, standard deviation range is 0.0314 to 0.0569 and X to Y , standard deviation

range is 0.0001 to 0.0002.
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Figure 3.6: Mean causality values estimated using CCC (a), TE (b) and GC (c) for
coupled AR processes, from Y to X (solid line-circles, black) and X to Y (solid line-
crosses, magenta/grey in print) as the intensity of noise, ν is varied. All the three
measures perform well in this case.
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The performance of all three measures is fairly good in this case. Only GC values

show a slightly increasing trend with increasing noise intensity.

3.2.3 Decimated coupled signals with uniform sampling

It is often the case that the rate of sampling of acquired measurements is not equal

to the rate of generation of the process. Causal inferences are regularly made from

such data [40], for e.g., fMRI signals [84,85] as well as other neurophysiological record-

ings [86], climate data [87]. Two sets of coupled AR processes were first simulated and

subsequently decimated.

Set 1 of AR processes, of order 1, were simulated as below:

Y (t) = 0.7Y (t− 1) + εY,t,

X(t) = 0.9X(t− 1) + 0.8Y (t− 1) + εX,t.

(3.6)

Set 2 of AR processes, of order 5, were simulated as below:

Y (t) = 0.7Y (t− 5) + εY,t,

X(t) = 0.9X(t− 5) + 0.8Y (t− 1) + εX,t,

(3.7)

where, noise terms, εY , εX = νη, where ν = noise intensity = 0.03 and η follows

standard normal distribution. The original length of X and Y simulated in both the

sets is 2000. Upon decimation, the length of the time series reduces. β represents the

decimation factor that scales the sampling frequency. As β is varied from 1 to 0.5,

sampling frequency is scaled from its original value to half its value.

Set 1 of processes, being of order one, have low frequency components in the signal.

As a result, even when β is reduced to 0.5, it does not lead to frequency folding in the

spectrum of process Y and X. Frequency spectrum for a trial of X in this process is
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Figure 3.7: Frequency Spectrum of dependent AR(1) process from Set 1 without dec-
imation (a) and when decimation factor equals 0.5 (b). The process does not undergo
aliasing on decimation.
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Figure 3.8: Frequency Spectrum of of dependent AR(5) process from Set 2 without
decimation (a) and when decimation factor equals 0.75 (b). The process undergoes
aliasing on decimation.

shown in Figure 3.7 for the original case and the case where β is reduced to 0.5. In

case of Set 2, decimation of the signals Y and X leads to aliasing. This is because

higher frequency components are present in the signals, leading to folding of these

frequencies even as β is reduced to 0.8. The frequency spectrum for a trial of X for its

non-decimated version and for decimation with β equal to 0.75 is shown in Figure 3.8.

67



Equal decimation of independent and dependent signal

When both signals Y and X from the two sets are decimated by scaling their sampling

rate by an equal decimation factor, β, ranging from 1 to 0.5 at intervals of 0.05, the

results obtained using the three methods, CCC, TE and GC are as shown in Figures 3.9

and 3.10. Figure 3.9 shows the results for Set 1 while Figure 3.10 shows results for

Set 2 as mean causality values estimated over 10 trials. CCC settings for both sets:

L = 150, w = 15, δ = 80, B = 2.
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Figure 3.9: Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta/ grey in print) as the decimation factor β is varied for both independent
and dependent signal. The coupled AR processes simulated do not undergo frequency
aliasing. All three measures perform fairly well in this case.

While the values of CCC are relatively consistent even upon decimation (with or

without aliasing), those of TE and GC are stable only in case of non-aliased decimation.

For GC and TE in the aliased case, even though there is no confounding of the causality

direction, the magnitude of causality estimated is not consistent and reliable.
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Figure 3.10: Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta/ grey in print) as the decimation factor β is varied for both independent and
dependent signal. The coupled AR processes simulated become frequency aliased. CCC
values are stable compared to TE and GC.

Decimation of dependent signal

When only signal X is decimated by scaling its sampling rate by a decimation factor β,

ranging from 1 to 0.5 at intervals of 0.05, the results obtained using the three methods

CCC, TE and GC are as shown in Figures 3.11 and 3.12. Figure 3.11 shows the results

for Set 1 while Figure 3.12 shows results for Set 2 as mean causality values estimated

over 10 trials. For the length of the two signals to match, the independent signal

considered is truncated at the length of the dependent signal. CCC settings for both

sets: L = 150, w = 15, δ = 80, B = 2.

In this scenario, for both non-aliased and aliased decimation, CCC estimates are

much more stable and consistent (across β) when compared to those of TE and GC,

where confounding in the direction of causality results even upon slightest decimation.

It is clear from these results that CCC is the most robust, reliable and consistent among

the three causality measures.
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Figure 3.11: Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta/ grey in print) as the decimation factor β is varied for the dependent signal.
The dependent AR process simulated does not undergo frequency-aliasing. Only CCC
can capture the correct direction and strength of coupling when β is decreased.
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Figure 3.12: Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta/ grey in print) as the decimation factor is varied for the dependent signal. The
dependent AR process simulated becomes frequency aliased. Only CCC can capture
the correct direction and strength of coupling when β is decreased.

3.2.4 Non-uniform sampling

Non-uniformly sampled/non-synchronous measurements are common in real-world phys-

iological data acquisition due to jitters/motion-artifacts as well as due to the inherent

nature of signals such as heart rate signals [91]. Also, in economics, the case of missing

data is common [88]. To realistically simulate such a scenario, non-uniform sampling
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was introduced by eliminating data from random locations of the dependent time series

and then presenting the resulting series as a set with no knowledge of the time-stamps

of the missing data. The percentage of non-uniform sampling/non-synchronous mea-

surements (α) is the percentage of these missing data points.

AR processes with non-uniformly sampled signals were simulated as per Eq. 3.1

with b = 0.7, a = 0.9, ε = 0.8. Noise terms, εY , εX = νη, where ν = noise intensity

= 0.03 and η follows standard normal distribution. Length of original time series,

N = 2000, and is reduced upon increasing the percentage non-uniform sampling α. In

order to match the lengths of the two time series, Y , the independent time series, is

appropriately truncated to match the length of the dependent signal, X (this results in

non-synchronous pair of measurements). CCC settings used: L = 150, w = 15, δ = 80,

B = 2. Mean causality estimated for 10 trials using the three measures with increasing

increasing α, while ν = 0.03, are shown in Figure 3.13.

Linearly coupled tent maps with non-uniformly sampled signals were simulated as

per Eq. 3.3 and 3.4 with ε = 0.3. Length of original time series, N = 2000, and is

reduced upon increasing the percentage non-uniform sampling α. In order to match the

lengths of the two time series, Y , the independent time series, is appropriately truncated

to match the length of the dependent signal, X (this results in non-synchronous pair of

measurements). CCC settings used: L = 100, w = 15, δ = 80, B = 8. Mean causality

estimated for 10 trials using the three measures with increasing increasing α, while

ν = 0.03, are shown in Figure 3.14.

As the results clearly indicate, both TE and GC fail when applied to non-uniformly
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Figure 3.13: Mean causality values estimated using CCC (a), TE (b) and GC (c)
for coupled AR processes from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta/ grey in print) as the percentage of non-uniform sampling α is
varied. CCC is the only measure that shows reliable, consistent and correct estimates
of causality.
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Figure 3.14: Mean causality values estimated using CCC (a), TE (b) and GC (c) for
coupled tent maps from Y to X (solid line-circles, black) and X to Y (solid line-
crosses, magenta) as the percentage of non-uniform sampling is varied. CCC is able to
distinguish the causality direction but the separation between values is small. TE and
GC fail completely.

sampled coupled AR and tent map processes. CCC values are relatively invariant to

non-uniform sampling and thus could be employed in such scenarios.
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3.2.5 Filtering of Coupled Signals

Acquired data preprocessing often involves low pass filtering to smooth out the sig-

nal [89]. At other times, high pass filtering is required to remove low frequency glitches

from a high frequency signal. Also when the signals acquired are sampled at low fre-

quencies, the effects due to decimation and filtering may add up and result in poorer

estimates of causality. This is often the case in fMRI signals [84,85].

To test these scenarios, AR processes were simulated as below:

Y (t) = 0.7Y (t− 5) + εY,t,

X(t) = 0.9X(t− 5) + 0.8Y (t− 1) + εX,t,

(3.8)

where, noise terms, εY , εX = νη, where ν = noise intensity = 0.03 and η follows standard

normal distribution.

Causality values were estimated using CCC, TE and GC when simulated signals are

low pass filtered using a moving average window of length 3 with step size 1. The results

are shown in Table 3.1 as mean values over 10 trials. CCC settings used: L = 150,

w = 15, δ = 80, B = 2. The performance of the measures when coupled signals are

decimated to half the sampling rate and then low pass filtered are also included in the

table. The length of the original signal simulated is 2000 and is reduced to 1998 upon

filtering and to 998 upon filtering and decimation.

From the table, we see that CCC can distinguish the direction of causality in the

original case as well as in the filtering and decimation plus filtering case. Erroneously,

TE shows significant causality in the direction opposite to causation upon filtering as

well as upon decimation and filtering and GC shows significant causality in the direction
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Table 3.1: Mean CCC, TE and GC estimates for coupled AR processes Y (independent)
and X (dependent) as it is, upon filtering and upon decimation and filtering

System
CCC TE GC

Y →
X

X →
Y

Y →
X

X →
Y

Y →
X

X →
Y

Original 0.0908 -0.0041 0.2890 0.0040 0.3776 0.0104

Filtered 0.0988 0.0018 0.2398 0.0170 0.4787 0.0056

Decimated and
Filtered

0.0753 0.0059 0.1270 0.0114 0.4321 0.0596

opposite to causation upon decimation and filtering. By this we can infer that CCC is

highly suitable for practical applications which involve pre-processing such as filtering

and decimation of measurements.

3.2.6 Conditional CCC on short length MVAR system

A system of three variables was simulated as per the following equations —

Z(t) = 0.8Z(t− 1) + εZ,t,

X(t) = 0.9X(t− 1) + 0.4Z(t− 100) + εX,t,

Y (t) = 0.9Y (t− 1) + 0.8Z(t− 100) + εY,t,

(3.9)

where the noise terms, εZ , εX , εY = νη, ν = noise intensity = 0.03 and η follows standard

normal distribution. Length of time series simulated was 300 and first 50 transients

were removed to yield short length signals of 250 time points.

The coupling direction and strength between variables X, Y , Z are shown in Fig-

ure 3.15(a). The mean values of causality estimated over 10 trials using CCC, TE and

GC are shown in Figure 3.15 tables, (b), (c) and (d) respectively. CCC settings used:

L = 150, w = 15, δ = 20, B = 2. Maximum model order was set to 110 in the MVGC
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(a) Connectivity

To

From
X Y Z

X 0 0.0029 0.0420

Y -0.0026 0 0.0885

Z 0.0022 0.0046 0

(b) CCC

To

From
X Y Z

X 0 0.0452 0.0121

Y 0.0176 0 0.0445

Z 0.0096 0.0247 0

(c) TE

To

From
X Y Z

X NaN 0.1566 0.0985

Y 0.0966 NaN 0.1052

Z 0.0045 0.0065 NaN

(d) GC

Figure 3.15: Mean causality values estimated using CCC (b), TE (c) and GC (d) for
a system of three AR variables coupled as in (a). True positives are in green, true
negatives in black and false positives in red. No false negatives were detected in any
case.
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toolbox for GC estimation. The number of lags to consider for observed processes was

set to 110 and the maximum number of nearest neighbors to consider was set to 10 for

TE estimation using the MuTE toolbox. In the tables, true positives are in green, true

negatives in black and false positives are in red. No No false negatives were detected

in any case. CCC detects correctly the true positives and negatives. GC and TE, on

the other hand, detect the true positives but also shows some false positive couplings.

3.2.7 Comparison with Nonlinear Granger Causality (NGC)
and Convergent Cross Mapping

For some of the systems considered above, the performance of methods – Non-linear

Granger Causality (NGC) [24] and Convergent Cross Mapping [28] (CCM) was eval-

uated in order to compare their performance with results obtained using CCC. The

working of these methods has been discussed in Chapter 1. CCM detects causality

using the geometry of attractors of dynamical systems and is not applicable to AR

systems. NGC can be applied to both coupled AR processes as well as chaotic systems.

NGC toolbox described in [24, 92] and made available by the authors on GitHub [93],

was used for analysis in all the experiments done. The parameter settings used in NGC

are as follows: polynomial type of kernel with order 2 and order of the model set to 6 was

used. CCM toolbox made available on Mathworks MATLAB File Exchange as a part

of [94] was used for all analysis related to CCM. Time step for reconstruction was set

to one and embedding dimension for reconstruction was set for automatic estimation.
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Varying unidirectional coupling

For the system of unidirectionally coupled tent maps with linear coupling, simulated

as per Eqs. 3.3 and 3.4 (with coupling from variable Y to variable X), NGC and CCM

correlation cross map estimates are shown in Figure 3.16 as mean values over 50 trials.

Same set of trials were used in the experiment as used in Section 3.2.1. All the settings,

including the length of time series, transients eliminated and the number of trials taken,

remain the same as in Section 3.2.1.
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Figure 3.16: Mean of causality values estimated using NGC (a) and CCM (b) for linearly
coupled tent maps, from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta/ grey in print) as the degree of coupling is increased. With increasing coupling
(until synchronization), magnitude of NGC and CCM values increases in the direction
of causality between the processes. CCM, however, shows spurious increment in the
direction of no causation.

CCM cross map estimate (ρ) in the direction of coupling should be close to one

(being higher for higher values of coupling). This is seen to be the case here as soon

as coupling coefficient is made greater than zero. However, in the direction opposite to

causation also, we get significant values of ρ, suggesting bidirectional coupling, which

is incorrect. NGC values, increase only in the direction of causation as coupling is
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increased and remain zero in the other direction. As ε is made > 0.5, the coupled time

series synchronize and CCM(ρ) values in both directions approach 1 while NGC values

in the two directions become close to zero. NGC results are in line with that of CCC

and TE shown in Figure 3.4.

Varying process noise

The performance of NGC on coupled AR processes as process noise is increased was

also checked. Processes were simulated as per Eq. 3.1 and the same set of trials were

used as in Section 3.2.2 with all settings remaining the same as earlier. The results (as

mean values over 50 trials) are displayed in Figure 3.17. Like the measures, CCC, TE

and GC, the performance of NGC is good in this case.
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Figure 3.17: Mean of causality values estimated using NGC for AR processes, from Y
to X (solid line-circles, black) and X to Y (solid line-crosses, magenta/ grey in print)
as the intensity of noise, ν is varied. NGC performs well in this case.

Non-uniform sampling

NGC and CCM were also tested on non-uniformly sampled signals. NGC was applied

to coupled AR(1) processes with non-uniform sampling while both NGC and CCM were

applied to coupled tent map processes with non-uniform sampling. Trials generated as
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in Section 3.2.4 were used here with all settings used for simulations being kept the

same. Mean values of NGC over 10 trials for coupled AR processes as the percentage

of non-uniform sampling is increased is shown in Figure 3.17. Mean values of NGC and

CCM over 10 trials for coupled tent maps with increasing percentage of non-uniform

sampling are shown in Figure 3.16.
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Figure 3.18: Mean of causality values estimated using NGC for coupled AR processes,
from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta/ grey
in print) as the percentage of non-uniform sampling α is varied. With introduction
of non-uniform sampling in the system, NGC is not able to distinguish the correct
direction of causality. Compare this with Figure 3.13, where CCC shows consistently
correct estimates of causality, even as α is increased to 40%.

NGC, in the correct causality direction, falls to zero as soon as non-uniform sampling

is introduced in both coupled AR system as well as a coupled tent map system. In the

case of CCM for tent maps, as well, with the introduction of non-uniform sampling, cross

map estimates in both directions fall to zero and remain zero for all levels of percentage

of non-uniform sampling. Based on these results as well as those in Section 3.2.4,

amongst all the measures tested here, CCC, is the only measure that can correctly

distinguish the coupling direction up to a high percentage of non-uniform sampling

(40%).
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Figure 3.19: Mean of causality values estimated using NGC (a) and CCM (b) for
linearly coupled tent maps, from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta/ grey in print) as the percentage of non-uniform sampling, α,
is increased. With introduction of non-uniform sampling in the system, both NGC
and CCM fail to distinguish the correct direction of causality. Compare this with
Figure 3.14, where CCC shows relatively consistent estimates of causality, even as α is
increased to 40%.

3.2.8 Comparison with Dynamic Causal Modelling (DCM)

DCM, unlike CCC, is a model-dependent effective connectivity estimation method.

It can recover interaction coefficients of the underlying causal mechanism when an

appropriate model and priors on parameters are known. We attempt to check if CCC

can detect non-linear causal interactions in time series generated from fMRI simulations,

where DCM is widely applied.

For comparison with DCM, synthetic data was generated as in [95], where a uni-

directional and bidirectional coupling scheme is implemented between two simulated

regions which generate observed BOLD (fMRI) responses. The MATLAB routine gen-

erating the data is available as a part of SPM8 toolbox, DEM demo DCM LAP.m

in DEM folder (Wellcome Trust Centre for Neuroimaging, London; www.fil.ion.ucl.ac

.uk/spm/software/spm8/). The (neuronal) equations of motion simulated are as fol-
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lows:

dx

dt
= Ax(t) + v(t), (3.10)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is a column vector of hidden neuronal states for

n regions.

For unidirectional connectivity simulation, the connectivity matrix (A) was as fol-

lows:

A =

[
−0.5 0.01
0.7 −0.5

]
. (3.11)

For bidirectional connectivity simulation, A was:

A =

[
−0.5 0.3
0.3 −0.5

]
. (3.12)

For each scheme, 3000 time points of data was simulated for each region. DCM model

inversion was done using the default settings, with the inversion approach and biophys-

ical priors on parameters remaining as per the SPM8 routine settings. CCC estimation

was done after removal of first 1000 transient time points of data, with the effective sig-

nal length being 2000. Parameters used for CCC estimation in both cases were set as:

L = 80, w = 30, δ = 40, B = 16. DCM estimates of posterior expectation on effective

connectivity parameters and corresponding CCC estimates are shown in Tables 3.2 and

3.3.

As seen from the tables, CCC is able to correctly identify the direction and relative

strengths of non-linear causal interactions. CCC is high in the direction of higher

coupling in case of unidirectional coupling scheme. For bidirectional coupling, CCC

values in the two directions are comparable.
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To

From
1 2

1 -0.3833 0.1716

2 0.2938 -0.3671

(a) Posterior Expectation (DCM)

To

From
1 2

1 0 -0.0168

2 -0.0238 0

(b) CCC

Table 3.2: Connectivity between simulated unidirectionally coupled BOLD (fMRI) sig-
nal generating nodes. (a) Posterior estimates of effective connectivity using DCM. (b)
Causality estimated using CCC.

To

From
1 2

1 -0.3770 0.2630

2 0.2611 -0.3781

(a) Posterior Expectation (DCM)

To

From
1 2

1 0 -0.0236

2 -0.0210 0

(b) CCC

Table 3.3: Connectivity between simulated bidirectionally coupled BOLD (fMRI) signal
generating nodes. (a) Posterior estimates of effective connectivity using DCM. (b)
Causality estimated using CCC.

3.3 Parameter selection for CCC: Criteria and Ra-

tionale

In Table 3.4, we summarize the criteria and rationale for choosing the four parameters

(w, δ,B, L) of the proposed measure CCC and also give the values chosen for a num-

ber of systems. We have described the measure in the last chapter with the idea of

intervention. Appropriate parameter selection criteria is done with the view to find out

the correct intervention point for a time series to check its causal influence on another

given time series . Put more specifically, the main task is choosing the correct value for

the length of the time series block Ypast and accordingly for Xpast.

The parameter w, which is the length of the moving window ∆X is fixed to 15 for
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Table 3.4: Criteria and rationale for choosing the parameters (w, δ,B, L) for CCC.
Values of each parameter chosen for Autoregressive (AR), Tent Map (TM), Squid Giant
Axon System (SA) and Predator Prey Ecosystem (PP) are enlisted in the rightmost
column. SA and PP are open access real-datasets. Details of their source as well as
CCC results obtained for these systems are discussed in Chapter 4.

Pa-
rame-
ter

De-
scrip-
tion

Criteria Rationale
Values
Chosen

w
Window
length
∆X

Minimal data length over
which CC rate can be

reliably estimated.

Earlier studies have
revealed that ETC is able

to reliably capture
complexity of even very
short time series [79].

AR: 15
TM: 15
SA: 15
PP: 15

δ Step-size

An overlap of 20− 50%
between successive time
series windows (Xpast of
length L) over which CC

is estimated.

To capture the continuity
of time series dynamics.

AR: 80
TM: 80
SA: 50
PP: 4*

B
Number
of bins

Smallest number of
symbols that capture the

time series dynamics.

CCC requires symbolic
sequences that represent
the underlying dynamics.

AR: 2
TM: 8
SA: 2
PP: 8

L

Window
length of
immedi-
ate past
to ∆X
(Xpast)

and
(Ypast)

After choosing w, δ,B as
above, to check causal
influence from Ypast to

∆X, we plot
ETC(Xpast + ∆X) and
ETC(Ypast + ∆X) vs. L.
First criteria : Choose a

value of L at which the
two curves are well

separated.
If the above criteria fails

(there is an overlap in the
ETC curves for all L), we

plot ETC(Xpast, Ypast)
and ETC(Xpast +

∆X,Ypast + ∆X) vs. L.
Second criteria : Choose
a value of L such that the

two curves are well
separated.

Well separation of the
complexity values of time

series blocks (Xpast + ∆X)
and (Ypast + ∆X) is taken
to give maximum possible

opportunity to Ypast to
influence ∆X as against
Xpast. This L is hence the
best intervention point. If
no such value of L can be

found, the maximum
separation of curves

(Xpast, Ypast) and
(Xpast + ∆X,Ypast + ∆X),

gives the maximum
opportunity to

(Xpast, Ypast) jointly to
affect ∆X.

AR: 150
TM: 100
SA: 75
PP: 40

*This was an exception with 90% overlap as very short data length was available.
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all the datasets used in this chapter other than the dataset simulated in Section 3.2.8.

This is because for this dataset, no value of ‘L’ could be chosen for w = 15 (based on

the criteria discussed in the subsection below). Hence, w was set to a higher value. It is

chosen such that it contains sufficient number of data points over which CC rate can be

reliably estimated. Earlier studies have revealed that ETC is able to reliably capture

complexity of even very short time series (as small as length of 10 samples) [79]. δ, the

step size by which the ∆X as well as Xpast window is moved, is chosen based on the

criteria of sufficient overlap (20− 50%) between successive Xpast windows of length L.

B, the number of bins used to generate the symbolic sequence of the input time series

is chosen such that it is sufficient to capture the underlying dynamics. It was found

that for the AR processes, B ≥ 2 is sufficient whereas the time series from the chaotic

tent map requires at least B = 8.

Once w, δ,B are chosen, we choose L, the window length of Xpast. For this, we

analyze the curves of ETC measure as they vary with L, for different time series blocks

as appropriate for a given dataset. A detailed description of selection criteria for L is

discussed below.

3.3.1 Selection Criteria for L

We demonstrate the procedure for selection of L for the case of coupled AR processes

and tent maps for which CCC performance is detailed in the previous section. Two

open access real datasets of Squid Giant Axon system [96,97] and Predator Prey Ecosys-

tem [98, 99] for which causal analysis using CCC is discussed in Chapter 4 were also

84



taken up to demonstrate criteria for selection of L. At the end, it is shown for a pair of

independent processes that no L can be chosen for the system as there is no intervention

point at which one has an influence on the other.

As discussed in Table 3.4, for given time series X and Y , we first plot ETC(Xpast +

∆X) and ETC(Ypast + ∆X) vs. L when causality is to be checked from Ypast to ∆X.

We choose a value of L at which the two curves are well separated. We start with an

L = 20(> w) and go up to L = 300 (in case of the predator prey ecosystem data, only

62 data points were available and thus we go up to L = 40). In Figures 3.20, 3.21,

3.22 and 3.23 which show these curves plotted for linearly and non-linearly coupled tent

maps, predator prey and squid giant axon systems respectively, there exists some range

of values of L for which the two curves are well separated. A value of L can thus be

chosen from within this range. The choice of L for these curves is based on averaged

ETC values for referred blocks over the entire time series. However, the choice of L

may vary with time if we expect to have causality at different temporal scales with

varying time. Moreover, for all the cases taken we have chosen the same values of L

for checking causality from Ypast to ∆X and for checking causality from Xpast to ∆Y .

These values can however be different depending on the curves of ETC(Xpast + ∆X),

ETC(Ypast + ∆X) and ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ) respectively.

The separation between the curves ETC(Xpast + ∆X) and ETC(Ypast + ∆X) is

taken to give Ypast the maximum opportunity to cause ∆X. The complexities of these

time series blocks will be very different at the scale at which there is an influence from

past block of Y to the present block of X. Thus the choice of L is about adaptive
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Figure 3.20: Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in subfigure (a) and
ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ) curves in subfigure (b) for linearly coupled tent
maps (ε = 0.2) with Y causingX (simulated as per Eq. 3.3, 3.4). w = 15, δ = 100, B = 8
and L is incremented by a value of 5 data points each time. Using the first criteria for
selection of L, L = 100 to 300.
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Figure 3.21: Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in subfigure (a) and
ETC(Ypast+∆Y ), ETC(Xpast+∆Y ) curves in subfigure (b) for non linearly coupled tent
maps (ε = 0.2) with Y causingX (simulated as per Eq. 3.3, 3.5). w = 15, δ = 100, B = 8
and L is incremented by a value of 5 data points each time. Using the first criteria for
selection of L, L = 75 to 300.

determination of the temporal scale at which causality exists from Y to X.

If the above criteria fails (there is an overlap in the curves), it means that at no
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Figure 3.22: Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X) curves in subfigure (a)
and ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ) curves in subfigure (b) for predator prey
ecosystem with Y representing Didinium (predator) population and X representing
Paramecium (prey) population. w = 15, δ = 1, B = 8 and L is incremented by a value
of 5 data points each time. Using the first criteria for selection of L, L = 20 to 40. The
results for this case are in the next chapter.
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Figure 3.23: Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X) curves in subfigure (a)
and ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ) curves in subfigure (b) for squid giant axon
system (‘a5t01’) with Y representing the applied stimulus current and X representing
observed voltage. w = 15, δ = 100, B = 2 and L is incremented by a value of 5 data
points each time. Using the first criteria for selection of L, L = 75 to 300. Lower values
of L are not used despite sufficient separation so as to avoid making computation based
on the transient stage values. The results for this case are in the next chapter.
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Figure 3.24: Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X), ETC(Xpast, Ypast),
ETC(Xpast + ∆X, Ypast + ∆X) curves for coupled AR processes with Y causing X
(simulated as per Eq. 3.1 with ε = 0.8). w = 15, δ = 100, B = 2 and L is incre-
mented by a value of 5 data points each time.Using the second criteria for selection of
L, L = 100 to 300.
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Figure 3.25: Averaged ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ), ETC(Ypast, Xpast),
ETC(Ypast + ∆Y,Xpast + ∆Y ) curves for coupled AR processes with Y causing X
(simulated as per Eq 3.1 with ε = 0.8). w = 15, δ = 100, B = 2 and L is incremented
by a value of 5 data points each time. Using the first criteria for selection of L, L = 100
to 300.

temporal scale can Y intervene to make visible its dynamical influence on ∆X (by

change of complexity) as against the dynamical influence due to past of X. We then
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Figure 3.26: Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X), ETC(Xpast, Ypast),
ETC(Xpast + ∆X, Ypast + ∆X) curves for independent processes Y and X. w = 15, δ =
100, B = 2 and L is incremented by a value of 5 data points each time.
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Figure 3.27: Averaged ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ), ETC(Ypast, Xpast),
ETC(Ypast + ∆Y,Xpast + ∆Y ) curves for independent processes Y and X. w = 15, δ =
100, B = 2 and L is incremented by a value of 5 data points each time.

plot ETC(Xpast, Ypast) and ETC(Xpast + ∆X, Ypast + ∆X) vs. L. We choose a value of

L such that the two curves are well separated. In case of AR processes where the first

criteria is not met due to the overlap between ETC(Xpast+∆X) and ETC(Ypast+∆X),

the second pair of curves is plotted as shown in Figure 3.24. The rationale behind this
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criteria is to see at which intervention point L do Xpast, Ypast jointly begin to have an

influence on the dynamical evolution of ∆X.

If the two time series are independent or are constant in time and identical, both the

above criteria are bound to fail (this is expected to happen at even higher values of w).

This implies that there exists no temporal scale at which there is an influence from one of

these time series to the other. For the case of two independent and uniformly randomly

distributed real time series the curves for both criteria are shown in Figures 3.26 and

3.27. There exists no value of L at which there is a causality from Y to X or vice versa.

3.4 Significance testing of CCC

Significance testing for results obtained using CCC was done using two ways discussed

below.

3.4.1 Distinguishing between presence and absence of cou-
plings

For the case of coupled AR(1) processes and linearly coupled tent maps as simulated in

Section 3.2.1, statistical significance testing was done to check if the causality estimated

using CCC from Y → X (in the direction of coupling) was significantly different from

the causality estimated from X → Y (in the direction of no coupling). CCC values

as estimated in Section 3.2.1 for data from 50 trials were compared using a paired t-

test at different levels of coupling to determine, whether, on average, CCCY→X was

different from CCCX→Y . Table 3.5 displays the results of this significance analysis for

AR(1) processes and Table 3.6 displays the results of the analysis for linearly coupled
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tent maps. Each of the tables list the mean and standard deviation of CCC values in

the two directions (CCCY→X and CCCX→Y ), the value of the test statistic (t-value),

degrees of freedom of the test (DF) and the p-value obtained. Null hypothesis that the

mean of distributions CCCY→X and CCCX→Y is the same, is rejected at a significance

level, α = 0.05. In other words, the two populations are indicated to be significantly

different if the obtained p-value < 0.05.

From Table 3.5, it can be seen that the means of the two populations of CCC

values, CCCY→X and CCCX→Y are found to be significantly different for all values

of coupling including zero coupling. For the case of zero coupling, mean CCCY→X is

found to be of much lower value compared to when coupling is increased to a value

of 0.1 and beyond. In this case, although the p-value is the highest (of all coupling

values considered), it is still found to be much lower than the significance level. Thus,

in the case of AR processes, while presence of coupling is distinguished clearly from its

absence (in the opposite direction) for all values of coupling considered, the mean of

the populations CCCY→X and CCCX→Y was spuriously found to be different even in

the absence of coupling in both directions using this method. A difference in the ETC

complexity values in the cause-effect pair of coupled AR processes may be the reason

for the observed difference in CCC values in the two directions when no coupling is

present. Using an adaptive significance threshold that accounts for the difference in

the complexity values of the coupled AR processes may help to distinguish between the

existence and non-existence of coupling in this case.

For the case of coupled tent maps, it can be seen from Table 3.6, that there is found
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Table 3.5: Student’s paired samples t-test results to distinguish between causality values
obtained using CCC, CCCY→X (in the direction of coupling) and CCCX→Y (in the
direction of no coupling), estimated from 50 trials of coupled AR(1) processes. DF
refers to degrees of freedom of the test.

Coupling
(ε)

Mean ±
Std.

Dev.
CCCY→X

Mean ±
Std.

