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ABSTRACT

Modeling a system based on time series is a complicated problem in general, espe-

cially when the time series is nonlinear and chaotic. The goal of the thesis is to

introduce a method of prediction and modeling that exploits the property of re-

currence in dynamical systems. A time series is said to be recurrent if keeps on

visiting a particular neighborhood in the state space. The thesis demonstrates that

the inherent redundancy structure of a well known topological technique known as

delay embedding can be coupled with recurrence property to develop a new method

of prediction. The modeling procedure empirically finds the recurrence neighbor-

hoods from the signal, which are then subdivided into various equivalence classes

based on their recurrence timings. A set of affine maps are then derived across these

equivalence classes. This gives is a possibility of simplifying the dynamics in terms

of affine transformations in small neighborhoods. The delay-embedding (done in a

dimension much higher than the inherent dimension of the dynamics) is used as a

scaffolding to analyze the global structure of the system. A projection to a lower

dimension was followed to take care of the fundamental issues related to high di-

mensional models that describe a low dimensional dynamics. Local analysis of the

system was done in the low dimensional projected space. A topological conjugacy of

the recurrence neighborhoods in both the lower and the higher dimensional spaces

are demonstrated.

The proposed model uses a nonlinear generalization of a well known linear al-

gebra technique named Singular Value Decomposition (SVD) for data analysis. The

method of nonlinear SVD and its uses (i) to determine nonlinearity in a time series

and (ii) to empirically arrive at an upper bound for the dimension of a manifold

where the data resides are demonstrated. The proposed method of prediction and

modeling was used for the analysis of (i) data generated by the Duffing oscillator

and (ii) an Electrocardiogram (ECG) record. It is shown that the entire nonlinear

structure can be deduced from one or few overlapping neighborhoods for these data.

A method of stability analysis by studying the properties of affine maps specific

xiii



to the neighborhoods are demonstrated for both these data. The thesis gives a

theoretical justification for a well known experimental observation that the heart

rate variability– a variability in beat-to-beat intervals of the heart is a necessity

for healthy functioning of the heart. The relevance and contribution of the intro-

duced method for biomedical signal processing is justified by using it successfully

for analyzing a set of multi-channel physiological data.
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CHAPTER 1

INTRODUCTION

Modeling a system based on an observed time series is a difficult problem general as

the measurements in addition to being noisy contain only partial information about

the system. Key goals of research in various fields ranging from theoretical mathe-

matics to nonlinear system analysis and atmospheric– ocean modeling to biomedical

signal processing focus on this issue. The foundation of this thesis is an exploratory

research for finding new, effective methods for modeling and prediction of biomed-

ical signals. The main goal of the research reported in the thesis is to propose a

new method of modeling and prediction with a dynamical system perspective for a

special class of signals that exhibit the property of recurrence– the repetition of pat-

terns in the time series. Further the thesis discusses a few novel analysis techniques

that are developed for processing signals generated by nonlinear systems. In what

follows, the overview of the thesis– the purpose and the significance of the study

with respect to the background literature, key ideas and areas that are explored

and objectives of the thesis, new ideas explored in the research, methodology of

research, analysis of results and its significance, and the contribution of the thesis

to the existing body of knowledge are discussed.

1.1 Overview

Most of the dynamical systems in nature are fundamentally nonlinear. Some

of these systems were modeled and studied in a linear paradigm before the devel-

opments in nonlinear dynamics. The field of nonlinear dynamics is interdisciplinary

in nature as it analyzes the complex behaviors of non–linear systems in various dis-

ciplines ranging from theoretical mathematics to biological entities and engineering

models. Nonlinear systems exhibit a range of complex phenomena that have given

useful insights to the field of time series analysis, signal processing and mathemati-

cal modeling of realtime systems [2, 3]. Emergence of new methods for analysis and

modeling based on a dynamical systems perspective is one of the significant achieve-

1
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ments of the nonlinear dynamics in the past few decades [4, 5]. These methods have

found numerous applications in different disciplines spanning from atmospheric–

ocean models to biomedical analysis.

The main area of research the thesis focusses on is the modeling of dynamical

systems based on a measured signal or a time series generated by the system. This

type of modeling is perceived as a complicated problem especially when the data

under study is nonlinear, chaotic and noisy. Most of the physiological signals in the

area of biomedical signal processing are considered nonlinear. Depending upon the

objective of study, many linear methods are still popular to process these signals.

Representing a signal as linear combination of set of orthogonal functions is a widely

used methodology in signal processing. Two of them are: (i) Fourier series based

methods use a set of prefixed basis functions, and (ii) class of methods based on

Singular Value Decomposition (SVD) or Karhunen Loeve Transform that do not

have a prefixed set of basis functions but finds the best basis for the signal empirically

such that it satisfies the law of parsimony.

SVD and some of its related variations ( Independent Component Analysis,

Principal Component Analysis and Blind Source Separation) are also widely used to

process data [6, 7, 8, 9]. SVD is an established method in linear algebra for matrix

decomposition and it has been used for finding the dimension of a linear system

as it gives statistically independent set of variables which could span the state–

space [10, 11]. Since SVD based methods are inherently designed to identify linear

dependence or correlation, they work extremely well when the signals are generated

by linear systems. A method based on SVD is proposed by Broomhead et al. for

detecting underlying nonlinearity from a time series in a qualitative matter [12].

But this method fails to distinguish a chaotic time series from its surrogates– the

stochastic counterparts of the data which has the same power spectrum [13, 14].

Additionally, there are many novel algorithms that extend regression methods to

estimate of model parameters based on the best nonlinear polynomial fit. The goal

of such algorithms are to find the parameters of the appropriate models from the

data based on various least square techniques and most of them are found to be

successful in a large number of engineering problems that deal with time series
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analysis and signal processing [10, 15].

Other than the engineering methods, there are exciting developments in Chaos

theory and Topology in the past few decades that are useful to understand the

dynamics of nonlinear signals. An important property of dynamical systems was

observed by Packard et. al. in 1980 when they could reconstruct a state–space of

the system from a time series generated it [16]. This opened up a possibility of

associating geometrical and topological structures with an observed time series of

a system whose state-space is unknown otherwise [16, 17]. One goal of modeling a

system based on time series is to develop equations for the system from the time

series [18, 19] for prediction or a description of the dynamics [20, 21]. These type of

modeling methods generally fall into two categories: (i) Global methods that find

equations valid for the entire statespace [22] and (ii) Atlas methods that develop

local charts for small neighborhoods of the statespace [23].

The global embedding of a dynamical system in general requires a dimension

higher than the intrinsic dimension of the system. According to Whitney’s theorem

a d–dimensional manifold can almost always be embedded into the Euclidean space

RN given N > 2d [24]. Later, Takens in 1981 proved a theorem according to

which the state space of a system can be reconstructed in a high dimension using

time–delayed copies of a measured variable and this method is known as delay

embedding [25]. According to this theorem given a time series that belonged to

system defined on a d–dimensional manifold, the state–space reconstructed using

delay vectors in RN such that N ≥ 2d+ 1 is an embedding. This theorem implied a

one–one similarity between the reconstructed space in the delay embedding and the

original state space of the system. Delay embedding of data in a higher dimensional

space has became a standard procedure for analyzing experimental times series in

nonlinear dynamical system studies since then [5].

In general, for global embedding of a d–dimensional manifold the minimum

dimension required for embedding is 2d + 1. But note that, if the aim is to use

Atlas methods to find local charts that cover the statespace, it might be possible

to represent the system in just d–dimensions. Since Takens theorem doesn’t spec-

ify any upper limit on the delay embedding dimension, nonlinear systems are often
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embedded into high dimensions for global analysis. Also in practical cases where

the dimension of the system and the dynamics that generated the data is unknown,

embedding of the data into a dimension much higher than inherent dimension is a

usual practice. But there are some fundamental issues that causes spurious insta-

bilities and ambiguities in models when the system is represented in a dimension

higher than the required [26]. Other possibilities reported are (i) increase in model

dimension that expands the effect of noise (ii) use of higher order polynomials in the

model equation that increases the number of coefficients to be estimated (iii) some

orbits of the model statespace that goes outside the region containing the time series

– thus making the model no longer connected with the object under study [27]. In

addition to the issue of stability, there is also a practical reason why one prefers a

lower dimensional model. A model in a lower dimensional space is more economi-

cal in the sense it requires lesser amount of data compared to its high dimensional

counterparts.

Nonlinear chaotic signals exhibit many properties including non-periodicity

and non-stationarity. Chaotic signals also mimic random signals despite their de-

terministic origin. Recurrence plots and Poincare maps are some classic techniques

that are used to analyze these types of signals [28, 29, 4]. The behaviour of Re-

currence (the property that a typical trajectory of the system keeps on visiting the

neighborhood of a particular state in the state space) is a characteristic of nonlin-

ear chaotic systems [30]. Identifying recurrence patterns and analyzing them has

become a prominent method for nonlinear data analysis [31, 32] and these meth-

ods have found applications in numerous fields as financial time series analysis and

physiological signal processing [33, 34, 35, 36]. The key objective of the thesis is to

propose a new method of modeling and prediction for a special class of nonlinear

signals that exhibits the property of recurrence.

A potential application of the proposed model is the analysis of biomedical

signals that exhibit the property of recurrence. Most of the cardiovascular signals

signals as electro cardiogram (ECG) , blood pressure (BP) and respiration records

belong to this category. Real time monitoring of these signals are important in

clinical research and diagnosis of diseases. It is reported that corruption and loss of
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these signals are common in the hospital settings [37]. A trained personal or a doctor

may be able to deal with some distortion of signals, loss of signals, some of the noises

that are present in the signal due to the cognitive abilities of human brain. It is a

challenging task to develop an algorithm that can perform some cognitive tasks based

on the contextual information as prediction the gaps or loss, identifying noises in the

physiological data. There is a need to find methods that can deal with the corruption

and loss of signals for the purpose of diagnosis and prediction. There are few methods

available in literature (algorithms that were based on neural networks, kalman filters,

adaptive filters and their combinations [38, 39] and collections of methods based

on linear regression, pattern matching, average substitution, principal component

analysis and wavelet decompositions [40, 41, 42, 43]) to address these issues [44].

Neural network based methods are reported as the current best solution and many

of them can give reasonable predictions with intense training sessions [45, 46]. But

the main drawbacks of neural network based methods are the following: (i) they

are computationally very extensive (ii) most of them demand a long training time

(iii) prediction is limited to the patterns or behaviors that are available during

the training time otherwise that behavior is not learned or completely lost during

prediction. A novel method that can make use of the recurrence property of the

biomedical signals for prediction and modeling is demonstrated in the thesis. The

redundancy structure of the topological technique delay embedding is exploited to

exploited to reduce the computational load.

1.2 Objectives of the Thesis

Having identified the areas to be explored, the key objectives of the thesis are

listed as follows.

1. Propose a nonlinear generalization of the method of singular value decompo-

sition (SVD) for detecting and quantifying the nonlinearity in data.

2. Extend the method of nonlinear SVD to find the dimension of the manifold

where data reside.