Dev.
CCCX→Y

t-value DF p-value
Significant
difference

0
0.0071 ±

0.0075
0.0016 ±

0.0053
4.6 49 3.5×10−5 yes

0.1
0.0108 ±

0.0097
0.0014 ±

0.0043
6.3 49 7.8×10−8 yes

0.2
0.0133 ±

0.0106
0.0005 ±

0.0047
8.0 49

1.6×
10−10 yes

0.3
0.0213 ±

0.0125
0.0011 ±

0.0038
11.1 49

5.1×
10−15 yes

0.4
0.0357 ±

0.0150
-0.0011 ±

0.0047
16.5 49

1.2×
10−21 yes

0.5
0.0527 ±

0.0171
0.0005 ±

0.0051
21.7 49

8.3×
10−27 yes

0.6
0.0622 ±

0.0187
-0.0007 ±

0.0053
24.0 49

9.1×
10−29 yes

0.7
0.0804 ±

0.0208
0.0005 ±

0.0044
27.5 49

1.9×
10−31 yes

0.8
0.0909 ±

0.0182
0.0003 ±

0.0052
33.7 49

1.6×
10−35 yes

0.9
0.0996 ±

0.0168
-0.0007 ±

0.0050
42.2 49

3.3×
10−40 yes

to be no difference in the means of CCC values in the two directions in the case of zero

coupling as well as in the case of low coupling (=0.1). The difference then becomes

significant for higher values of coupling up to ε = 0.5 at which the maps begin to

synchronize. Once they are completely synchronized, the values of CCC obtained in

92



Table 3.6: Student’s paired samples t-test results to distinguish between causality values
obtained using CCC, CCCY→X (in the direction of coupling) and CCCX→Y (in the di-
rection of no coupling), estimated from 50 trials of linearly coupled tent-map processes.
DF refers to degrees of freedom of the test. Coupled maps completely synchronize at
ε > 0.5 and the two populations become identical.

Coupling
(ε)

Mean ±
Std.

Dev.
CCCY→X

Mean ±
Std.

Dev.
CCCX→Y

t-value DF p-value
Significant
difference

0
0.0015 ±

0.0070
0.0007 ±

0.0082
0.60 49 0.55 no

0.1
-0.0011 ±

0.0087
-0.0029 ±

0.0089
1.12 49 0.27 no

0.2
-0.0044 ±

0.0083
0.0013 ±

0.0096
-3.89 49 2.9×10−4 yes

0.3
-0.0101 ±

0.0076
0.0019 ±

0.0100
-8.05 49

1.6×
10−10 yes

0.4
-0.0134 ±

0.0072
0.0027 ±

0.0061
-10.35 49

6.3×
10−14 yes

0.5
0.0009 ±

0.0050
0.0002 ±

0.0061
0.99 49 0.33 no

0.6
-0.0000 ±

0.0051
-0.0000 ±

0.0051
- - - -

0.7
-0.0002 ±

0.0058
-0.0002 ±

0.0058
- - - -

0.8
0.0002 ±

0.0062
0.0002 ±

0.0062
- - - -

0.9
-0.0012 ±

0.0059
-0.0012 ±

0.0059
- - - -

the two directions become exactly equal. Hence, significance testing analysis becomes

meaningless after synchronization. Except at the lowest value of coupling (ε = 0.1)

considered here, significance analysis works well to distinguish between the CCC values

indicating presence of coupling and those indicating its absence for all levels of coupling.
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3.4.2 Analysis using surrogate data

In order to determine the significance of estimated CCC value obtained from a single

realization of given coupled processes, surrogate analysis technique was implemented.

This will also be useful to determine the presence of coupling(s) where bidirectional

coupling could be present between a pair of time series and the aim is not just to

distinguish between the direction in which the given time series are coupled and the

direction in which they are not (as done in the previous subsection).

A single realization of linearly coupled tent maps, simulated as per Eqs. 3.3 and 3.4

with unidirectional coupling and the degree of coupling, ε set to 0.3 was taken. All

settings used in simulation, including the length of the signal and transients removed

as well as parameter settings for CCC estimation, remained the same as in Section 3.2.1.

The aim of generating surrogate data is to destroy causal relationship, if any, be-

tween the given pair of processes. Significance analysis for the case of coupled processes

described above was done by generating surrogate data in the following two ways:

1. Using stationary bootstrap method. This method was implemented as pro-

posed in [100]. It involves a procedure based on resampling blocks of observations

of random length obtained from the original time series. The length of each block

has a geometric distribution. This method has been used for generating surro-

gate data for significance testing of results obtained using other causality testing

methods such as TE [101]. To generate surrogate data in our case, we generate

resampled time series using the above procedure only for the driver time series
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(from which causality to the other time series is computed) and leave the target

time series same as the original. The probability parameter that determines the

geometric probability distribution for length of each block is set to 0.1.

2. Using Iterative Amplitude Adjusted Fourier Transform (IAAFT) method.

This method is described in [102]. It generates fourier transform (FT) based sur-

rogates such that the power spectrum density and amplitude distribution of the

original time series is maintained but the Fourier phases are randomized. FT

based surrogate techniques have been implemented before in significance analysis

of causality testing methods such as Conditional Mutual Information [103]. While

using this technique for our analysis, IAAFT surrogate time series were generated

for both the driver and target original time series.

The generated surrogate data is for the null hypothesis, H0, that there is no causal

dependence between the given pair of processes in the direction considered. To as-

sess the statistical significance of CCC value between given pair of time series in any

direction, say, CCCY→X , surrogate data is generated as described using the two meth-

ods above with Y as the driver and X as the target. For estimating significance of

CCCX→Y , separate ensemble of surrogate data is generated with X as the driver and

Y as the target. z-test is then used to quantify the statistical deviation of CCC between

original pair of processes from the CCC values obtained from the corresponding con-

structed ensemble of surrogate data. H0 is rejected in favour of the alternate hypothesis

of significant causality (using CCC) when the obtained p-value is less than or equal to
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the significance level, α = 0.05.

Using each of the two surrogate analysis methods discussed above, 50 surrogates for

the considered case of coupled tent map processes were generated to test the significance

of CCC obtained in each direction. Figure 3.28(a) depicts the position of true CCC

value, CCCY→X with respect to the distribution of CCCY→X values obtained from the

generated surrogate data using stationary bootstrap method. The null hypothesis of

no coupling is correctly rejected in this case with the obtained p-value being 0.0009.

Figure 3.28(b) depicts the same for CCCX→Y . In accordance with the ground reality of

no coupling from X to Y , null hypothesis is not rejected in this case with the obtained

p-value being 0.2863. Position of true CCC value, CCCY→X , with respect to the

distribution of CCCY→X values obtained from surrogate data generated using IAAFT

method is shown in Figure 3.29(a). Null-hypothesis is correctly rejected using this

method as well, with p-value of 0.0058. Figure 3.29(b) depicts the same for CCCX→Y .

Null hypothesis is found to be not rejected here with a p-value of 0.2165.

Above described surrogate analysis techniques to determine the significance of ob-

tained CCC between a given pair of coupled processes is found to work well in the case

of deterministic chaotic tent map processes considered. These methods were, however,

not found to be able to determine the significance of CCC values for coupled AR pro-

cesses. When coupling is present between the processes, corresponding surrogate CCC

values remain comparable to the true CCC value. So, we implemented the procedure of

randomly shuffling the time series data of the driver variable to obtain surrogate data

for coupled AR processes. The driven time series variable is kept the same as the origi-
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Figure 3.28: Significance testing analysis of CCC between linearly coupled tent map
processes with coupling from Y to X using stationary bootstrap surrogate data genera-
tion method. Analysis for CCCY→X is shown in (a) and for CCCX→Y is shown in (b).
Dashed line indicates CCC value obtained for original series. Its position is indicated
with respect to Gaussian curve fitted normalized histogram of surrogate CCC values
that form the null hypothesis of no coupling between the processes. Null hypothesis is
rejected in case of (a) and not rejected in case of (b).
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Figure 3.29: Significance testing analysis of CCC between linearly coupled tent map
processes with coupling from Y to X using IAAFT surrogate data generation method.
Analysis for CCCY→X is shown in (a) and for CCCX→Y is shown in (b). Dashed line
indicates CCC value obtained for original series. Its position is indicated with respect
to Gaussian curve fitted normalized histogram of surrogate CCC values that form the
null hypothesis of no coupling between the processes. Null hypothesis is rejected in
case of (a) and not rejected in case of (b).

nal. This procedure seems to destroy the structure in AR time series much better than

the surrogate data generation methods implemented before. The procedure of random

shuffling has previously been used in other studies such as [53, 104] to determine the
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significance of results obtained using causality testing methods.

Coupled AR(1) processes were simulated as in Section 3.2.1 using Eq. 3.1 with

Y being the independent and X the dependent process. All settings including the

coefficients chosen, length of time series taken and the parameters used for CCC were

kept the same as before and ε was fixed to 0.6. Interestingly, in this case, CCCY→X

for original time series was found to be towards the lower end of the tail of CCCY→X

distribution obtained from surrogate data. Figure 3.30(a) depicts the position of true

CCC value, CCCY→X with respect to the distribution of CCCY→X values obtained from

the generated surrogate data using random shuffling method. Figure 3.30(b) depicts

the same for CCCX→Y . It can be seen that CCC values for surrogate data became

higher than CCC between original pair of time series in the direction in which coupling

is present. The surrogate distribution for CCCX→Y is centred closer to zero and the

original CCCX→Y falls safely in the range of surrogate distribution.

The above observed results seem counterintuitive but could be understood in the

light of formulation of CCC and the fact that it gives qualitative information by being

positive or negative. The details of positive and negative CCC as well as their relation

to the ‘kind’ of information have already been discussed in Section 2.4. When CCC

values are positive, it is known that the driver time series, Ypast, brings ‘similar’ kind

of information to ∆X, as that brought by its own past, Xpast. Let us consider the

specific case of AR processes (as discussed in Table 2.1), with coupling from Y → X for

which CCCY→X > 0. In this case, the values obtained for compression-complexities,

CC(∆X|Xpast) and CC(∆X|Xpast, Ypast), are both negative with |CC(∆X|Xpast)| <
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Figure 3.30: Significance testing analysis of CCC between AR processes with coupling
from Y to X using random shuffling surrogate data generation method. Analysis for
CCCY→X is shown in (a) and for CCCX→Y is shown in (b). Dashed line indicates CCC
value obtained for original series. Its position is indicated with respect to Gaussian curve
fitted normalized histogram of surrogate CCC values that form the null hypothesis of
no coupling between the processes. Null hypothesis is rejected in case of (a) and not
rejected in case of (b).

|CC(∆X|Xpast, Ypast)|. This is because intervention by Ypast in the joint case enhances

the structure by bringing patterns similar to Xpast. When coupling Y → X is low, X is

predominantly determined by its own past and very less by Y . In that sense, X is close

to the independent AR process Y and hence CCCY→X is low. Here, Xpast brings most

information to ∆X and little is determined by Ypast. On the other hand, when coupling

is high, Ypast, though determining ∆X with the same patterns as those brought by

Xpast to determine ∆X, is no longer close to Xpast. This is because Xpast now contains

very little information for ∆X and the latter is mostly determined by Ypast. For this

reason, CC(∆X|Xpast, Ypast) << CC(∆X|Xpast) in this case and CCCY→X attains a

high positive value. Now, if Ypast is randomized and made even more different from Xpast

than it currently is, CCCY→X values end up increasing more. Thus, randomization of

Y helps determine a bound for a given Y for the extent by which Ypast and Xpast can
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become most different in their attempt to determine ∆X. While Ypast being exactly

the same as Xpast was one extreme at which CCCY→X = 0 because Y brings no new

information; the other extreme for a given Y can be obtained by randomly shuffling

it. In the latter case Y is most different from X (in the sense of influencing ∆X),

and is no longer exhibiting control over ∆X. For a given Y which is not coupled

to X, it is expected that the ‘no control’ scenario of Y over X cannot further be

aggravated if Y is randomized. Here, CCCY→X ≈ CCCYrand→X , where Yrand represents

time series obtained by random shuffling of Y . Thus, for any Y , if CCCY→X ≈ 0 or

CCCY→X ≈ CCCYrand→X , we can infer that there is no causality from Y → X based

on CCC. Ideally, a number of surrogate time series Yrand should be taken to check if

CCCY→X is significantly different from the population CCCYrand→X .

With this understanding, we consider the CCCYrand→X distribution as the distri-

bution of our null hypothesis of no causation between the coupled AR processes taken

for analysis. 50 surrogate datasets were generated. Gaussian curve fitted normalized

histogram for CCCYrand→X and CCCXrand→Y are shown in Figure 3.30(a) and Fig-

ure 3.30(b) respectively. As in the case of significance analysis of CCC for tent maps,

z-test was used to quantify the statistical deviation of CCC between original pair of

processes from the CCC values obtained from the corresponding constructed ensemble

of surrogate data. The significance level, α, of the test was set to 0.05. The null hy-

pothesis of no coupling was correctly rejected in the case of CCCY→X with the obtained

p-value being 0.0162. Null hypothesis of no coupling was not rejected in the case of

CCCX→Y with the obtained p-value being 0.3698.
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If the results are analyzed more closely, it seems that a non-zero upper bound (in the

case of true CCC > 0 that we have considered) will be present only if a given Y when

reorganized (from a shuffled extreme to an unshuffled extreme state) has the potential

to cause the taken target time series. For instance, if we take the case of CCCX→Y for

the coupled AR processes (for any value of coupling coefficient, ε, from Y to X), the

distribution of surrogate CCC values as well as original CCC value both remain close

to zero. The upper bound value, being very much data dependent, here converges to

the lower bound. Since the CCC of shuffled time series does not increase here, this

indicates that even a reorganized version of X may not be possessing the potential to

cause Y . This is interesting because in this way CCC may be able to detect processes

which are containing causal information to other processes but not in the traditional

cause followed by effect manner.

The procedure of randomly shuffling the driver time series to generate surrogate

data for coupled tent map system was also implemented and found to yield results

similar to Figure 3.28 and 3.29. Distribution of surrogate CCC values was found to

take negative values of lower magnitude (close to zero) while original CCC value took

a negative value of high magnitude in the presence of coupling. Results for significance

analysis of CCC values obtained for tent maps and AR processes are consistent in the

aspect that random shuffling of driver time series led the CCC values to attain the

maximum possible value between given pair of time series. However, for AR processes

the lower bound of CCC (zero) and the upper bound of maximum CCC value are

different and for tent maps, the two are converging. In the case of tent maps, the
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nature of their coupling results in both CC(∆X|Xpast, Ypast) and CC(∆X|Xpast) being

negative with |CC(∆X|Xpast, Ypast)| < |CC(∆X|Xpast)|. When Y is made identical or

close to identical with X, in that case CC(∆X|Xpast, Ypast) ≈ CC(∆X|Xpast) and when

Y is randomized, in that case too CC(∆X|Xpast, Ypast) attains the highest negative value

possible for it, which is CC(∆X|Xpast, Ypast) ≈ CC(∆X|Xpast). It would be interesting

to explore if a high negative value bound (that is, the other extreme bound) exists for

CCCY→X . If yes, we would like to see what transformations of given time series would

help estimate that bound, and also what would be the meaning of that bound.

It should be noted that, when we took lower values of coupling (ε ≤ 0.4) between

the pair of AR processes coupled from Y → X, the true CCCY→X was not found to

be significantly lower than the surrogate distribution CCCYrand→X . This was probably

because randomly shuffling the driver time series was not sufficient to destroy further

the weak causal structure from Ypast to ∆X (relative to Xpast). The procedure seems to

be not powerful enough to yield an appropriate surrogate distribution of CCC values

representing no causal influence. CCC estimates causality using ETC which is based

on capturing compressibility of patterns at different scales of the sequence. Hence, to

get appropriate null distribution of CCC values using surrogate data, patterns in AR

may be required to be perturbed at different scales.
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3.5 Computational Time Complexity Analysis for

CCC

To give an idea of the computational complexity of CCC, we do a simple timing analysis

of running CCC on a coupled AR (100) system (Y causing X). The system is simulated

as per Section 3.2.1 using Eq. 3.2 with the degree of coupling, ε, set to 0.7. The length

of the signal taken was 1000.

For 100 runs of the same realization of the above process, the mean and standard

deviation of timings (in seconds) required for running of CCC, TE and GC were esti-

mated. This is the total timing required for computation of causality from Y to X as

well as from X to Y . Results of this timing analysis are displayed in Table 3.7. Here

as well, GC estimation was done using the MVGC toolbox in its default settings and

TE estimation was done using MuTE toolbox. Akaike Information Criteria was used

for model order estimation with the maximum model order set to 110 in the MVGC

toolbox. In the MuTE toolbox, the approach of non-uniform Embedding for repre-

sentation of the history of the observed processes and of nearest neighbor estimator

for estimating the probability density functions with default settings as discussed in

Section 3.1. Parameters for CCC used are: L = 150, w = 15, δ = 80, B = 2.

Table 3.7: Mean and standard deviation of running times (in seconds) of CCC, TE and
GC for simulated coupled AR(100) processes, taking 100 runs of a single realization of
the process. Machine specifications: ubuntu 16.04 LTS, with Memory 31GiB, Processor:
Intel Xeon(R) Silver 4108 CPU @ 1.80GHz*1 x 16, 64 bit, MATLAB 2017b

CCC (in s) TE (in s) GC (in s)

0.4145 ± 0.0125 16.4836 ± 0.9610 0.1826 ± 0.0124
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From the above timing analysis, it is seen that mean running time of CCC is 0.4145s,

which is slightly higher than that of GC but much less than TE. Therefore, from a

computational point of view, it can be said that bivariate CCC can be easily scaled for

hundreds of signals.

It should be noted that our MATLAB implementation is far from being optimized.

Hence, these timing results are only indicative. Faster implementations of CCC will be

developed in the future.

3.6 Conclusions and Future Work

In this chapter, we rigorously test for the performance of CCC on simulations. Using

various instances of short-term and long-term memory autoregressive processes as well

as chaotic processes, it is shown that CCC is highly robust and reliable. CCC overcomes

the limitations of existing measures (GC, TE, NGC and CCM) in case of signals with

long-term memory, low temporal resolution, noise, filtering, non-uniform sampling (non-

synchronous measurements), as well as finite length signals. As future work, it will be

worthwhile to explore the performance of other complexity measures such as Lempel-Ziv

complexity for the proposed Interventional Complexity Causality approach.

Parameter selection criteria and rationale for the CCC measure are also proposed

in this chapter. This criteria can be improved, and made even more data-adaptive

by exploring ways of selecting appropriate values of w; using better binning strategies

(instead of using uniformly sized bins) and consequently making appropriate choices

for the parameter B. Methods such as TE have evolved to use better methods, such
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as embedding for determining the past states to be chosen from time series (that help

predict its present state) and have also chosen better means such as k-nearest neighbors

estimators for computing required probability density functions [90]. As a better bin-

ning strategy, we employed a method by which the symbolic sequence computed from

a given time series, contained approximately the same number of points in each bin.

This was implemented by using the method of k-means clustering. This approach was

similar to the method of equiquantization binning as has been implemented for the con-

ditional mutual information causality method [103]. Preliminary results obtained using

this method for CCC were not very different from those obtained by using uniformly

sized bins. It will be interesting to check the performance of this method on different

types of datasets. Other means of binning such as the Bandt and Pompe scheme [105]

and others based on obtaining ‘generating partition’ of dynamical systems (thereby,

helping in preserving their dynamical information) [106] will also be explored as part

of future work. Though methods to choose selected values for the past (Xpast) and

present (∆X) windows (as happens in embedding) may not make much sense for CCC

(as it looks at the continuous dynamics of the processes and chooses a data adaptive

intervention point), it will still be interesting to see the change in the performance of

the measure when these schemes are implemented.

Significance testing of obtained CCC estimates has been done using two approaches.

Student’s t-test approach is used for distinguishing between the presence and absence

of coupling using CCC value distributions from ‘the direction of coupling’ and ‘opposite

to the direction of coupling’. Here, it would be good to develop data based significance
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level (threshold) settings for the t-test to get better results. The second method for

significance analysis based on surrogate data has been illustrated for coupled tent maps

and AR processes. In the case of tent maps with negative CCC, the surrogate distribu-

tion is centred close to zero and a highly negative value being significantly different from

the surrogate population is classified as having a significant causal influence. On the

other hand, for AR processes, surrogate data in which the temporal structure of causal

influence is destroyed yields higher positive values of CCC as compared to the true CCC

value in the direction of coupling. For tent maps, it would be interesting to explore if a

‘high negative value’ CCC bound exists analogous to the ‘high positive bound’ for AR

and what would be the meaning of such a bound. For AR significance testing analysis,

future work is to find appropriate surrogate data generation strategies when coupling

strength between the considered processes is low in magnitude. These strategies would

be aimed at better destroying the structure (at multiple scales, if possible) of coupled

processes.

Computational time complexity results presented for CCC based on code running

time comparison with existing methods is only indicative. As future work, we would

like to develop faster implementations of the method.
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Chapter 4

CCC Applications on Real-World
Datasets

Causality testing of time series data has numerous applications in fields such as earth

sciences, neuroscience, econometrics, epidemiology and engineering. The strengths of

CCC measure inherent in its formulation (discussed in Chapter 2) and as revealed from

simulation studies (in Chapter 3) are expected to be useful in overcoming the limita-

tions of existing measures for successfully determining causal relations from real-world

datasets. In this chapter, CCC is applied for testing causal interactions between popu-

lations of organisms in a predator-prey ecosystem as well as voltage-current recordings

obtained from a squid giant axon. Further, causality analysis was done for analysing

brain connectivity during fixation, instruction, planning and movement phases of a mo-

tor task presented to 5 human subjects. Motor tasks involve a complex process wherein

signals are communicated between different brain regions. We use causality testing tech-

niques – CCC and Nonlinear Granger Causality and apply it on electroencephalographic

time series data acquired from the subjects in order to understand connectivity at differ-
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ent stages of motor planning and movement process. Causality testing techniques also

find applications in some approaches to measure consciousness based on computing the

strength of complex causal neural interactions in the brain. In this chapter, we propose

a novel quantitative measure of consciousness - Network Causal Activity, which is based

on CCC. This measure is used to distinguish different states of consciousness (awake

and anaesthesia) based on analyzing electrocorticographic signals from the lateral cortex

of four monkeys.

4.1 Introduction

The application of causality measures across different disciplines of science has seen

a tremendous increase in the recent years. This is not surprising as the very effort

of science is to try to rationally understand the causes behind observed phenomena.

Applications of existing causality measures on real world systems to infer causal rela-

tionships between variables of interest has proved enormously useful not only from the

point of view of increasing scientific knowledge and understanding [16, 17, 22, 107] but

also for making informed decisions for the society [18,58,108]. However, existing causal-

ity measures are restricted to specific kinds of data (or applications) by the nature of

their formulation and/or exhibit limitations when the data made available is corrupted

with noise or other artefacts [35, 36, 40, 48, 49, 58]. Limitations of some of the existing

measures such as Granger Causality (GC) [5], Transfer Entropy (TE) [23], Non-linear

Granger Causality (NGC) [24] and Convergent Cross Mapping [28] have been demon-

strated in Chapter 3 using simulated data. CCC measure, proposed in Chapter 2, has
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immense potential to be applied successfully for real world systems. Using simulations,

its performance has been tested against existing measures in Chapter 3. This rigorous

testing brought to light some of the unique strengths of CCC such as its robustness

to noise, low temporal resolution, non-uniform sampling, filtering, long term memory

as well as short length of signals. In this chapter, we use CCC to discover causal

relationships of interest in some real world systems.

Simple bivariate real systems have been used to test the performance of causal-

ity measures. For example, causal relationship between recordings of heart rate and

breathing rate in humans has been analyzed using TE [23] and NGC [24]. A sim-

ple predator-prey ecosystem was analyzed in [28]. In the first section of this chapter,

we demonstrate the performance of CCC on the bivariate system comprised of the

predator-prey ecosystem that has been used in [28]. The second bivariate system con-

sidered in this section is that of stimulus current and voltage recordings obtained by

an experiment on the squid giant axon. Results using TE are also reported for these

systems.

In the second section, we move on to analyzing a more complex system of brain

interactions during different phases of a hand motor task. Use of techniques to ana-

lyze interactions between different brain regions is known as brain connectivity anal-

ysis [109, 110]. If the interactions are analyzed based on recorded neurophysiological

signals from different regions of the brain by using techniques such as correlation, the

analysis is known as functional connectivity analysis. Even asymmetric connections

found using data based causality estimation measures (such as GC and TE) fall in
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this category. On the other hand, if model based causal inference techniques (such as

Dynamic Causal Modeling) are used to estimate the parameters of the model based

on the recorded data, the analysis is known as effective connectivity analysis as it re-

flects the underlying mechanism of interactions [111]. In the last few decades, the use

of functional connectivity analysis has increased tremendously in order to understand

brain’s functional architecture and operational principles [16,111,112]. As discussed in

Section 2.3, CCC measures effect akin to measures GC and TE and not mechanism.

However, we expect CCC estimates to have a close relation to the mechanism as it de-

termines causes and effects based on dynamical evolution of the processes. In this work,

we use CCC as well as NGC to analyze interactions using electroencephalographic sig-

nals recorded from five healthy human subjects engaged in a motor task. This analysis

helps to reveal some interesting changes in causal connectivity of regions in the brain

involved in motor planning and execution.

Finally, we use CCC for developing a novel method of measuring the level of con-

sciousness. Characterizing consciousness, the inner subjective feeling that is present in

every experience, is a hard problem in neuroscience [113], but has important clinical

implications [114]. A leading neuro-scientific approach to understanding consciousness

is to measure the complex causal neural interactions in the brain [115]. Elucidating the

complex causal interplay between cortical neural interactions is a challenging task. A

novel quantitative measure of consciousness - Network Causal Activity which is based

on CCC is proposed in this work. This measure is used to analyze electrocorticographic

signals from the lateral cortex of four monkeys during two states of consciousness (awake
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and anaesthesia). Our results suggest that Network Causal Activity is consistently (and

statistically) higher in the awake state as compared with anaesthesia state for all the

monkeys.

4.2 Predator-Prey Ecosystem and Squid Giant Axon

Recordings

CCC was applied to estimate causality on measurements from two real-world systems

with bivariate recordings and compared with TE. System (a) comprised of short time

series for dynamics of a complex ecosystem, with 71 point recording of predator (Di-

dinium) and prey (Paramecium) populations, reported in [98] and originally acquired

for [99], with first 9 points from each series removed to eliminate transients (Fig-

ure 4.1(a)). Length of signal on which causality is computed, N = 62, CCC settings

used: L = 40, w = 15, δ = 4, B = 8. These parameters were selected based on the

parameter selection criteria discussed in Section 3.3; the curves for selection of L are

shown in Figure 3.22. CCC is seen to aptly capture the higher (and direct) causal in-

fluence from predator to prey population and lower influence in the opposite direction

(see Figure 4.1). The latter is expected, owing to the indirect effect of the change in

prey population on predator. CCC results are in line with that obtained using Conver-

gent Cross Mapping [28]. TE, on the other hand, fails to capture the correct dominant

causality direction.

System (b) comprised of raw single-unit neuronal membrane potential recordings (V ,

in 10V) of squid giant axon in response to stimulus current (I, in V, 1V=5 µA/cm2),
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Figure 4.1: CCC, TE on real-world time series. (a) Time series showing population of
Didinium nasutum (Dn) and Paramecium aurelia (Pn) as reported in [98], (b) Stimu-
lus current (I) and voltage measurements (V ) as recorded from a Squid Giant Axon
(‘a3t01’) in [96]. (c): Table showing CCC and TE values as estimated for systems (a)
and (b).

recorded in [96] and made available by [97]. Stochastically varying current was applied

across the axon in order to study bistable switching behavior in neurons. We test

for causation between I and V for three axons (1 trial each) labeled ‘a3t01’, ‘a5t01’

and ‘a7t01’, extracting 5000 points from each recording. Length of signal on which

causality is computed, N = 5000, CCC settings used: L = 75, w = 15, δ = 50, B = 2.

These parameters were selected based on the parameter selection criteria discussed in
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Section 3.3; the curves for selection of L are shown in Figure 3.23. We find that CCCI→V

is less than or approximately equal to CCCV→I and both values are less than zero for

the three axons (Figure. 4.1), indicating negative causality in both directions. This

implies bidirectional dependence between I and V . Each brings a different dynamical

influence on the other when compared to its own past. TE fails to give consistent results

for the three axons.

4.3 Brain Connectivity during Motor Task

Connectivity analysis of signals arising from different parts of the brain during motor

tasks has recently gained a lot of interest. Such studies are extremely useful to study the

motor pathway, interactions between different brain regions involved in a motor task as

well as brain regions involved in motor deficits. Motor experiments have been conducted

on normal and pathological humans as well as primates. Researchers have utilized

a range of electrophysiological techniques (such as electroencephalography, local field

potentials, magnetoencephalography) [116–118] and neuroimaging techniques (such as

functional magnetic resonance imaging, functional near infrared spectroscopy) [119–122]

as well as a combination of both [123] for the analysis of functional connectivity during

motor tasks. The above studies make use of different causality estimation techniques to

analyze brain networks involved in motor task with a majority of them applying GC.

In this section, we use the proposed measure CCC for the brain connectivity analysis

during motor task. NGC is also used in the analysis to ascertain if there is consistency

or difference in the performance of the two measures. The analysis is done for elec-
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troencephalographic (EEG) data acquired from subjects performing a novel reaching

task (discussed in the following subsection). We consider four different phases of the

task including resting phase, instruction phase, planning phase and movement phase.

The connectivity between different brain regions chosen for analysis is compared in the

different phases. Thus, the novelty in our work lies in the causality measures used, the

motor task performed by subjects as well as the connectivity comparison done across

the different phases considered.

4.3.1 Dataset Description

Data for analysis was obtained from Prof. Aditya Murthy’s Lab on Motor Control,

Indian Institute of Science, Bengaluru, India (V. Thakur and A. Murthy, personal

communication, May 21, 2020). A brief description of the experimental setup and

acquisition protocol is provided below. The data was from a behavioral task in which

the subjects performed a novel reaching task where they had to move their hand from

the central fixation spot to the target spot according to the the instructions provided.

Electroencephalography and electromyography recordings were made during the task.

For each subject, each trial was 7000 ms long. With the initiation of the trial, subjects

were presented with a gray colored fixation spot where they had to fixate their eyes

and index finger of the right hand (all subjects were right handed males). After 530

ms, fixation box changed its color. This was followed by an instruction time of 780 ms.

After this, a target appeared on the screen, at a distance of 12 cm from the fixation

point. The target was randomized to be at the top left or bottom right positions of
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the screen with equal probability. The go cue was indicated by changing of the filled

fixation box to unfilled. Subjects were told to make a reaching movement towards the

target as soon as the go cue was presented. Hand and eye movements of the subjects

were tracked throughout the study. Based on certain criteria on the timings of hand

movement (if it starts too long after the go cue, or total duration of movement is too

short or too long), some trials were discarded. Other trials, in which there was eye

blinking, head movement or eye movement were also discarded.

EEG activity was recorded passively from 22 Ag/AgCl electrodes mounted on an

elastic cap (by EasyCap company, Germany) which was worn by the subjects on their

heads. The positions of the electrodes were marked on the cap as per the international

10/20 system. EEG signals were sampled at 1kHz. The electrodes from which activity

was recorded include FP1, FP2, F3, F4, FC1, FC2, C3, C4, CP1, CP2, P3, P4, O1,

O2, FC5, FC6, Fz, FCz, Cz, Pz, and Iz. The AFz electrode was used as the ground for

all recordings and averaged activity of linked left mastoid, and right mastoid was used

as reference.