3. Propose a method of modeling and prediction for a time series that exhibit the
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property of recurrence. explore the possibilities for the model for (i) Duffing

Oscillator generated chaotic data and (ii) healthy Electrocardiogram (ECG)

measurement.

4. Demonstrate a new method of stability analysis based on affine transforma-

tions specific to the recurrence neighborhood and verify the method by em-

pirically determining the floquet coefficients from Duffing Oscillator generated

data. Use the method of stability analysis for ECG data.

5. Extend the method of prediction based on recurrence neighborhoods for si-

multaneous multichannel physiological measurements for predicting one phys-

iological signal from another signal.

6. Demonstrate the application of the methods for a multichannel data set of

100 records (that include various ECG channels, continuous invasive blood

pressure channels, intra-cranial pressure, central venous pressure, respiration

and raw fingertip plethysmogram outputs) of ICU patients.

1.3 Research Methodology

The research embodied in the thesis explores many ideas of Topology, Nonlin-

ear Dynamics and Chaos theory. The proposed method of modeling demonstrates

that the best way to exploit the recurrence property of a signal for prediction is to

couple it with the delay embedding procedure. The key ideas on which the model

is built are as follows:

Redundancy Structure of Delay Embedding

There is a special structure to the delay embedding matrix as it contains lot

of redundant information. Delay vectors that constitute the embedding matrix are

interconnected to each other. Due to this property, intermediate vectors can be

written as a sum of few transformed end vectors. This relation is true even when

the delay vectors belong to a nonlinear time series. One can exploit the special

structure that delay embedding form in RN for the purpose of prediction. The aim
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of the proposed model of the thesis is to exploit this property of the delay embedding

to reduce the computational load that is inevitable in nonlinear data analysis.

Affine Maps in the Neighborhoods of a Manifold of a Dynamical System

Consider an important property of the manifolds that represents a differential

equation. A Differential equation can be seen as model that represents a given dy-

namic process. It generates maps known as one–parameter group of diffeomorphisms

at every time of the evolution [47]. Hence given an initial condition, its evolution

after a fixed time can be specificized by a unique map. This unique map, even if it

is nonlinear has an affine form in a small neighborhood around it. This follows from

the property that a nonlinear real analytic map has a valid Taylor series expansion

at every point on the manifold. Further an affine map can be reduced to linear maps

with respect to its rest points. Since a differential equation that model a given dy-

namic process generate these maps, there is an option to simplify the dynamics in

terms of affine approximations in small neighborhoods everywhere on the manifold.

This leads to a possibility of using a set of overlapping neighborhoods with specific

affine transformations for each of them to represent the local dynamics.

Recurrent Timings reveal Dynamics

It is well known fact that Symbolic Sequences reveal information about the

initial condition of the nonlinear chaotic systems [5]. Infinite precision of an ini-

tial condition in a chaotic system requires infinite length of symbolic sequence. In

practice the longer the Symbolic Sequence, the more specific it renders information

about the initial condition. A finite symbolic sequence can be seen as address of

a partition of the statespace or a neighborhood of the manifold where the initial

condition belongs to. The proposed model makes an assumption that recurrence

timings, similar to the symbolic sequence contains information about the system

under study.
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Proposed Method of Prediction and Modeling

Given a time series that exhibits the property of recurrence the proposed

method of modeling is as follows:

• A delay embedding of the data is done in a higher dimensional space RN

for the global representation of dynamics. Embedding is necessary to exploit

the redundancy property of the delay embedding to reduce the computational

load. The embedding dimension N and the Recurrent timings (the array that

record the time of recurrence for the entire data) are empirically found.

• A Recurrent neighborhood is defined for a recurrent point in a high dimen-

sional space RN

In order to take care the issues of over embedding, a practical solution is

proposed by using Broomhead’s theorem in Topology that Finite Impulse

Response (FIR) filters preserve all the information one wants to extract by

embedding techniques [48, 5]. Since such a filtered time series of a system

preserves the embedding, a projection from the high dimensional space to a

lower dimensional space is used. The lower dimensional model is economic in

the sense data requirement, further it takes care of the ambiguity generated

by high dimensional models [26, 27].

• A Recurrent neighborhood is defined in the lower dimensional space Rd using

an FIR filter based projection and the local analysis of the system was done

in Rd.

The set of maps known as one–parameter group of diffeomorphisms exists at

every time of the evolution on the manifold of a differential equation [47].

Since nonlinear real analytic maps has a valid Taylor series expansion at every

point on the manifold, there is an option to simplify the dynamics in terms

of affine approximations in small neighborhoods everywhere on the manifold.

Hence a set of overlapping neighborhoods with specific affine transformations

for each of them can be used to represent the local dynamics on the manifold.

Recalling the Hartman-Grobman theorem that the behaviour of a nonlinear
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system near an equilibrium point the system is qualitatively similar to the

behaviour of a linear system [49], one can propose a generalization of the

theorem. The proposed model relies on a hypothesis that the dynamics can be

simplified in terms of affine transformations in small neighborhoods everywhere

(and specifically as linear transformations in small neighborhoods around the

rest points, as the affine map reduces to a linear map at the rest point).

• Neighborhood vectors in the lower dimensional space are collected into a set

of equivalence classes based on their recurrent times (the time delay between

two adjacent recurrences). For the local analysis of dynamics in Rd, the set of

affine maps which are functions of only the recurrent times are derived across

these equivalence classes. Since these maps are functions of the recurrent time

alone, once the recurrent timings are known, one can generate an evolution of

vectors in the lower dimensional space.

• A topological conjugacy between the recurrence neighborhoods reconstructed

in both the lower and the higher dimensional spaces are demonstrated. Hence

the evolution in the higher dimension space can be predicted from the evolution

of the vectors in the lower dimensional space.

These possibilities are explored for a numerically data generated by Duffing

oscillator first, and then for ECG data and other multichannel cardiovascular signals.

Thesis shows that an extremely good prediction can be obtained by using a small

amount of initial data and only information about recurrence intervals. Once the

maps are determined, one could start at any point in the future and hence the initial

data at that point is eventually unnecessary. The key inferences that came out by

studying the model were:

1. Recurrence timings reveal lot of the information about the system dynamics

that can be used for prediction and modeling.

2. The local dynamics of the system can be approximated by a set of few over

lapping neighborhoods with specific affine transformations for each of them
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3. By exploiting the redundancy structure of delay embedding and the conjugacy

of the neighborhoods in lower and higher dimension the entire nonlinear struc-

ture can be approximated by one neighborhood (for a healthy ECG data and

ECGI, ECGII, ECGIII, ECGV, AVR, ABP channels of multichannel records)

or a few overlapping neighborhoods (for Duffing oscillator generated data)

1.4 Structure and Contents of Thesis

One of goals of the thesis was to introduce a new modeling method for nonlin-

ear signals focusing on signal processing applications. Hence a few novel techniques

were developed for processing nonlinear data. The proposed method of modeling

uses these techniques for data processing. A nonlinear generalization of SVD is

proposed for finding nonlinearity in a time series both in a qualitative and in a

quantitative manner. This is a novel method of finding nonlinearity from data using

an extension of SVD technique and the topological method of delay embedding with-

out ignoring the dynamical perspectives. Thesis demonstrates the method of the

technique of nonlinear SVD to retrieve nonlinearity from data generated by chaotic

dynamical systems: Logistic map, Henon map, Van der Pol oscillator and Duffing

oscillator. The recovery of parameters are shown in the following scenarios: (i)

data generated by nonlinear maps and flows (ii) comparison of the method for both

noisy and noise-free nonlinear data (iii) surrogate data analysis for both the noisy

and noise-free cases, and also discuss two particular applications of the method: (i)

Mathematical Modeling and (ii) Chaotic Cryptanalysis.

The method of nonlinear SVD is further extended to find the dimension of

the system based on the time series. If the data on a manifold embedded in some

RN is available a method to compute the dimension of a manifold is discussed in

the thesis. Two specific cases are discussed: For the simple case where the manifold

is in the form of a lower dimensional affine subspace, the standard SVD is used

to (i) calculate the dimension of the manifold and (ii) to get the equations which

define the subspace. For the general case of manifolds, the nonlinear SVD is used

(i) to search for an upper bound for the dimension of the manifold and (ii) to find

the equations for the local charts of the manifold. This introduced method is highly
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useful in the context of the Takens’ embedding- a technique that is used through out

this thesis for data analysis. Finding a good estimate of the underlying dimension of

an embedded data is a requirement while modeling a system based on local charts.

Thesis provides examples of this type of modeling.

The key goal of the thesis is to demonstrate the proposed method of modeling

and prediction for the analysis of human electrocardiogram (ECG) data. First, the

possibilities of the model are explored for a numerically generated data by an ideal

dynamical system for a proper understanding and demonstration of the proposed

method. Duffing oscillator generated data was specifically selected for this purpose

as it is a well-studied system in nonlinear dynamics and it exhibit the property of

recurrence. Then, the method is demonstrated for the analysis of the ECG record.

For both the cases of the Duffing data and the ECG data, thesis shows that the entire

nonlinear structure can be deduced from one or few overlapping neighborhoods.

Thesis also introduces a method for the stability analysis of the system based

on data by studying the affine maps specific to the neighborhoods. This method was

verified using the data generated by the Duffing oscillator as (i) it is a well studied

system in nonlinear dynamics and (ii) for the stability analysis, floquet exponents of

the system can be calculated and verified experimentally as their sum is known to be

equal to trace of the coefficient matrix of the system [50]. Thesis also demonstrates

that representing a system in a dimension higher than the inherent dynamics of the

system leads to wrong inferences about its stability. For the case of ECG data, since

we do not know the exact dimension of the dynamics, a new method of nonlinear

singular value decomposition was used to find both the dimension of the manifold

and the local dynamics. The dimension of the manifold is equal to the dimension of

the system due to the conjugacy property. For the ECG data, an inference about

the stability was made by studying the properties of affine maps specific to the

neighborhoods. The thesis tries to give a theoretical justification of a well known

experimental observation that the heart rate variability– the variability in beat-to-

beat intervals of the heart, is necessary for a healthy functioning of the heart. Heart

rate variability implies a stable dynamics where as a uniform heartbeat could result

in instability based on the properties of the affine maps.
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While analyzing the ECG signal using the proposed model, it was observed

that there is lot of information available on the RR intervals that can be used for the

purpose of modeling and prediction. The motivation for this study was the Physionet

challenge 2010 which was about predicting a short segment of missing data from

one of the channels in a multichannel physiological signals. Thesis demonstrates an

effective way to model various ECG and BP signals by exploiting the recurrence

property. For some specific class of signals like various ECG signals and BP, the

cross predictions were excellent implying a generalized synchronization that exists

between them. Analysis results showed that the predictions gives a good fit to the

actual target for some of the signals of the data set under study. It is inferred that the

model could potentially reflect the changes in the cardiovascular system efficiently for

specific signals (ECGI, ECGII, ECGIII, ECGV, AVR, ABP). An excellent quality

of reconstruction was obtained for all the ECG and BP signals. The PLETH,

RESP, CVP scores were not as good as the ECG and BP scores. One reason

for the bad prediction could be that either there is no connection between the

channels (ECG Vs PLETH, RESP, CVP signals) or the connection was highly non-

linear or the model developed was inefficient to extract the connection. RESP, CVP

signals have identical recurrence patterns with respect to each other but a different

recurrent timing with respect to the ECG signals. For the numerical simulation,

recurrent neighborhoods and the recurrent timings were calculated with respect

to the ECG /BP signals. There is an opportunity to improve the reconstruction

of RESP, CVP signals by finding the recurrent neighborhoods and the recurrent

timings with respect to them instead of ECG signal which we plan as a direction

for future research.