For our analysis, we consider trials in which the subjects were instructed to make

slow hand movements from the fixation spot to the target spot and there was no time

lag between the appearance of the target on the screen and the go cue. Before using the

EEG recordings for brain connectivity analysis, each trial was individually detrended

and notch filtered. Out of 10 subjects for which data was made available, we took 5

randomly chosen subjects for our analysis. For each subject, first 50 correct trials were

taken.
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To analyse connectivity during different phases of the task, the recorded activity for

each trial and from each electrode was divided into the following different phases:

1. Fixation Time or FT is the time beginning from the initiation of the trial and

lasts up to 500 ms. During this time the subject fixates on the gray colored box

displayed on the screen.

2. Instruction Time or IT is the time from fixation offset to target onset. This

period is taken to last for 750 ms during which instruction is provided to the

subject regarding how to make the movement.

3. Reaction Time or RT is the time from when the Go signal appears till hand

movement onset. The beginning of hand movement was found as follows: first,

the time when velocity reached 10% of maximum velocity of the trial was extracted

and used as an initial onset marker. Moving back from this marker, the onset

was considered when the velocity was not significantly different from the baseline

hand movement fluctuation. RT can be thought of as the planning phase of the

movement at which the subjects have all the instructions, as to the ‘where, when

and how’ of the movement. All trials are aligned at the time at which Go cue

appears to extract the data for this phase. RT will be different for each trial.

By observing the time it takes from Go cue to movement onset across trials from

different subjects, we fix the RT period to last for 300 ms. This value lies towards

the lower end of the distribution of RT values and was taken to consider a safe time

duration for the subjects where the considered time samples do not extend beyond
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the RT range. This choice of RT period was decided over email conversation (V.

Thakur and A. Murthy, personal communication, October 8, 2019).

4. Movement Time or MT is the time from movement onset and lasts until the finger

reaches the target. Hand movement onset is computed as discussed in the last

point. To extract the data for this phase, all trials were aligned at their movement

onset. MT will be different for different trials. We fix MT to last for 500 ms, in

order to keep it close to the average time taken for slow movement, as observed

from different trials taken from all the the subjects. This value was also decided

over email communication (V. Thakur and A. Murthy, personal communication,

October 8, 2019).

The data with preprocessing as discussed above and after alignment along the four

phases described above was made available by Prof. Aditya Murthy’s Lab group (V.

Thakur and A. Murthy, personal communication, May 21, 2020).

The lateralized readiness potential (LRP) is an event-related potential that is ob-

served when the person gets ready to move one hand, arm, leg or foot. It is a negative

potential that can be observed over the motor cortex and other surrounding brain re-

gions governing movement, contralateral to the responding hand [124, 125]. To ensure

that the LRP signature was visible in the acquired data, we obtained the LRP plot

by averaging raw signals from all the 10 subjects, using all the correct trials obtained

from each subject. EEG activity from MT aligned phase was taken from the following

4 electrodes: FC1, FC2 (left and right fronto-central/ premotor cortex), C3, C4 (left
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and right central/ motor cortex). The data from these electrodes was lateralized by

subtracting the right electrode activity from the corresponding left electrode activity for

each trial. The resulting signals were then averaged across all the considered electrodes

for all the subjects taken together. The resulting LRP plot is shown in Figure 4.2. The

dip in the potential before movement onset is visible in the figure.
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Figure 4.2: Lateralized readiness potential using averaged raw EEG signals (from elec-
trodes – FC1, FC2, C3, C4) from 10 subjects, using all the correct trials per subject.
The trials are aligned along movement onset which is represented by a vertical dotted
line in the figure.

Since, we took the data from 5 subjects, 50 trials per subject for connectivity anal-

ysis, we also plot the LRP for this data alone. These trials were detrended and notch-

filtered before further analysis. LRP obtained from the same electrodes as before (FC1,

FC2, C3, C4), for this pre-processed data is shown in Figure 4.3.

4.3.2 Results and Discussion

Connectivity analysis was done in two ways. In the first case, connectivity was analyzed

taking the signals without lateralization. The results for this analysis are discussed un-

der the section ‘Contralateral Ipsilateral Analysis’. Contralateral here basically refers to
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Figure 4.3: Lateralized readiness potential using averaged pre-processed EEG signals
(from electrodes – FC1, FC2, C3, C4) from 5 subjects with 50 trials per subject. The
trials are aligned along movement onset which is represented by a vertical dotted line
in the figure.

the side of the brain contralateral (opposite) to the moving (right) hand and ipsilateral

refers to the side of the brain ipsilateral to (or on the same side as) the moving hand.

In the second case, the recordings were lateralized by subtracting the right electrode

activity from the corresponding left electrode activity. The results for this analysis are

discussed in ‘Lateralized Analysis’. All connections were analyzed using both bivariate

CCC and bivariate NGC.

Contralateral Ipsilateral Analysis

For this analysis, we consider only the premotor and motor regions, that is, the record-

ings from electrodes FC1, FC2 and C3, C4 respectively. CCC as well as NGC were

used to analyze the causality between premotor and motor regions (both directions)

contralateral to the movement (FC1 and C3), ipsilateral to the movement (FC2 and

C4) as well as cross connections between the contralateral premotor region and ipsilat-

eral motor region as well as between ipsilateral premotor region and contralateral motor
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region. These four connections in both directions were analyzed for all the 5 subjects

for the four phases considered.

The parameters used for estimation of CCC from the considered signals were set to

L = 120, w = 30, B = 4. δ, the step size for moving window, was set to be different for

different phases as the length of the available recordings was different for each of the

phases. These parameters were selected according to the parameter selection criteria

discussed in 3.3. For FT and MT signals which were taken for 500 ms (with 500 time

points), δ was set as 50. For RT data which was shorter, lasting for 300 ms, δ was taken

to be 30 and for IT data, lasting for 750 ms, δ was set as 70. For NGC estimation, the

parameters were set as follows: polynomial type of kernel of order 2 and model order

also set to 2 was used. Values of the two measures were computed for 50 trials taken

per subject. As per significance analysis embedded in the NGC toolbox, if a non-zero

value of the measure is obtained, then it can be said to be significant [24,45,92]. Using

this criterion only, we classified a connection as being significant or insignificant for

NGC. For performing significance analysis for CCC, the observations in each trial of

the considered driver1 variable were randomly shuffled once to obtain a surrogate time

series for the connection being considered. The set of 50 surrogate time series generated

from 50 trials of the driver can be considered as the surrogate data ensemble for the

driver. The time series for the target2 variable were kept the same as the original. z-test

was done to check if the CCC values from original time series (for the driver-target pair

1The variable ‘from’ which causality is being checked.
2The variable ‘to’ which causality is being checked.
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chosen) were a part of the distribution of surrogate CCC values. The null hypothesis

of insignificant CCC values was rejected if the original CCC values were found to be

different from the distribution of surrogate CCC values at a significance level of 0.05.

This test was the same as done for significance testing of CCC values obtained from

coupled autoregressive (AR) processes as discussed in Section 3.4.2. The CCC values

for the connections between different brain regions were found to be positive for all the

analyses performed in this work. In that sense, these processes can be considered to be

AR-like. As is observed for AR processes, the CCC values for surrogate data are found

to be increased compared to CCC values obtained from original coupled time series.

In Figures 4.4, 4.5, 4.6 and 4.7, mean of CCC and NGC values over 50 trials for the

five subjects are displayed for the considered connections during four different phases:

FT, IT, RT and MT respectively. Each figure displays the mean strength of causation

as the height of the bar. All premotor to motor connections whether from contralateral

premotor to contralateral motor, ipsilateral premotor to ipsilateral motor, contralateral

premotor to ipsilateral motor or ipsilateral premotor to contralateral motor are dis-

played together as adjacent bars for each subject, in order to compare their strengths

for the subject. Similar is the case for motor to premotor connections. These results are

also displayed in a different manner in Appendix B. In the Appendix, the variation in

the strength of each of the four connections (in both directions) is shown with varying

phase helping in a comparison of the strength of any given connection across different

phases. As per the significance analysis criteria discussed in the last paragraph, all

connections computed based on NGC and CCC between the four different regions con-
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sidered were found to be significant causal connections. This happened to be the case

for all the four phases.
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Figure 4.4: Mean causality values for the fixation time or FT phase displayed as height
of bars for 5 subjects with each bar corresponding to the following regions: violet -
contralateral premotor and contralateral motor, blue - ipsilateral premotor and ipsi-
lateral motor, green - contralateral premotor and ipsilateral motor, yellow - ipsilateral
premotor and contralateral motor. CCC estimates are shown in (a) for the direction
premotor to motor and in (c) for the direction motor to premotor. NGC estimates are
shown in (b) for the direction premotor to motor and in (d) for the direction motor to
premotor.

High connectivties were observed for all premotor to motor connections obtained

using the CCC measure in all the 4 phases. Similar was the case for motor to premotor

connections. For the FT phase, for 4 subjects out of 5, premotor to motor connectivity
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Figure 4.5: Mean causality values for the instruction time or IT phase displayed as
height of bars for 5 subjects with each bar corresponding to the following regions:
violet - contralateral premotor and contralateral motor, blue - ipsilateral premotor
and ipsilateral motor, green - contralateral premotor and ipsilateral motor, yellow -
ipsilateral premotor and contralateral motor. CCC estimates are shown in (a) for the
direction premotor to motor and in (c) for the direction motor to premotor. NGC
estimates are shown in (b) for the direction premotor to motor and in (d) for the
direction motor to premotor.

on the ipsilateral side was slightly higher than on the contralateral side. Interestingly,

during the RT phase, premotor to motor connectivity on the contralateral side became

higher than the connectivity on the ipsilateral side. In case of motor to premotor con-

nectivity also, during the FT phase, for 3 out of 5 subjects ipsilateral side connectivity

was higher than the contralateral side. During the RT phase, however, 4 out of 5
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Figure 4.6: Mean causality values for the reaction time or RT phase displayed as height
of bars for 5 subjects with each bar corresponding to the following regions: violet -
contralateral premotor and contralateral motor, blue - ipsilateral premotor and ipsi-
lateral motor, green - contralateral premotor and ipsilateral motor, yellow - ipsilateral
premotor and contralateral motor. CCC estimates are shown in (a) for the direction
premotor to motor and in (c) for the direction motor to premotor. NGC estimates are
shown in (b) for the direction premotor to motor and in (d) for the direction motor to
premotor.

subjects showed higher connectivity on the contralateral side. These changes seem to

indicate motor preparation. If we compare contralateral to ipsilateral connectivity and

vice versa for premotor to motor and motor to premotor connections, they remain high

and comparable in each phase. However, if we compare across phases, there does seem

to be a drop in the strength of these connections (especially for the premotor to motor

124



(a) Premotor to Motor

1 2 3 4 5

Subject Number

0

0.01

0.02

C
C

C
(b) Premotor to Motor

1 2 3 4 5

Subject Number

0

0.02

0.04

0.06

N
G

C

(c) Motor to Premotor

1 2 3 4 5

Subject Number

0

0.01

0.02

C
C

C

(d) Motor to Premotor

1 2 3 4 5

Subject Number

0

0.02

0.04

0.06

N
G

C

Contra-Contra Ipsi-Ipsi Contra-Ipsi Ipsi-Contra

Figure 4.7: Mean causality values for the movement time or MT phase displayed as
height of bars for 5 subjects with each bar corresponding to the following regions:
violet - contralateral premotor and contralateral motor, blue - ipsilateral premotor
and ipsilateral motor, green - contralateral premotor and ipsilateral motor, yellow -
ipsilateral premotor and contralateral motor. CCC estimates are shown in (a) for the
direction premotor to motor and in (c) for the direction motor to premotor. NGC
estimates are shown in (b) for the direction premotor to motor and in (d) for the
direction motor to premotor.

direction) during the IT, RT and MT phases when compared with the FT phase. This

could probably be due to the fact that these cross connections are not useful in the

focused planning and movement of the right hand. This can be seen more clearly from

Figures B.3 and B.4 given in Appendix B.

Significant connections are also found using NGC for all premotor to motor and
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motor to premotor connections considered. The patterns observed in NGC values across

different phases were not the same as those observed for CCC. One observation is that,

during the RT phase, in general all connections seemed to increase in strength when

compared with other phases. This is better visible in Figures B.1-B.4 and could be an

indicator of motor preparation. Also, for all the phases, for a majority of the subjects,

the ipsilateral connections (both premotor to motor and vice versa) were of greater

strength when compared to the corresponding contralateral connections.

Lateralized Analysis

For this analysis, using lateralized data, we check for connectivity (both directions)

between the following pair of electrodes: premotor (FC) - motor (C), motor (C) -

parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).

The parameters used for CCC and NGC estimation and procedure for the significance

analysis of their estimates remain the same as in the previous section. Mean of CCC and

NGC values are presented in a graphical representation for the four phases in Figures 4.8

– 4.17. Each figure represents connectivity for a single subject using CCC or NGC for

all the 4 phases. For each pair considered in the graph, the dominant direction of

causality is indicated using a black edge while the opposite direction is indicated using

a gray edge. However, if the causality for the dominant direction falls within a range of

0.0020 of the causality for the opposite edge, then the former is also displayed in gray

color. In this case, because of very little difference between the causality values, no

edge can be considered to be dominant over the other and we can take it as a case of
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bidirectional causation with equal influence on both sides. The value of 0.0020, which is

taken as the threshold, was set arbitrarily by observing the maximum and the minimum

mean CCC and NGC values obtained from amongst all subjects for all the connections

taken. Maximum and minimum CCC values were 0.0246 and 0.0009 respectively and

maximum and minimum NGC values were 0.0730 and 0.0006 respectively. Figures

4.18-4.21 represent the same results, showing the variation in the strength of each of

the four connections separately (in both the directions) with the variation of the phase

for all the five subjects together.

Figure 4.8: Connectivity analysis for subject 1 using CCC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

Significant bidirectional causalities were estimated for all the considered pairs, for all

the subjects for all the phases taken. This was seen for both CCC and NGC. A number
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Figure 4.9: Connectivity analysis for subject 1 using NGC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

of interesting observations could be made from the analysis. The causal influence using

CCC from the premotor to the motor region for all the subjects for all the phases was

the dominant causal connection in comparison to the motor to premotor connection.

Further, premotor to motor CCC values were found to increase during the RT phase

in comparison to its values obtained for FT, IT and MT phases for 3 out of 5 subjects

(subject numbers 1, 2 and 4). This could be a signature for motor activity preparation.

In case of NGC, for 3 out of 5 subjects (subject nos. 3,4 and 5) the motor to

premotor connection was dominant over the premotor to motor connection for almost

all the phases. However, as observed for the CCC measure, the premotor to motor

connection increased in strength during the RT phase as compared to its observed
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Figure 4.10: Connectivity analysis for subject 2 using CCC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

strengths during FT, IT and MT phases. This was the case for 4 out of 5 subjects,

with the only exception to this being subject no. 3 (which was also an exception for

the CCC case). Interestingly, for a majority of the cases NGC strength also increased

for motor to premotor connection during the RT phase in comparison to its strength

during all the other phases. Since the premotor to motor connection increase during

RT was consistent for both CCC and NGC, it seems to be a strong indicator for motor

preparation activity.

For the motor and parietal regions, bidirectional connectivity was observed using

both CCC and NGC with the dominant direction of causation being very subject and

phase specific. For motor and centro-parietal regions, there was no clear pattern in the
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Figure 4.11: Connectivity analysis for subject 2 using NGC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

causality estimated in the two directions using NGC. For many cases (different phases

that were taken for different subjects), the estimated causality in both directions had

very low values and remained close to zero. However, when CCC was used to study

motor and centro-parietal connectivity, the centro-parietal to motor connection was

found to be of much higher strength, dominating over the opposite connection for

which CCC values remained small, closer to zero. Also, for a majority of cases, that

is 3 out of 5, the centroparietal to motor connection increased in strength during the

RT phase as compared to the other phases. For the premotor and prefrontal regions,

bidirectional connections were seen using the NGC measure. But other than that there

seemed to be no clear pattern emerging for different phases across subjects. CCC too
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Figure 4.12: Connectivity analysis for subject 3 using CCC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

showed bidirectional connectivity between the two regions for all the phases for all

the subjects. In addition, for a majority of subjects (nos. 1, 2, 5), it was seen that

bidirectional causality with almost equal influences in the two directions for the phases

FT, IT and RT was changed for the MT phase in which the premotor to prefrontal

influence became dominant in comparison to the influence in the opposite direction.

4.3.3 Conclusions and Future Work

In this section we have presented some preliminary results using bivariate CCC and

NGC for the study of connectivity between different regions of the brain involved in

performing motor task. Earlier work studying unilateral hand movements looked at
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Figure 4.13: Connectivity analysis for subject 3 using NGC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

connections between the contralateral motor cortex, contralateral premotor cortex and

contralateral prefrontal cortex [116,117,123, 126]. These studies found either unidirec-

tional or bidirectional connectivity between these three regions. In this study we analyze

connections between the motor and premotor areas on the contralateral side, ipsilateral

side as well as cross connections between one of the areas taken on the contralateral

side and the other on the ipsilateral side. Bidirectional causalities were found between

all the areas considered here. Using lateralized signals, connections were analyzed be-

tween the pairs: premotor-motor, motor-parietal, motor-centroparietal and premotor-

prefrontal cortex. Here too bidirectional connections were determined between all the

pairs considered. The comparison of connectivity during four phases, namely, fixa-
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Figure 4.14: Connectivity analysis for subject 4 using CCC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

tion, instruction, reaction and movement considered helped to identify some causal

connections involved in the motor planning and execution phase. One of the important

indicators identified was the increase in premotor to motor connectivity during the re-

action or RT phase when causality estimation was done based on lateralized signals.

Based on non-lateralized signal analysis using CCC, it was also found that premotor to

motor connectivity became dominant in comparison to motor to premotor connectivity

during the RT phase. Also, the centroparietal to motor connectivity (lateralized) as

estimated by CCC seemed to increase during the RT phase and premotor to prefrontal

connection became dominant with respect to the connection in the opposite direction

during movement or MT phase. These too could be potential indicators of movement
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Figure 4.15: Connectivity analysis for subject 4 using NGC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

planning and execution.

The analysis done here has a number of limitations and can be improved in several

aspects. Source localization of EEG signals should be done in order to remove volume

conduction effects. These effects can lead to presence of shared noise and signal between

different electrode recordings. Further, conditional/ effective causality estimation mea-

sures need to be used in order to estimate only the direct causal influences and remove

the indirect ones. The study also needs to be made more robust by considering a larger

number of subjects and more trials per subject. More connections could be considered

between the brain regions taken in the current study and other brain regions can be

included to make the study more comprehensive. Also, for NGC analysis a second
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Figure 4.16: Connectivity analysis for subject 5 using CCC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

kind of significance testing using surrogate data could be included to make the results

more rigorous. All these aspects will be dealt as part of future work and are outside

the scope of the current dissertation. It will also be interesting to do a comparison of

connectivity during slow hand movement trials as taken in this study with fast hand

movement trials and those involving some hold duration between appearance of target

on the screen and the indication of Go cue. Data for these cases was made available

by Prof. Aditya Murthy’s Group (V. Thakur and A. Murthy, personal communication,

May 21, 2020) . As future work, we would like to extend our analysis to these cases as

well.
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Figure 4.17: Connectivity analysis for subject 5 using NGC between lateralized signals
obtained from the following pair of electrodes: premotor (FC) - motor (C), motor (C)
- parietal (P), motor (C) - centroparietal (CP) and premotor (FC) - prefrontal (FP).
Results are displayed for the four different phases considered: (a) Fixation Time or FT,
(b) Instruction Time or IT, (c) Reaction Time or RT and (d) Movement Time or MT.
Black edge corresponds to the dominant direction of causality and the faded one to the
non-dominant direction between the pair.

4.4 Measuring Consciousness using CCC based Net-

work Causal Activity Measure

Understanding Consciousness – the inner subjective feeling that is present in every

experience (eg., in “seeing” a red rose, in the “feeling” of pain, in the “tasting” of tea

etc.), is the final frontier of biomedical research. Defining, modeling and measuring

consciousness is considered a hard problem [113]. Consciousness largely bounds two

facets, namely, the “level” of consciousness and the “content” of consciousness. Expe-

riences such as coma, different stages of anaesthesia and certain stages of sleep seem

to indicate a loss of consciousness [127]. Quantitatively, consciousness can be featured
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Figure 4.18: Connectivity analysis for all the subjects using CCC (left) and NGC
(right) between lateralized signals obtained from the electrode pair: premotor (FC)
- motor (C). Results are displayed as a variation in connectivity with a variation in
the phases, which occur in the following successive order: (1) Fixation Time or FT,
(2) Instruction Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT.
Premotor to motor connectivity variation is indicated using solid lines and motor to
premotor connectivity variation is indicated using dashed lines. CCC as well as NGC
connectivity from premotor to motor increases during the RT phase as compared to
the rest of the phases, for a majority of the subjects. This is represented by points
encircled in red.

as the distributed cortical activity in the sub-cortical regions of the brain relating to

the conscious content at any instant. Qualitatively, consciousness is the most essential

aspect of our daily experience as it plays a big role in decision making and adaptive

planning [115].

Measuring consciousness is a great aid to clinical assessments as it helps in building

computational and psychological models; and in providing philosophical aspects to un-

derstand the principles connecting brain activity to consciousness experience of wakeful

individuals and individuals with physiological, pharmacological and pathological loss

of consciousness. Recently, a number of scientific measures of consciousness have been

proposed, each having their own theoretical and mathematical framework. We shall
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Figure 4.19: Connectivity analysis for all the subjects using CCC (left) and NGC
(right) between lateralized signals obtained from the electrode pair: premotor (FC) -
prefrontal (FP). Results are displayed as a variation in connectivity with a variation
in the phases, which occur in the following successive order: (1) Fixation Time or
FT, (2) Instruction Time or IT, (3) Reaction Time or RT, (4) Movement Time or
MT. Premotor to prefrontal connectivity variation is indicated using solid lines and
prefrontal to premotor connectivity variation is indicated using dashed lines. CCC
connectivity from premotor to prefrontal increases during the MT phase as compared
to the rest of the phases, for a majority of the subjects. This is represented by points
encircled in red.

Figure 4.20: Connectivity analysis for all the subjects using CCC (left) and NGC (right)
between lateralized signals obtained from the electrode pair: motor (C) - parietal (P).
Results are displayed as a variation in connectivity with a variation in the phases,
which occur in the following successive order: (1) Fixation Time or FT, (2) Instruction
Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT. Motor to parietal
connectivity variation is indicated using solid lines and parietal to motor connectivity
variation is indicated using dashed lines.
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Figure 4.21: Connectivity analysis for all the subjects using CCC (left) and NGC (right)
between lateralized signals obtained from the electrode pair: motor (C) - centropari-
etal (CP). Results are displayed as a variation in connectivity with a variation in the
phases, which occur in the following successive order: (1) Fixation Time or FT, (2)
Instruction Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT. Motor
to centroparietal connectivity variation is indicated using solid lines and centroparietal
to motor connectivity variation is indicated using dashed lines. CCC connectivity from
centroparietal to motor increases during the RT phase as compared to the rest of the
phases, for a majority of the subjects. This is represented by points encircled in red.

briefly describe a few of them here.

Tononi’s Integrated Information Theory of Consciousness (IIT) is a leading scientific

theory [128, 129] that conceptualizes the criteria for assessing the consciousness level

of any system, quantitatively, as well as, qualitatively. According to IIT, if a system

intrinsically possesses both integrated and differentiated states of information, then it is

bound to possess some level of consciousness (indicated by the symbol Φ in the theory).

Non-zero values of Φ conforms the system is in a conscious state. Neurobiologically, the

number of connections of neurons in brain networks as well as their complex dynamical

interactions contributes to the quantification of Φ, not necessarily only the number of

neurons. Perturbational Complexity Index (PCI) [130] is a theory-driven index formu-

lated to evaluate the level of consciousness in a clinical scenario. In order to calculate
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PCI, the cortex of brain is perturbed with trans-cranial magnetic stimulation to in-

voke distributed activity in the thalamocortical brain networks. These spatio-temporal

responses are then compressed to measure their algorithmic complexity which is nor-

malized and calibrated to yield an index of consciousness level known as PCI. A high

value of PCI indicates a high and significant amount of complex interactions of neural

activity in cortical areas. Another measure of consciousness, Neural Complexity [131],

aims to quantify the interplay between statistically independent (functionally segre-

gated) and statistically interdependent (functionally integrated) neuronal groups in the

brain. For any dynamical system, it is an information theoretic measure that captures

the mutual information present between the different active subsets of the whole sys-

tem [132]. Yet another measure of consciousness, known as Causal Density [133, 134],

defines consciousness as the fraction of significant causal interactions in brain networks

using the GC measure [5]. In [80, 135], there is a review of other scientific measures of

consciousness which are similar to the ones described here. The aforementioned mea-

sures are categorized under Complexity Theories of Consciousness (please see [114]).

In [136], a simple model of spectral Granger bivariate causality is applied to visualize

the information flow between different parts of cortex for different states – conscious and

unconsciousness induced by different means, in monkeys. This enabled the investigation

of large-scale information flow and causal interactions specific to different frequency-

modes in the brain. A switch in the frequency-mode of neural communication was found

to characterize the difference between different levels of consciousness in monkeys.

In this study, we propose a novel, time domain, Network Causal Activity (NCA)
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approach to discriminate different levels of consciousness. CCC measure, which is

proposed in Chapter 2 of the thesis and rigorously tested on simulated data for realistic

scenarios in Chapter 3 is used for the formulation of NCA. Instead of frequency domain

analysis used in [136], we use NCA to differentiate between conscious and unconscious

states in monkeys.

4.4.1 Materials and Methods

Subjects and Data Acquisition

For our work, we have used a subset of the dataset from the study conducted by Yana-

gawa et al. [136] which is made available in the public server neurotycho.org (http://

neurotycho.org/) [137]. In their study, electrocorticographic (ECoG) signals sampled at

1 kHz were recorded by a Cerebus data acquisition system (Blackrock, UT, USA) from

the lateral cortex of four monkeys (George, Chibi, Su, Kin2) using 128 channels elec-

trodes during different stages of sleep, wakefulness and anaesthesia on different days.

A complete description about the experiment can be found in [136]. In this thesis,

we have focused on only the awake (eyes-opened) and ketamine-medetomidine induced

anaesthetized conditions.

Dataset Description

From the recorded neural data collected from the experiments of the study in [136], 3

non-overlapping windows of 5s each (corresponding to 5000 time points) were extracted

from 126 channels to construct a sustained network of neural interactions for all the four

monkeys in two states – awake (eyes open, conscious state) and anaesthetized (drugged
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using Ketamine and Medetomidine, loss of consciousness state) condition. We excluded

data from two channels (nos. 73 and 123) since these were found to be corrupted and

hence unsuitable for computation of causality values. The data was used in the acquired

form without any re-referencing or pre-processing.

Network Causal Activity (NCA)

NCA is proposed as a quantitative measure of consciousness to capture average (signifi-

cant) causal influence activity between all the elements or subsystems of a given system.

Bivariate CCC as defined in Section 2.3 is used to estimate the causal influences for

NCA.

NCA for multi-variate time series data M (with m variables3) is defined as the total

average significant pairwise CCC values across all possible pairs. Mathematically,

NCA
(
M
)

=
1

n

j,k=m∑
j,k=1,j 6=k

CCC∗j→k , (4.1)

where there are n number of significant CCC values among all possible pairwise com-

binations of the m variables. Here, the notion of significance is defined differently from

that discussed in Section 3.4. In this case, CCC value from the j-th time series to the

k-th time series is said to be significant (CCC∗j→k) if it is in the highest 10% (in magni-

tude) of all pairwise CCC values obtained for the given multi-variate time series 4. The

ideal thing to do would be to first check for the signficance of all pairwise CCC values

obtained for multi-variate data taken based on surrogate significance testing analysis

3If each of these series has N time samples, then M is a m ×N matrix. There would be m2 −m
pairwise CCC values out of which the highest n are taken as significant.

4Alternatively, we could define a CCC value as being significant (for NCA) if it is greater than some
set threshold T
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introduced in Section 3.4.2. (we could use the procedure of random shuffling of the

observations from driver time series to obtain the surrogate data in this case). Then

out of these CCC values which are found to be significant, the top 10% of the values

should be chosen. In this study, we skip the step of surrogate significance testing since

with the use of bivariate CCC, we expect to find all the connections giving high CCC

values as being significant, as any two regions will be directly or indirectly causally

related.

We estimated the pairwise CCC values for three non-overlapping windows of ECoG

signals of 4 monkeys in Awake (conscious) and Anaesthesia (loss of consciousness) states.

The settings that were chosen for estimating CCC are: L = 150, w = 30, δ = 200 (the

step-size for the moving window), B = 2. These settings were chosen based on CCC

parameter selection criteria as discussed in Section 3.3 These calculated CCC values

are then used to estimate NCA using Eq.4.1 (N = 5000, m = 126, n = 1575).

4.4.2 Analysis and Discussion

Mean and standard deviation of pairwise CCC values across 126 ECoG signal channels

of 4 different monkeys for 3 different windows, each of 5 seconds duration, are given in

Table 4.1 and Table 4.2 for the awake and anaesthesia states respectively. In Figure 4.22,

histograms of pairwise CCC values for each monkey for window w1 (awake) and w′1

(anaesthesia) are shown. In Table 4.3, the NCA estimates are given for all the monkeys

for 3 different windows for both the states. The top 10% significant CCC values were

used in computation of NCA. From these tables, we can infer the following:
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Figure 4.22: Histogram of pairwise CCC values across 126 ECoG signal channels for
each monkey for window w1 (awake) and w′1 (anaesthesia): (a) George, (b) Chibi, (c)
Su, (d) Kin2. Solid line (-) is for the Awake state and dotted line (- -) is for the
Anaesthesia state. ECoG dataset obtained from [136].

1. It is found that the standard deviations of CCC values in the awake state are

consistently higher than that of the anaesthesia state in all the windows for all

the monkeys (except for one window in case of monkey Su). This finding implies

that there are a higher number of differentiated causal neural interactions in the

awake state as compared to anaesthesia state.

2. Mean NCA is consistently higher in awake state as compared to anaesthesia state

across all the windows for all the monkeys. This is intuitive, since in the awake

state we expect the average significant causal neural interactions to be of a higher

magnitude.
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Table 4.1: Mean and standard deviation of pairwise CCC values across 126 ECoG
signal channels of different monkeys during awake state for 3 different windows, each
of 5 seconds duration. ECoG dataset obtained from [136].

Monkeys

Awake

CCC: Mean (µ) ± Standard Deviation (σ)

w1 w2 w3

George 0.0165± 0.0176 0.0139± 0.0130 0.0158± 0.0153

Chibi 0.0138± 0.0139 0.0159± 0.0156 0.0162± 0.0142

Su 0.0183± 0.0164 0.0192± 0.0168 0.0107± 0.0110

Kin2 0.0220± 0.0241 0.0246± 0.0222 0.0186± 0.0196

3. The mean CCC values for awake state is significantly higher than the mean CCC

value for the anaesthesia state. In order to substantiate this result statistically, a

formal hypothesis ‘2 sample student’s t-test’ was performed for all the monkeys

on data pooled over all the three windows of awake (w1, w2, and w3) as well as

anaesthesia (w′1, w′2, and w′3). The t-test results are summarized as follows:

• For George, the mean of awake state (0.0154 ± 0.0155) is significantly greater

(t94498 = −4.5272, p = 0) than that of anaesthesia state (0.0150 ± 0.0109).

• For Chibi, the mean of awake state (0.0153 ± 0.0146) is significantly greater

(t94498 = −93.7679, p = 0) than that of anaesthesia state (0.0081 ± 0.0083).

• For Su, the mean of awake state (0.0161 ± 0.0155) is significantly greater

(t94498 = −38.0216, p = 0) than that of anaesthesia state (0.0128 ± 0.0107).
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Table 4.2: Mean and standard deviation of pairwise CCC values across 126 ECoG signal
channels of different monkeys during anaesthesia state for 3 different windows, each of
5 seconds duration. ECoG dataset obtained from [136].

Monkeys

Anaesthesia

CCC: Mean (µ) ± Standard Deviation (σ)

w′1 w′2 w′3

George 0.0168± 0.0111 0.0143± 0.0107 0.0140± 0.0106

Chibi 0.0073± 0.0074 0.0080± 0.0084 0.0088± 0.0090

Su 0.0137± 0.0104 0.0106± 0.0098 0.0140± 0.0116

Kin2 0.0099± 0.0094 0.0114± 0.0099 0.0096± 0.0096

Table 4.3: Network Causal Activity (NCA) estimates for all the monkeys for 3 different
windows for both awake and anaesthesia states. The top 10% significant CCC values
were used in computation of NCA. Mean NCA for awake state is higher than that of
anaesthesia.

Monkeys

Awake Anaesthesia

Network Causal Activity Network Causal Activity

w1 w2 w3 Mean w′1 w′2 w′3 Mean

George 0.0564 0.0427 0.0482 0.0491 0.0378 0.0354 0.0355 0.0362

Chibi 0.0460 0.0512 0.0477 0.0483 0.0214 0.0248 0.0263 0.0242

Su 0.0555 0.0570 0.0356 0.0494 0.0344 0.0308 0.0391 0.0347

Kin2 0.0765 0.0727 0.0632 0.0708 0.0292 0.0307 0.0284 0.0294
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Figure 4.23: 95% confidence intervals for mean CCC values of pooled data of all windows
(each of 5 second interval) of George accounting for 47, 250 samples, for awake as well
as anaesthesia state showing a clear separation between the two.

• For Kin2, the mean of awake state (0.0217 ± 0.0222) is significantly greater

(t94498 = −103.0372, p = 0) than that of anaesthesia state (0.0103 ± 0.0097).

A graphical depiction of this hypothesis test for ‘George’ is done in Figure 4.23.

4.4.3 Conclusions and Future Work

Measuring Network Causal Activity or NCA, i.e., the average significant causal interac-

tions in the brain, is a promising approach towards understanding consciousness. Our

work demonstrates that NCA, measured by estimating CCC values of ECoG signals

in monkeys can differentiate states of consciousness (awake vs. anaesthesia). Both,

mean CCC and mean NCA estimates are statistically significantly higher for awake

state when compared with anaesthesia state. Going forward, it is worthwhile to esti-

mate NCA for different stages of sleep and other states of consciousness (such as coma,

vegetative state). Use of conditional/ effective CCC instead of bivariate CCC may help
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to give more reliable results. Further, NCA could be computed by estimating pairwise

CCC between fewer brain regions, for example, by using averaged activity obtained

from neighboring electrodes and/or using only electrical activity from selected brain

regions. This will help to reduce the computational complexity required for estimating

NCA especially when recordings from a large number of electrodes are available. Po-

tentially, NCA could be further developed to provide robust measure of consciousness

in clinical applications.
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Chapter 5

Effective CCC for Networks

Most real-world systems are multivariate with complex network relationships. Discover-

ing correct causal relationships is very important for such networks found in the study

of fields such as climatology, epidemiology, neuroscience, economics etc. In order to

capture causality from one variable to another in a network, in the presence of other

variables which may or may not be having causal influences to the considered target

variable, use of conditional CCC, discussed in Chapter 2 has limitations and may not

give accurate results. This is primarily because:

1. The formulation of conditional CCC does not allow us to capture the direct causal

influence between variables, removing the indirect effects by intermediate variables

in the causal pathway.

2. It is difficult to compute joint ETC for large number of variables. The large dictio-

naries constructed from the variables become difficult to handle, making complexity

estimation inadequate over short lengths of data taken.

To address the above two problems, the concepts of Effective CCC and Equivalent ETC
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are introduced and defined in this chapter. Effective CCC is then used to estimate causal

connections in simulated networks of autoregressive processes corrupted with measure-

ment noise and having long term memory (simulated for short length time-series) and

its performance is compared with that of multivariate Granger Causality.

5.1 Problem in Existing Formulation and the Intro-

duction of Effective CCC

Let us consider the example of a system of variables X, Y , Z, W , taken in Section 2.3

for which we estimate conditional CCC from Y to X. For computing CCCY→X|Z,W ,

two time varying dictionaries are built: D that encodes information from all variables

(X, Y , Z, W ) and D′ that encodes information from all variables except Y (X, Z, W

only). Using these dictionaries, dynamical compression complexities are estimated as:

CC(∆X|D′past) = ETC(D′past + ∆X)− ETC(D′past), (5.1)

CC(∆X|Dpast) = ETC(Dpast + ∆X)− ETC(Dpast), (5.2)

For explicit details on D′past and Dpast, please refer to Section 2.3. Conditional CCC,

CCCYpast→∆X|Zpast,Wpast , is then estimated as the difference of Eq. 5.1 and Eq. 5.2.

Averaged Conditional CCC over the entire time series with the window ∆X being

slided by a step-size of δ is given as below:

CCCY→X|Z,W = CC(∆X|D′past)− CC(∆X|Dpast). (5.3)
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What effectively this quantity is capturing is the causality from Y to ∆X given that

∆X is an outcome of evolution of the (X,Z,W ) model. It is thus Y ’s contribution to

all variables (including X) in the system that are supposedly contributing to evolution

of ∆X. This, however, is not the direct contribution of Y to X alone, removing all

the indirect means of transfer of information to X – and that is what we are interested

in estimating with the network data presented to us. To make this more clear, let us

consider the variables X, Y, Z,W having a particular network structure as depicted in

Figure 5.1. Then to extract the direct causal influence from Y to X, the indirect effect

from Y to X, which is transmitted via Z and W needs to be eliminated. The causal

effect captured via CCC from variable Y to X using bivariate CCCY→X is the total

cascaded effect in the network, inclusive of effects from Y to Z, Z to W and W to X.

The cascaded effect from Y up to a higher hierarchical level (W ), thus, needs to be

eliminated from CCCY→X (we suppose X to be at the lowest level of hierarchy in this

network as there is no other variable existing downstream to it and being caused by it;

similarly Y is at the highest level of hierarchy). Also, the influence that is transmitted

from W to X (and mediated by Z) which ultimately arises from Y needs to be removed

from CCCY→X to capture the direct influence from Y to X that exists external to the

cascaded network effects. This can be done by subtracting the total causal influence

from Y to X (which is bivariate CCCY→X) and the sum of causal influences from Y to

W (CCCY→W ) and the effect arising from Y which is transmitted to X via (X,Z,W )

model evolving to ∆X. A pictorial analog for this is subtracting the solid box and the

sum of two dashed boxes in Figure 5.1. Effective CCC, CCCEff.(Y→X) in the network
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Figure 5.1: A four variable network where causality from Y to X is to be determined.

is thus given by:

CCCEff.(Y→X) = CCCY→X − CCCY→W − CCCY→X|Z,W . (5.4)

Similarly, other effective CCC’s in the network can be computed as follows:

CCCEff.(Y→W ) = CCCY→W − CCCY→Z − CCCY→W |Z , (5.5)

CCCEff.(Z→X) = CCCZ→X − CCCZ→W − CCCZ→X|W . (5.6)

CCC to a level of hierarchy from a level above itself is just the simple bivariate

CCC. Thus, CCCEff.(Y→Z), CCCEff.(Z→W ) and CCCEff.(W→X) remain the same as

CCCY→Z , CCCZ→W and CCCW→X respectively. Also, above defined effective CCCs

are to be estimated only if there is a significant bivariate CCC for a pair of variables.

Significance is decided based on a set threshold (this is discussed in the following para-

graphs). Since bivariate CCC always captures the direct as well as indirect influences,

it is the bivariate CCC based causal graph that needs to be pruned in order to compute

the effective CCC value between a pair of variables in a network. Based on the number

of significant input bivariate CCC values to each variable, the hierarchical levels for

placement of the variables in a network are decided and consequently the effective CCC
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values estimated. In the example in Figure 5.1, in an ideal situation, variable Y will

have zero input significant CCCs (considered from all other variables) and is thus is

at level 1. Variable Z will have significant input CCC from only one other variable, Y

and is thus at level 2, W will have significant input CCC from 2 other variables (direct

from Z and indirect from Y ), and is thus at level 3. X will have 3 input significant

CCCs from Y (direct+ indirect), Z (indirect) and W (direct), and is thus at level 4. It

is possible to have more than one variable at a single level. This method works only for

directed acyclic graphs or to capture the net causal information flow in a particular di-

rection for a given network. The steps of the algorithm which computes effective CCC

connectivities for given data from directed acyclic graph network of four variables are

as follows:

1. Input multivariate data matrix containing observations from given network vari-

ables.

2. Compute bivariate CCC values between each pair of variables.

3. Based on the above values, decide the level of hierarchy for each network variable

in the following way:

(a) If bivariate CCC from all other variables to a variable is insignificant, then

the latter variable is at the first or topmost level of hierarchy. Significance

of bivariate CCC is decided based on comparison with a set threshold, th1,

with the obtained value being insignificant if it is less than th1. Significance

in points (b), (c), (d) below is also decided, based on this criteria.
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(b) If a variable has significant bivariate CCC from one other variable in the

network, and at least one variable at the first level (based on criteria (a))

exists having a causal influence to this particular variable, then this variable

is a second level variable. However, if no ‘first level’ variable exists, then

this variable is qualified as a first level variable. The sole existing significant

bivariate CCC value to this variable is likely to be spurious.

(c) If a variable has significant bivariate CCC from two other variables in the

network, and a variable at the second level (based on criteria (b)) exists

having a causal influence to this particular variable, then this variable is

a third level variable. However, if no ‘second level’ variable exists, then

this variable is qualified as a second level variable. One of the two existing

significant CCC values to the variable in this case, is likely to be spurious

or there exist more than one first level variables contributing to the second

level variable.

(d) If a variable has significant bivariate CCC from three other variables in the

network, and a variable at the third level exists having a causal influence

to this particular variable, then it is a fourth level variable. However, if no

third level variable exists but at least one second level variable exists, then

this variable is qualified as a third level variable. One of the three existing

significant CCC values to it is likely to be spurious in this case or more than

one first/second level variables are contributing to it. However, if, even a
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second level variable doesn’t exist, then the variable is qualified as a second

level variable. Two of the three significant CCC values are likely to be

spurious in this case or more than two (exactly three in the four variable

case) first level variables are contributing to this second level variable.

4. For all the first level variables in the network, effective CCC value is computed to

them from all other variables as being equal to the bivariate CCC value. All these

computed CCCs are insignificant (based on comparison with a set threshold, th1).

In fact, that was the reason for these variables to have been qualified as first level.

Hence, the signifcance of all these causalities is set to zero.

5. If one or more second level variables exist in the network, all causal influences to

this variable are from a level above itself (first level). Hence, bivariate CCC is

used to estimate the causality from all other variables to this variable. If these

CCCs are significant based on comparison with threshold, th1, significance of

corresponding effective CCCs between pairs of variables are set to 1 and remains

zero otherwise.

6. If one or more third level variables exist in the network, effective CCC from

second level (one level above) to third level is determined to be the bivariate

CCC between the pair. Its significance is determined based on th1, as in the step

above. If a first level variable exists in this network and there is a possible causal

pathway from this first to third variable (determined based on whether bivariate

CCC between first to third is significant based on comparison with th1 and there
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exists a second level variable from which effective CCC to this particular third has

been already qualified as being significant), then effective CCC from first to third

is determined as from Y → W , as in Eq. 5.5 above, after estimating conditional

CCC from first to third variable given second variable. The significance of this

effective CCC is determined based on comparison with a threshold, th2.

7. If a fourth level variable exists in the network, effective CCC from third to fourth

level variable is the same as corresponding bivariate CCC, its significance being

determined by th1. Effective CCC from second to fourth level is estimated in the

same way as from first to third level, determined as from Z to X, as in Eq. 5.6

above. The significance of this effective CCC is determined based on threshold,

th3. For computing effective CCC from first to fourth level, if bivariate CCC

from first to fourth is significant based on th1, then effective CCC from first to

fourth is computed as from Y to X as in Eq. 5.4 after estimating conditional

CCC from first to fourth given the second and third level variables. This effective

CCC is qualified as significant based on comparison with threshold, th4.

The thresholds th1, th2, th3, th4, which are used to determine the significance of

CCC values are determined empirically based on the results obtained for the datasets

considered.
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5.2 Problem of Joint ETC Computation and Equiv-

alent ETC based Computation

Once the problem of formulation is solved and we compute effective CCC to capture

causality between a pair of variables given other variables in a network, another issue

crops up at the level of computation. In order to compute conditional CCCs such as

CCCY→X|Z,W , CCCY→W |Z and CCCZ→X|W in Eqs. 5.4,5.5 and 5.6 for the network in

Figure 5.1 and similar such quantities relevant to other networks, joint ETC of several

time sequences needs to be estimated. For this, time varying dictionary of several

variables needs to be constructed as discussed in Section 2.3. As the number of variables

in a network grow, for a particular chosen number of bins B for encoding each time

series variable, the total possibilities of losslessly encoded symbol at each time point that

represents all variables together grows exponentially with the number of variables in the

given network, being equal to Bn possibilities for n variables in the network. Thus, it

can be said that the resulting ‘number of bins’ (let’s say b) has increased for computation

of ETC of requisite temporal sequences. Because of this, not only does ETC estimation

take more time, but also computation of dynamical complexities for short windows w

of ∆X as in Eqs. 5.1 and 5.2 based on short pasts, D′ and D of length L (used for

conditional CCC estimation) becomes difficult. With higher number of variables and

the total possible encodings at each time point increased, the patterns in D and D′

influence limited number of patterns in ∆X. Thus, these dictionaries are unable to

accurately capture the complexity of their immediate (potential) future evolution. On
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the other hand, if parameters L and w are made large, the causal information from

immediate past is lost. Thus, we propose an alternate means to capture dynamical

complexity for high dimensional data. This is by defining equivalent ETC. Trends in

changes of dynamical complexities (or bivariate CCC/conditional CCC) estimated by

joint and equivalent ETCs are found to be similar for two and three variable systems.

In the next subsection, we discuss the equivalent ETC formulation based on theoretical

understanding of ETC.

5.2.1 Equivalent ETC

Details on the working of ETC algorithm are given in Chapter 2 in Section 2.2. Here,

we discuss the theoretical underpinnings for the measure, that will later help us to

propose equivalent ETC formulation.

Let Y be a given sequence of symbols of length N , Y = a1a2a3a4 . . . aN , where

a1, a2, a3, a4, . . . aN ∈ {b1, b2, b3 . . . bm}. Thus, a1, a2, a3, a4, . . . aN can take one of m

possible symbols.

We define the following for Y :

Y1: the given sequence Y as it is.

Y2: transformed Y , once the most frequently occurring pair in Y has been sub-

stituted with another symbol, i.e. the sequence after first iteration of the ETC

algorithm.

Yi: transformed sequence after i−1 iterations of the ETC algorithm, where at each
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iteration the most frequently occurring pair in that sequence is being substituted

by a new symbol.

Yn+1: transformed sequence Y after n iterations, where no more iterations after

this are possible and hence n is the ETC value.

X1: most frequently occurring pair in Y1. In other words, it is the first most

dominant shortest pattern (of length 2).

X2: most frequently occurring pair in Y2. In other words, it is the second most

dominant shortest pattern (of length 2 in Y2, but may be of length 2 or 3 in the

original sequence, Y ).

Xi: most frequently occurring pair in Yi.

Xn: most frequently occurring pair in Yn. It is the nth most dominant shortest

pattern.

Let Z be the event of joint occurrence of paired patterns (X1, X2, X3, . . . Xn) occurring

at different levels of transformations of Y . The probability of joint occurrence of these

events is given as –

p(Z) =p(X1, X2, X3, . . . Xn),

=p(Xn|X1, X2, . . . Xn−1) · p(X1, X2, . . . Xn−1),

=p(Xn|X1, X2, . . . Xn−1) · p(Xn−1|X1, X2, . . . Xn−2) · p(X1, X2, . . . Xn−2),

...

=p(Xn|X1, X2, . . . Xn−1) · p(Xn−1|X1, X2, . . . Xn−2) . . . p(X2|X1)p(X1).

(5.7)
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Total self information, G(Z) contained in the joint occurrence of patterns (X1, X2, X3, . . . Xn)

can therefore be written as:

G(Z) = − log(p(Z)),

= − log(p(X1))− log(p(X2|X1))− log(p(X3|X1, X2)) . . .− log(p(Xn|X1, X2, . . . Xn−1)).
(5.8)

We approximate the conditional probability, say p(Xi|X1, X2, . . . Xi−1) in the above

formulation by observing the frequency of pattern, Xi, in the sequence Yi in which

all prior replacements X1, X2, . . . Xi−1 have been done. Thus, if q1, q2, . . . qn are the

frequency of occurrence of patterns X1, X2, . . . Xn in Y1, Y2, . . . Yn respectively, then

Eq. 5.8 can be written as:

G(Z) = − log
(q1

N

)
− log(

q2

N − q1

)− log

(
q3

N − q1 − q2

)
. . .− log

(
qn

N − q1 − q2 . . .− qn−1

)
,

= − log
(q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .

(
qn

N − q1 − q2 . . .− qn−1

)
.

(5.9)

As seen above, ETC algorithm reduces the length of sequence at each iteration by

transforming the original sequence Y . Thus, the compression achieved by the ETC

algorithm at any step of the algorithm can be seen as the fractional reduction in length

of the sequence achieved at that step. Let us suppose the equivalent (or average)

compression (or fractional reduction in length) being done by ETC at each iteration be

denoted by x. Then, if ETC algorithm takes n steps to stop,

xn =
(q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .

(
qn

N − q1 − q2 . . .− qn−1

)
, (5.10)
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Taking natural logarithm on both sides,

n · log(x) = log

((q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .

(
qn

N − q1 − q2 . . .− qn−1

))
,

n =
log
((

q1
N

) (
q2

N−q1

)(
q3

N−q1−q2

)
. . .
(

qn
N−q1−q2...−qn−1

))
log(x)

.

(5.11)

Using Eq. 5.9 in Eq. 5.11

n = − 1

log(x)
·G(Z),

n = k ·G(Z),

(5.12)

where k = −1/ log(x). Thus, ETC can be seen as a constant multiplied by total self-

information contained in the joint occurrence of most dominant (shortest) patterns at

all levels (scales) of the sequence. For estimating equivalent ETC of l given sequences

based on the above formulation, let x1, x2, x3, . . . xl be the equivalent (or average) per

step compression for each of the given sequences and their respective total compression

(the quantity, (( q1
N

)( q2
N−q1 )( q3

N−q1−q2 ) . . . ( qn
N−q1−q2−...−qn−1

)) in case of the sequence con-

sidered above) be A1, A2, A3, . . . Al. The above quantities are computed in the process

of determining the number of ETC steps n1, n2, n3, . . . nl, for each of the sequences sep-

arately. Then equivalent ETC for the l sequences is estimated by computing geometric

mean of the total compression achieved for all given sequences. Equivalent number of

ETC steps required for compression of l given sequences, neq, is then given as:

(x1 · x2 . . . xl)
(neq/l) = (A1 · A2 . . . Al)

(1/l),

neq =
log(A1 · A2 . . . Al)

log(x1 · x2 . . . xl)
.

(5.13)

Because of the problems discussed in joint ETC computation, equivalent ETC is

used instead of joint ETC for effective CCC estimation in networks. Both bivariate
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and conditional CCC terms used for estimation of effective CCC employ equivalent

ETC formulation in the results discussed in next section.

5.3 Results

Four-variable networks of autoregressive (AR) processes were generated for two cases

as follows:

Case 1: AR(1) processes with measurement noise.

X1(t) = a1X1(t− 1) + b1X2(t− 1) + c1X3(t− 1) + d1X4(t− 1) + ε1,t,

X2(t) = a2X1(t− 1) + b2X2(t− 1) + c2X3(t− 1) + d2X4(t− 1) + ε2,t,

X3(t) = a3X1(t− 1) + b3X2(t− 1) + c3X3(t− 1) + d3X4(t− 1) + ε3,t,

X4(t) = a4X1(t− 1) + b4X2(t− 1) + c4X3(t− 1) + d4X4(t− 1) + ε4,t,

(5.14)

is a system of four variables with ε1, ε2, ε3, ε4 = νη, where ν=noise intensity=0.03 and

η follows standard normal distribution. Measurement noise (additive white Gaussian

noise) of the form of ν ′η was added to each of the processes with ν ′ = 0.05. Ten different

types of this network were simulated with the adjacency matrix:

D =


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 , (5.15)

taking values as follows:

Type 1:

D1 =


0.7 0 0 0.9
0 0.7 0 0.8
0 0 0.7 0.9
0 0 0 0.7

 , (5.16)
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Type 2:

D2 =


0.7 0 0 0.9
0.9 0.7 0 0
0.9 0 0.7 0
0 0 0 0.7

 , (5.17)

Type 3:

D3 =


0.7 0 0 0.9
0 0.7 0.8 0

0.9 0 0.7 0
0 0 0 0.7

 , (5.18)

Type 4:

D4 =


0.7 0 0 0.9
0.9 0.7 0.8 0
0.9 0 0.7 0
0 0 0 0.7

 , (5.19)

Type 5:

D5 =


0.7 0 0 0.9
0 0.7 0.8 0.9

0.9 0 0.7 0
0 0 0 0.7

 , (5.20)

Type 6:

D6 =


0.7 0 0 0.9
0.9 0.7 0.8 0.9
0.9 0 0.7 0
0 0 0 0.7

 , (5.21)

Type 7:

D7 =


0.7 0 0 0.9
0 0.7 0.8 0

0.9 0 0.7 0.9
0 0 0 0.7

 , (5.22)

Type 8:

D8 =


0.7 0 0 0.9
0.8 0.7 0.8 0
0.9 0 0.7 0.9
0 0 0 0.7

 , (5.23)

Type 9:

D9 =


0.7 0 0 0.9
0 0.7 0.8 0.9

0.9 0 0.7 0.9
0 0 0 0.7

 , (5.24)
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Figure 5.2: Ten types of simulated networks for two cases of autoregressive processes
X1, X2, X3, X4. Self connections are not shown here.

Type 10:

D10 =


0.7 0 0 0.9
0.8 0.7 0.8 0.9
0.9 0 0.7 0.9
0 0 0 0.7

 , (5.25)

Pictorial depiction of the directed graphs for these ten types of networks is shown

in Figure 5.2.
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Case 2: AR(50) processes. Equations determining the network are as below:

X1(t) = a1X1(t− 1) + b1X2(t− 50) + c1X3(t− 50) + d1X4(t− 50) + ε1,t,

X2(t) = a2X1(t− 50) + b2X2(t− 1) + c2X3(t− 50) + d2X4(t− 50) + ε2,t,

X3(t) = a3X1(t− 50) + b3X2(t− 50) + c3X3(t− 1) + d3X4(t− 50) + ε3,t,

X4(t) = a4X1(t− 50) + b4X2(t− 50) + c4X3(t− 50) + d4X4(t− 1) + ε4,t,

(5.26)

is a system of four variables with ε1, ε2, ε3, ε4 = νη, where ν=noise intensity=0.03 and η

follows standard normal distribution. Ten different types of this network were simulated

with same adjacency matrices as for the ten types taken in Case 1.

For all the 20 cases (10 types of networks, for each of Case 1 and Case 2), 100 trials of

the network with 400 observations from each variable (after removal of 200 transients)

were taken. For each trial, the initial conditions were randomly chosen. Effective CCC

values as well as conditional multivariate Granger Causality (GC) values were computed

for all the cases taken in order to determine network connectivity. For the estimation

of effective CCC, the parameters were set as: w = 20, B = 4, δ = 20, L = 1401 for

both Cases 1 and 2 and the thresholds used were set as: th1 = 0.006, th2 = 0.017, th3 =

0.0001, th4 = 0.0001 for Case 1 and th1 = 0.007, th2 = 0.017, th3 = 0.002, th4 = 0.002

for Case 2. Akaike Information Criteria was used for model order estimation with the

maximum model order set to 20 for Case 1 and 60 for Case 2 in the MVGC toolbox [31].

Computation of maximum number of lags to take for autocorrelation computation

was done automatically by the toolbox. Significance testing of effective CCC, done

1These parameters were selected as they satisfied the parameter selection criteria (see Section 3.3)
for a number of arbitrarily and independently selected pairs of variables chosen from the simulated
network.
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based on comparison with thresholds, and significance testing of GC F statistic as done

automatically by the MVGC toolbox, yielded a binary matrix of connectivity between

variables, with 1 indicating the presence and 0 the absence of directed causal connection

between a pair of variables. It was checked whether connectivity between each pair of

variables was correctly determined or not by each method for each trial. Based on that,

true positive rate (TPR) or recall, true negative rate (TNR) or specificity, false positive

rate (FPR), false negative rate (FNR), precision, F1 score and accuracy were computed

and compared for the two methods for each case. These quantities were estimated as

follows:

TPR =
TP

TP + FN
,

TNR =
TN

TN + FP
,

Precision =
TP

TP + FP
,

F1Score =
2 · Precision ·Recall
Precision+Recall

,

Accuracy =
TP + TN

TP + TN + FP + FN
,

(5.27)

where TP denotes the number of true positives, TN, the number of true negatives,

FP, the number of false positives and FN, the number of false negatives. The above

quantities estimated for CCC and GC for all network types for Case 1 is listed in

Table 5.1 and for Case 2 in Table 5.2. The averaged metrics (for CCC as well as GC)

over all network types for each Case are shown as the last row in the corresponding

tables and also depicted in bar graphs in Figure 5.3.
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Table 5.1: Effective CCC and Conditional GC comparison for 10 types of networks
simulated as per Case 1. For each network type, the statistics are computed over 100
trials.

Network
Type

Method TPR TNR Precision F1Score Accuracy

1
CCC 0.58 0.97 0.87 0.69 0.87

GC 1 0.66 0.50 0.66 0.75

2
CCC 0.90 0.90 0.75 0.82 0.90

GC 1 0.60 0.46 0.63 0.70

3
CCC 0.85 0.78 0.57 0.68 0.80

GC 1 0.77 0.59 0.74 0.83

4
CCC 0.90 0.84 0.74 0.81 0.86

GC 1 0.66 0.60 0.75 0.78

5
CCC 0.81 0.84 0.71 0.76 0.83

GC 1 0.66 0.59 0.75 0.77

6
CCC 0.87 0.92 0.88 0.87 0.90

GC 1 0.66 0.68 0.81 0.80

7
CCC 0.87 0.83 0.72 0.79 0.84

GC 1 0.76 0.67 0.80 0.84

8
CCC 0.83 0.90 0.85 0.84 0.87

GC 1 0.73 0.72 0.84 0.84

9
CCC 0.83 0.90 0.86 0.85 0.87

GC 1 0.63 0.66 0.79 0.79

10
CCC 0.84 0.99 0.98 0.91 0.91

GC 1 0.67 0.75 0.86 0.84

Mean
CCC 0.83 0.89 0.79 0.80 0.87

GC 1 0.68 0.62 0.76 0.79
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Table 5.2: Effective CCC and Conditional GC comparison for 10 types of networks
simulated as per Case 2. For each network type, the statistics are computed over 100
trials.

Network
Type

Method TPR TNR Precision F1Score Accuracy

1
CCC 0.88 0.98 0.94 0.91 0.96

GC 0.03 0.60 0.02 0.02 0.45

2
CCC 0.94 0.93 0.81 0.87 0.93

GC 0.02 0.76 0.03 0.02 0.58

3
CCC 0.89 0.82 0.62 0.73 0.83

GC 0.003 0.99 0.13 0.01 0.75

4
CCC 0.86 0.87 0.76 0.81 0.87

GC 0.03 0.98 0.38 0.05 0.66

5
CCC 0.79 0.86 0.74 0.76 0.84

GC 0.01 0.95 0.10 0.02 0.64

6
CCC 0.83 0.96 0.94 0.88 0.91

GC 0.06 0.98 0.66 0.11 0.60

7
CCC 0.75 0.84 0.70 0.73 0.81

GC 0.03 0.97 0.30 0.05 0.65

8
CCC 0.78 0.93 0.88 0.83 0.86

GC 0.04 0.91 0.24 0.07 0.55

9
CCC 0.70 0.88 0.81 0.75 0.80

GC 0.01 0.94 0.13 0.02 0.55

10
CCC 0.78 0.99 0.99 0.87 0.88

GC 0.08 0.92 0.47 0.13 0.50

Mean
CCC 0.82 0.91 0.82 0.81 0.87

GC 0.03 0.90 0.25 0.05 0.59

5.4 Discussion, Conclusions and Future Work

As seen from Section 5.1, what bivariate CCC captures is the total cascaded causal effect

from one variable to another in a network, inclusive of the causal influence that has
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Figure 5.3: Averaged metrics for performance of CCC and GC over ten different types
of networks taken for each of Case 1 (left) and Case 2 (right).

been passed on via the intermediate variables between the considered variables. This

information can be of use and hence find applications for certain networks, however,

many a times, we are interested in capturing only the direct causal influences. As a

result, the method of effective CCC estimation has been developed. Some preliminary

results for testing of effective CCC on simulated networks are shown in Section 5.3.

The networks chosen are directed acyclic graphs, because the developed method uses

the procedure of removing cascaded effects in a network so as to capture only the direct

causal influences. Also, we have not taken networks in which there are two or more

independent processes (say X and Y ) that are generated using the same equations and

only one of these processes is causing another process (say X causing Z) in the network.

In this case, effective CCC estimates X → Z causality to be significant, but additional

to that, it also estimates a significant effective CCC from Y → Z. This is because the

169



nature of processes X and Y is same and since the nature of Z is derived from X, Z has

also a potential to be caused from Y . Hence, it is not completely correct then to say

that the causality estimated from Y → Z is erroneous. This issue also persists if there

are two or more processes in the network which are not independent (or at the highest

level of hierarchy) as in the previous example but at lower levels of hierarchy and are

generated in the same manner. For example, let us consider the case in which a process

X causes Y and Z with the same coupling coefficient and also the coupling coefficient

to Y and Z from their own pasts is the same and further the process Y causes Q. For

this case, effective CCC would estimate significant causation not only from Y to Q but

also from Z to Q. This is again because of the nature of processes and Z having the

potential to cause Q. Here again, it is not completely correct to say that the causality

estimated from Z to Q is erroneous. Thus, for the network types simulated, we have

eliminated the cases in which there are two or more processes generated in exactly the

same manner and these processes are at a level of hierarchy other than the lowest level.

Being at levels higher than the lowest, these processes would be either causing or having

the potential to cause other processes in the network. Other than this, all topologies

of 4 variable networks forming directed acyclic graphs have been considered – these

are the 10 network types taken for the two cases. For these cases, effective CCC and

conditional multivariate GC have been used to establish network causal connections.