The proposed new model is critically analyzed with respect to its ability to

contribute in this crucial area of biomedical research. An online data set of 300 ICU

patients published by Physionet as part of the challenge 2010 was used to evaluate

the relevance of the model [51]. The challenge was to find a short stretch of missing

data in one of the channels of a multichannel data, using the data available in all

channels. The multichannel recordings were measurements of various physiological

functions. Given that some of these signals had a lot of mutual information as they
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represented the activities of the same system, there was a possibility of some rela-

tionship between different channels that are simultaneously recorded. The proposed

new model was successful to exploit the redundancy and mutual relationships across

channels for prediction. The prediction results are excellent for the signals that had

identical recurrent patterns as demonstrated in the thesis.

For the prediction of missing data 300 data sets in the data analysis section,

the proposed method of prediction worked extremely well (in a range of scores

0.90 to 0.99 for most of cases) for cardiovascular signals (various ECG signals and

some blood pressure (ABP, ICP) signals) that had identical recurrent timings. This

can be attributed to the fact that they carried a lot of mutual information by

basically representing activities of the same system. Also there was a possibility of

some relationship between different channels that are simultaneously recorded from

the same person. The model could efficiently exploit the redundancy and mutual

relationships across some channels to predict or reconstruct the lost or corrupt as

discussed in the last chapter of the thesis. But prediction were not that efficient

for some other signals: plethmosgraphy (scores ranging around the value 0.5 with a

highest score approaching 0.99) and CVP (score ranging around 0.5 with a highest

score approaching 0.91) and Respiration (wide range of scores from 0 to 0.9 with 2

data sets scoring up to 0.92).

1.5 Organization of Thesis Chapters

First section of the thesis (Chapters 2 and 3) covers few main techniques

along with its theoretical and algorithmic details, that are used for processing data

throughout the thesis. Next section (Chapters 4–7) covers the proposed method of

modeling and prediction, stability analysis and prediction results for a chosen data

set. Thesis consists of the following chapters and their brief description are given

below:

• Chapter 1: Introduction – This is an introduction to the thesis. It gives

an overview of the thesis– the purpose and the significance of the study with

respect to the background literature, key goals and objectives of the thesis,
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new ideas explored in the research, methodology of research, structure and

contents of the thesis.

• Chapter 2: Nonlinear generalization of Singular Value Decomposi-

tion (SVD)– This chapter introduces the method of nonlinear SVD for both

the qualitative detection and quantitative determination of nonlinearity in a

time series. Two applications of the method (i) Mathematical Modeling and

(ii) Chaotic Cryptanalysis are demonstrated.

• Chapter 3: Nonlinear SVD to estimate the Dimension of the Man-

ifold and finding Local Charts– This chapter propose a method to arrive

at an upper bound for the dimension of a manifold which is embedded in some

RN using nonlinear SVD. This method is useful in the context of the Takens’

embedding which is used for analysis of data in throughout this thesis. A

good estimate of the underlying dimension of an embedded data is required

for developing a model based on local charts. Next two chapters provide an

example of such an application.

• Chapter 4: Prediction based on the Recurrence Neighborhoods –

This chapter introduce the new method for prediction that exploits the prop-

erty of recurrence in a dynamical system. It demonstrates the possibility of

predicting the entire state space based on the information available on few

small neighborhoods alone using data generated by Duffing oscillator under

chaos.

• Chapter 5: A Topological Structure of ECG signals – This chapter

demonstrates the proposed method of modeling and prediction for a healthy

ECG data. For the special case of ECG, the entire data was predicted based

on the information available on one small neighborhoods by appropriately

choosing the embedding dimension.

• Chapter 6: Stability Analysis based on Affine maps specific to Re-

current Neighborhoods– This chapter demonstrates a new method of sta-

bility analysis using affine maps specific to the recurrence neighborhood. It
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also contains a discussion about the possible theoretical foundations of an

important experimental observation regarding heart rate variability.

• Chapter 7: Prediction across Recurrent Neighborhoods: A Study on

Multichannel Data– This chapter extends the proposed method of modeling

and prediction for multichannel physiological data and contains a study of the

proposed algorithms on a set of 100 data sets.

• Chapter 8: Conclusions and Future research directions – This con-

cluding chapter contains the significance of results, contribution of the thesis

and lists some open problems and possible future research directions.



CHAPTER 2

Nonlinear Generalization of Singular Value Decomposition

Singular Value Decomposition (SVD) is a powerful tool in linear algebra and has

been extensively applied to Signal Processing, Statistical Analysis and Mathemati-

cal Modeling. The goal of this chapter is to introduce a nonlinear generalization of

SVD for finding nonlinearity in a time series in a qualitative and quantitative man-

ner. It demonstrates how the method can retrieve nonlinearity from data generated

by discrete dynamical systems: Logistic map and Henon map. Recovery of param-

eters are successfully demonstrated for real and surrogate data for both the noisy

and noise–free cases. The method is extended to identify the system parameters for

continuous systems: Van der Pol oscillator and Duffing oscillator. Two specific ap-

plications of the method (i) Mathematical Modeling and (ii) Chaotic Cryptanalysis

are discussed.

(Note: Research embodied in this chapter is published in a peer reviewed

journal and [52] is the reference for that publication)

2.1 Introduction

Singular Value Decomposition (SVD) is a standard technique for matrix de-

composition in linear algebra and it has found numerous applications in various

fields such as signal processing, statistical analysis, biomedical engineering, genetics,

mathematical and statistical modeling and graph theory [6, 7, 8, 9, 53]. Historically

SVD has been used for finding the dimension of a linear system as it gives statistically

independent set of variables which could span the state space [10, 11]. Since meth-

ods like SVD are inherently designed to identify linear dependence or correlation,

they work extremely well when the signals are generated by linear systems. Though

SVD is fundamentally a linear technique, a method based on SVD known as singular

spectrum analysis was introduced by Broomhead for a qualitative detection of un-

derlying nonlinearity [12]. An abrupt decrease in the profile of the singular spectrum

was shown as an indication of lower dimensional determinism or chaos. But this

16
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method fails to distinguish a chaotic time series from its surrogates; the stochastic

counterparts of the data which has the same power spectrum [13, 14]. Later, a

new method of quadratic scaling of singular values was proposed that can distin-

guish between the data series and its surrogates [54]. Quadratic scaling improves

the significance of decreasing singular values thus highlighting the deterministic or

stochastic features.

Chaotic signals resembles noise though they are generated by lower dimen-

sional deterministic dynamical systems. Noise on the other hand is stochastic in

nature and very less is known about its origin. Noise is defined mainly based on its

statistical properties as variance, mean, correlation and entropy; where as chaotic

signals are defined based on its dynamic properties, initial conditions and generating

equation. Chaotic signals generally have smaller degrees of freedom compared to

noise. An algorithm that could determine correlation dimension from an irregular

time series was proposed by Grassberger–Procaccia (known as GP algorithm) [55].

A finite correlation dimension is considered as an indication of underlying deter-

minism. The GP algorithm has a drawback as it fails when the data is noisy and

is unable to distinguish stochastic processes with power–law power–spectra from

chaos [56, 57]. A distribution of correlation coefficients is also reported as a qualita-

tive method to distinguish chaos from noise because the spectrum is flat for noise but

gradually decays for chaos. But this method fails to distinguish between correlated

noise and chaos [58].

Additionally, there are many novel algorithms that extend regression methods

to estimate model parameters based on the best nonlinear polynomial fit. The goal

of such algorithms are to find the parameters of the appropriate models from the

data based on various least square techniques and most of them are found to be

successful in a large number of engineering problems. One method which is an al-

ternative to linear regression, known as ACE (Alternating Conditional Expectation)

algorithm is used to identify the optimal transformations to the data such that a lin-

ear regression model can be applied to the transformed data [59]. Some of the other

robust algorithms available are: Fast Orthogonal Search (FOS) method that can

obtain correct model parameters irrespective of the model selection [60], one of its
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variation known as Optimal Parameter Search (OPS) algorithm [61], various least

square techniques: Least Square [10], Total Least Square (TLS) [62] and Minimizing

the Hyper surface Distance (MHD) method [63].

From a dynamical system perspective, embedding based techniques [24, 16]

are useful as they can give qualitative information of the dynamics from the ex-

perimental time series. The data generated by nonlinear chaotic systems live in a

lower dimensional manifold, unlike the data from stochastic systems that tend to

spread over the whole phase space. This property of nonlinear chaotic systems can

be exploited for modeling and prediction of nonlinear chaotic signals as we will see

in the following chapters. Takens suggested a reconstruction based on delay vec-

tors of the time series and gave a firm theoretical foundation for both delay and

derivative embedding [25]. Broomhead and King proposed an alternative method

‘SVD based embedding’ as SVD can get the best orthogonal basis to represent the

data [12]. In this context Porta et al. proposed a local nonlinear prediction method

that used non–overlapping hypercubes of the embedded phase space for the purpose

of prediction of biomedical signals [64, 65].

Since the goal of the thesis is to introduce a new modeling method for nonlinear

signals focusing on signal processing applications, few new techniques are developed

for processing the data generated by nonlinear system. The proposed method of

modeling that is described in the following chapters uses these techniques for data

processing. The objective of this chapter is to introduce a nonlinear generalization of

SVD and demonstrate how it can be used for detecting and quantifying nonlinearity

in a time series. Next chapter extends the method to find the local dimension of the

manifold were the data resides. The proposed method of nonlinear SVD for the case

of discrete dynamical systems is similar to the nonlinear Auto Regressive (AR) and

Auto Regressive Moving Average (ARMA) regression proposed by Lu et al. [61] and

Marmarelis [66]. An advantage of this method over others is that it is not limited

to just polynomial regression. Any deterministic nonlinearity present in the data

could potentially be recovered by choosing the appropriate functions for regression.

Nonlinear SVD method could be considered as functional regression in an extended

phase space. This chapter further demonstrates that nonlinear SVD coupled with
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the method of finding accurate derivatives from data [67] can be used to identify

the nonlinearity from in a time series generated by continuous dynamical systems.

2.2 Singular Value Decomposition (SVD)

Singular Value Decomposition is a generalization of the eigen decomposition

of square matrices, for the decomposition of rectangular matrices. SVD decomposes

a rectangular matrix into three simple matrices: two orthogonal matrices and one

diagonal matrix. In general, SVD theorem [11] can be stated as: Any m × n real

matrix A of dimension m ≥ n can be factored into three matrices: U (orthogonal,

m×m matrix), W (diagonal, m×n matrix) and V (orthogonal n×n matrix) such

that,

A = UWV T (2.1)

For a complex matrix A, U and V are unitary matrices andW is a real matrix.

V T denotes the transpose of V . The diagonal elements of W matrix are known as

the singular values of A.

This decomposition works well with matrices that are either singular or else

numerically very close to singular. Hence SVD is used to calculate pseudo–inverses

when the natural inverse of the matrix does not exist [10]. SVD and pseudo–inverses

are used in statistics for solving least square problems. Data compression using SVD

is one of the standard applications in image processing [68].

2.3 Method of Nonlinear Singular Value Decomposition

This section explains the method of nonlinear SVD using a delay embedding

matrix. Consider a finite time series {x1, x2, x3, . . . , xm} generated by a system.

Delay embedding is a method of reconstruction of the state space using delayed

data segments of the time series known as embedding vectors [25]. An embedding

matrix E (which represents an embedding of the data in RN) can be created using
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time delayed vectors as follows.

Y 1 = (x1 x2 . . . xN )

Y 2 = (x2 x3 . . . xN+1 )

. . .

Y i = (xi xi+1 . . . xN+i−1 )

. . .

Let Y i represents a typical embedding vector of lengthN in RN . The collection

of vectors {Y i} in RN represents the delay embedding of the given time series.

The corresponding embedding matrix E (of dimension p × N) that represents p

embedding vectors in RN is,

E =


x1 x2 . . . XN

x2 x3 . . . xN+1

. . .

xp xp+1 . . . xN+p−1

 (2.2)

The procedure of nonlinear SVD is to extend the embedding matrix E by

adding nonlinear functions of the columns of the E matrix. Let F be the extended

embedding matrix and f1, f2 . . . fK represents the additional columns.

F = [E : f1 f2 . . . fK ] (2.3)

In general, a nonlinear function refers to the square, cube, any other higher

powers of the elements in a column, the element–wise product of two or more

columns or any other kind of nonlinearity such as exponentiation and trigonometric

functions of the entries in a column of the E matrix. If there is a nonlinear relation-

ship between these column vectors, it could be interpreted as a linear relationship

between the original columns vectors and the added nonlinear columns.

Assuming that E is extended by addingK nonlinear columns, the dimension of

F matrix would be p× q where q = N +K. This extended embedding matrix F can
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be considered as a higher dimensional linear system. Now the SVD procedure can

find the linear relation between the embedding vectors and corresponding nonlinear

columns, thus recovering any nonlinear relationship that is inherent in the data. Let

the SVD of F be,

F = UWV T (2.4)

Post multiplying with V on both sides,

FV = UW (2.5)

Expanding Eq. 2.5

F
[
V <1> . . . V <q>

]
=

[
U<1> . . . U<q>

]


W1,1 0 . . . 0

0 W2,2 . . . 0

. . . . . . . . .

0 0 . . . Wq,q

 (2.6)

Using partitions of V and W and expanding along the last column of V and

W such that,

[
F<1> . . . F<q>

]
.


V1,q

V2,q

. . .

Vq,q

 =
[
U<1> . . . U<q>

]
.


0

0

. . .

Wq,q

 (2.7)

Note that F<i> represents the ith column of F matrix and Wi,j is the element

on ith row and jth column of W matrix. Expanding Eq. 2.7,

V1,qF
<1> + V2,qF

<2> + . . .+ Vq,qF
<q> = 0.U<1> + . . .+Wq,qU

<q>

= Wq,qU
<q>
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If the qth singular value of W is zero, Wq,q = 0 then,

V1,qF
<1> + V2,qF

<2> + . . .+ Vq,qF
<q> = 0 (2.8)

Eq. 2.8 states that the columns of F including those formed by the nonlinear

functions {f1, f2 . . . fK} now span a linear vector space. This equation is true for all

rows of F and hence by exploiting this relation, the dependance between the linear

and nonlinear columns of the F matrix can be recovered.

2.4 Nonlinear SVD for Identifying Nonlinearity in Data

The key assumption behind the method of SVD is that the underlying equation

is a function of the delay vectors of the data. If the data is nonlinear, standard SVD

does not give a zero singular value even when it is noise–free. Then the nonlinear

SVD procedure is to try different nonlinear functions f1, f2 . . . fK for extending the

embedding matrix as shown in Section 2.3. The selection of nonlinear functions

depends on the domain of application. The criterion is to try different choices of

fi’s for the F matrix and select the F which gives at least one ‘zero’ or ‘nearly zero’

singular value. Even if the correct nonlinear functions are chosen, a zero singular

value will be obtained only when the data is noise–free. When the data is noisy, the

singular value Wq,q ̸= 0 even if the chosen F matrix has the right set of nonlinear

functions. Hence the procedure is to try different nonlinear functions and choose

the F that gives the lowest value of Wp,p. For the purpose of numerical analysis

the ratio Wq,q

W1,1
(the ratio of qth singular value to the 1st singular value) was set to

be below some preset criterion. As the noise level in the data increases, chances

are higher that the method of nonlinear SVD fails. Therefore our confidence in the

estimated model equation goes down with the increase in noise.

The choice of appropriate nonlinear functions is crucial for finding the nonlin-

earity in data. The selection of the required nonlinear functions are dependant on

the domain of application. This chapter illustrates a choice of quadratic, cubic poly-

nomials and sinusoidal functions. These three sets of functions are chosen as they are

solutions of low order differential equations with constant coefficients. In practice,
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solutions of differential equations with variable coefficients (e.g. Bessel functions)

or nonlinear low dimensional equations are good candidates for this purpose.

2.5 Numerical Analysis using Data generated by Logistic

Map

The section shows how the method of nonlinear SVD can be used to empiri-

cally detect the nonlinearity in the data and determine the equation which generated

it. Numerical analysis is done using data generated by Logistic map. It is demon-

strated that a choice of quadratic functions for the extended matrix of nonlinear

SVD procedure retrieves the exact equation from the time series.

2.5.1 Recovering Nonlinearity

Consider a discrete dynamical system, the Logistic map F (X) = λX(1 −X)

where 0 ≤ X < 1 and λ = 4. Let {x1, x2, . . . , xm} be a finite time series generated

by the map such that,

xi+1 = λxi(1− xi) (2.9)

The objective is to identify the form of this equation including the parameter

values from the time series. For the purpose of demonstration consider a delay

embedding of the numerical data in to R3 using p embedding vectors as shown by

the following matrix:

E =


x1 x2 x3

x2 x3 x4

. . .

xp xp+1 xp+2


The dimension of E matrix is p× 3. After SVD operation on the embedding

matrix E, it was observed that none of the singular values of E go to zero indicating

no linear dependance present in the data vectors. Next step is to extend the E matrix

by adding nonlinear columns. If a quadratic function is chosen as a candidate F
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would be,

F = [E : f1 ]

= [E<1> E<2> E<3> f1 ]

= [E<1> E<2> E<3> E<1>2
]

A typical row of F can be seen as [ Xn Xn+1 Xn+2 Xn
2 ]. SVD of F gives

a zero singular value W4,4 = 0 indicating a linear dependence between the column

[ Xn Xn+1 Xn+2 Xn
2 ]. Expanding Eq. 2.8 for this particular numerical example,

V1,4(Xn) + V2,4(Xn+1) + V3,4(Xn+2) + V4,4(X
2
n) = 0 (2.10)

Substituting the numerical values in Eq. 2.10,

−0.696311Xn + 0.174078Xn+1 + 0Xn+2 + 0.696311X2
n = 0.

4Xn −Xn+1 − 4Xn
2 = 0

4Xn(1−Xn) = Xn+1

Hence the exact equation is recovered from the data. For the numerical ex-

ample discussed above, the initial condition that generated the trajectory was 0.02

and the parameter value λ = 4. The numerical results can be reproduced for any

initial condition (which is not equal to zero) and for parameter values 0 < λ ≤ 4.

2.5.2 Singular Value Spectrum for Standard SVD and Nonlinear SVD

This section discusses the properties of singular value spectrum of standard

SVD and nonlinear SVD after quadratic scaling of singular values. Quadratic scaling

is known to improve the significance of decreasing singular values thus highlighting

the deterministic or stochastic features [54]. Fig. 2.1 shows the quadratically scaled

spectrum of singular values for the case of standard SVD (n2.σn) and nonlinear SVD

(n2.ρn), where σn is the nth singular value generated by the standard SVD on the

embedding matrix E. The dimension of the embedding matrix selected was 21× 21

for this particular example. Standard SVD operation gave 21 non-zero singular
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Figure 2.1: Scaled spectrum of singular values for the case of standard
SVD (n2.σn) Vs n (where σn is the nth singular value of E
matrix) and nonlinear SVD (n2.ρn) Vs n (where ρn is the nth

singular value of F matrix).

values: note that the profile gradually increases and slowly comes down.

For the nonlinear SVD operation, the dimension of the embedding matrix F

was kept same as that of E i.e. 21 × 21; for which the last 10 columns of E were

replaced by the squares of the first 10 columns. Nonlinear SVD gave 21 singular

values, out of which the last 10 were zero. Observe that the nonlinear SVD profile in

Fig. 2.1 is significantly different from that of conventional SVD case as the former

is ‘flat’ towards the end. There is a significant qualitative change in the spectrum as

the profile of nonlinear SVD drops to zero rapidly compared to the case of standard

SVD. Existence of a zero singular value indicates that the columns of corresponding

embedding matrix can be expanded in the form of a linear equation as Eq. 2.8.

This implies that the underlying nonlinear equation can be recovered as shown in

Section 2.3.

The time series for the simulation was generated by the Logistic map under

chaos: Xn+1 = λXn(1−Xn) where 0 < Xn < 1 and λ = 4. The embedding matrix
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E was created as explained in Section 2.3 and the extended embedding matrix F

was generated by replacing the last 10 columns of E by the squares of the first 10

columns.

2.5.3 Comparison of the Method on Data and its Surrogates

This section discusses whether nonlinear SVD can differentiate between the

chaotic data and its surrogates. Surrogates are the non–deterministic counterparts of

the data which are generated by randomizing the phases of the Fourier Transform of

the data; thereby maintaining the same probability distribution and power spectrum

as the chaotic data [69, 70].

The time series {X} for the simulation was generated by the Logistic map

under chaos: Xn+1 = λXn(1−Xn) where 0 ≤ Xn ≤ 1 and λ = 4. A set of surrogate

data series S1, S2, . . . , Si were generated from {X} such that {Si} and {X} had the

same power spectrum. Fig. 2.2 (i) shows the quadratically scaled spectra of singular

values for the Logistic data and two of its surrogates S1, S2 using the standard SVD

procedure under noise–free conditions. Fig. 2.2 (ii) shows the spectra for the case

of nonlinear SVD. It can be observed from Fig. 2.2 that the standard SVD does

not distinguish between the data and the surrogates, but the nonlinear SVD clearly

distinguishes them. The qualitative change in the profile of the spectrum happened

due to the zero singular values in the case of nonlinear SVD procedure.