The results demonstrate that CCC is promising for short, noisy and long range mem-

ory autoregressive processes. On comparison of F1Score and Accuracy, effective CCC

is found to perform better than GC for almost all network types taken in Case 1: AR(1)
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processes with measurement noise. Only for Type 3 and Type 7, performance of GC

is slightly better than CCC. In this case, TPR for GC is 1 for all network types, while

TNR is lower, the average value being 0.68. For AR processes with measurement noise,

GC is overestimating the number of causal connections than actually exist. Overall,

CCC performs 10.13% better than GC in terms of average Accuracy and 5.26% better

in terms of F1Score. For all network types in Case 2, CCC performs much better than

GC. Based on F1Score, Accuracy and other parameters, GC is a very poor indicator of

network connectivity for long range memory AR(50) processes simulated for short data

length. In this case, TPR for GC is very poor, average value being 0.03, while TNR

is high, the average value being 0.90. For AR processes with long term memory, GC is

able to identify only a very few of the existing causal connections. Effective CCC, with

accuracy remaining in the range of 0.80 − 0.96, seems to be a promising measure to

capture connectivity with short length datasets of long term memory. CCC performs

47.46% better than GC in terms of average Accuracy and 1520% better in terms of

average F1Score.

Future work would involve developing techniques to compute effective CCC for

networks with bidirectional connections, that is networks having both feedforward and

feedback connections, which is a challenging task. The developed method has been

tested to work for five variables. In principle, the method could be extended to work

for larger networks, but this is beyond the scope of this thesis. Furthermore, network

connectivity for real world data from multivariate systems needs to be determined and

its performance compared with existing measures. A prospective area of application
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is that of transcriptional regulatory networks, where the measure would be tested.

For the developed technique of effective CCC estimation, a method for data-adaptive

estimation of optimal thresholds th1, th2, th3, th4, that determine the significance of

CCCEff. estimates, needs to be developed.
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Part II

Advancements in Causality Analysis
Contributing to Allied Disciplines
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Chapter 6

Causality and Chaotic
Synchronization

Synchronization of chaotic systems is a ubiquitous phenomenon that arises when these

systems are coupled. Chaotic synchronization has found applications in living systems,

human cognition and neuroscience as well as in physics, chemistry and engineering.

In many natural and physiological instances, synchronization may occur desirably or

undesirably. Causality testing has the potential to offer useful analysis tools to identify

and deal with these occurrences in an appropriate manner. In this chapter, we deal with

two-fold important aspects of synchronization using causality as described below:

1. Synchronization has been understood as a temporal phenomenon. Here, we use

the lens of causality testing to provide a complementary spatial perspective to the

phenomenon by introducing the novel idea of causal stability. We also propose

and prove a causal stability synchronization theorem and propose an empirical

criterion to identify synchronizing variables in coupled identical chaotic dynami-

cal systems. This is an important theoretical contribution to the field of chaotic
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synchronization and causality testing and has potential for real world applications,

such as in the control of chaos.

2. Anticipating Synchronization (AS) is a counterintuitive form of synchronization,

where the slave (driven system) dynamics evolve ahead in time of the master

(driving system) dynamics. This phenomenon has been found to be stable in

several real systems. It is shown for the difficult case of an AS simulated system

that Granger Causality fails in causality estimation. However, CCC, when used

with high resolution (large bin size) of the data can inform correct causal relations.

6.1 Introduction

Chaotic Synchronization is a phenomena that arises on coupling of chaotic systems. Pec-

ora and Carroll’s 1990 paper [68] followed by He and Vaidya’s work in 1992 [69] were a

revelation into chaotic synchronization and opened up an entire field of intense research.

Later, synchronization began to be classified into its various types [138]. It was seen

that for two or more chaotic systems, if a means of interaction is established by which

they are able to exchange some information (via coupling), then they may synchronize

in one of the following ways. The whole of the two systems may become completely

identical with evolution over time (as in complete/identical synchronization), or they

may become identical with a time delay (delayed/anticipating synchronization), or may

become identical in phase (phase synchronization), or may become connected with a

functional relationship (generalized synchronization).
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Applications of synchronization of chaotic systems are ubiquitous - it is found to

occur in specialized electronic circuits, optical arrays, physiological phenomena, social

networks, superconductors and other biological and physical systems. Some examples

include phase synchronization of two pendulum clocks hanging on a wall, synchroniza-

tion of moon’s rate of rotation with its orbital motion rate of revolution around the

earth. With this, the moon always faces the same side towards the earth. The concept

has also become important and found applications in engineering such as communica-

tion technologies, coupled laser systems and biochemical reactors. In the physiological

realm, many examples of chaotic synchronization abound – activity of different heart

muscle cells synchronize to produce its rhythmic beating, groups of neurons in the brain

synchronize to perform certain functions, neighbouring functional units of kidney, called

nephrons, attain phase synchronization of their pressure oscilations that regulate the

flow of fluid [139].

Since synchronization is a result of coupling between systems, there has been some

research, which has tried to analyze and understand the domain through causality test-

ing methods. Given temporal data from coupled chaotic systems, these methods deal

with estimation of inter-system strength and directionality of coupling. They have been

helpful in identifying: (a) if the given systems are proceeding towards synchronization

and, (b) which nodes in a given network are the strongest drivers and hence plausibly

the focus for the origin of synchronization [140, 141]. Causality estimation measures

employed in these studies include symbolic Transfer Entropy [63], conditional Mutual

Information [64] and non-linear Granger Causality [42].
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Unlike the above studies, in this chapter, we provide, for the first time, a math-

ematically rigorous treatment to the link between causality and synchronization by

proving necessary and sufficient conditions for complete synchronization based on spa-

tial causal influences. For this, we propose the concept of causal stability and prove the

causal stability synchronization theorem. A novel empirical condition is also proposed

to identify synchronizing variables in coupled identical chaotic dynamical systems based

on intrasystem causal influences estimated using time series data of the driving system

alone. While being an important theoretical contribution, this work also has potential

real-world applications in the control of chaos. This work is discussed in Section 6.2.

In Section 6.3, we deal with causality detection in systems with Anticipating Syn-

chronization (AS). Some chaotic systems though coupled in a unidirectional master-

slave configuration, exhibit ‘paradoxical’ dynamics in which the time series of the slave

begins to lead (anticipate) that of the master. Hence, causality detection for these

systems based on time series data is a difficult task. Using a simulated coupled chaotic

system with anticipation, we show Granger Causality (GC) is not a reliable measure

for estimating causality in AS systems. Any existing studies making use of GC to infer

the presence of AS in real world systems need to be revisited and revised while any

future studies should proceed with caution. CCC when employed with high (binning)

resolution of data is found to be successful for detecting causality in the simulated AS

system. It is thus a potential measure that can be used in studies along this line.
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6.2 Causal Stability and Synchronization

Synchronization is very well understood as a temporal phenomena which leads the cou-

pled systems to converge or develop a dependence with time. Pecora and Carroll showed

that negative conditional Lyapunov exponents of the non-driven slave subsystem are a

necessary condition [68], while He and Vaidya proved that asymptotic stability of the

non-driven subsystem is a necessary and sufficient condition for complete synchroniza-

tion [69]. However, to the best of our knowledge, there exists no spatial perspective for

understanding of synchronization. For ergodic dynamical processes, it is only natural

to expect a spatial counterpart for temporal conditions of chaotic synchronization. In

this work, we explore causal interactions within the master and slave systems to iden-

tify spatial influences that drive the slave to synchronize with its master. A master is

an independent driving chaotic system while the slave is dependent, unidirectionally

coupled to the driving master.

Sensitive dependence on initial conditions, the hallmark of chaos, implies that tra-

jectories from nearby initial conditions diverge. However, when these chaotic systems

are coupled, the causal influence of the master on the slave via information transmitted

by the coupled variable may lead to synchronized behaviour. The causal influence of

the coupled variable on the non-driven subsystem is of importance in this regard. If

this influence is invariant to perturbation of the subsystems’ initial conditions then we

can expect chaotic synchronization.

Asymptotic stability [69] - the condition that the non-driven subsystem reaches the
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same eventual state at a fixed time no matter what the initial conditions were, is both a

necessary and sufficient condition for chaotic synchronization. We are interested in the

question, what is the cause of asymptotic stability of the subsystem? Specifically, we

explore what kind of causal influence does the forced variable have on this subsystem

that leads it to be driven to the same eventual state each time. We formally derive and

prove a necessary and sufficient condition for chaotic synchronization based on causal

influence to the non-driven subsystem.

Furthermore, for identical master and slave systems, we provide an empirical criteria

for determining which variables when coupled will result in synchronization. This is

achieved by analyzing intra-system causal influences estimated entirely from time series

data of the driving system alone. This is an important novel contribution with real world

applications in the control of chaos, especially when we need to determine which nodes

should be coupled for synchronization when the underlying equations are completely

unknown. An important tool for this kind of causal analysis is the measure CCC,

which was proposed in Chapter 2. The measure efficiently captures causal relationships

between time series of coupled processes based on dynamical complexity. Since the

measure provides not only the quantity (strength) of causality but also its quality,

which is reflected in the sign of the estimated CCC value, it is able to identify variables

which when coupled will lead to synchronization.

The proposed causality based conditions for synchronization are said to be spatial

as they measure the causal influence between spatial (state) variables of the driver and

slave systems. These conditions hold for chunks of time series data taken, starting at
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any time point of the available data, post the removal of transients. On the other hand,

the temporal condition of asymptotic stability holds true only after a fixed, sufficiently

far enough time and is proved for time t → ∞. Thus, the proposed spatial conditions

are complementary to standard temporal conditions and will be useful in practical

applications where limited data is available.

6.2.1 Synchronization via Causal Stability

Let a master system be governed by the following set of differential equations:

ẏ = f(t,y), (6.1)

where ẏ and f are vectors. As described in [69], the master system (Eq. 6.1) can be

divided into two interdependent subsystems p and q. The slave system also consists

of two subsystems p′ and q′, whose functional form is identical to the corresponding

master system. p′ component of slave is completely overridden by the p component of

master and will be referred to as the forced/driven variable. q′ component is allowed to

have initially different conditions and will be referred to as the non-driven subsystem.

The equations for the master are as below:

ṗ = h(t,p,q), q̇ = g(t,p,q), (6.2)

and the slave system is given by:

p′ = p, q̇′ = g(t,p,q′). (6.3)

As pointed before, the influence of the forced variable (p′) on the non-driven subsystem

(q′) is important for our analysis of the behavior of slave dynamics. What is meant
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by a cause or causal influence, has been discussed in Section 1.2.3. For evaluation of

cause or causal influence based on time series analysis, the above definition of causality

was formulated in a mathematical way by Wiener [27]. This has been discussed in

Section 1.2.5. According to Wiener, “a time series Y is a cause for time series X if

the past of Y contains information that helps predict X above and beyond the infor-

mation contained in past values of X alone”. This principle led to Wiener-Granger

causality measure [5] or GC for coupled autoregressive processes. Subsequently, con-

cepts related to information flow, such as Transfer Entropy [23] or Conditional Mutual

Information [64] were developed for causality testing. These have been discussed in Sec-

tion 1.2.5. The CCC measure, proposed in Chapter 2 is another measure. It captures

causality based on dynamical evolution of processes.

Let us suppose the subsystem p comprises of the variable x and p′ of variable x′.

Also, the subsystem q comprises of the variables y and z and q′ of variables y′ and z′.

We estimate the net causal influence input to the subsystem q′ as below. The causal

influence can be determined using any of the methods discussed above and is denoted

by CI.

CInet(p′→q′) = CIp′→q′ − CIq′→p′ , (6.4)

which in this case reduces to:

CInet(x′→y′,z′) = CIx′→y′|z′ + CIx′→z′|y′

−CIy′→x′|z′ − CIz′→x′|y′ .
(6.5)

where CIa→b|c is the conditional causal influence of a on b given time series c. In case of

more than three variables, the conditioning is performed on all the remaining variables
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(other than a and b).

We define causal stability for the subsystem q′ as follows:

Definition 6.1 Causal Stability: The subsystem q′ is said to be causally stable if:

|CInet(p′(p′0)→q′(q′0)) − CInet(p′(p′0)→q′(q′1))| < ε, (6.6)

for arbitrarily small ε > 0. p′(p′0) represents the solution trajectory of system p′ started

from initial vector p′0, that is p′(t1 : t2; t0,p
′
0), for all t1 such that ttr < t1 < +∞,

t2 = t1 + T , T > 0 and transients for the trajectory last until ttr. T is the length of

the trajectory over which CInet is estimated. q′(q′0) and q′(q′1) represent the solution

trajectory of system q′ started from initial vectors q′0 and q′1 respectively, that is

q′(t1 : t2; t0,q
′
0) and q′(t1 : t2; t0,q

′
1), for the same t1, t2 defined above.

If the solution trajectory for q′ in Eq. 6.3 is causally stable ∀ q′0 ∈ D(t0), where

D(t0) ⊆ Rn, then D(t0) is called the region of causal stability. If D(t0) = Rn, then the

solutions are said to be globally causally stable. The requirement on D(t0) is that any

two initial conditions for the slave subsystem q′ taken from this region yield solution

trajectories which at some finite point in time (≥ ttr) come close to each other for some

chunk of time. Intuitively, causal stability implies that the net causal influence input

to the non-driven subsystem q′ from the driven subsystem p′ is invariant to the change

in the initial conditions of q′.

We define synchronization as:

Definition 6.2 Synchronization: Let us take two systems ẏ = f(t,y) and ẏ′ = f ′(t,y′),

where y,y′ ∈ Rn. Let their solutions be given by y(t; t0,y0) and y′(t; t0,y
′
0), re-
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spectively. f(t,y) synchronizes with f ′(t,y′) if there exists D(t0) ⊆ Rn, such that

y0,y
′
0 ∈ D(t0) implies

‖y(t; t0,y0)− y′(t; t0,y
′
0)‖ → 0 as t→∞. (6.7)

We state and prove the following theorem:

Causal Stability Synchronization Theorem: The slave system (p′,q′) synchro-

nizes with the master system (p,q) iff there exists D(t0) ⊆ Rn such that when the

initial conditions of the non-driven part of the slave system q̇′ = g(t,p,q′) fall in D(t0),

the solution trajectory of q′ is causally stable.

Proof :

Sufficient Condition: If there exists a D(t0) ⊆ Rn such that when the initial condi-

tions of the non-driven part of the slave system q̇′ = g(t,p,q′) fall in D(t0), the solution

trajectory of q′ is causally stable, then, by the definition of causal stability,

|CInet(p′(p′0)→q′(q′0)) − CInet(p′(p′0)→q′(q′1))| < ε, (6.8)

where q′0 and q′1 are two arbitrary initial conditions in D(t0). Let us suppose the net

difference in causal influence that the presence of a variable p′ makes on the future of

q′ above and beyond the past trajectory of q′ is computed using a measure C 1. Since

CIq′(q′0)→p′(p′0) = 0 and CIq′(q′1)→p′(p′0) = 0 (as p′ is fixed, taken from the master and

the coupling is unidirectional), Eq. 6.8 reduces to:

C(∆q′(q′0)|q′(q′0)past,p
′(p′0)past)− C(∆q′(q′0)|q′(q′0)past)

≈ C(∆q′(q′1)|q′(q′1)past,p
′(p′0)past)− C(∆q′(q′1)|q′(q′1)past)

(6.9)

1C could be an infotheoretic quantity such as conditional entropy or could be a complexity measure.
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where ∆q′(q′0) and ∆q′(q′1) are the current window of time series data from the

system q′ started from initial conditions q′0 and q′1 respectively. q′(q′0)past and q′(q′1)past

represent the immediate past values of the window from the system q′ started from

initial conditions q′0 and q′1 respectively. p′(p′0)past represent synchronous past values

from the system p′ started from initial condition p′0.

If the system q′ is started from two nearby initial conditions, then their initial

solution trajectories will be similar as the influence from the fixed master p(p0) (=

p′(p′0)) time series has not yet come into play. Even if the initial conditions are far

away, then the condition on D(t0) would require the trajectories to come close to each

other for a chunk of time starting at some finite time ts. Then, for this chunk of time,

the trajectories are close to each other and hence:

C(q′(q′0)past)ts = C(q′(q′1)past)ts . (6.10)

Also,

C(∆q′(q′0)|q′(q′0)past)ts = C(∆q′(q′1)|q′(q′1)past)ts . (6.11)

The reason for the above two equalities for measure C is that it is computed using coarse

grained time series (symbolic sequences) or k-nearest neighbor estimation techniques,

rendering the measure to become equal for two close by trajectories. Eqs. 6.10 and 6.11

hold at time ts and Eq. 6.9 (and 6.8) hold for all t ≥ ts. So, Eq. 6.9 is true at t1 = ts+∆t

where ∆t is an arbitrary increment in time. For this to be true, conditions 6.10 and

6.11 need to also hold at t1, because in order to maintain 6.8 for every small time step

increment ∆t starting at ts, the measure C for the solution trajectories started at two
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different initial conditions cannot drastically change, nor can the influence in each case

from its own past to future. Also, the only drivers of system q′, or specifically the

contributors to the evolution of ∆q′ are the past of q′ itself and the forced variable p′

(which is fixed across different initial conditions of q′). Since the measure C for the

solution trajectories q′(q′0) and q′(q′1) is equal as well as the influence they bring to

their future, these solution trajectories have been forced not to diverge but to converge

as they were similar at ts and need to maintain these conditions at t1. Thus,

‖q′(t,p; t0,p0,q
′
0)− q′(t,p; t0,p0,q

′
1)‖ → 0 as t→∞. (6.12)

Necessary Condition: If there exists a D(t0) ⊆ Rn such that when the initial condi-

tions of the non-driven part of the slave system q̇′ = g(t,p,q′) fall in D(t0), the master

and slave systems are synchronized. Suppose the master starts from initial condition

qm and q′0 and q′1 are two arbitrary initial conditions taken for the slave in the set

D(t0). Then, by the definition of synchronization stated above,

‖q′(t,p; t0,p0,q
′
0)− q(t,p; t0,p0,qm)‖ → 0, t→∞, (6.13)

‖q′(t,p; t0,p0,q
′
1)− q(t,p; t0,p0,qm)‖ → 0, t→∞. (6.14)

Using Eqs. 6.13 and 6.14,

‖q′(t,p; t0,p0,q
′
0)− q′(t,p; t0,p0,q

′
1)‖ → 0, t→∞. (6.15)

Because of the uniqueness of solutions,

q′(t,p; t0,p0,q
′
0) = q′(t,p; t0,p0,q

′
1). (6.16)
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So, CInet estimated from a fixed time series (for solution trajectory starting at any time

t) to the two identical time series of system q′ will be equal. Hence,

|CInet(p′(p′0)→q′(q′0)) − CInet(p′(p′0)→q′(q′1))| = 0, (6.17)

which implies causal stability of q′. �

The above theorem is proved for the case of complete synchronization of identical

master and slave systems with a subsystem of the slave being forced by the master. If

the systems are non-identical but still a subsystem of the slave is forced and the systems

undergo complete synchronization, we expect the theorem to be valid as all of its steps

would still hold. Complete (identical) synchronization has been shown to hold for some

configured networks of non-identical systems [142, 143]. A generalized version of this

theorem may be applicable in such networks.

Empirical Study

The difference of CInet to the non-driven subsystem of slave for two different initial

conditions approaches zero when the system is led to synchronization and not other-

wise, is demonstrated for the Lorenz system in Figure 6.1(b), whose simulation and

CInet estimation details are given below. CInet is estimated using the CCC measure.

CCC happened to be the most appropriate choice as it is a model-free measure of

causality applicable for non-linear time series and has been tested on several real-world

like scenario simulations as well as real world datasets (see Chapter 3 and Chapter 4).

Moreover, for our purpose we need a measure, using which, causal influence can be

186



estimated over short lengths of windows taken from time series data. Info-theoretic

measures based on probability density estimates do not perform very well in this re-

gard. Furthermore, CCC is an interventional data-based causality measure based on

dynamical evolution of processes and is not merely based on associational relations. In

this regard, it is more faithful to the underlying mechanism generating the data. Lorenz

system was simulated using Euler’s method as per the following equations:

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz, (6.18)

where, σ = 10, ρ = 60 and β = 8/3.

For any given system, CCCnet from one of its subsystems, say p, to another sub-

system, q, can be estimated as:

CCCnet(p→q) = CCCp→q − CCCq→p. (6.19)

For the Lorenz system, we take the example of simulated time series and describe the

steps for computation of CCCnet from subsystem comprising of variable z to subsystem

comprising of variables (x, y), that is,

CCCnet(z→x,y) = CCCz→x|y + CCCz→y|x − CCCx→z|y − CCCy→z|x, (6.20)

where CCCa→b|c is the conditional CCC from a to b given time series c.

The steps are as below:

1. Simulate Lorenz system (x, y, z) as per equation 6.18 for 10,000 time points start-

ing with random initial conditions (x0, y0, z0). Remove the first 2000 transients

to estimate CCC values from the next 8000 time points.
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2. Set the parameters w, δ, B and L in accordance with parameter selection criteria

as discussed in Section 3.3. The parameters selected for Lorenz are L = 150,

w = 15, δ = 80, B = 8.

3. Estimate conditional CCC values from the variable (z) to all other variables in

the presence of the third variable (CCCz→x|y, CCCz→y|x) and also from all other

variables to z (CCCx→z|y, CCCy→z|x). These values estimated are shown in the

third column and third row respectively of Table 6.1(a). For computation of

conditional CCC values, check details in Section 2.3. The code for conditional

CCC estimation is available as a part of supplementary material of [144].

4. To estimate CCCnet(z→x,y), use equation 6.20. The value estimated for this is

0.0509 as shown in Table 6.1(a).

Master Lorenz (x, y, z) was simulated starting from initial conditions (xm, ym, zm) =

(3, 4, 6). For the slaves’ dynamics (x′, y′, z′), one of the variables was forced to be the

same as the master – either x = x′ or y = y′ or z = z′. We fix one of the slaves

S0 to start with initial conditions: (x′0, y
′
0, z
′
0) = (7, 1, 6). The second slave Sk,δ was

started within a sphere of radius δ
√

3 from the first slave, its initial conditions are given

by (x′k,δ, y
′
k,δ, z

′
k,δ) = (x0 + k1δ, y0 + k2δ, z0 + k3δ), where k1, k2, k3 are independently

chosen uniformly at random from the set (−1, 1). As an example, for z-forcing in

Lorenz system, the master and two slave attractors as well as their initial condition are

depicted in Figure 6.1(a). 10,000 time points were simulated for both the master and

the slave after removal of 2000 samples (transients). For three different settings of δ (
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Figure 6.1: (a) Master Lorenz attractor (leftmost). Slave Lorenz S0 with forced z
variable and fixed initial conditions (x0, y0) for x and y (middle, top). Slave Lorenz
Sk,δ2 with forced z variable and initial conditions (x0 + k1δ2, y0 + k2δ2) in a δ2

√
3 radius

disc around (x0, y0) (middle, bottom). (b) Mean of absolute CCCnet differences, Mk,δ,
between a fixed slave Lorenz S0 and secondary slave Lorenz Sk,δ for k = 1, 2, . . . , 100
within a δ

√
3 radius of S0; δ1 = 1 (solid line), δ2 = 10 (dashed line) and δ3 = 100

(dotted line). Causal Stability satisfied for x and y forcing but not for z forcing.

δ1 = 1, δ2 = 10, δ3 = 100), we simulate several secondary slaves Sk,δ (k = 1, 2, . . . , 100).

For increasing k, we estimate and plot the mean of the absolute differences in the

CCCnet values between S0 and secondary slaves in Figure 6.1(b). The mean is given

by the following expression:

Mk,δ =
1

k

k∑
i=1

|CCCnet(S0)− CCCnet(Si,δ)|, (6.21)

where

CCCnet(S0) = CCCnet(z′(zm)→(x′(x′0),y′(y′0))),

CCCnet(Si,δ) = CCCnet(z′(zm)→(x′(x′k,δ),y
′(y′k,δ)))

,
(6.22)

when z is forced (z = z′). The above analysis is done independently for x and y forcing
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as well.

We see that since x and y forcing lead to synchronization of the slaves with the

master, the difference in the CCCnet values turns out to be zero for any slave chosen

from either of the discs. On the other hand, since z forcing does not lead to synchro-

nization, mean CCCnet difference is non-zero and increases with increase in δ. From

Figure 6.1(b), we infer that z forcing results in a causally unstable non-driven slave

subsystem whereas x (or y) forcing leads to a causally stable non-driven slave subsys-

tem. This successfully validates causal stability synchronization theorem for the Lorenz

system.

While Eq. 6.8 is proven to be the necessary and sufficient condition for complete

synchronization for identically coupled dynamical systems, we expect similar conditions

to be derived for other forms of synchronization such as generalized synchronization.

6.2.2 Synchronizing Variables

As per the causal stability synchronization theorem, if the net input causal influence

to the non-driven subsystem is invariant with change in initial conditions, those initial

conditions are led to synchronize with the master. The net input causal influence

to the non-driven subsystem happens to be the net output causal influence from the

driven subsystem to the non-driven part. It can be said that, this particular influence

is responsible for synchronization. For a slave which is synchronized with the master,

the net causal influence from the driven to non-driven subsystem in the master and

slave remains the same. It should be possible then to decide on the basis of the nature
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of intra-system causal influences within the master, coupling of which variables may

lead to synchronization. We term these as synchronizing variables. Given a network

of several coupled dynamical systems, based on the time series of the driver system

alone, the causality perspective that we have proposed in this paper, can resolve an

important question – what specific properties do synchronizing variables exhibit? This

kind of analysis can be very useful for networks where we wish to control chaos by

adjusting magnitude and direction of coupling between systems as well as the selection

of coupling variables.

To address this important question, we use the sign of CCC measure, since it gives

information on the ‘kind of dynamical causal influence’ which the cause variable has

on the effect variable. If the kind of dynamical influence from a variable x to another

variable y is different from the past of y to itself, then CCCx→y < 0 . On the other

hand, if the kind of dynamical influence from a variable x to another variable y is similar

to that from the past of y to itself, then CCCx→y > 0. This is true also for conditional

causality estimation when more than two variables are there in the system. For further

details on negative CCC please refer to Section 2.4.

While there can be various mechanisms for coupling dynamical systems to study

chaotic synchronization, we consider the simplest case where forcing a particular vari-

able in the slave system to become identical to that of the master system, may result

in complete synchronization for all the variables. The slave and master are taken to be

identical systems apart from their initial conditions for all the cases taken here. It is

expected that the conditions (described below) will hold for subsystem forcing even in
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a non-identical slave which is capable of being led to complete synchronization.

Lorenz system was simulated as per Eq. 6.18 with the same parameters as be-

fore. Other continuous-time dynamical systems simulated include – Rössler, Chen,

Hindmarsh-Rose neuron model and a 5D system in the chaotic regime as well as the

discrete time 2D Hénon map. Equations and parameters used for the simulation of

these systems are as given below:

Rössler :

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c),

(6.23)

where a = 0.2, b = 0.2 and c = 9.

Chen:

dx

dt
= a(y − x)

dy

dt
= (c− a)x− xz + cy

dz

dt
= xy − bz,

(6.24)

where a = 35, b = 3, c = 28.

Hindmarsh-Rose:

dx

dt
= y − ax3 + bx2 − z + I

dy

dt
= c− dx2 − y

dz

dt
= r(s(x− xR)− z),

(6.25)

where a = 1, b = 3, c = 1, d = 5, s = 4, xR = −8/5, r = 0.006, I = 3.
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5D system:

dx

dt
= σ(y − x) + w,

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

dq

dt
= −q3 + w,

dw

dt
= −x− q − 8w.

(6.26)

where, σ = 10, ρ = 60 and β = 8/3.

Though the causal stability synchronization theorem is proved for continuous time

systems, the sign of CCC values was analyzed to identify synchronizing variables even

for discrete time systems. It has been shown earlier that when two one-dimensional

Tent map systems are coupled, we get negative CCC from the independent map to the

dependent map, showing that the kind of causal influence from the past of the indepen-

dent map is different than influence from the dependent map’s own past (Section 2.4).

In order to identify synchronizing variables for discrete time systems using intra-system

CCC values, we simulated the well-known 2D Hénon map in the chaotic regime,

Hénon:

xn+1 = 1− ax2
n + yn

yn+1 = bxn,

(6.27)

where, a = 1.4, b = 0.3 and n stands for discrete time.

For the above systems, intra-system conditional CCC values as well as CCCnet

values from each variable are given in Table 6.1. For all the systems including Lorenz,

8000 time points of time series data were taken for CCC estimation after removal of
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2000 transients 2. The parameters used in the computation of CCC in case of Lorenz

are L = 150, w = 15, δ = 80, B = 8, in case of Rössler are L = 300, w = 15,

δ = 200, B = 8, in case of 5D system are L = 450, w = 80, δ = 300, B = 4 and

in case of Chen, Hindmarsh-Rose and Hénon are L = 100, w = 15, δ = 80, B = 8.

These parameters were selected on the basis of parameter selection criteria and rationale

given in Section 3.3. Table 6.2 indicates which variables when forced lead to complete

synchronization.

The CCCnet values from each variable to its subsystem for all the systems are

summarized in Table 6.3. For the synchronizing variables, the CCCnet values are in

bold font.

From Table 6.3 we formulate the following conditions:

• Condition I: A variable with CCCnet > 0 never leads to synchronizaton.

• Condition II: A synchronizing variable should always have its CCCnet < 0.

• Condition III: In most cases, a variable with the least CCCnet (and < 0) among

all the variables in the system is a synchronizing variable.

We have an intuitive understanding for why Conditions I and II need to be true.

The synchronizing variables influence their corresponding non-driven subsystems with

CCCnet < 0 bringing a dynamical influence on the subsystem which is different from

its own past. This kind of an influence constrains the subsystem of the slave to not

2While Lorenz was simulated using Euler’s method, Rössler, Chen, Hindmarsh-Rose and the 5D
system were simulated using the Runge Kutta fourth order method.
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follow its own past dynamics and is thus driven by the forced variable towards complete

synchronization. On the contrary, variable(s) with CCCnet > 0 are unable to constrain

their subsystem(s) adequately to alter their dynamics towards complete synchronization

Table 6.1: Conditional CCC values estimated between variables of (a) Lorenz, (b)
Rössler, (c) Chen, (d) Hindmarsh-Rose, (e) 5D continuous-time system, (f) Hénon and
corresponding CCCnet values from each variable to its subsystem.

(a) Lorenz

To

From
x y z

x 0 -0.0270 0.0390

y -0.0250 0 0.0330

z 0.0251 -0.0040 0

CCCnet -0.0119 -0.0390 0.0509

(b) Rössler

To

From
x y z

x 0 0.0412 0.0730

y 0.0345 0 0.0724

z 0.0337 0.0288 0

CCCnet -0.0460 -0.0369 0.0829

(c) Chen

To

From
x y z

x 0 -0.0388 0.0769

y -0.0271 0 0.0814

z 0.0299 0.0311 0

CCCnet -0.0353 -0.0620 0.0973
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Table 6.1: Contd.

(d) Hindmarsh-Rose

To

From
x y z

x 0 0.0177 0.0716

y 0.0168 0 0.0763

z 0.0359 0.0720 0

CCCnet -0.0366 -0.0034 0.0400

(e) 5D continuous-time system

To

From
x y z q w

x 0 -0.0275 0.0163 0.0326 0.0287

y -0.0160 0 0.0170 0.0356 0.0318

z 0.0090 -0.0021 0 0.0406 0.0413

q 0.0020 0.0009 0.0296 0 -0.0001

w -0.0018 -0.0069 0.0291 0.0098 0

CCCnet -0.0570 -0.1039 0.0032 0.0861 0.0715

(f) Hénon

To

From
x y

x 0 -0.0273

y -0.0600 0

CCCnet -0.0600 -0.0273

(Condition I). A variable with CCCnet < 0 (satisfies Condition II) but not the least

(fails Condition III) may or may not lead to complete synchronization. For instance,

in case of Lorenz and the 5D system, the x variable leads to synchronization while

in Chen, x and in Hénon, y do not lead to synchronization. The exact reason(s)
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Table 6.2: Indication of synchronizing variables for different dynamical systems.
Ximplies the variable is synchronizing and 7implies the variable is not synchronizing.

System

Variable
x y z q w

Lorenz X X 7 - -

Rössler 7 X 7 - -

Chen 7 X 7 - -

Hindmarsh-Rose X X 7 - -

5D system X X 7 7 7

Hénon X 7 - - -

Table 6.3: CCCnet value from each variable to its subsystem for all the systems simu-
lated (bold values correspond to synchronizing variables).

System

CCCnet
x y z q w

Lorenz -0.0119 -0.0390 0.0509 - -

Rössler -0.0460 -0.0369 0.0829 - -

Chen -0.0353 -0.0620 0.0973 - -

Hindmarsh-Rose -0.0366 -0.0034 0.0400 - -

5D system -0.0570 -0.1039 0.0032 0.0861 0.0715

Hénon -0.0600 -0.0273 - - -

for this are still unclear and require further investigation. Condition I is a sufficient

condition for non-synchronizing variable. Condition II is necessary but not sufficient

for synchronizing variable whereas Condition III is a sufficient condition in most cases.

One of the reasons why the variable with the least negative CCCnet value doesn’t lead

to synchronization for Rössler (Condition III is insufficient only for this system) could

197



be due to the nature of its equations. The variable x which has the least and negative

CCCnet does not directly depend on itself but on the other two variables. This is not

the case for synchronizing variables in any other system that we have considered. It is

possible that the high negativity of CCCnet influence from x on the subsystem y, z is in

fact due to y, the only other variable which has a negative CCCnet. Not surprisingly,

it is found that y leads to synchronization and not x.

Visualizing Synchronizing Variables

Inspired by the notion of order parameters of the Kuramoto model [145,146], we propose

a novel CCCnet order parameter as follows. For a D-dimensional non-linear dynamical

system (D > 1), we define:

Vi = {1, 2, . . . , i− 1, i+ 1, . . . , D}, (6.28)

r =

√√√√ D∑
i=1

CCC2
net(i→Vi) , (6.29)

θi = sin−1

(
CCCnet(i→Vi)

r

)
, i = 1, . . . , D. (6.30)

The CCCnet order parameters ηi = (r, θi), (i = 1, . . . , D) are illustrated for a general

system in Figure 6.2 (left). Corresponding to each variable, we plot a ball at (r, θi) (in

polar co-ordinates). Based on this convention, balls will only be in the first or in the

fourth quadrant. Balls in the first quadrant are non-synchronizing variables (marked

in color Red) corresponding to θ > 0 (or CCCnet > 0). Balls in the fourth quadrant

corresponding to θ < 0 (or CCCnet < 0) are of two types - Yellow and Green. The Green

ball corresponds to that variable (if it exists) which has the least θ (CCCnet) and θ < 0
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Figure 6.2: Plot of CCCnet order parameter ηi = (r, θi) for a general system (left).
Red indicates non-synchronizing variable, Green indicates synchronizing variable and
Yellow indicates a variable which may or may not synchronize. In case of Lorenz (right),
r = 0.0652, θx = −0.1835, θy = −0.6410 and θz = 0.8954. x and y are synchronizing
variables. All angles in radians.

(CCCnet < 0). This is always a synchronizing variable (except in the case of Rössler).

The Yellow balls (if they exist) correspond to variables for which θ < 0 (CCCnet < 0),

but may or may not lead to synchronization. For the Lorenz system in Figure 6.2

(right), η1 = ηx = (r, θx) = (0.0652,−0.1835), η2 = ηy = (r, θy) = (0.0652,−0.6410)

and η3 = ηz = (r, θz) = (0.0652, 0.8954). In the case of Lorenz, we have one each ball

of Red, Yellow and Green color. Both the Yellow and the Green balls correspond to

synchronizing variables for Lorenz. The plots for other dynamical systems are depicted

in Figure 6.3. The order parameter for Rössler is depicted separately in Figure 6.4.

Red, Yellow and Green correspond to Conditions I, II and III respectively.
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Figure 6.3: Plot of CCCnet order parameter ηi = (r, θi) for (a) Chen: r = 0.1207,
θx = −0.2969, θy = −0.5397 and θz = 0.9381, (b) Hindmarsh-Rose: r = 0.0543,
θx = −0.7392, θy = −0.0626 and θz = 0.8276, (c) 5D system: r = 0.1630, θx = −0.3572,
θy = −0.6909, θz = 0.0196, θq = 0.5564 and θw = 0.4539, and (d)Hénon: r = 0.0659,
θx = −1.1438 and θy = −0.4270. All angles in radians. Red indicates non-synchronizing
variable, Green indicates synchronizing variable and Yellow indicates a variable which
may or may not synchronize.
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Figure 6.4: Plot of CCCnet order parameter ηi = (r, θi) for Rössler : r = 0.1017,
θx = −0.4692, θy = −0.3712 and θz = 0.9525. All angles in radians. Red indicates
non-synchronizing variable, Green indicates synchronizing variable and Yellow indicates
a variable which may or may not synchronize. Rössler being an exception, though θx
is least and negative, x is non-synchronizing.

6.2.3 Conclusions and Future Work

In this section, we have introduced the novel concept of causal stability and proved the

causal stability synchronization theorem as a necessary and sufficient condition for syn-

chronization in chaotic continuous-time dynamical systems. The link between asymp-

totic stability and synchronization was proved in [69] with negative lyapunov exponents

of the subsystem being its empirical condition [68]. In contrast, ergodicity of dynam-

ical processes has allowed us to formulate an equivalent spatial condition, and along

with it provide an empirical condition based on the sign of CCCnet for identification
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of synchronizing variables. Along with other systems, the empirical condition has been

verified for the Hindmarsh-Rose neuronal model. This is an important contribution for

the control of chaos in networks where we do not know the underlying mechanism and

wish to inhibit/facilitate synchronization between systems. Regulation of synchroniza-

tion is of importance with regard to the brain as abnormal synchrony between regions

can indicate various disorders. The proposed conditions have the potential to be useful

here.

Future research would involve studying several other homogeneous and heteroge-

neous dynamical systems (both continuous and discrete-time systems) coupled in dif-

ferent ways to analyze the sign of their CCCnet values and to generalize the proposed

theorem for other forms of synchronization, such as phase and generalized synchro-

nization. Properties of the CCCnet order parameters {ηi}Di=1 as well as its relation to

conditional lyapunov exponents needs to be further explored.

6.3 Causality Detection for Anticipating Synchro-

nization

Anticipating Synchronization (AS) is a counterintuitive case of synchronization in which

the temporal trajectory of the slave system becomes ahead of the master system in

phase and ‘anticipates’ the dynamics of the latter. This phenomena was discovered by

Voss [147]. AS has been shown to be stable in a variety of systems, theoretical as well

as experimental including semiconductor lasers, electronic circuits etc. [148–154]. AS

in neuronal models was first found by Ciszak et al. [151]. Now, there are several studies
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which talk about AS in neuronal models [155–157] and evidences of its presence in the

brain [158].

As for other forms of synchronization, causal measures are being employed to detect

the correct direction of coupling in AS systems. This is obviously a much more difficult

task, because causality measures work on time series data and the temporal nature

of events in slave and master dynamics seem deceiving in case of AS. Some existing

cauality measures that have been employed for this problem include GC [158] and

TE [159]. Other causality inspired approaches, such as the Complexity-Causality plane

have been proposed to quantify the ‘relative synchronization phase’ between the master

and slave systems [160]. Further, the use of these measures is also being translated to

confirm the presence of AS in real world systems [158].

In this section, we draw attention towards some issues in implementing and rely-

ing on just any available causality measure for detection of coupling direction in the

challenging case of anticipating synchronization. It is shown for the case of a simulated

system with anticipation that GC fails in correct causality estimation. Further, we also

test if the proposed measure CCC can be used to detect the correct coupling direction

in this case.

6.3.1 Failure of Granger Causality for estimation of causality
in AS

After the pioneering work of Ciszak et al. [151], that showed AS in unidirectionally

coupled neuronal models (Fitzugh Nagumo and a modified version of Hodgekin-Huxley),
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many neuronal models with AS have been proposed [155–157]. The model proposed

by [155] is more realistic and biologically plausible.

However, research did not proceed in this direction only. Inferences were made re-

garding presence of AS in real brain data based on use of causality measures. Real

neuronal data, more specifically, local field potentials, captured from sensorimotor cor-

tex of macaque monkeys were analyzed using spctral GC for the understanding of

functional connectivity [118]. During the acquisition, the monkeys maintained a steady

motor output while pressing a hand lever in a visual discrimination task. By means

of spectral GC, directed causality strengths for different frequencies present in the ac-

quired signals, as well as the phase lag between the considered cortical regions were

computed.

Based on the analysis, it was seen that there was a discrepancy between the direc-

tion of causality and the phase lag between some of the considered brain regions. For

example, for areas B1 and B2, if higher causal strength was found in the direction from

B1 to B2, it wasn’t necessarily the case that B2 lagged behind B1, in terms of its phase

(or time delay). Along with this study, similar discordant results were reported in the

study by Salazar et al. [161], where phase difference and GC were estimated between

Posterior Parietal Cortex and Prefrontal Cortex in monkeys performing a working mem-

ory task. Here, dominant GC from parietal to frontal area seemed to be against the

time lead of the frontal area.

To explain the above evidence of dominant causality between cortical regions being

in one direction while phase indicating that the caused cortical region leads in time the
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causal region, Matias et al. [158] came up with the model of coupled brain regions that

displays the same properties as observed for real cases above. This model has been

inspired from the phenomenon of AS in dynamical systems. With this, they suggest

that primate cortex could be operating in the regime of AS when involved in certain

cognitive tasks.

It is interesting to see that based on a measure like GC, such extreme suggestions

such as that of AS in the brain are being made. GC has actually been developed for

causality estimation for data when modelled as linear autoregressive processes. This

does not mean that any other nonlinear processes cannot be modelled this way – for the

class of covariance-stationary processes, we should be able to find vector autoregressive

models that generically model the processes [31, 32]. However, the chosen model and

hence causality value may not be reliable due to multiple reasons such as finite data

length, several sources of noise in the acquired data, or the fact that the data does not

fit into the domain of covariance stationary processes. We have shown the limitations

of GC for some simulated systems in Chapter 3.

To demonstrate the performance of GC for a system with AS, a system of tent maps

were generated as per the following equations. The master system Y : [0, 1]→ [0, 1] is

given as:

Y (t) = f(Y (t− 1)), where

f(y) = 2y, 0 ≤ y < 1/2,

f(y) = 2− 2y, 1/2 ≤ y ≤ 1.

(6.31)
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Figure 6.5: First return map of coupled master (Y ) and slave (X) tent maps in antici-
pating synchronization configuration.

The slave system X : [0, 1]→ [0, 1] is given as:

X(t) = (1− ε)f(X(t− 1)) + εg(Y (t− 1)), where

g(y) = (1− α)f(y) + αf 2(y),

(6.32)

where, t represents discrete time, ε (0 ≤ ε ≤ 1) is the degree of coupling and α (0 ≤

α ≤ 1) is the anticipation parameter. The first return map of the master (Y ) and the

slave (X) is depicted in Figure 6.5. The figure has been plotted taking 5000 time points

(after removal of 1000 transients) from the simulated system with ε set to 0.3 and α set

to 1. The system was started with random initial conditions.

Spectral GC values from master to slave and vice versa at different frequencies as

well as the amount of time lag (relative phase) of the slave from the master are plotted

for three different levels of anticipation. MVGC toolbox with maximum order of the

process set to 20 and all other settings in default mode was used for this computation.

Figures 6.6, 6.7 and 6.8 correspond to α values 0 (no anticipation), 0.5 (moderate

anticipation) and 1 (high anticipation) respectively. In these figures, process 1 denotes

the simulated master (Y ) and process 2 denotes the slave (X). Though the above
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Figure 6.6: Spectral Granger Causality and phase lag between processes 1 (simulated
master, Y ) and 2 (simulated slave, X) with anticipation parameter, α = 0. Causality
is estimated correctly while lag is estimated incorrectly.

Figure 6.7: Spectral Granger Causality and phase lag between processes 1 (simulated
master, Y ) and 2 (simulated slave, X) with anticipation parameter, α = 0.5. Causality
is estimated incorrectly while lag is estimated correctly.

reported results are for a single trial each of 5000 time points, the results were found

to be very similar even when 100 trials were taken.

It can be seen from Figure 6.6 that spectral GC identifies the correct direction of

causality between Y (process 1) and X (process 2) when there is no anticipation in the

coupled system. For this case, however, the time delay of 2 from 1 is negative, indicating

that 2 is ahead of 1. This is incorrect as there is no anticipation in this case. When

anticipation is increased and set at moderate level (α = 0.5), Figure 6.7 indicates
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Figure 6.8: Spectral Granger Causality and phase lag between processes 1 (simulated
master, Y ) and 2 (simulated slave, X) with anticipation parameter, α = 1. Causality
is estimated incorrectly while lag is estimated correctly.

incorrect dominant causal direction from 2 to 1. Time lag of 2 from 1 is however

negative, correctly indicating anticipation. Causality direction is identified incorrectly

while the phase is identified correctly also for high anticipation in the system (α = 1)

(Figure 6.8).

We can see from the above results that it is not always reliable to use GC for non-

linear systems with anticipation. GC fails here for anticipating tent map coupled system

and hence to make conclusions about anticipation in the brain based on inter-cortical

region GC is definitely problematic and one must proceed with great caution.

6.3.2 Compression Complexity Causality and Transfer Entropy
for AS systems

Methods such as CCC and TE, are applicable to non-linear data and have been shown

to be more robust than GC in estimating causality on certain types of datasets (see

Chapter 3 and [35]). CCC and TE are not capable of determining the phase differ-

ence but only strength and direction of causality between time series. TE has been
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Figure 6.9: Mean CCC values over 50 trials of AS coupled tent maps, from process Y
to X (solid line-circles, black) and X to Y (solid line-crosses, magenta/ grey in print)
with varying anticipation parameter (α) when the number of bins used is set to (a) 4,
(b) 8 and (c) 16. CCC is able to distinguish the correct direction of causality in cases
(b) and (c), but not in case (a).

implemented on an anticipating logistic map coupled system and found to estimate

the correct direction of causality when higher resolution is used for binning the se-

quences [159]. TE fails for 1 bit and 2 bit resolution (2 bins and 4 bins) of the data but

is successful at 3 bit resolution (8 bins).

Here, we test for the performance of CCC on the coupled tent map system simulated

using Eqs. 6.31 and 6.32 with ε set to 0.3. 50 trials of 1000 time points each (after

removal of 2000 transients) were taken with values of the parameter α set ranging from

0 to 1 in steps of 0.1. Figures 6.9(a), (b) and (c) show the performance of CCC for bins,

B (see Chapter 2 for more details on this parameter) set to 4, 8 and 16 respectively.

Other parameters for the computation of CCC are fixed as: L = 100, w = 15, δ = 80.

It can be seen from the figure that CCC is able to distinguish the correct dominant

causal direction only when the number of bins are set to 8 or higher (16). For these

cases, its performance is very good at lower levels of anticipation (upto α = 0.6) and

begins to decline post that. At higher levels of anticipation, CCC shows bidirectional
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Figure 6.10: Mean TE values over 10 trials of AS coupled tent maps, from process Y to
X (solid line-circles, black) and X to Y (solid line-crosses, magenta/ grey in print) with
varying anticipation parameter (α). TE is able to determine the correct direction of
causality when used with nearest neighbor estimator and using non-uniform embedding.

causation, with higher magnitude of causation remaining in the correct causal direction

(Y to X). CCC is a total failure for number of bins set to 4. Please note that CCC

is capable of negative causality estimation (which determines the qualitative nature of

causal influence). Even in case of negative CCC, the magnitude gives the strength of

causation (see Section 2.4).

We also used the measure TE to test for causation in this case with the MuTE

toolbox [90]. Instead of binning the data, nearest neighbor estimator was used for

estimating the probability density functions. For representation of the history of the

observed processes, the approach of non uniform embedding was used. The number

of lags to consider for observed processes was set to 5 and the maximum number of

nearest neighbors to consider was set to 10. Figure 6.10 shows the mean values of TE

estimated over ten trials as the value of α is varied. Fewer trials were taken in the case

of TE as the MuTE code is computationally heavy and takes a long time to run. It is

seen that TE as implemented here works well to distinguish the direction of causality

for all values of α.
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6.3.3 Discussion, Conclusions and Future Work

In the case of systems with AS, it is difficult to find the correct direction of coupling

as the time series of the slave begins to anticipate the master. It is shown with the

help of a simulated system of coupled tent maps that GC is not always a reliable

measure for causality estimation in AS systems and also conversely, based on spectral

GC strength and estimated phase, we cannot always reliably comment on whether a

system is undergoing AS. When the simulated system was analyzed based on GC for

the case of no anticipation, it showed causality to be in the correct direction from

master to slave but incorrectly indicated the slave to be ahead of the master in phase

– thereby, erroneously suggesting the presence of AS. When the system was simulated

with anticipation greater than 0, dominant causality was indicated incorrectly from the

slave to the master. Therefore, caution needs to be exhibited when making statements

on the presence of AS in real world dynamical systems data based on GC analysis. For

instance, the suggestion of AS in the primate brain during cognitive activity by Matias

et. al [158] needs to be revisited with the use of adequate measures on the acquired

data.

CCC when used with number of bins 8 or more is able to distinguish the dominant

direction of coupling in AS. Also TE, when employed with nearest neighbor estimator to

estimate the probability density functions and non uniform embedding for representa-

tion of the history of the observed processes identified the causal connections accurately.

Hahs and Pethel [159] have demonstrated the use of TE with binning on coupled AS
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logistic maps and found that TE fails to detect correct causality direction for 2 and 4

bins but is successful when implemented with 8 bins. With an example of Markov Chain

model of coupled shift maps, the authors analytically show that when low resolution

data is used, there is no statistic that can correctly distinguish the causal process from

the caused one under the AS scenario. This is because in the case of low resolution,

new information (in the system) seems to become visible in the anticipatory slave first,

instead of the master and thus the measures indicate that the slave predicts the master.

To make it explicit, though the slave cannot perfectly predict the entire state of the

master, it can predict the more significant bits. When higher resolution information

becomes visible, it is clear that the new information was actually generated from the

master, which in turn has an effect on the slave. The above explanation may also be

applicable for CCC, as, when CCC is applied on data with less resolution (fewer bins),

it is unable to find the true causal influences for an AS system.

For future work, we would like to analytically justify the failure of CCC for lesser

number of bins for causality estimation in AS systems. Also, better binning strategies

will be explored to improve the results obtained using CCC. CCC and TE are not

capable of determining the phase difference between master and slave, which is essential

to analyze AS systems. It would be interesting to study if modified versions of spectral

GC phase or other existing approaches such as ‘complexity-causality plane’ [160] can

be reliably used along with CCC and TE to comment on AS systems given only time

series data. CCC and TE performance would also be tested on continuous time AS

dynamical systems.
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Chapter 7

Causality Analysis for Sparse
Signals

Many naturally occurring signals such as human speech and natural images are known

to be sparse in some domain. Compressed sensing enables sparse signals to be acquired,

stored and transmitted in a linearly compressed fashion (with far fewer measurements

than used by traditional methods) and finds applications in magnetic resonance imaging,

photography, transmission electron microscopy etc. Linear compression is achieved by

matrix multiplication of the input sparse signals with a random sensing matrix that

satisfies some special properties (for e.g., independent Gaussian entries) and recovery is

enabled by nonlinear optimization techniques. Causality testing on such data is required

to make useful inferences without reconstructing them to the sparse domain. Also,

for some cases, it may be impossible to determine causal structure for data in sparse

domain without the assumption of a model for given data. In this chapter, we design

structured sensing matrices having Toeplitz and Circulant structure that preserve causal

relationships (as measured by Granger Causality) between sparse autoregressive coupled
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input signals in the compressed domain. An application is also shown for real sparse

neural signals, where Granger Causality is unable to detect the correct causality in the

sparse domain, but the causality becomes discoverable in the compressed domain by

application of these structured sensing matrices.

7.1 Introduction and Motivation

The use of compressed sensing technique for data compression, channel coding and sig-

nal acquisition is increasing widely in various domains, finding applications for designing

cameras [162], magnetic resonance imaging techniques [163,164], analog to digital con-

version technologies [65]. It is thus becoming imperative to analyze the properties of

signals and their interdependence in the compressed domain itself, avoiding the cum-

bersome task of reconstructing multiple signals, especially from large networks. In this

chapter, we explore if the cause and effect relationships between variables in the raw

domain can be deciphered in the compressed domain. An important application of this

work would be in the domain of analyzing brain connectivity. To transmit, process

and store high dimensional neural activity patterns, amidst a cacophony of interfering

neural signals and neural noise, the brain employs efficient compression of information

with low energy consumption and also robustly multiplexes neural signals. As a re-

sult, compressed-sensing based models for neural signals are being proposed [165,166].

Apart from this, many acquired neural signals are sparse, precluding direct application

of existing model-free techniques for functional connectivity analysis based on given

neural data [66,67]. To efficiently analyze brain/neural connectivity in such a scenario,
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we propose a novel technique that would be useful.

7.1.1 Compressed Sensing

Compressed sensing is a signal processing technique that helps to capture, save, modify

and send out large amounts of data efficiently. One application is in magnetic resonance

imaging acquisition techniques [163, 164]. While sampling at the Nyquist rate ensures

perfect recovery of the original bandlimited signal, compressed sensing makes signal

recovery from under sampled data possible under certain conditions. It is crucial that

the input signal be sparse when expressed in a proper basis and the basis in which it

is acquired/sensed be incoherent with this sparsifying basis [65, 167]. Sparsity implies

that a discrete-time signal depends on a number of degrees of freedom which is much

smaller compared to its (finite) actual length. This means that these signals have

concise representations when expressed in the proper basis ψ, called the sparsifying

matrix. Incoherence is basically the idea that objects that have a sparse representation

in ψ should spread out in the domain in which they are acquired (or sensed). This is

analogous to the way a spike in the time domain is spread out in the frequency domain.

In other words, incoherence means that the sampling/sensing waveforms have a very

dense representation in ψ.

Sparse signal recovery can be represented as a Compressed sensing problem in the

following way:

y = φx, (7.1)

where y is the compressive measurement vector/ compressed signal (of dimension M ×
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1), φ is the sensing matrix (of dimension M × N), x is the input signal (of dimension

N × 1), which can be written in the form ψα, where ψ is the sparsifying matrix and α

contains the coefficients. The input sparse vector x is in RN and the output vector y is

in RM . The sensing matrix φ which maps the space RN to RM , has a rank ≤ M (and

M � N).

φ must be such that φx1 6= φx2 for all k-sparse x1 6= x2, where k-sparse means that

the maximum number of non-zero entries in x1, x2 are k. This property ensures that

the mapping is invertible, so that no two output vectors are mapped to the same vector

during recovery. For this to be the case, φ should have at least 2k rows, i.e. M ≥ 2k.

Restricted Isometry Property (RIP) [168] is a standard tool for determining how

efficiently the sensing matrix φ, captures information about sparse signals, so that it is

possible to recover them. For integers k = 1, 2, . . ., the isometry constant δk of a matrix

φ is defined as the smallest number such that

(1− δk) ‖x‖2
l2
≤ ‖φx‖2

l2
≤ (1 + δk) ‖x‖2

l2
, (7.2)

holds for all k-sparse vectors x1. A matrix φ fulfills an RIP of order k if δk is not

too close to one. This means that the euclidean length of k-sparse signals is roughly

preserved and so these k-sparse vectors cannot be in the null space of φ. This helps to

ensure that their reconstruction is possible.

When the above conditions on φ are met, Eq. 7.1 still remains under-determined and

will have infinitely many solutions. To recover the best solution to the signal x, back

1‖v‖lp denotes the lp norm of vector v computed as ‖v‖lp = (
∑n

i=1 |vi|
p
)1/p, with n being the length

of the vector.
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from the compressed measurements y, there are many well-known algorithms which

either employ optimization techniques (such as l1 minimization [169, 170]) or greedy

approach (like Orthogonal Matching Pursuit [171]).

7.1.2 Causality Testing in the Compressed Domain

Today in many scientific and engineering problems, we are posed with underdetermined

linear systems and sparse signals. Compressed sensing schemes are being employed

widely for signal acquisition, storage and transmission. In such a scenario, it is essential

to know whether we can check for causal relationships between compressed data without

the need for reconstruction of signals. Also, we need to know, under what circumstances

(such as, for what kind of sensing matrices) do causal relations present in the raw

domain remain preserved in the compressed domain and hence causal analysis in the

latter domain is meaningful. Sometimes, in case of sparse (and/or finite) data, available

techniques for functional connectivity analysis may not perform adequately. In fact,

point process generalized linear model (GLM) based techniques have been proposed for

connectivity analysis of neural data in such a scenario [66,67]. As discussed in Chapter 1,

model-based techniques have their limitations and cannot be applied universally. In this

chapter, we discuss, if and how model-free techniques can help discover causal relations

for sparse data by transforming them into compressed domain. To the best of our

knowledge, both our problem statement and the proposed solution are novel and no

work has been done before along this line.

When the connections in the network are sparse, there exist techniques such as
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Lasso Granger [172], its several variations [173, 174], CaSPIAN [175] etc., that employ

a combination of compressed sensing techniques (such as variable (model) selection e.g.

- Lasso) and causality methods (such as Granger Causality). These are methods to infer

network connectivity and are of use for study of systems such as Genetic Regulatory

Networks. These methods are not to be confused with the work that we present in

this chapter since none of these methods attempt to infer causal relationships in the

compressed domain.

7.2 Structured Sensing Matrices for Causality De-

tection

A sensing matrix, A, on multiplication with the original N × 1 sparse signal, x, yields

a compressed signal, y, of dimension M × 1, as per the equation, y = Ax. Here A

has M rows and N columns. The signal x is said to be k-sparse if it contains up to k

non-zero entries (and not more). Gaussian random values in A prove to be one of the

most effective ways in helping recover x from y [176,177]. However, compression using

a random matrix results in hardly any properties of the original signal being preserved

after compression (the drawback of randomization). In order to design sensing matrices

that preserve causality, we explore matrices which possess some kind of structure while

still satisfying necessary properties for sparse signal recovery.
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7.2.1 Toeplitz and Circulant Sensing Matrices

Toeplitz and Circulant matrices have been shown to be effective sensing matrices for

recovery of sparse signals [178, 179]. In fact, Toeplitz and partial random Circulant

matrices have both been shown to satisfy the RIP property [180,181]. Toeplitz matrices

are those matrices in which the rows get shifted to the right and the first element of a

given row occupies the second position of the following row and the first element position

in that row is occupied by a random element. In order to design an M × N Toeplitz

matrix, we construct an N length row vector consisting of independent Gaussian entries

N (0, 1) (with zero mean and unit standard deviation). Entries of this row are shifted

to the right for each new row with a random Gaussian value forming the first entry of

that row. The structure of a Toeplitz matrix is as shown below:

T =


p1 p2 p3 · · · pN
r1 p1 p2 · · · pN−1

r2 r1 p1 · · · pN−2
...

...
...

. . .
...

rM−1 rM−2 rM−3 · · · pN−M+1


M×N

. (7.3)

pi, ri ∼ N (0, 1), where i varies from 1 to N . Circulant matrices are similar to

Toeplitz matrices with the variation that the rows are circularly shifted to the right

with the last element of a given row forming the first element of the following row. A

random Gaussian vector of length N is shifted circularly M times to form an M × N

Circulant matrix as shown below:

C =


q1 q2 q3 · · · qN
qN q1 q2 · · · qN−1

qN−1 qN q1 · · · qN−2
...

...
...

. . .
...

qN−M+2 qN−M+3 qN−M+4 · · · qN−M+1


M×N

. (7.4)
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Figure 7.1: Structured sensing matrices. Left: Structured Toeplitz sensing matrix.
Right: Structured Circulant sensing matrix. In both cases, R × N upper matrix has
Toeplitz/Circulant structure while the (M − R) × N lower matrix is Gaussian, where
0 ≤ R ≤M .

qi ∼ N (0, 1), where i varies from 1 to N . In the sensing matrices used in this work,

the degree by which a matrix has Toeplitz (T ) or Circulant (C) structure is controlled

by allowing only ‘R’ number of rows to have that structure. Rest of the entries of the

matrix are Gaussian (G). This is illustrated in Figure 7.1.

7.3 Results

7.3.1 Simulations

A pair of sparse input signals, x1 and x2, are simulated and compressed to signals y1

and y2 by using the same sensing matrix A. The length of the input signals, N , and the

length of the compressed signals, M , are fixed at 1000 and 100 respectively, whereas

the sparsity, k, is kept a constant at 10, except for those cases where the curves are

plotted for varying k. Let the signals x1 and x2 be defined over a set of time points T =

{1, 2, 3, . . . , N}. We define a set T1 ⊂ T such that T1 consists of k uniformly randomly

chosen elements of T . Also, let T2 ⊂ T be defined as T2 = {t2 : t2 = t1 + 1,∀ t1 ∈ T1}.

T c1 and T c2 denote the complement sets of T1 and T2 respectively (T is the universal
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set). The signals x1 and x2 are sparsified versions of autoregressive processes X1 and

X2 and are generated as per the following equations:

X1(t) =αX1(t− 1) + z1(t), ∀t ∈ T,

x1(t) =

{
X1(t), ∀ {t ∈ T1},
0, ∀ {t ∈ T c1},

(7.5)

X2(t) =βX2(t− 1) + γx1(t− 1) + z2(t), ∀t ∈ T,

x2(t) =

{
X2(t), ∀{t ∈ T2},
0, ∀{t ∈ T c2},

(7.6)

where z1 and z2 are additive (independent) Gaussian noise drawn from N (0, 1). x1(t)

retains the values of X1(t) at k random time points and is set to zero at the rest N − k

time points. x2(t) is zero whenever x1(t − 1) = 0. At the rest of the k time points,

x2(t) retains values of X2(t). This ensures that both x1 and x2 are k-sparse signals.

Figure 7.2 shows an example of generated sparse signals x1 and x2. As is evident from

the above equations, there is a direct causation from x1 to x2 (strength of causation

controlled by coupling coefficient γ) and not in the reverse direction. The characteristics

of x1 and x2 loosely resemble spiking patterns of coupled neurons.

Performance of Structured Matrices

Performance of Toeplitz and Circulant matrices (with R = M) in terms of percentage

success in sparse signal recovery and causality testing while varying the level of spar-

sity, k, are shown in Figure 7.3. CVX, a package for specifying and solving convex

programs [182] was used for l1 minimization and consequent sparse signal recovery for

all results in this chapter. At every trial, sparse signal recovery (x1 and x2 from y1 and

y2 respectively) is deemed a success if the mean squared error between the original and
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Figure 7.2: (a) Sparsified autoregressive inputs (sparsity, k = 10) with x1 causing x2.
(b) Magnified view, showing signal values for temporal index 780 to 860.

reconstructed signal is less than 10−6 for both x1 and x2. The mean squared error of

reconstruction for x1 is estimated as:

MSE(x1) =
1

N

N∑
i=1

(x1(i)− x̂1(i))2, (7.7)

where, i is the index of samples in x1, N is the length of x1 and x̂1 is reconstruction of x1.