2.5.4 Comparison of the Method for different choices of Nonlinear

Functions

Depending upon the domain of application of Logistic map data which is

very popular in population dynamics studies, a quadratic nonlinearity is a decent

candidate for the nonlinear function. But assume that one wants to see how the

profile of singular spectrum changes if the type of the nonlinear functions of the

embedding matrix F varied. If cubic columns are selected in the F matrix instead

of quadratic columns for the case of logistic map data, spectrum looks as in Fig.

2.3. This figure shows that both the spectrums (cubic and quadratic case) looks

qualitatively similar, but the exact relationship cannot be retrieved quantitatively

in the cubic case as none of the singular values have exact zero vales. Hence according
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Figure 2.2: Scaled spectrum of Singular Values for standard SVD and
nonlinear SVD for Logistic map generated data and its Sur-
rogates: (i) spectrum for the data (n2.σn) and its surrogates
(n2.σS1n) and (n2.σS2n) using standard SVD, (ii) spectrum for
the data (n2.ρn) and its surrogates (n2.ρS1n) and (n2.ρS2n) using
nonlinear SVD.
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Figure 2.3: Scaled singular value spectra of nonlinear SVD for different
choices of nonlinear functions on data generated by Logistic
map: n2.ρn versus n (where ρn is the nth singular value of F
with quadratic columns) and n2.ψn versus n (where ψn is the
nth singular value of F with cubic columns)

to the proposed method, one has to try different choices of embedding matrices and

select the one which gives at least one nearly zero singular value.

2.6 Recovering Nonlinearity: Higher order Maps

2.6.1 Data generated by Henon Map

This section demonstrates how to recover the nonlinear equation when the

data is generated from a higher order map of the following form,

Xn+2 = f(Xn, Xn+1) (2.11)
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The Henon map, falls in this category.

Xn+1 = c− aX2
n + Yn (2.12)

Yn+1 = bXn (2.13)

Consider the X data generated by this map for parameter values a = 1.4 b =

0.3 and c = 1. The objective of the analysis is to check if one can recover the

nonlinear equation from the X data. An embedding matrix F with quadratic non-

linear functions, such that F had the form [ 1 Xn+2 Xn+1 Xn Xn
2 X2

n+1 (Xn+1Xn) ]

was set up this purpose. Since the nonlinear SVD procedure gave a zero singular

value for this matrix, the columns were expanded using Eq. 2.8 to get the following

equation,

0.496904− 0.6956656X2
n+1 + 0.1490712Xn − 0.496904Xn+2 = 0

1− 1.4X2
n+1 + 0.3Xn −Xn+2 = 0

1− 1.4X2
n+1 + 0.3Xn = Xn+2

The equation Xn+2 = 1− 1.4X2
n+1 + 0.3Xn is equivalent to Eq. 2.12 and 2.13

for parameter values a = 1.4 b = 0.3 and c = 1. Hence the proposed method is

successful in retrieving the form of the equation and its the parameters from the

data.

2.6.2 Even Iterates of Data generated by Logistic Map

Consider the case of data generated by the Logistic map where all the odd

iterates of the time series are suppressed or removed. The goal is to find the param-

eters λ from the available data. In this case one could assume that the underlying

equation is of the form,

Xn+2 = g(Xn) (2.14)

Since the alternate iterates are suppressed in the data the underlying nonlin-

earity is quartic or fourth order of the form g(x) = αx + βx2 + γx3 + δx4 where

α, β, γ, δ are functions of the parameter λ of the Logistic map. An embedding matrix
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of the form F = [ Xn Xn+2 Xn
2 Xn

3 Xn
4] can be used to retrieve quartic nonlin-

earity. For this specific case the retrieved equation corresponding to zero singular

value was,

0 = 14.761Xn −Xn+2 − 71.473Xn
2 + 113.423Xn

3 − 56.712Xn
4 (2.15)

Xn+2 = 14.761Xn − 71.473Xn
2 + 113.423Xn

3 − 56.712Xn
4 (2.16)

Comparing Eq. 2.16 to the second iterate map of Logistic equation,

Xn+2 = (λ2)Xn − (λ2 + λ3)Xn
2 + (2λ3)Xn

3 − (λ3)Xn
4 (2.17)

One can recover the exact parameter value λ = 3.842 that was used for the

numerical simulation to generate the data, by comparing Eq. 2.16 and Eq. 2.17.

2.7 Numerical Analysis for Noisy Data

This section contains numerical analysis results for the noisy data. The method

of nonlinear SVD works reasonably well to identify the underlying deterministic

equation from a noisy data, provided the noise is below a threshold. A criterion

is developed to determine the upper bound of acceptable noise, beyond which the

confidence in the proposed method goes down.

Assume that data {Xn} is contaminated by some additive noise {Pn} which

is either gaussian or uniform, {X̂n} = {Xn} + {Pn}. The procedure explained in

Section 2.3 can be used to create F matrix with added nonlinear columns from the

noisy data {X̂n}. For the numerical examples discussed in this section, this upper

bound was empirically determined using the singular value spectrum by nonlinear

SVD as a guide. The ratio Wq,q

W1,1
mentioned in Section 2.4 was used for this purpose

and the upper bound for the ratio was set as 10−6. In practice this spectral criterion

translates into a criterion for the Peak Signal to Noise Ratio (PSNR) of the signal.

PSNR is defined as 20 log10(max(Signal)/
√
MSE) where MSE represents the Mean

Squared Error– the average of the square of the noise present in the signal. Note

that for the case of standard SVD on the noisy data, the ratio Wq,q

W1,1
was in the range

(10−1, 10−3) for different noise levels for Logistic and Henon Map data discussed in
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Figure 2.4: Phase space of Logistic map (i) and a chaotic time series gen-
erated from it (ii). Phase space reconstructed from noisy data
(zn+1 Vs zn) for noisy data (iii) with additive uniform noise
N(0,1) with noise level 28.089 % (iv) with additive gaussian
noise N(0,1) with noise level 28.123 %

next two sections.

2.7.1 Retrieving Logistic Map Parameters from Noisy Data

This section shows how to retrieve the nonlinear equation from a data gen-

erated by Logistic map which is contaminated by noise. Fig. 2.4 (i) and 2.4 (ii)

shows the phase space of Logistic map and a chaotic time series generated from

it. Fig. 2.4 (iii) and 2.4 (iv) show the state space created from the noisy data

for both the cases of uniform and gaussian noises. Retrieved parameters for both

the cases of uniform and gaussian additive noises are given in Table. 2.1. It lists
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the estimated values of parameter â, b̂ for the data generated by Logistic family of

maps: Xn+1 = a1Xn − a2Xn
2 where 0 ≤ Xn ≤ 1 for the values of a = 4 and b = 4

for different Peak Signal to Noise Ratio (PSNR) using the nonlinear SVD method.

When the preset criterion Wq,q

W1,1
was below 10−6, an assumption was made that the

singular values smaller than this can be considered zero and the underlying equation

is extracted as explained in the noise-free case. For the numerical examples cited

below the spectral criterion was satisfied for PSNR above 28 for gaussian noise and

33 for uniform noise.

Table 2.1: Estimated values of parameters â1, â2 for the Logistic map:
Xn+1 = a1Xn − a2Xn

2 where 0 ≤ Xn ≤ 1 in the presence of noise
using nonlinear SVD.

Parameters Noise (Uniform Distribution) Noise (Gaussian Distribution)
â1 â2 PSNR â1 â2 PSNR

4.036 3.994 44.231 4.099 4.087 43.450
a1 = 4 4.142 4.020 38.730 4.106 4.091 41.839
a2 = 4 3.875 3.847 37.796 4.247 4.156 37.095

4.235 4.151 36.462 4.299 4.148 34.523
4.389 4.250 33.609 4.156 3.995 32.856
4.480 4.278 30.711 4.030 3.824 28.817
4.429 3.850 24.631 3.804 2.562 24.151

Table 2.2: Estimated values of parameters â, b̂, ĉ for the Henon map
Xn+1 = c− aX2

n + Yn; Yn+1 = bXn in the presence of noise
using nonlinear SVD.

Parameters Noise (Uniform Distribution) Noise (Gaussian Distribution)

â b̂ ĉ PSNR â b̂ ĉ PSNR
1.389 0.289 1.003 46.863 1.400 0.299 1.003 44.515

a = 1.4 1.381 0.292 1.010 40.764 1.398 0.296 1.005 40.930
b = 0.3 1.357 0.276 1.009 36.178 1.400 0.316 0.988 35.931
c = 1.0 1.371 0.262 1.020 32.975 1.437 0.325 1.008 34.113

1.367 0.275 1.067 30.493 1.396 0.327 1.040 31.336
1.296 0.268 1.034 26.549 1.520 0.340 1.080 28.325
1.326 0.156 1.148 20.835 1.251 0.291 0.954 22.714
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Figure 2.5: Singular value spectrum for noisy data and its surrogates for
Logistic data: (i) for standard SVD (n2.σn) and its surrogates
(n2.σS1n) and (n2.σS2n) and (ii) for nonlinear SVD (n2.ρn) and
its surrogates (n2.ρS1n) and (n2.ρS2n) for the case of additive
gaussian noise N(0,1) with noise level 27.484%. Similar spectra
for (iii) standard SVD and (iv) nonlinear SVD spectra for the
case of additive uniform noise N(0,1) with noise level 28.182%.

2.7.2 Retrieving Henon Map Parameters from Noisy Data

The estimated values of parameters of Henon map from a noisy data for both

the cases of uniform and gaussian additive noises are listed in Table. 2.2. It shows the

estimated parameters â, b̂, ĉ for the Henon map Xn+1 = c− aX2
n + Yn; Yn+1 = bXn

in the presence of noise using nonlinear SVD.

2.7.3 Singular Value Spectra for Noisy Data and its Surrogates

This section discusses the analysis results for the case of standard SVD and

nonlinear SVD for noisy data. Fig. 2.5 shows the quadratically scaled singular

spectra by standard SVD on the noisy logistic data and its surrogates along with

similar spectrum by nonlinear SVD for the noisy data and its surrogates. Surrogate
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data spectra are added for a comparative analysis. Fig. 2.5 (i) is the spectra of

standard SVD and 2.5 (ii) is the spectra for nonlinear SVD for the case of gaussian

noise in the range (0, 1) added to the logistic data with a noise level 27.484%. Fig.

2.5 (iii) is the spectrum of standard SVD and 2.5 (iv) is the spectrum for nonlinear

SVD for the case of uniform noise in the range (0, 1) added to the same data with

noise level 28.182%. Singular value spectra for two surrogates S1 and S2 are added

for a comparative analysis in all the 4 cases of Fig. 2.5. Noise level is defined as

the ratio of the maximum noise value to the maximum signal value. The size of the

embedding matrix F was kept constant for finding the spectra for both the standard

and nonlinear SVD operation.

It is clear from Fig. 2.5 that the method of nonlinear SVD is able to distinguish

the original data from its surrogates under the presence of noise, provided the noise

level is low. But note that if the noise level goes up the method fails to distinguish

between data and surrogates.