Causality detection is considered successful if the direction of causality as estimated on

the compressed signals (y1 and y2) is the same as that between the original raw signals

(x1 and x2). Causality is estimated based on Granger Causality F-statistic (GC) (for

details and existing literature on GC, check Section 1.2.5). The order of the AR process

is determined using Akaike Information Criterion with maximum number of lags to be

considered for the processes set to 30. Percentage success is evaluated across 100 trials

taken with random initial values for the AR processes.

Percentage success in causality testing while keeping the level of sparsity constant
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Figure 7.3: Percentage success (across 100 random trials) in sparse signal recovery and
causality testing for varying sparsity (k) in case of (a) Toeplitz and (b) Circulant sensing
matrices. While signal recovery deteriorates for higher values of k, causality estimation
improves.

at k = 10 but varying the degree of Toeplitz and Circulant structure, by varying the

value R (Figure 7.1), is shown in Figure 7.4. Reconstruction was found to be successful

for all values of R here. Hence, we omit depiction of percentage success in sparse signal

recovery in Figure 7.4.

Varying the Coefficient of Causation

For simulated input signals x1 and x2, as the coefficient of coupling γ (see Eq. 7.5 and

7.6) is varied, we estimate GC for the following four cases for both fully Toeplitz and

Circulant sensing matrices: GC from x1 to x2 signal in the raw domain (denoted by

F1), from y1 to y2 signal in the compressed domain (denoted by F2), from x2 to x1

signal in the raw domain (denoted by F3) and from y2 to y1 signal in the compressed

domain (denoted by F4). In Figure 7.5(a) and 7.5(b), mean values of F1, F2, F3 and
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Figure 7.4: Percentage success (across 100 random trials) in correct causality estimation
for varying number of structured rows, R, in case of Toeplitz and Circulant sensing
matrices. Causality estimation improves with higher number of structured rows in
both types of matrices.

F4 as obtained across 100 random trials are shown for Toeplitz and Circulant matrices

respectively as the coefficient γ is varied from 0 to 4 in steps of 0.1. Tables 1 and 2 show

the mean and standard deviation of GC values for γ varied from 0 to 4, at intervals of

0.5.

7.3.2 Real Data

Open source data recordings (CC BY 4.0 License) of sparse neuronal spike trains

recorded from putative single units in the rat prelimbic region of the prefrontal cor-

tex (plPFC) acquired for study in [67] are used for analysis in this section. This neural

data were obtained from adult male Sprague-Dawley rats performing a T-maze based

delayed-alternation task of working memory. In brief, animals were trained to navigate

down the runway of the T-maze and choose one of two arms opposite to the one pre-
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Figure 7.5: Mean Granger Causality values (across 100 trials) for the four cases, F1 :
x1 → x2, F2 : y1 → y2, F3 : x2 → x1 and F4 : y2 → y1 as the coupling coefficient γ is
varied in case of sensing by (a) Toeplitz and (b) Circulant matrices. With increasing
γ, strength of GC estimated from both the raw and compressed signals increases with
a similar trend.

Table 7.1: Mean (µ) and standard deviation (σ) of estimated Granger Causality values
(over 100 trials) for Toeplitz sensing matrix when coupling coefficient γ is varied. Mean
GC values, both in the raw (F1 : x1 → x2 and F3 : x2 → x1) and compressed domain
(F2 : y1 → y2 and F4 : y2 → y1) are given.

γ F1(µ± σ) F2(µ± σ) F3(µ± σ) F4(µ± σ)

0.0 0.019± 0.0578 0.020± 0.0557 0.010± 0.0479 0.018± 0.0748

0.5 0.193± 0.2215 0.195± 0.2267 0.007± 0.0378 0.005± 0.0264

1.0 0.523± 0.4341 0.530± 0.4315 0.008± 0.0470 0.005± 0.0309

1.5 1.020± 0.5851 0.969± 0.5518 0.002± 0.0113 0.001± 0.0071

2.0 1.194± 0.6306 1.162± 0.6103 0.002± 0.0131 0.001± 0.0122

2.5 1.572± 0.8070 1.491± 0.7402 0.000± 0.0155 0.004± 0.0278

3.0 1.920± 0.8495 1.760± 0.7259 0.000± 0.0041 0.001± 0.0154

3.5 2.148± 0.8509 2.029± 0.7426 0.005± 0.0194 0.000± 0.0023

4.0 2.385± 0.8218 2.198± 0.7952 0.000± 0.0064 0.000± 0.0050
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Table 7.2: Mean (µ) and standard deviation (σ) of estimated Granger Causality values
(over 100 trials) for Circulant sensing matrix when coupling coefficient γ is varied.
Mean GC values, both in the raw (F1 : x1 → x2 and F3 : x2 → x1) and compressed
domain (F2 : y1 → y2 and F4 : y2 → y1) are given.

γ F1(µ± σ) F2(µ± σ) F3(µ± σ) F4(µ± σ)

0.0 0.029± 0.060 0.039± 0.077 0.014± 0.086 0.004± 0.019

0.5 0.137± 0.175 0.156± 0.200 0.004± 0.024 0.004± 0.024

1.0 0.348± 0.312 0.357± 0.334 0.005± 0.031 0.003± 0.030

1.5 0.617± 0.413 0.617± 0.409 0.000± 0.000 0.000± 0.008

2.0 0.870± 0.548 0.866± 0.535 0.000± 0.006 0.000± 0.009

2.5 1.065± 0.641 1.023± 0.585 0.002± 0.024 0.001± 0.010

3.0 1.328± 0.690 1.238± 0.631 0.001± 0.010 0.000± 0.000

3.5 1.674± 0.722 1.585± 0.698 −0.000± 0.005 −0.000± 0.004

4.0 1.828± 0.894 1.703± 0.808 −0.001± 0.015 0.000± 0.001

viously visited for food rewards delivered by the experimenters hand. The prefrontal

cortex (PFC) plays an important role in cognitive and behavioral processes and thus

functional connectivity analysis for this brain region is important to study.

In [67], a ‘Structural Information Enhanced’ regularization method is developed to

aid the GLM framework to better capture the functional connectivity among neurons.

This technique is mainly for large sparse spike train datasets. Simulation results in

the paper indicate that the parameter selection for GLM, a model-based method, when

done using their regularized method, outperforms existing approaches and hence the

authors display a confidence in functional connectivity estimated in rats based on the

above discussed real data recordings.

We use neuronal spike data for ‘Experiment 4’ from the available dataset and check
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for GC estimates between two considered pairs of neurons, Pair 1: neuron no. 72

(N72) and neuron no. 76 (N76), and Pair 2: neuron no. 72 (N72) and neuron no. 49

(N49). The three chosen neurons have been taken from the periphery of the network

structure discovered by [67] using their ‘SGL regularized method’ (see Figure 9 of [67]

for exact network structure). This is done so that the considered pairs qualify for

bivariate causality analysis and are not affected by any indirect influences from within

the network structure. As per the results reported in Figure 9 of [67], there is a direct

causal influence from neuron 72 to 76 and no influence in the opposite direction, while

there is no connection between neurons 72 and 49.

We analyze time series of length 20,000 time points from these neurons, taken from

501st time point to 20500th time point from the 21,502 length spike train recording

available. The initial 500 time points were removed to get rid of transients, if any.

Thus, N or the length of the signal here is 20000, M is taken to be 2000 (set to be

greater than 4 times the sparsity of the signal having the maximum sparsity amongst

N49, N72 and N76). Partial Toeplitz matrices, with different number of structured rows

were used for obtaining the compressed domain signals.

MVGC [31] is a toolbox for robust GC inference, specifically designed for neuro-

science data. The MVGC approach is based on multiple equivalent representations of

a Vector Autoregressive Model. It includes algorithms for moving between these rep-

resentations, ensuring the best means to achieve numerical accuracy. It employs many

types of error checks for the given data and eliminates sources of statistical inaccuracies.

For analysis of real data, MVGC toolbox was used and presence or absence of a causal
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Table 7.3: Significance (Sig) and value (F ) of Granger F-statistic for causality between
sparse neuronal spike trains N72, N76 and their compressed versions for different values
R in Toeplitz sensing matrix. Reconstruction error for each spike train is also reported
for different sensing matrices. Raw data obtained from [67].

Signal R
SigN76→N72

(FN76→N72)
SigN72→N76

(FN72→N76)
Reconstruction

Error

N72 N76

Raw
domain
(Sparse)

– 1 (0.0022) 1 (0.0058) – –

Compressed

0 0 (5.39× 10−5) 0 (1.09× 10−4) 1.74× 10−2 8.59× 10−17

1000 0 (0.0017) 0 (0.0012) 2.02× 10−2 1.42× 10−16

1900 0 (0.0057) 1 (0.0194) 1.89× 10−2 9.64× 10−21

connection determined based on significance testing employed by the toolbox. We use

it to test for causality between neural signals, both in the raw sparse domain as well as

in the compressed domain for different values of the number of structured rows, R, in

the Toeplitz matrix used for compressed sensing.

Table 7.3 and 7.4 depict the significance (SigX→Y ) and value (FX→Y ) of Granger F-

statistic for raw neuronal spike trains and their compressed versions. Here, the subscript

X → Y denotes the direction of causation from X to Y . If the Granger causality from

X to Y is significant, SigX→Y = 1 and remains zero otherwise. Mean squared error of

reconstruction (Reconstruction Error) of the sparse signal (estimated as in 7.7), on use

of sensing matrices, with different values of R are also noted in the table.

It can be seen from the tables that the correct direction of causality based on GC

is not evident in the acquired raw domain for both the cases considered. It becomes

dicoverable for Pair 1: N72 and N76, only for R = 1900 when the structure of the
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Table 7.4: Significance (Sig) and value (F ) of Granger F-statistic for causality between
sparse neuronal spike trains N72, N49 and their compressed versions for different values
R in Toeplitz sensing matrix. Reconstruction error for each spike train is also reported
for different sensing matrices. Raw data obtained from [67].

Signal R
SigN49→N72

(FN49→N72)
SigN72→N49

(FN72→N49)
Reconstruction

Error

N72 N49

Raw
domain
(Sparse)

– 0 (0.0034) 1 (0.0047) – –

Compressed

0 0 (0.0005) 0 (0.0017) 2.09× 10−2 1.28× 10−18

1000 0 (0.0063) 0 (0.0029) 2.15× 10−2 2.38× 10−15

1900 0 (0.0030) 0 (0.0062) 1.87× 10−2 6.98× 10−19

sensing matrix is highly Toeplitz. For Pair 2: N72 and N49, the correct causal re-

lationship is detected for sensing by a completely random matrix (R = 0), partially

toeplitz (R = 1000) as well as for an almost fully Toeplitz (R = 1900) matrix. Recon-

struction error for all the sparse signals considered are of the order of 10−2 or less for

all the sensing matrices taken.

7.4 Discussion

The chosen structured sensing matrices, Toeplitz and Circulant, are seen to perform

well for causality detection. When the structure of sensing matrix is fully Toeplitz/

Circulant, and the level of signal sparsity k is varied for simulated signals, percentage

success in causality detection increases and approaches 100% at higher values of k (20-

30) as seen from Figure 7.3. On the other hand, the trend for percentage success in

signal recovery deteriorates with increasing values of k. Signal can be recovered almost
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perfectly for k < 15. When the input signal sparsity level is constant, but the number of

structured rows in sensing matrix are increased as in Figure 7.4, the percentage success

in causality testing increases and reaches 100% for fully structured matrix. Thus,

structured sensing matrices are clearly better than random Gaussian sensing matrices

for preserving causality (as measured by GC) in the compressed domain.

Not only do the structured sensing matrices used here preserve the direction of

causation in the compressed domain but also preserve the strength of causation. This

is evident from Figure 7.5, where the strength of estimated Granger Causality F-statistic

in the actual causal direction increases in the compressed domain, remaining close to the

corresponding values in the raw signal domain, as the unidirectional coupling coefficient

γ is increased. In the direction in which there is no causation, estimated causality values

are observed to be close to zero in the compressed domain (as desired) as is the case in

the raw signal domain.

From the simulations we have seen that when autoregressive structure is present in

the raw sparse signals, causality is reliably discoverable in the raw domain. However,

if the sparse signals are not generated by autoregressive means, it may be difficult

to determine accurate causal relationships based on GC because it is possible that

the causal information is more spread out in the sparse domain, yielding finite past

based autocorrelations of these finite signals insufficient to discover causality in the raw

domain. In such a scenario, compressed representations should be more helpful. From

an example case of real data signals that is considered in Section 7.3.2, it can be seen

that though accurate causality relationship is not discoverable between sparse signals
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in the raw domain, it becomes discoverable in the compressed domain when the sensing

matrix employed is highly Toeplitz in structure. Thus, testing of causality based on GC

in the compressed domain can be considered as a powerful technique for sparse signals

for which it may be difficult/ impossible to discover causality in the sparse domain

using model-free techniques.

In networks for which signals are acquired in the compressed domain and are required

to be analyzed based on several causal connections which may also change with time, the

use of structured sensing matrices would help to solve the task within the compressed

domain. This will save some computational cost that is involved in signal reconstruction

and then causality testing; and also ensure better accuracy of discovered causal relations

compared to the sparse domain. Preservation of the causality property by Toeplitz

and Circulant matrices would then be the deciding criteria for design of sensors in

various systems. In fact, already it is the case that many measurement technologies

impose structure on the matrix. This is because structured matrices possess other

advantages such as requirement of lesser number of independent random variables for

generation and better efficiency of their recovery algorithms as the matrix admits a fast

matrixvector multiply [180, 181]. Causal inference in the compressed domain for these

scenarios is a powerful and useful technique.

Also, in case of naturally occurring sensors that can be approximated to be sensing

the signal based on operation by a structured matrix like partial/full Toeplitz/Circulant,

causality analysis for the signals can be easily and reliably performed. One way by

which the operation performed by a sensing matrix can be deciphered is by checking
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the properties of the sensed signal. For e.g., Toeplitz matrices are known to perform a

moving average operation on the input signals [183]. Some neural signals are known to

be compressed signals [165,166] while most single unit neuronal signals are sparse spike

trains [184]. Recognition/design of causality-preserving sensing matrices will be useful

for decoding functional neural connections and brain connectivity.

We have used a model-free measure, GC, for the detection of causality between

compressed signals. Other measures – Transfer Entropy and Compression Complexity

Causality were also tested for discovering causality in the compressed domain in the

same manner as GC, but proved to be unsuccessful. One of the reasons why GC is

working here, while other measures are not, could be that it is designed to estimate

causality for linear autoregressive processes. The solution to Yule Walker Equations

which gives the coefficients of coupled AR processes and consequently give the strength

of causation are actually a solution to a Toeplitz matrix [185]. This matrix is formed

with entries which are autocorrelation/ cross-correlation coefficients of the considered

processes taking different lags each time. It could be the case that a transformation to

compressed domain by a structured (Toeplitz/ Circulant) matrix of the sparse signal

does not disturb its causal structure (when it is discovered by solving the Yule Walker

Toeplitz matrix).

7.5 Conclusions and Future Work

To the best of our knowledge, this is the first study to explore causality detection

between compressed measurement signals without the need to perform sparse signal
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recovery. In this work, we propose the design of structured matrices, Toeplitz and Cir-

culant, that preserve the causality strength and direction as discovered by a model-free

method GC, when the signal is transformed from its raw domain to compressed domain.

Simulation results demonstrate the success of these matrices for GC detection. At the

same time, these matrices could be used as compressed sensing matrices owing to effi-

cient sparse signal recovery. In fact, this technique for causality detection has also been

shown to be useful to recover causality in compressed domain, which was not possible

to be discovered directly from real sparse neural signals using a model-free method.

Some model-based methods exist which can be used for discovering causal relationships

between real sparse neural signals [66,67], however, imposition of an underlying model

may be problematic and cannot be universally applied.

Future work would involve exploring other sensing matrices composed of binary/real

valued entries that help preserve GC. Further, it would be useful to test for other types of

sensing matrices that can preserve Transfer Entropy and (or) Compression Complexity

Causality. Exploring other kinds of sensing matrices that preserve properties other

than causation such as correlation, or those that can help preserve multiple properties,

will also be helpful in efficiently analyzing various networks for their properties. Sparse

signals obtained from time series of dynamical systems and sparse realistic neural signals

will also be used to test for preservation of causality in the compressed domain using

different types of sensing matrices. It is important to discover conditional causalities in

a network with multiple variables, and such simulated networks with sparse signals need

to be tested for multivariate Granger causality estimation in the compressed domain.
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Also, it would be interesting to use multivariate GC for the entire set of real signals

available from [67] (used in Section 7.3.2) and compare if the causal network discovered

this way agrees with that obtained in [67] using their model-based approach.
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Chapter 8

Time-reversibility, Causality and
Compression-Complexity

Detection of temporal reversibility of a given process is an interesting time series anal-

ysis scheme. Apart from itself serving as a feature to characterize time series processes

(such as non-linear processes), it also gives insights on the underlying processes generat-

ing the data. Moreover, time reversal of given data provides a promising tool for analysis

of causality measures as well as studying causal properties of processes. Reversibility

detection measures have been widely employed for the study of ecological, epidemiologi-

cal and physiological time series. Effort-to-Compress (ETC) is a well-established robust

method to characterize complexity of time series for analysis and classification. CCC,

a causality measure based on ETC, proposed in Chapter 2, captures data-driven inter-

ventional causality. It is shown to give reliable performance for measurements from

stochastic, chaotic and real-world systems in Chapters 3 and 4. In this chapter, we

apply CCC on time-reversed coupled processes and show that the measure is free of the

assumption that ‘the cause precedes the effect’, making it a great tool for causal analysis
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of reversible processes. Further, we propose a novel measure for detection of temporal

reversibility of processes, called the Compressive potential based asymmetry measure.

Compressive potential is computed based on the ETC algorithm. The asymmetry mea-

sure compares the probability of occurrence of patterns at different scales between the

forward time and time-reversed process. We test the performance of Compressive po-

tential asymmetry measure on a number of simulated processes.

8.1 Introduction

When simulated data or data recorded from real world processes is present with us,

it is possible for us to create an imaginary process exhibiting reverse dynamics of the

original process. Researchers, primarily in the field of time series analysis, have widely

deployed this technique to determine time reversibility/ irreversibility of a given pro-

cess. Statistical time reversibility or time symmetry implies that statistical properties

of given time series remain invariant regardless of the direction of time. Statistical time

irreversibility implies otherwise. Time irreversibility is a common feature of non equi-

librium systems [186–188] as well as systems driven by non-conservative forces [189]. It

has been widely observed in time series obtained from ecological, epidemiological and

physiological systems. Some examples include time series recordings of measles out-

break [190,191], annual phytoplankton bloom [191], electroencephalographic recordings

of normal [192] and epileptic subjects [193–195] as well as beat-to-beat time interval

recordings from the heart of normal and abnormal subjects [196–199].

Many methods for the detection of statistical time reversibility have been discussed
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in literature. These include methods that make use of moment based tests [200–202],

those analyzing distance between distributions of forward and reversed time series [193,

203, 204], methods based on visibility graphs [205–207]. Along with inference on re-

versibility, some of these methods are useful in the characterization of the nature of

processes, particularly to distinguish non-linearity from Gaussian noise and to provide

insights into the underlying mechanisms for observed non-linear data [191,203,208–211].

In physical macroscopic systems, the arrow of time manifests as a consequence of

the second law of thermodynamics, where, for an isolated system the thermodynamic

entropy of the system can only increase. This is the reason why, manifestation of

events follows a particular order and not its reverse. For example, the process of a glass

falling and smashing on the floor cannot be reversed. The methods discussed in the

previous paragraph characterize irreversibility of time series only in a statistical sense.

Thus, without any rigorous mathematical formulation, the relation between time ir-

reversibility and thermodynamic entropy production remained a qualitative statement

for several years. In a series of papers, J.M.R. Parrondo and his group introduced

Kullback Leibler divergence (KLD), as measured between the probability distributions

of the forward process and its time reversed version, as being related to the thermo-

dynamic entropy produced by the process. More specifically, KLD, multiplied by the

Boltzmann constant, is shown to be a lower bound to the entropy production along

the process [212–215]. Their result is a generalization of Landauer’s principle relating

entropy production to any logically irreversible manipulation of information [216].

Time-reversed processes are an important aspect in the study of causality. Causal

237



analysis and detection of these signals can prove to be of immense use in causal char-

acterization of these signals as well as help to give insights in the assumptions and

properties of the employed causality measures. For example, the pioneering mathemat-

ical formulation for time series causality testing, Granger Causality, works based on

the assumption that the ‘cause precedes the effect’. Paluš et al. [217] have analyzed

this assumption for Granger Causality and other causality methods such as Condi-

tional Mutual Information [64, 72], Predictability Improvement [55] and Convergent

Cross Mapping [28], by evaluating the performance of these methods on time-reversed

coupled processes. While the above assumption is explicit in the formulation of GC, it

is not the case for other methods. The analysis helps shed some light on the properties

and hidden assumptions of these methods. It is also interesting to note the behavior

of these methods for time symmetrical (reversible) as well as asymmetric (irreversible)

processes.

In this work, we analyze time-reversed processes in two ways. 1. Causal analysis

of time-reversed simulated processes using the CCC measure. Performance of CCC

is compared with that of Transfer Entropy and Granger Causality. This is discussed

in Section 8.2. This gives insights on the measure CCC and useful information on

the applicability of the measure. 2. A novel method for detection of time irreversible

processes is then proposed. This method is based on the measure Effort-to-Compress

which has several useful properties as discussed in Section 2.2. We conjecture some

relations of the proposed method to thermodynamic entropy production along a process

which could be useful in the determination of the physical arrow of time. This is
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explored in Section 8.3.

8.2 Causality between coupled, time-reversed pro-

cesses

As discussed in the introduction, causal analysis of coupled time-reversed processes

helps to give insights on the causality measures used as well as reveal interesting prop-

erties of the coupled processes. In [217], Paluš et al. have applied Conditional Mutual

Information (CMI) [64, 72] (an information-theoretic approach to Granger causality

(GC), which is equivalent to Transfer Entropy (TE) for a particular case [103]), on

coupled time-reversed autoregressive processes Y and X generated with unidirectional

coupling Y → X. With both the processes reversed in time, the measured dominant

causal direction reverses and was found to be from X → Y . This result shows that

with the violation of the Granger Causality principle ‘cause precedes the effect’, results

for CMI are altered with the effect now seeming to be the cause. This is because GC

based methods evaluate the ability of the driver process to predict or forecast the driven

process. With the driver and the driven now interchanged, the information about the

driver first occurs in the driven process.

A unidirectionally coupled set of Rössler systems was also evaluated in [217] us-

ing time-reversed time series of the coupled variable. Causality was estimated using

measures Convergent Cross Mapping (CCM) [28] (explained briefly in Chapter 1), Pre-

dictability Improvement (PI) [55] (which is a generalization of the GC principle for

nonlinear dynamical systems) and CMI. It was found using the three measures that the
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discovered causal direction remained the same as for the original processes. It is sug-

gested that this result was expected for the measure CCM, as it determines the ability

of the driven system to provide information regarding the present state of the driver.

So, the sequence of cause and effect do not make a difference for CCM. Other measures

(CMI and PI) were not expected to perform symmetrically and hence a speculated

rationale for this result is the presence of dynamical memory in chaotic systems.

CCM and PI cannot be applied to AR processes as their working is based on the

manifold (or geometry) of dynamical systems. At the same time, GC is a failure when

applied to dynamical systems as it makes the assumption of linear AR processes un-

derlying the system. CCC, is however, a method that works for both stochastic as well

as deterministic, linear and non-linear processes (this is demonstrated in Chapter 3).

Analysis of time-reversed coupled processes is hence a fertile ground for the analysis

of properties of CCC. The performance of CCC on such processes was thus tested as

discussed subsequently.

Coupled autoregressive (AR) processes of order one and linearly coupled tent maps

were generated as discussed in Section 3.2.1 (Eq. 3.1 gives the equations for coupled AR

processes and Eqs. 3.3 and 3.4 give the equations for the coupled tent maps). Y is the

independent process and X the dependent process in both the cases. 50 trials each of

length 1000 time points were taken after elimination of 100 and 2000 transients for AR

and tent map processes respectively. Higher number of transients for tent maps were

removed because chaotic maps can have longer transient times. For increasing coupling

between these processes with time evolution considered in the normal direction, results

240



are shown in Figures 3.1 and 3.4 for AR(1) and tent map respectively. The plots

compare results for CCC, TE and GC in case of AR processes; CCC and TE in case of

tent map processes.

Y ′ denotes the time-reversed independent process Y and X ′ is the time-reversed

dependent process X (in case of both AR and tent systems). The equations for Y ′ and

X ′ are as given below:

Y ′(t) = Y (1000− t+ 1), where 1 ≤ t ≤ 1000,

X ′(t) = X(1000− t+ 1), where 1 ≤ t ≤ 1000.

(8.1)

For time-reversed AR processes, estimated causality using CCC, TE and GC is as shown

in Figure 8.1. For time-reversed tent map processes, estimated causality using CCC

and TE is as shown in Figure 8.2. Results are displayed as mean values over 50 trials.

The parameters used in the computation of CCC, TE and GC remain the same as for

the original processes in Section 3.2.1.
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Figure 8.1: Mean causality values estimated using (a) CCC, (b) TE and (c) GC for
coupled time-reversed AR(1) processes, from Y ′ to X ′ (solid line-circles, black) and X ′

to Y ′ (solid line-crosses, magenta/ grey in print) as the degree of coupling, ε is varied.
CCC is invariant to time reversal, while for TE and GC, the dominant direction of
causality is seen to be reversed.
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Figure 8.2: Mean causality values estimated using (a) CCC and (b) TE for linearly
coupled time-reversed tent map processes, from Y ′ to X ′ (solid line-circles, black) and
X ′ to Y ′ (solid line-crosses, magenta/ grey in print) as the degree of coupling, ε is
varied. CCC is invariant to time reversal and in case of TE, as well, the dominant
direction of causality identified is same as for the original processes.

In consensus with the results reported in [217] for CMI, it is observed that for

TE and GC, the dominant causal direction for time-reversed AR processes is reversed

(compared to the original case) with the estimated values from Y ′ → X ′ being less

than that for X ′ → Y ′. Interestingly, for the measure CCC, the trend of causality

values remains unaltered when compared to the original case. To the best of our

knowledge, CCC is the only measure which performs in this way for stochastic linear

AR processes. Though based on Wiener’s principle, it works by measuring the change

in dynamical compression-complexity of the driven process when information from the

driving process is brought to the former and is not based on prediction (in a sequential

sense) of the future of the caused based on the past of the causal (please see Chapter 2

for details). On comparison of results with other measures for the case of AR processes,

it is confirmed that the measure CCC is symmetric with regard to the precedence or
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posteriority of the cause with respect to the effect, thereby being free of the assumption

that the ‘cause precedes the effect’.

For time-reversed tent map processes, for both TE and CCC, the dominant direc-

tion of causality is as identified for the original case. TE displays some spurious results

at ε = 0.4, 0.5 but the trend for magnitude of CCC values clearly increases for increas-

ing coupling until the processes are synchronized. The values obtained for CCC are

negative, which is in line with CCC values for original coupled time series (please see

Sections 2.4 and 3.2.1). The unchanging nature of both CCC and TE on reversal of

these chaotic processes may be the result of memory in dynamical systems as has been

suggested in [217].

8.3 Detection of temporal reversibility

A novel measure for detection of time-reversibility based on Effort-to-Compress (ETC)

is proposed in this section. First we propose a new measure, Compressive Potential,

which will be used later in the detection of temporal reversibility.

8.3.1 Compressive Potential

In Section 5.2.1, in the formulation of equivalent ETC we have seen that ETC works by

reducing the length of a given symbolic sequence at each iteration, replacing the most

frequently occurring pair of symbols with a new symbol. Let an ETC algorithm run

up to n steps at which the original sequence, say X (of length N), is transformed to a

constant sequence. If the reduction in the length of the sequence in the first iteration
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of the ETC algorithm is given by q1, in the second iteration by q2, and so on till the

nth iteration in which the reduction in length is qn and the equivalent (or average)

compression (or fractional reduction in length) achieved by the algorithm is denoted by

x, then, Eq. 5.11 holds and is reiterated below:

xn =
(q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .

(
qn

N − q1 − q2 . . .− qn−1

)
,

n · log(x) = log

((q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .

(
qn

N − q1 − q2 . . .− qn−1

))
,

n =
log
((

q1
N

) (
q2

N−q1

)(
q3

N−q1−q2

)
. . .
(

qn
N−q1−q2...−qn−1

))
log(x)

.

(8.2)

Thus, ETC for a sequence is a function of fractional reduction in length at all steps

and also the equivalent or average compression per step. The quantity ( q1
N

)( q2
N−q1 )( q3

N−q1−q2 ) . . .

( qn
N−q1−q2...−qn−1

), which is the product of fractional reductions in length is the total com-

pression achieved by the ETC algorithm. Let us denote it by Cn as it is the compression

achieved in n steps. By looking at the above expression, ETC can be thought of as

a dimension like quantity, computing the effective dimension at which the patterns in

a sequence appear. To clarify, let us consider the expression for box counting dimen-

sion [218] for a set S,

dimbox(S) = lim
ε→0

log(Nd(ε))

log(1/ε)
, (8.3)

where Nd(ε) is the number of boxes of length ε required to cover the set S. Nd(ε) =

k1 · (ε)− dim, means that Nd(ε) scales as (1/ε)dim.

ETC can be thought of as a dimension with the limit on the lengthN of the sequence

approaching ∞. Let n∞ be the total number of ETC steps required for N → ∞ and
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let x∞ denote the limit1 of per step compression, x, as N →∞.

n∞ = lim
N→∞

log(Cn∞)

log(x∞)
. (8.4)

Cn∞ = k2 · xn∞∞ , means that the total compression achieved by ETC for the infinite

length sequence scales as xn∞∞ . Though ETC is useful to compare the dimension at

which patterns manifest, in certain scenarios, for a given pair of sequences, we may

be interested in comparing the total compression Ck in some k steps when the given

sequences are transformed using ETC (or NSRPS) algorithm. Here, we may compare

the quantity log(Ck) which is the potential to transform/compress a given sequence in

the first k iterations of the algorithm. We name this quantity the compressive potential,

PC . As Ck < 1, PC is always < 0. Intuitively, for a fixed k, PC attains lower values for

less compressible sequences (some examples are discussed under the heading ‘Example

cases’ below). Since Ck is a function of the sequence, we denote it as Ck(X) for the

sequence X. Similarly PC is a function of X and also of k.

PC(X, k) = log(Ck(X)), where

Ck(X) =
(q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .

(
qk

N − q1 − q2 . . .− qk−1

)
.

(8.5)

Also, from Eq. 8.2, PC(X, k) = k · log(xk(X)), where xk is the equivalent per step

compression considering only the first k iterations of the ETC algorithm. Moreover,

from Eq. 5.9, we can obtain the relation between total self-information contained

in the patterns jointly occurring in the given sequence X up to the kth level and

PC(X, k). Let Zk denote the the joint occurrence of paired patterns occurring at dif-

ferent levels of transformation of X and G(Zk) be the total self-information contained

1We do not have a mathematical proof that the limit exists, but we assume that it exists.