2.8 Discussion on Linear Vs Nonlinear Models

At this point, there is a need to distinguish between two possibilities that

could happen: (i) the underlying dynamics is linear but the data is contaminated

with noise (ii) the underlying dynamics is nonlinear with or without noise present

in the data. In both of these cases, standard SVD will give non zero singular values.

For these two cases, one could explore simple nonlinear alternatives if the ratio

of singular values falls below the preset criterion confirming the second possibility.

But if the goal is to detect the nonlinearity but not to quantify it, one could use the

method suggested by Porta et al. [64]. They have discussed the case of the logistic

model with parameter value λ = 3.7 under various noise levels. It was shown that

an error function dips much further with actual data than with its surrogates for

their model. A comparison of this method with various other methods are also

discussed [65].

A second order linear system Xn = a.Xn−1 + b.Xn−2 was simulated with pa-

rameter values a = −1.5 and b = −1. For the data generated by this system in

the absence of noise the linear SVD had a sharper fall off than the nonlinear SVD.
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In the case of surrogate data neither linear SVD nor nonlinear SVD had a sharp

fall off. In such cases the linear model would be chosen based on the grounds of

parsimony. In the presence of small amount of noise the same situation continues.

However when the noise is beyond a certain value neither linear nor nonlinear SVD

will show a substantial qualitative difference with the surrogate data to have any

degree of confidence in either of the models.

In the case of nonlinear chaotic data, one can observe from the simulations

results discussed so far that the method of nonlinear SVD works reasonably well

even in the presence of noise, provided the noise is below some threshold. As the

noise level increases the ratio of Wq,q

W1,1
crosses the preset threshold 10−6, the confidence

in the model gets reduced.

2.9 Extension of the method of Nonlinear SVD to Flows

This section demonstrates the utility of nonlinear SVD for recovering a nonlin-

ear relationship in time series generated by continuous dynamical systems or flows.

The first section gives an application of the method for mathematical modeling us-

ing the Van der Pol Oscillator. The second section demonstrates an application of

the method for chaotic cryptanalysis using the Duffing oscillator.

2.9.1 Application to Mathematical Modeling

The goal of this section is to explore the possibility of nonlinear SVD for the

modeling a differential equation based on experimental data. The key assumptions

behind this model are: (i) the sampling is frequent (ii) noise level is very low. It

is demonstrated here how the equation can be retrieved using nonlinear SVD. A

method of finding accurate derivative from data [67] was used in the numerical

simulation.

Assume that the time series is generated by a lower dimensional deterministic

dynamical system whose exact equations are unknown. This section will illustrate

the method and the issues involved by finding the unknown differential equation

from the time series. The selected time series in this case– Z displayed in Fig. 2.6

(ii) is relatively short, which is clear from the state space picture depicted in Fig.
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Figure 2.6: (i) Phase space of Van der Pol oscillator with a darkened
portion highlighting the short data segment of data Z used
for analysis and (ii) is the time series Z.

2.6 (i). In practice, one might be able to do better if a longer time series is available

as some noise reduction methods might work better it. Finding a procedure for a

shorter time series is a tougher challenge.

Steps of the numerical procedure to identify the system are listed below.

Assume that data measurements Z. Calculate n derivatives of Z represented as

(Y2, Y3, . . . Yn+1) using the method mentioned in [67]. Yn is the n− 1th derivative of

Z, hence Y1 (the 0
th derivative of Z) is same as Z; and these notations are followed

for the rest of the section.

Step. 1 Given a highly sampled data Z, calculate its derivatives using the

method [67].

For the numerical analysis Z data (accurate up to 10−16) frequently sampled

(with a step size 0.001) with a length 1000 is chosen (displayed in Fig. 2.6 (ii)).

Step. 2 Make an assumption that data is generated by a differential equation

of the following form.

d

dt
X1 = X2.

d

dt
X2 = G(X1, X2).

where G is a relatively simple multinomial function that has to be determined



37

empirically.

Step. 3 Construct a candidate function G1 for G (based on the domain on

application where data belongs to).

Let G1 consisting of linear and quadratic terms of the derivatives Y1 and Y2

be,

G1 = c1Y1 + c2Y2 + c3Y
2
1 + c4Y1.Y2 + c5Y

2
2 . (2.18)

Step. 4 Retrieve the parameters c1, c2, . . . , c5 of Eq. 2.18 by choosing an

embedding matrix of the form, F = [Y3 Y1 Y2 Y1
2 Y2

2 (Y1Y2)]. Find the singular

values of F and check if the preset criterion Wq,q

W1,1
≤ 10−6 is satisfied.

Singular values of F matrix were [201.33, 162.24, 83.95, 3.95, 0.44, 0.03] and

and the ratio W6,6

W1,1
= 1.5× 10−4 did not satisfy the preset criterion.

Step. 5 Since the preset criterion is not satisfied, the function G1 is improved

by adding cubic functions. Let the new function G2 be,

G1 = c1Y1+c2Y2+c3Y
2
1 +c4Y

2
2 +c5Y1.Y2+c6Y1

3+c7Y2
3+c8Y1

2.Y2+c9Y2
2.Y1 (2.19)

Step. 6 To retrieve the parameters c1, c2, . . . , c9 of Eq. 2.19 by choosing an

embedding matrix of the form, F = [Y3 Y1 Y2 Y1
2 Y2

2 (Y1Y2) Y1
3 Y2

3 (Y1
2Y2) (Y2

2Y1)].

Find the singular values of F and check if the preset criterion Wq,q

W1,1
≤ 10−6 is satisfied.

The singular values of F were (181.0635, 115.3297, 44.2941, 2.1510, 22.1215,

0.1768, 0.0247, 0.0044, 0.0003, 10−11) and the ratio W10,10

W1,1
satisfied the preset cri-

terion.

Step. 7 Retrieve the coefficient array for this case assuming the last singular

value W10,10 = 0 (expanding the corresponding equation for Eq. 2.8).

The retrieved coefficient array was [ 1, 2.895, −0.237, 0, 0, 0, 0, 0, 0.237, 0 ].
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Rewriting Eq. 2.19 in terms of the coefficients,

0 = Y3 − 0.237Y2 + 0.237Y2Y
2
1 + 2.895Y1. (2.20)

Y3 = 0.237Y2 − 0.237Y2Y
2
1 − 2.895Y1. (2.21)

Y3 = 0.237Y2(1− Y 2
1 )− 2.895Y1. (2.22)

Since Y2 and Y3 are the 1st and 2nd derivatives of Y1, rewriting the Eq. 2.22,

d

dt
Y1 = Y2.

d

dt
Y2 = cY2(1− Y 2

1 )− kY1.

This is the Van der Pol equation with parameter values k = 2.895 and c =

0.237. The estimated values k = 2.895 and c = 0.237 from the data series are

in agreement with the values used in the Van der Pol to generate the data series.

The form of the equation and the parameter values are exactly predicted using the

proposed method as the data was noise free. In addition to the data, information

about the sampling interval is necessary to calculate the derivatives using the method

mentioned in [67]. Fig. 2.6 (i) shows the Phase space of the Van der Pol oscillator

which was used to generate the Z data of length 1000 (shown in Fig. 2.6 (ii)) used

for analysis.

2.9.2 Application to Chaotic Cryptanalysis

This section explains how the method of nonlinear SVD can be used for crypt-

analysis. The key assumptions behind the model are the same as those explained in

the previous section.

Consider the following narrative of cryptanalysis. Assume that a sender A

is using a communication channel for sending message to a receiver B. For using

Chaotic Cryptography methods there is a set of shared information across A and

B known as super key (the equations and the parameter values that are used for

generating data on which the message is encrypted). Assume that C an eavesdropper

who does not have access to the super key but wants to retrieve it by listening to
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Figure 2.7: (i) Phase space of the Duffing oscillator under chaos with a
darkened section highlighting the short data segment Z, and
(ii) the message Z sent across the communication channel by
A, that was used for cryptanalysis by C.

the messages across the communication channel.

Assume that the sender A is generating data from Duffing equation under

chaos,

d

dt
X1 = X2 (2.23)

d

dt
X2 = −kX1 − cX2 − δX1

2 + Acos(ωt+ Φ) (2.24)

Parameter values chosen by A are k = 0.01, c = 0.04496, δ = 1, A = 1.02,

ω = 0.44964 and Φ = 0. A has generated a data segment Z (accurate up to 10−16)

of length 1000 using the Duffing equation by Runge–Kutta method from an initial

condition (0.656, 0.172) with sampling step size 0.01 and was send to team B across

the channel as a message. Phase space of the Duffing oscillator under chaos is shown

in Fig. 2.7 (i) and the message Z sent to B is shown in Fig. 2.7 (ii).

The eavesdropper C who is listening to the channel is left with the data seg-

ment Z. The objective of C for cryptanalysis is to find the form of the equation used

by A along with the parameter values. Assuming that (i) sampling frequency of the

message is known to C by some other means and (ii) noise level in the message is

very low, the methods used by C to fulfil the objective are given below.
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Step. 1 Make an assumption that data Z is generated by a differential

equation of the following form.

d

dt
X1 = X2. (2.25)

d

dt
X2 = G(X1, X2) + A.cos(ωt+ Φ). (2.26)

where G is a low order polynomial function.

Step. 2 Calculate n derivatives of Z : Y2, Y3, . . . Yn+1, where Yn is the n− 1th

derivative of Z and Z = Y1 using the method [67].

Step. 3 Construct a candidate function G1 consisting of linear, quadratic

and cubic terms of Y1 and Y2 and sinusoidal functions.

G1 = c1Y1 + c2Y2 + c3Y
2
1 + c4Y1.Y2 + c5Y

2
2 + c6Y1

3 + c7Y2
3 + c8(Y1

2.Y2) +

c9(Y2
2.Y1)] + c10sin(ωt) + c11cos(ωt).

Step. 4 Retrieve the parameters c1, c2, . . . , c11 by choosing an embedding

matrix of the form,

F = [Y3, Y1, Y2, Y1
2, Y2

2, (Y1Y2), Y1
3, Y2

3, (Y1
2Y2), (Y2

2Y1), sin(ωt), cos(ωt)]

Step. 5 Find the singular values of F and check if the preset criterion
Wq,q

W1,1
≤ 10−6 is satisfied. Retrieve the coefficient array.

SVD operation of F gives a set of singular values (46.1294, 28.0900, 20.9784,

18.8628, 12.5940, 6.8899, 4.8714, 4.2835, 2.0742, 0.8881, 0.5682, 0). According

to Eq. 2.8 a relationship can be recovered across the columns of F matrix since the

last singular value is exactly zero.

[ 1, 0.01, 0.04496, 0, 0, 0, 1, 0, 0, 0, −0.98958, 0.24723] is the recovered

coefficient array.
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Step. 6 Retrieve the equation using the coefficient array.

Y3 + 0.01Y1 + 0.0449Y2 + Y 3
1 − (

√
0.9892 + 0.247)cos(ωt) = 0 (2.27)

Y3 + 0.01Y1 + 0.0449Y2 + Y 3
1 − 1.02cos(ωt) = 0 (2.28)

Since Y2 and Y3 are the 1
st and 2nd derivatives of Y1, Eq. 2.28 can be rewritten

to get the Duffing equation with parameter values k = 0.01, c = 0.04496, δ = 1,

A = 1.02, ω = 0.44964 and Φ = 0 as,

d2Y1
dt2

+ c
dY1
dt

+ kY1 + δY 3
1 = Acos(ωt) (2.29)

whose state space representation is,

dY1
dt

= Y2 (2.30)

dY2
dt

= −cY2 − kY1 − δY 3
1 + Acos(ωt) (2.31)

Thus C was successful in cryptanalysis as the estimated parameter values and

the form of the equation are in exact agreement with the Duffing equation used by

A and B for communication.

2.10 Conclusions

A nonlinear extension of the singular value decomposition (SVD) technique

is demonstrated in this chapter. In principle, the method can work with any type

of nonlinearity. The method of nonlinear SVD is for detecting and quantifying

nonlinearity in a time series is explained using data generated by discrete dynamical

systems: the Logistic map and the Henon map and continuous dynamical systems:

the Van der Pol oscillator and the Duffing oscillator. The proposed method works in

the presence of noise, provided the noise level is not high. Recovery of parameters

is demonstrated for both the noise–free and noisy cases. Two specific applications

of the method are discussed. Next chapter discusses an extension of the nonlinear

SVD method for finding the dimension of the manifold where data resides.



CHAPTER 3

Nonlinear SVD for estimating the Dimension of a Manifold

and finding Local Charts

The goal of this chapter is to propose a new method based on nonlinear Singular

Value Decomposition (SVD) to arrive at an upper bound for the dimension of a

manifold which is embedded in some RN . Assume that some data on the manifold is

available and also there exists at least one small neighborhood with sufficient number

of data points. Given these conditions, this chapter shows a method to compute

the dimension of a manifold. Two specific cases are discussed in this chapter. For

the simple case where the manifold is in the form of a lower dimensional affine

subspace, standard SVD is used to (i) calculate the dimension of the manifold and

(ii) to get the equations which define the subspace. For the general case of manifolds,

nonlinear SVD is used (i) to search for an upper bound for the dimension of the

manifold and (ii) to find the equations for the local charts of the manifold. The

proposed method is highly useful in the context of delay embedding– a technique

that is used through out this thesis for data analysis. Finding a good estimate of

the underlying dimension of an embedded data is a requirement while modeling a

system based on local charts. Following chapters of the thesis provides examples of

this type of modeling.

(Note: Research embodied in this chapter is published and [71] is the reference

for that publication)

3.1 Introduction

Embedding based techniques are extremely useful in analyzing data as they can

give qualitative information of the dynamics of the system that generated the data.

Data generated by nonlinear chaotic systems usually live in a lower dimensional

manifold, unlike the data from stochastic systems that tend to spread over the

whole phase space. This property of nonlinear chaotic systems can be exploited for

modeling and prediction of nonlinear chaotic signals.

42
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Embedding is defined as a smooth map Φ from a manifold M to a space U

such that its image Φ(M) ⊂ U is a smooth manifold of U and Φ is a diffeomorphism

between M and Φ(M) [5]. The existence theorem for embeddings in Euclidean

spaces was given by Whitney [24]. He proved that a smooth d–dimensional mani-

fold can be embedded in Rn if n > 2d. In 1980’s Packard et al. reported that phase

portraits similar to the underlying dynamical system could be reconstructed from

measurements [16]. Later Takens gave a firm theoretical foundation for the recon-

struction techniques based on measurements known as delay embedding which soon

became a popular method for analyzing dynamical systems based on time series

measurements [25].

Broomhead and King proposed an alternative method ‘SVD–based embed-

ding’ to get the best orthogonal basis for the data [12]. SVD–based embeddings

have some advantages as the set of linearly independent orthogonal vectors given

by SVD is used to form a local basis of the embedded manifold Φ(M). SVD–based

embedding can be used for noise reduction by partitioning the embedding space

and rejecting the out of band noise– the less significant partition of the embedding

space. In this context of modeling realtime signals, different local nonlinear predic-

tion(LNP) methods were proposed that used embedding based techniques. Porta

et al. proposed an LNP method of prediction that used delay embedding of data

in a higher dimensional phase space [64, 65]. The phase space was subdivided into

non–overlapping hypercubes and the prediction was based on the behavior of the

median of the values of the past samples that belonged to the same hypercube.

One goal of modeling a system based on time series is to develop equations

for the system from the time series [18, 19] for prediction or a description of the dy-

namics [20, 21]. These type of modeling methods generally fall into two categories:

Global methods that find equations valid for the entire statespace, and Atlas meth-

ods that develop local charts for small neighborhoods of the statespace [22, 23]. In

general the dimension required for the global embedding of a dynamical system is

higher than the intrinsic dimension of the system. According to Whitney and Tak-

ens, global embedding of a d–dimensional manifold requires a minimum dimension

2d+1 [24, 25]. But if the aim is to use Atlas methods to find local charts that cover
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the statespace, it might be possible to represent the system in just d–dimensions.

This chapter shows a method to compute the dimension of a manifold and to find

equations for its charts using the method of nonlinear SVD explained in the previous

chapter. The main application of this method is in the context of an analysis of a

dynamical system from observed data that is embedded in some RN . Chapter. 5

on ECG data analysis uses the results of this chapter in this context.

Consider an example of a geometrical object. Let the assumptions on the

data available about this object are: (i) the manifold has already been embedded in

some RN and the data about its co-ordinates is available, (ii) there exists at least one

small neighborhood with sufficient number of data points. For the case of dynamical

systems, this requires the existence of a property known as Recurrence [30]. A point

in the state space is said to be recurrent if a time series generated by the system

keeps on visiting the neighborhood of that point. The method demonstrated in the

chapter is useful for data generated by dynamical systems that exhibit the property

of recurrence.

Two specific cases are discussed in this chapter. For the simple first case, when

the manifold is in the form of a lower dimensional affine subspace, the technique of

SVD can be used to (i) calculate the dimension of the manifold and (ii) to get the

equations which define the subspace as shown in Section 3.2. Section 3.2.1 discusses

a numerical example of finding the dimension a subspace embedded in R4. For the

general second case, the method of nonlinear SVD is used to (i) to search for an

upper bound for the dimension of the manifold and (ii) to find the equations for the

local charts of the manifold as shown in Section 3.3. Section 3.3.1 shows a numerical

example of finding the equation for a local neighborhood on a manifold using the

co-ordinate data of möbius strip. Chapter concludes in Section 3.4 and it contains

a brief discussion about how the proposed method would be useful in the context of

delay embedding.
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3.2 The case of an M dimensional Subspace embedded in

RN where N > M

Consider a manifold that is embedded in RN , and assume that the coordinates

of a large number of points which belong to this manifold are available as a numerical

data. This section discusses a numerical technique to investigate whether the data

belongs to a manifold which might have a dimension less than N . This section

looks at a simpler case when the manifold is an affine subspace of RN . Next section

will look at the general case of an M dimensional manifold embedded in RN . In

any case, given the data, it would always be worthwhile to first check if an affine

subspace is an adequate description of the manifold under consideration.

The first step to check for the possibility of the existence of an affine subspace

is to locate the centroid of the data and reset it as a new origin. Trivially if the

data belonged to an affine subspace this centroid would also belong to the same

subspace. Further, if the centroid is set as the new origin, one would get a linear

vector subspace if and only if the original data belonged to an affine subspace. This

reduces the investigation to check if the modified data belongs to a linear subspace.

In practice the method of SVD is quite suited to do this task.

Recalling the SVD theorem mentioned in Section 2.2 of Chapter 2, a matrix

B of size (P ×N) can be decomposed into three matrices as

B = UWV T (3.1)

where U , a column orthogonal matrix of size (P ×N) ; W, a diagonal square matrix

of size (N ×N) and V , an orthogonal square matrix of size (N ×N). V T represents

transpose of the matrix V and the diagonal entries of W are called the singular

values of B.

To use this theorem, construct a matrixD of size (P×N) whose rows represent

various data points and the columns correspond to various coordinates in RN . For

practical cases, the total number of points P ≥ N (usually P ≫ N), as having more

data is better for dealing with the noise in the data. Thus the entry in the ith row

and jth column would be the value of the jth co-ordinate of the ith data point. If
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x1, x2, . . . xN are the variables representing the N coordinates of RN , Di,j would be

the value of xj at i
th observation point.

Find the centroid of all the data points represented by D. The nth coordinate

of the centroid is given by,

dn =
1

P

P∑
p=1

Dp,n for n = 1, 2 . . .N (3.2)

Set the centroid as origin by creating a new matrix A such that,

Ap,n = Dp,n − dn for all p (3.3)

Using the result of SVD given in Eq. 3.1 two theorems can be proven. For

these theorems, the matrices W and V are computed from the data matrix using

standard numerical procedures [10].

Theorem 3.1. If the SVD of the matrix A defined above gives Q singular values

which are zero then there exists an N −Q dimensional affine subspace on which the

data resides and the equations defining the subspace are given as follows,

N∑
n=1

Vn,q(Zn − dn) = 0; for q = (N−Q+ 1) . . .N (3.4)

where, V is the orthogonal matrix we got after SVD. Z represents the co-ordinates

of RN and dn is the centroid of the data points.

Theorem 3.2. If the matrix A defined above, represents a collection of points which

lie on a linear subspace of dimension N−Q which is defined by Q independent linear

algebraic homogenous equations, then the SVD of A will have at least Q singular

values which are zero.

Proof of the Theorem 3.1 is given in this chapter. (Refer Appendix A for the

proof of Theorem 3.2. Theorem 3.2 is not needed to explain the results discussed in

this chapter.)



47

Proof of Theorem 3.1

SVD of matrix A,

A = UWV T (3.5)

By post multiplying Eq. 3.5 by V,

AV = UW (3.6)

Upon transposing,

V TAT = WUT (3.7)

Note: W T = W as W is a diagonal square matrix. Expanding Eq. 3.7 for any

column p,
N∑
n=1

V T
m,nA

T
n,p =

N∑
n=1

Wm,nU
T
n,p (3.8)

Define Yn(p) = ATn,p + dn for all p, given that Y (p) is the original data vector

at pth data point. Therefore by using Eq. 3.8, all the data vectors (from the original

data, before the correction for centroid was applied) will fit the following equation

if Q singular values are zero:

N∑
n=1

Vn,q(Zn − dn) = 0 for q = (N−Q+ 1) . . .N (3.9)

3.2.1 Numerical Example of a Linear Subspace

This section explains the results of Theorem 3.1 using a numerical example.

Consider a set of 100 samples each of two random variables g1 and g2. Both were

selected using a program to find uniform random numbers in the interval [0, 1].

From each of these pairs, coordinates for points in R4 were selected by using linear

transformations. These coordinates became the column entries of the A matrix.