245



in their occurrence. Since, G(Zk(X)) = − log(( q1
N

)( q2
N−q1 )( q3

N−q1−q2 ) . . . ( qk
N−q1−q2...−qk−1

))

or G(Zk(X)) = − log(Ck(X)), gives us,

PC(X, k) = −G(Zk(X)); (8.6)

PC is a useful quantity to be computed for given sequences when only the patterns

at higher levels (scales) are to be compared or the probabilities of shorter patterns are

more relevant for our analysis. By fixing the steps of sequence transformation to k and

computing the logarithm to the natural base, the potential measured is not influenced by

equivalent per step compression which is different for each sequence. Hence, compressive

potential of the ETC algorithm for given sequences allows for a direct comparison of

the frequency of occurrence of particular sections (levels) of the joint patterns in the

selected chosen steps of the algorithm.

Example cases:

The behavior of PC is demonstrated for a few cases. Four symbolic sequences X1, X2,

X3 and X4 are simulated as shown in Table 8.1. X1 and X2 are periodic time series,

while X3 is partly periodic, partly random and X4 is a fully random time series. Each

of the series were simulated up to a length of 10,000. The ETC value (or the number

of steps) required to compress the sequences using ETC algorithm is also displayed in

the table. For computation of PC and ETC value, the time series were binned using 8

uniform sized bins.

Figure 8.3 shows the behavior of PC for each of the sequences as k is varied. We

see that, in case of X1 (Figure 8.3(a)), for which the repeating patterns are of shortest
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Table 8.1: Time series simulated to study properties of PC .

Time series Composed of ETC

X1 Repeating periodic sequence: [1 2 3 4] 3

X2 Repeating periodic sequence: [1 2 3 . . . 1000] 95

X3

Repeating partly periodic partly random
sequence: [1 2 3 . . . 20] followed by 100

random numbers uniformly chosen from
between 1 and 20

100

X4
Uniformly randomly distributed real

numbers in the range (0,1)
4110

length and the sequence is fully periodic, the ETC value obtained is 3, suggesting that

the patterns reappear at the third dimension. PC value is the highest and fastest to

saturate in this case, attaining a value of -3.18 as k becomes equal to 3.

X2 and X3 have similar ETC values, 95 and 100 respectively, even though X2 is

completely periodic with period length 1000, while X3 has more frequently occurring

shorter periodicity of period 20, interspersed with random sequences (of length 100 time

points). For X2, PC saturates at a value of -280.65, while for X3, PC saturates at a

value of -317.19. Also, if we set k = 40, then at this k, for X2, PC = −108.30, while for

X3, PC = −155.17. For the two time series, the rate at which PC falls is also slightly

different at different values of k. Thus, for X2 and X3, even though the ETC values are

not very different, PC values being significantly different for k = 40, indicate that there

remains more structure in the completely periodic X2 at the level of shorter patterns

when compared to X3. Since X4 is completely random, ETC value is high, equal to

4110, and the PC values are much lower compared to other time series. For instance,
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Figure 8.3: Variation of Compressive potential, PC , with k for time series (a) X1 (peri-
odic with short patterns), (b) X2 (periodic with long patterns), (c) X3 (partly periodic,
partly random) and (d) X4 (completely random), simulated as per Table 8.1.

PC(X4, k = 200) = −1186.3 and goes on decreasing further until it is fully compressed

by the ETC algorithm at k = 4110. In a completely random sequence, neither shorter

patterns nor longer patterns exist, making the time series highly incompressible.

8.3.2 Compressive Potential based Temporal Asymmetry Mea-
sure

The measure for temporal asymmetry, APC , of a time series X is formulated using

compressive potential, PC , as follows:

APC (X, τ, k) = PC(X,Xτ , k)− PC(X ′, X ′τ , k). (8.7)

In the above equation, for binned symbolic sequence X of given time series of length
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N , the quantities used in computation of APC are as given below:

Xτ (t) =X(t+ τ), 1 ≤ t ≤ N − τ,

X ′(t) =X(N − t+ 1), 1 ≤ t ≤ N − τ,

X ′τ (t) =X ′(t+ τ), 1 ≤ t ≤ N − τ.

(8.8)

Xτ is the time-shifted (by τ points) to future analog of X, X ′ is the time-reversed

version of the original sequence and X ′τ is the time-shifted (by τ points) to future analog

of X ′. For example, for a given time series 1, 2, 3, . . . , 12 and τ = 2, we take:

X =1, 2, . . . , 10,

Xτ =3, 4, . . . , 12,

X ′ =12, 11, . . . , 3,

X ′τ =10, 9, . . . 1.

(8.9)

PC(X,Xτ , k) is the joint compressive potential of the sequences X,Xτ based on the

total compression obtained by the ETC algorithm when it is allowed to run up to k

iterates. PC(X ′, X ′τ , k) denotes the same for sequences X ′, X ′τ . For computation of joint

PC , ETC algorithm is run after obtaining a single symbolic sequence using dictionary

construction for the considered sequences. Dictionary construction for a set of given

symbolic sequences is discussed in Section 2.3.1.

The value of the measure APc can be either positive or negative as either forward or

reversed processes can have greater compressive potential. What matters in our case is

the magnitude of the difference, the larger the difference implies more different are the

statistics of the forward time and time reversed processes and so the the process can

be classified as being time irreversible. In order to test the significance of the obtained
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APc value for a particular kind of process, we perform surrogate analysis as is discussed

in the next section.

As discussed in the Section 8.1, KLD between the joint probability distributions of

forward time and time-reversed process is a measure of time-irreversibility of a given

process. In fact, it is not just a statistical means of testing time-irreversibility but

also has an established connection to thermodynamic entropy production along the

process. APC , computed based on joint compressive potential, also, indirectly compares

joint probability distributions (by taking a sequence X and its future Xτ ) of the given

process and compares it with its reversed version, (X ′ and X ′τ ). From Eq. 8.6, we have

seen that the term PC(X, k) = −G(Zk(X)), that is, the compressive potential based

on first k iterations is equal to the negative of total self-information contained in the

joint occurrence of most dominant paired patterns occurring up to the first k levels

of the transformation of the sequence. Thus, the comparison that APC makes is not

just between simple joint probability distributions (of a time sequence and its future)

but joint distributions occurring jointly at all levels (scales) of the sequence (and its

future). The choice of k limits the point till which the scales are taken. Most often the

higher set of scales (which are the shorter patterns in the original sequence, found at

lesser number of iterations of the ETC algorithm) may be most useful for our analysis.

Lower set of scales (which are longer patterns in the original sequence, found at greater

number of iterations of the ETC algorithm), may contribute to non-requisite details

and be less reliable. This is because their frequency of occurrence cannot be measured

very accurately, with the possibility of their occurrence becoming limited only to a few
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times owing to the finite length of the sequence. For this reason, the limit k imposed

on number of iterations is useful and helps give reliable results.

For the above reason of the fundamental similarity of APC to KLD as well as its

additional beneficial features discussed, the proposed measure of temporal asymmetry

is extremely promising. Though not established yet, it is expected to have relations to

thermodynamic entropy production along the process.

8.3.3 Results

The following processes were simulated for the detection of temporal irreversibilty using

the proposed measure APC .

Time-reversible processes simulated include:

1. Linear Gaussian Process (LGP), that is, Gaussian noise with distribution N (0, 1).

2. Autoregressive process of second order, AR(2):

X(t) = 0.7X(t− 1) + 0.2X(t− 2) + 0.03εt, (8.10)

where t is the time index and εt is Gaussian white noise, N (0, 1).

3. Static nonlinear transformation of a first order Gaussian process, STAR(1):

X(t) = tanh2(Y (t)), where

Y (t) = 0.6Y (t− 1) + 0.03εt,

(8.11)

where εt is Gaussian white noise, N (0, 1).

Time-irreversible processes simulated include:
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1. Self-Exciting Threshold AR (SETAR(2;2,2)) process with two regimes, each one

with second order delays:

X(t) =

{
0.62 + 1.25X(t− 1)− 0.43X(t− 2) + 0.0381εt if X(t− 2) ≤ 3.25

2.25 + 1.52X(t− 1)− 1.24X(t− 2) + 0.0626εt otherwise,

(8.12)

where εt is Gaussian white noise, N (0, 1).

2. Chaotic tent-map process:

X(t) =

{
2X(t− 1), 0 ≤ X(t− 1) < 1/2,

2− 2X(t− 1), 1/2 ≤ X(t− 1) ≤ 1.
(8.13)

A length of 10,000 time points were taken for each of the above processes for the

estimation of APC . This was after discarding off 1000 transients for all the processes.

For the case of tent map alone, 2000 transients were discarded. For the computation

of APC value, the given time series were symbolized using 8 bins. The parameters for

the measure were set as τ = 500, k = 500.

In order to test for the statistical significance of obtained APC for each process taken,

surrogate analysis was done. For this, an ensemble of surrogate data {XS}, consisting

of 50 realizations, were constructed from the original time series using the Iterative

Amplitude Adjusted Fourier Transform (IAAFT) [102]. This method preserves the

power spectrum density and amplitude distribution of original data. Randomization of

the Fourier phases results in the constructed surrogate ensemble with the null hypothesis

of Gaussian linear stochastic process. Since Gaussian processes are time-reversible [208,

209,219,220], our null hypothesis, H0, is that the considered process is time-reversible.
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To assess the statistical significance of the APC of original time series, z-test is used to to

quantify its statistical deviation from APC values obtained in the constructed ensemble

of surrogate data. H0 is rejected in favour of the alternate hypothesis of reversibility

with obtained p-values being less than equal to the significance level, α = 0.05.

Figure 8.4 displays the distribution of APC values of surrogate data as well as a

dotted line showing where the APC value of the original time series lies for each of the

processes simulated. APC distribution of surrogates for all the processes was found to

satisfy normality based on the Anderson-Darling test. For LGP, the null hypothesis is

not rejected with p-value=0.50 (Figure 8.4(a)); for AR(2) process, the null hypothesis

is not rejected with p-value=0.47 (Figure 8.4(b)); for STAR(1), the null hypothesis is

not rejected with p-value=0.13 (Figure 8.4(c)). All these processes are time-reversible

processes as per existing literature [203, 204, 221]. The obtained APC values for these

processes are not found to be significant qualifying them as reversible based on our

proposed measure. For SETAR process, the null hypothesis is not rejected with p-

value=0.35 (Figure 8.4(d)); and for tent-map process, the null hypothesis is rejected

with p-value=4.6 × 10−8 (Figure 8.4(e)). Both these processes are statistically irre-

versible processes [204, 222–224]. While the tent map process is classified correctly

using APC , the method fails for the SETAR process simulated.

8.4 Discussion, Conclusions and Future Work

Causal analysis of time-reversed processes using the CCC measure reveals an inter-

esting property of measure. The measure works symmetrically for time-forward and
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Figure 8.4: Compressive potential based temporal asymmetry test result on simulated
data from processes: (a) LGP, (b) AR(2), (c) STAR(1), (d) SETAR(2;2,2) (e) Tent map.
Dashed line indicates APc value obtained for original series. Its position is indicated
with respect to Gaussian curve fitted normalized histogram of surrogate APC values
that form the null hypothesis of reversible processes.Null hypothesis is not rejected in
case of (a), (b), (c), (d) and rejected in case of (e).

time-reversed processes. This behavior is observed for both stochastic AR as well as

deterministic chaotic processes, unlike other measures such as TE (or CMI) where sym-

metric behavior is noticed only for chaotic processes with dynamical memory. These

results indicate that the violation of the GC assumption that the ‘cause should precede

the effect’ does not affect the CCC measure. Thus, CCC can be applied to a broader

range of processes such as microscopic processes, which are reversible and the arrow

of time is not restricted to a single direction. This also allows for the possibility of

CCC to be applied on quantum processes or subjective psychological processes. While

quantum mechanics allows for certain processes and information to travel backwards in
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time, subjective experiences such as dreams and intuitions seem to dismiss the sequen-

tial order of linear arrow of time. The possibility of these applications are as of now very

speculative and would require appropriate translation of the data for implementation

of CCC.

A reason as to why CCC works symmetrically is because the measure ETC that it

employs, works on finding the most frequently occurring pairs in the given sequence

in several iterations, transforming the original sequence at each iteration. Whether

we run the ETC algorithm on forward time or reverse time windows of data (for CCC

computation) typically doesn’t make much of a difference as the chosen pairs for substi-

tution remain more or less the same. In measuring the causality from Y → X, what is

important is the choice of the length of past windows Ypast, Xpast and the future window

∆X to which there is a potential effect of the latter two (for details on these windows,

please see Chapter 2, Section 2.2 and 2.3). As long as these windows are selected appro-

priately using the parameter selection criteria for CCC (Section 3.3), computation of

ETC and hence dynamical compression-complexity which are based on the occurrence

of patterns held together in these windows and not on whether the patterns occur on

parsing from right to left or left to right in a sequence, determine the requisite causal

influence. What this means is that once intervention has been done at the correct spot

to put appropriate blocks of cause and effect dynamics from given time series together,

whether the complexity of blocks is measured in forward time or in reverse time does

not matter.

In the second part of the chapter, we have proposed a compressive potential based
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temporal asymmetry measure for time series data which is based on the ETC algorithm.

It helps to compare the forward and reverse time joint probability distributions occur-

ring jointly at different scales (levels) of the given time series. The established relation

of the proposed compressive potential measure to the total self-information contained in

the joint occurrence of most dominant paired patterns, brings the asymmetry measure

closer to KLD measure of temporal asymmetry. KLD is not just a statistical asymmetry

measure but also is shown to be related to thermodynamic entropy production along

a process, relating the obtained value of asymmetry to the physical arrow of time for

the process. KLD already has some estimators based on compression algorithms such

as the Ziv-Merhav estimator [215,225]. The proposed measure is promising because of

the advantages of ETC such as its better performance on short and noisy time series

when compared to other complexity estimators [74, 77]. Also, some of the discussed

theoretical properties of ETC by which it can account for distributions at several scales

of the time series can help to provide reversibility/irreversibility information that may

be hidden at different scales. The choice of the parameter k in PC can help to fix the

number of most dominant scales to take at which the most dominant probabilities are

considered. The measure can also be generalized to consider some set of intermediate

steps of the ETC algorithm instead of first k steps, in order to compute compressive

potential based on probabilities only at these intermediate specific scales.

Out of the processes simulated for the testing ofAPC , correct reversibility/irreversibility

is detected for all the cases except for SETAR which was incorrectly classified as be-

ing reversible. In future work, different values of parameters k and τ will be taken to
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check for improved results using APC . Other processes such as continuous time chaotic

processes (Lorenz, Rössler etc.) will be tested for reversibility. Generalized version of

the measure using intermediate range of ETC steps for computation of PC will also

be tested on simulations for irreversibility detection at different scales. Further, the

measure will also be tested on real data such as ecological and epidemiological time

series. The difference between Pc values as a means to compare distributions (not just

forward time and reverse time distributions of a single time series) is also left for future

work. It will also be interesting to explore the relationship between Pc and different

types of fractal dimensions.
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Chapter 9

Conclusions

This chapter summarizes the thesis and its contributions. Some open problems and

future research directions are also discussed.

9.1 Summary of Research

This thesis addresses the gaps identified in the literature on causality estimation from

time-series. Causality analysis from temporal data is of immense importance in today’s

world of making inferences based on recorded measurements. For systems such as

the human brain or the environment of a particular place in which there are several

variables of interest, intervention into the system is either not practical or may have

ethical implications. As a result, causality measures which can be applied on acquired

data are being used widely. These methods are either data-driven or model-based, with

the latter type making some assumptions about the underlying model generating the

data.

The adaption of the ladder of causation introduced in the context of artificial intel-

ligence [15] to time-series causality estimation methods helped to reveal that existing
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data-driven causality measures are still on the lowermost rung on the ladder, that is,

the rung of association. To address the gap of the inability of data-driven measures to

ascertain causality using interventional means (which is a higher rung on the ladder of

causation), we introduced a novel Interventional Complexity Causality (ICC) scheme in

this thesis. While the scheme can employ any complexity measure to estimate causal-

ity, in the thesis, we use the Effort-to-Compress (ETC) complexity measure in order to

develop a Compression-Complexity Causality (CCC) measure. As it is on a higher level

of causation, the measure is expected to be better in comparison to existing approaches.

Testing of CCC on simulations showed that it accomplished our objective of overcom-

ing a number of limitations of existing data-driven approaches. Further, applications of

CCC on real data demonstrate that it can be applied for a variety of datasets to make

useful inferences.

The other set of objectives of the thesis focused on how the science of time series

causality estimation could advance theoretical and empirical understanding in related

domains. The areas of chaotic synchronization and compressed sensing (of coupled

sparse signals) benefited from this work directly. Some of this research made direct

use of the CCC measure and its properties, some made use of other existing causality

measures, and some of it utilized general concepts in causality testing.

Thus, the thesis is a synthesis of theoretical and empirical contributions in domain of

time-series causality estimation and the use of these contributions to make theoretical

and empirical advances in allied disciplines. The specific contributions made by the

thesis are enlisted in the next section.
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9.2 Contributions of this Thesis

The unique contributions made by this thesis are as follows:

1. Interventional Complexity Causality (ICC) scheme: The scheme is pro-

posed to estimate data-driven causality which is interventional in nature and by

construction higher than existing data-driven causality measures on the ladder of

causation. Some of the properties/benefits of this approach are given below:

• This approach allows for doing surgery on provided time series that is a

means for intervention in the given system.

• It makes use of proposed novel dynamical complexity measure that allows to

capture influences in the system based on dynamical evolution of processes

that are not merely estimated by correlation/joint occurrence of observed

samples in time series.

• It is generic and can make use of any complexity measure, thereby allowing

a number of causality measures to be developed based on this idea.

2. Compression-Complexity Causality (CCC) measure: The measure was

formulated by employing the Effort-to-Compress measure to compute complexity

in the ICC scheme. ETC is a measure of compression-complexity. Properties/

benefits of CCC are discussed as under:

• CCC does not make any assumptions of linearity/ non-linearity, markovian-

ity, gaussianity, stochasticity/determinism or stationarity on the data.

260



• The point of intervention for CCC is adaptively determined for given data

based on the scale at which causality exists between given processes. Data-

adapted parameter selection criteria is developed to determine the parame-

ters of CCC including the intervention point.

• CCC can be both positive and negative. Unlike any other data-driven mea-

sure, this property helps determine the kind of dynamical influence that a

cause time-series brings to the effect time-series with respect to the past of

the latter. This property can be useful to control the dynamics of a given

system.

• It is shown using simulations of coupled autoregressive and chaotic processes

that CCC is robust to noise, low temporal resolution, filtering and decima-

tion, non-uniform sampling, long-term memory processes as well as finite

length signals. Further, its comparison with existing data-driven approaches

– Granger Causality (GC), Transfer Entropy, Nonlinear Granger Causality

and Convergent Cross Mapping demonstrate that CCC overcomes the lim-

itations of existing measures in a number of cases of the simulations done

above.

• Significance testing procedure based on surrogate data is introduced for the

measure CCC. Since CCC can be both positive and negative, surrogate anal-

ysis revealed that a high value of CCC may not necessarily imply the exis-

tence of causality.
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3. Causal inferences for real-world systems: We demonstrate the use of CCC in

a number of real-world systems. Though, most of the demonstrated applications

are in the domain of neuroscience, CCC can be readily applied to time-series from

any discipline. The strength of CCC as revealed by its performance on downsam-

pled, non-uniformly sampled systems as well as on systems in which the cause

and effect time series are sampled differently suggests that CCC can be used to

estimate causality between time series which are evolving at different time scales.

This is of immense importance in real-world processes such as climatological pro-

cesses. The applications tested for include:

• Causal influences between predator (didinium) and prey (paramecium) pop-

ulations in an ecosystem.

• Causality between simulation current and voltage recordings across squid

giant axon.

• Functional connectivity analysis between selected brain regions involved in

movement when 5 human subjects performed a novel hand reaching task.

The connectivity was estimated using electroencephalographic signals and

compared across four different phases of movement: fixation, instruction,

planning and movement.

• Distinguishing between the level of consciousness in the brain during awake

and anaesthesia states in four monkeys using electrocorticograhic recordings.

For this, a novel Network Causal Activity measure was proposed that helped
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compare the number of significant causal connections present in the brain in

the two states.

4. CCC for networks: Formulation for effective CCC was provided in order to

detect causal connections present in networks. In order to make its computa-

tion easier, the concept of equivalent ETC was introduced and its mathematical

formulation discussed.

• Effective CCC was applied to directed acyclic graph networks comprising

of four variables exhibiting autoregressive dynamics. Comparison of re-

sults with multivariate Granger Causality on the above simulated networks

demonstrate that effective CCC performance is promising for short, noisy

and long range memory processes.

5. Causal perspective on chaotic synchronization: Synchronization of chaotic

systems is a ubiquitous phenomenon, found to occur in specialized electronic cir-

cuits, optical arrays, biological neurons, social networks, superconductors, and

other biological and physical systems. Synchronization of such coupled systems

depends on a number of factors such as the nature of systems, the variable(s) used

for coupling and the kind of coupling. While a number of temporal conditions

have been proposed to determine if the given systems will proceed to synchro-

nization [68, 69], to the best of our knowledge, there exist no spatial conditions

for the same. Causality testing was used to establish the following in this regard:
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• A novel concept of causal stability was proposed and the causal stability

synchronization theorem was formulated and proved to be a necessary and

sufficient condition for complete synchronization. The criterion of causal

stability is generic and can be established using any existing data-driven

causality measure. In this work, the theorem was verified for the case of

unidirectionally coupled Lorenz systems using the CCC measure.

• An empirical condition to check for synchronizing variables in unidirection-

ally coupled identical systems was developed. The sign of net CCC value

from the coupled variable to the non-driven subsystem determined whether

a slave coupled to the master will be driven to synchronization. Time se-

ries obtained from the master system alone could be used to check for this

condition. This condition was checked for a number of simulated systems

including Hindmarsh-Rose chaotic neuronal model.

• The proposed conditions are an important contribution for the control of

chaos in networks where we do not know the underlying mechanism and wish

to inhibit/facilitate synchronization between systems. These are expected to

have applications in real-world systems such as the brain.

6. Causality detection for anticipating synchronization: It is a challenging

task to determine the correct causality direction for chaotic systems exhibiting

anticipating synchronization as in these systems the slave begins to anticipate

the master. It is shown with the use of simulated tent map systems that GC
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fails to determine the correct causality direction for anticipating systems. Results

obtained using CCC on these systems indicate that the measure if implemented on

adequately high resolution data (by using a higher number of bins), can correctly

detect the dominant direction of causality between such systems.

• Use of an appropriate measure to determine phase along with causality de-

termined by CCC can help to determine the presence of anticipating syn-

chronization in coupled systems.

7. Causality analysis for sparse signals: The technique of compressed sensing

is used to acquire, store and transmit many naturally occurring signals which

are sparse in some domain. We have proposed structured sensing matrices –

Toeplitz and Circulant, that help to preserve causality as computed using GC in

the compressive domain for such sparse signals. These matrices are recommended

for sensing in order to:

• Determine causality in the compressive domain, saving the computational

cost of reconstruction of signals. Extensive analysis is done on coupled sparse

autoregressive processes to demonstrate that GC remains intact when par-

tially or fully structured matrices are used for sensing.

• For some sparse signals such as neural signals, it may be impossible to de-

termine causal relations directly using data-driven measures. To the best of

our knowledge, only model-based methods have been employed to determine

coupling between sparse signals. We demonstrate for the case of real sparse
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neuronal spike train recordings obtained from the rat prefrontal cortex that

when structured sensing matrices are used to obtain their compressive coun-

terparts, GC can be used to infer causality from the compressive domain

signals.

8. Causality for time-reversed processes: It is observed that the CCC measure

works symmetrically for the original time-forward coupled processes and when

these processes are reversed in time. Unlike other data-driven measures such

as Transfer Entropy, where this property holds only for deterministic chaotic

processes; for CCC, it is true not only for deterministic chaotic processes but also

for stochastic autoregressive processes. It can thus be said that CCC does not

make an assumption of ‘cause preceding the effect’.

• This finding opens the use of CCC to a broad range of processes, such as

microscopic processes, which are reversible and where the arrow of time is

not restricted to a single direction.

9. Detection of temporal reversibility: Time-reversibility of processes is closely

linked to the domain of causality as many existing causality measures make the

assumption that the cause precedes the effect. We propose a novel compressive

potential based temporal asymmetry measure to detect for temporal reversibility

of given processes. The measure helps to compare the forward and reverse time

joint probability distributions occurring jointly at different scales of the given

time series. Some of the properties of the measure are as below:
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• The measure when tested on a number of time reversible and irreversible

simulated processes gives promising results.

• It is conjectured to have close links to Kullback-Leibler measure of temporal

asymmetry [213,215] which is shown to be related to thermodynamic entropy

production (and hence the physical arrow of time) along a given process.

9.3 Future Research Directions and Open Problems

Future research directions arising out of work presented in each chapter are discussed

in detail at the end of the chapters. Some of these directions for future research are

summarized below:

1. To explore the use of complexity measures other than ETC to develop novel

causality measures based on the ICC scheme. One promising candidate for this is

the Lempel-Ziv complexity measure which just like ETC, measures compression-

complexity.

2. Parameter selection criteria for the CCC measure can be refined further. This

can be done by introducing better binning strategies (such as equiquantization

binning) compared to the currently used uniform binning. Also, better optimiza-

tion strategies can be used to fix the different window lengths. One of the means

by which this can be done is by looking at the separation of ETC hyperplanes

in a high dimensional space in which the different dimensions comprise of one or

more of the parameters used in CCC estimation: the two window lengths that
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determine past and present chunks of time series as well as the step size.

3. Developing a method to compute effective CCC for networks with bidirectional

connections. Extension of the proposed effective CCC method to large networks

(> 5 variables) also needs to be tested.

4. The analysis done on determining brain connectivity during motor task can be

improved in a number of ways: source localization of EEG signals should be

done in order to remove volume conduction effects; conditional/effective causality

estimation should be done in order to remove indirect influences; analysis can be

made more rigorous by extending to more number of subjects and by taking more

trials per subject; more connections can be considered between the brain regions

taken and further more brain regions can be included in the analysis. It would

also be interesting to do a comparison of connectivity for slow hand movement

task (as taken in this study) with fast hand movement performed by the subjects.

5. Network Causal Activity measure used for distinguishing between awake and

anaesthesia state in monkeys should be formulated based on effective CCC mea-

sure that works for large networks. Also, we would like to apply the measure

for different stages of sleep and other states of consciousness (such as coma, veg-

etative state etc.) in order to determine its ability to distinguish between the

different levels of consciousness in each of these states.

6. Generalization of the causal stability synchronization theorem to forms of synchro-
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nization other than complete synchronization, such as generalized synchronization

and phase synchronization.

7. Explore the relationship between the sign of net causal influence estimated using

CCC for synchronizing variables and the conditional Lyapunov exponent of the

corresponding non-driven slave subsystem. The condition on Lyapunov exponents

is an existing temporal condition for synchronization [68].

8. Investigating other different types of compressed sensing matrices that help pre-

serve GC and others that can help preserve Transfer Entropy and CCC of sparse

signals in compressive domain. Extending sparse signal causality analysis to net-

works and testing the same on real data.

9. Parameter tuning to improvise the performance of compressive potential based

asymmetry measure which has been developed in order to detect time-irreversibility

of given processes. The measure will also be tested on real data. Finally, we would

like to explore its exact relation to the Kullback Leibler divergence based temporal

asymmetry measure which has close links to the physical arrow of time.

Some other interesting open problems encountered during the course of the thesis

are listed below:

1. Developing techniques to combine model-based and data-driven measures of time

series causality estimation in order to improve the working of the two techniques.
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2. Using time-series based causality estimation to develop causal learning algorithms

with the aim of improving current artificial intelligence technology.
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Appendix A

Transfer entropy results for coupled
AR(100) processes

Results for Transfer Entropy (TE) estimation for coupled autoregressive AR(100) pro-

cesses with number of lags to take for the observed processes set to 110 are displayed in

Figure A.1. Results are displayed as mean values over 20 trials. TE computation was

done using the MuTE toolbox [90]. The processes were simulated using Eq. 3.2 with

all settings as in Section 3.2.1.
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Figure A.1: Mean causality values estimated using TE (with the number of lags to
take for the observed processes set to 110) for coupled AR(100) processes, from Y to
X (solid line-circles, black) and X to Y (solid line-crosses, magenta/ grey in print) as
the degree of coupling, ε is varied.

Compare this with Figure 3.3, where the lags to consider for TE computation are
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set to 5. There is a definite improvement in the results when lags are set appropriately

to a higher order for TE. Even though finite positive values are obtained for causation

from X to Y in Figure A.1, these values can be clearly distinguished from the causality

values obtained from Y to X. The latter values are higher than the former, showing

an increasing trend with increasing coupling.
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Appendix B

Contralateral-ipsilateral
connectivity analysis between
premotor and motor regions

Brain connectivity analysis during different phases of a motor task has been done in

Section 4.3. Results for connectivity between premotor and motor regions on the side

contralateral as well as ipsilateral to the movement are discussed in Section 4.3.2. Here,

CCC as well as Non-linear Granger Causality (NGC) have been used to analyze the

causality between premotor and motor regions (both directions) contralateral to the

movement (FC1 and C3), ipsilateral to the movement (FC2 and C4) as well as cross

connections between the contralateral premotor region and ipsilateral motor region as

well as between ipsilateral premotor region and contralateral motor region. These four

connections in both directions were analyzed for all the 5 subjects for the four phases

considered. The variation in the connectivity with the phases for these four connections

are shown in Figures B.1-B.4.
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Figure B.1: Connectivity analysis for all the subjects using CCC (left) and NGC (right)
between signals obtained from the electrode pair: contralateral premotor - contralateral
motor. Results are displayed as a variation in connectivity with a variation in the
phases, which occur in the following successive order: (1) Fixation Time or FT, (2)
Instruction Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT. Premotor
to motor connectivity variation is indicated using solid lines and motor to premotor
connectivity variation is indicated using dashed lines.

Figure B.2: Connectivity analysis for all the subjects using CCC (left) and NGC (right)
between signals obtained from the electrode pair: ipsilateral premotor - ipsilateral mo-
tor. Results are displayed as a variation in connectivity with a variation in the phases,
which occur in the following successive order: (1) Fixation Time or FT, (2) Instruction
Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT. Premotor to motor
connectivity variation is indicated using solid lines and motor to premotor connectivity
variation is indicated using dashed lines.
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Figure B.3: Connectivity analysis for all the subjects using CCC (left) and NGC (right)
between signals obtained from the electrode pair: contralateral premotor - ipsilateral
motor. Results are displayed as a variation in connectivity with a variation in the
phases, which occur in the following successive order: (1) Fixation Time or FT, (2)
Instruction Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT. Premotor
to motor connectivity variation is indicated using solid lines and motor to premotor
connectivity variation is indicated using dashed lines.

Figure B.4: Connectivity analysis for all the subjects using CCC (left) and NGC (right)
between signals obtained from the electrode pair: ipsilateral premotor - contralateral
motor. Results are displayed as a variation in connectivity with a variation in the
phases, which occur in the following successive order: (1) Fixation Time or FT, (2)
Instruction Time or IT, (3) Reaction Time or RT, (4) Movement Time or MT. Premotor
to motor connectivity variation is indicated using solid lines and motor to premotor
connectivity variation is indicated using dashed lines.
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