The first column of this matrix, representing a coordinate S1 consisted of 0.2g1 +

0.4g2 ; second column S2 consisted of 0.3g1 + 0.5g2; third column S3 consisted of

0.5g1+ 0.6g2; and the last column S4 consisted of 0.7g1+ 0.1g2. Singular values of
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the data matrix A (after the removal of the column means dn) were,
3.29739

1.32848

0

0


The mean vector d was, 

0.2925

0.39093

0.53994

0.40198


The V matrix was,


−0.35101 −0.33214 −0.87549 0

−0.46934 −0.34316 0.31836 −0.74874

−0.64884 −0.21017 0.33987 0.64756

−0.48531 0.85308 −0.12906 −0.14165


Since the last 2 singular values were zeros, expanding Eq. 3.9 using the last 2

columns of this V matrix,
4∑

n=1

Vn,3(Zn − dn) = 0 (3.10)

4∑
n=1

Vn,4(Zn − dn) = 0 (3.11)

Expanding Eq. 3.10 and 3.11 in terms of the coordinates (S1, S2, S3, S4),

−0.74874(S2− 0.39093) + 0.64756(S3− 0.53994)− 0.14165(S4− 0.40198) = 0

and

−0.87549(S1−0.2925)+0.31836(S2−0.39093)+0.33987(S3−0.53994)−0.12906(S4−
0.40198) = 0

Re-write these equations to get the coordinates S1 and S2 in terms of S3 and S4



49

as follows,

S1 = 0.7027S3− 0.07862S4− 0.05531.

S2 = 0.86487S3− 0.18918S4− 0.00001.
(3.12)

Consider a new space R2 given by co-ordinates (T1, T2) where T1 = S3,

T2 = S4. The following diffeomorphisms across R4 and R2 define the local chart

co-ordinates:


S1

S2

S3

S4

 =


0.7027 −0.07862

0.86487 −0.18918

1 0

0 1

 .
[

T1

T2

]
+


−0.05531

−0.00001

0

0

 (3.13)

and the inverse is,

[
T1

T2

]
=

[
0 0 1 0

0 0 0 1

]
.


S1

S2

S3

S4

 (3.14)

Thus (T1, T2) define local coordinates of a two dimensional manifold which

contains the data. In this simple case, they also turn out to be the global co-

ordinates. This creates an upper bound on the dimension of the manifold as 2. This

is only an upper bound because there may be a submanifold which contains the

data.

3.3 Finding Nonlinear Equations for Charts on a

Manifold using Nonlinear SVD

The method discussed in Section 3.2, using the conventional method of SVD

may not work for many of the practical cases for the reason that the data may not

be confined to a linear subspace. For such situations, the nonlinear SVD procedure

discussed in Chapter 2 can be used as shown in this section. An assumption is

made that a neighborhood in the manifold of the system might confine to an affine
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subspace in the N +K dimensional space.

Recall that every row of the original data matrix D consisted of the observed

values of the N co-ordinates. According to the nonlinear SVD procedure, augment

D matrix by K additional columns of nonlinear functions of the N variables [52]. If

the kth candidate function is denoted by fk(x1, x2, . . . xN), the augmented matrix E

can be represented as,

Ep,n = Dp,n; for n = 1, 2 . . .N

Ep,N+k = fk(Dp,1, Dp,2, . . . Dp,N); for k = 1, 2 . . .K

This is equivalent to embedding the N dimensional system in a higher dimen-

sion N + K. Though the system is nonlinear in N dimensions, it happens many

times that the system may be linear in the higher dimension N +K, if the choice

of candidate functions is successful. The physical situation of the problem might

suggest some specific choice of trial functions and hence the choice of functions are

dependent on the domain of application. Often the trial functions are polynomial

combinations of the variables.

Following the same idea used in section 3.2 for constructing the matrix A from

the matrix D, construct a matrix F from the matrix E by removing the centroid.

In addition to the mean vector d using Eq. 3.2, define a mean vector g for the

additional columns as,

gk =
1

P

P∑
p=1

Ep,N+k for k = 1, 2 . . .K (3.15)

The modified F matrix is given by,

Fp,n = Ep,n − dn; for n = 1, 2 . . .N (3.16)

Fp,N+k = Ep,N+k − gk; for k = 1, 2 . . .K (3.17)

If SVD of the F matrix gives Q singular values that are zero, one can get

Q equations using a slightly modified formula in the extended N +K dimensional
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space as,
N+K∑
n=1

Vn,qF
T
n,q = 0; for q = (N−Q+ 1) . . .N (3.18)

where V is an orthogonal matrix that has dimension (N + K) × (N + K).

Splitting the F matrix, this equation can be rewritten as,

N∑
n=1

Vn,q(Zn − dn) +
N+K∑
k=N+1

Vk,q(fk − gk) = 0 for q = (N−Q+ 1) . . .N (3.19)

The data vectors that constitute the matrix D will obey Eq. 3.19 at all the

points if the singular values are exactly zero. As in the linear case, if Q such

equations exists for the set Eq. 3.19, one can conclude that the manifold is of at

the most N −Q dimension.

3.3.1 Numerical example: Möbius Strip embedded in R3

This section explains the results of Section 3.3 using a numerical example of

möbius strip. The conventional method of SVD will not work for a practical case

as the data may not be confined to a linear subspace. For such situations, the

nonlinear SVD procedure can be used to find the coordinates of the local chart.

Consider the data generated on a möbius strip that is represented by the following

parametrization,

x(u, v) = (1 + v.cos
u

2
)cos(u)

y(u, v) = (1 + v.cos
u

2
)sin(u)

z(u, v) = v.sin(u)

(3.20)

where 0 ≤ u < 2π and −0.3 ≤ v ≤ 0.3. The parameter u runs around the strip

while v moves from one edge to the other. The möbius strip simulated in R3 is

shown in Fig. 3.1 and its projection in R2 can be seen in Fig. 3.2.

Assume that the data is generated the form of co-ordinates (x, y, z) in R3 using

the set of equations given by Eq. 3.20. One need to find a small neighborhood in
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Figure 3.1: Möbius Strip in R3 plotted using (x, y, z) variables generated
using Eq. 3.20.

Figure 3.2: Möbius Strip in R2 plotted using (x, y) variables generated
using Eq. 3.20.
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the manifold where sufficient number of data points are available from these data.

Identification of a Recurrence Neighborhood from a Time Series

A point in state space is said to be recurrent if the time series generated by

the system keeps on visiting the neighborhood of the point [30]. One can identify a

neighborhood for some recurrent point from a time series as follows: Start with an

initial reference point and find its evolution in the state space. For the neighborhood

of the reference point, the Euler metric– L2 norm of the difference vector (the

distance of the reference point with respect to all other vectors) is defined to be

less than some threshold value ∆. For the numerical simulation explained below

(0.7, 0, 0) was chosen as the reference point and the threshold ∆ = 0.032 (refer

section 4.9 of Chapter 4 for an algorithm to find a recurrence neighborhood).

Collect P data vectors belonging to the neighborhood of the möbius strip in

R3 into a matrix D, thus D has a dimension P × 3. For the numerical simulation

explained in this section P = 43. Create the matrix A from matrix D by removing

the column averages of the data points from D as shown in Eq. 3.3. The singular

values of the A matrix that represented the selected neighborhood were,
0.352

0.01

2.286× 10−5


The low third value is encouraging but to improve the accuracy, the coordi-

nates were embedded in R9 (from R3) by using nonlinear functions of the x, y, z

co-ordinates of the data points (for this particular demonstration the nonlinear

functions were limited to the quadratics). Hence, the extended data matrix E was

created from D matrix by augmenting the trial functions x2, y2, z2, xy, xz, yz to

the D matrix. Now the E matrix can be denoted as,

E =
[
x y z x2 y2 z2 xy xz yz

]
.

Note that E has dimension P × 9 where P is the number of data points in the
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neighborhood. Next step is to generate the matrix F from E by removing the mean

vector d and g from E as explained in Eq. 3.16 and 3.17.

The mean vector d was, 
0.694

0.086

−0.018


The mean vector g was, 

0.481

0.01

4.667× 10−4

0.059

−0.013

−2.172× 10−3


Singular values of F matrix were,

0.43287

0.024

4.02788× 10−4

8.31511× 10−6

2.43449× 10−8

1.28177× 10−10

2.19759× 10−12

9.08467× 10−14

0


Since the 9th singular value is zero, the following relationship between the

coordinates can be developed using the Eq. 3.19,

3∑
n=1

Vn,9(Zn − dn) +
9∑

k=4

Vk,9(fk − gk) = 0 (3.21)

Expanding this, an equation for the local neighborhood on manifold can be
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obtained as,

0.05(x − d1) + (1.185 × 10−4)(y − d2) + (4.378 × 10−4)(z − d3) + 0.334(x2 −
g1)+ 0.319(y2− g2)− 0.855(z2− g3)+ (5.139× 10−5)(xy− g4)− (4.046× 10−4)(xz−
g5)− 0.231(yz − g6) = 0

Substituting the mean values for d and g, the exact equation for the manifold

is, 0.05x+(1.185×10−4)y+(4.378×10−4)z+0.334x2+0.319y2−0.855z2+(5.139×
10−5)xy − (4.046× 10−4)xz − 0.231yz − 0.198 = 0.

This equation implies that the manifold is at the most 2 dimensional. One can

choose y and z coordinates and create a chart that goes from (y, z) to (x, y, z). For

the equation mentioned above, at every point (y, z) one can get a quadratic equation

of the form (αx+ βx2 + γ) = 0 for the neighborhood on the manifold where,

α = 0.05 + (5.139× 10−5)y − (4.046× 10−4)z

β = 0.334
(3.22)

γ = (1.185× 10−4)y + (4.378× 10−4)z + 0.319y2 − 0.855z2 − 0.231yz − 0.198.

Solution of this quadratic equation gives the value of the x coordinate. Fig.

3.3 (i) shows the x coordinate of a data segment in the neighborhood along with its

prediction using the chart co-ordinates (y, z). Fig. 3.3 (ii) shows the error between

predicted and original x data. (Refer Appendix. B for a verification of the procedure

of nonlinear SVD to find explicit nonlinear equations for charts on the manifold).

3.4 Conclusions

This chapter demonstrated how to find the dimension of a manifold when it

is in the form of a lower dimensional linear subspace using the SVD method. The

technique of SVD was used to calculate the dimension of the manifold and further

to get the linear equations which define the linear subspace where data resides. For

the general case of manifolds the method of nonlinear SVD was used to find the

dimension of the manifold and the equation of the local chart.
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Figure 3.3: Prediction of x coordinate of a data segment in the neighbor-
hood using the chart co-ordinates (y, z): (i) shows x data and
its prediction xpred (ii) shows the error between the x and
xpred.

Embedding a data in a higher dimensional space is a standard technique in

nonlinear dynamics to gain some insights about the system that generated the

data [16, 5]. Embedding theorems [25, 24] gives the conditions under which a

dynamical system can be reconstructed from a time series generated by it. This

type of reconstruction is diffeomorphic to the original dynamics and it preserves the

properties of the dynamical system and it does not change under smooth coordi-

nate changes. To be sure of the embedding, the minimum embedding dimension is
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(2d + 1) where d is the dimension of the manifold on which the dynamics resides.

It is a common practice to embed the data in to space whose dimension is higher

than the actual required value. However, there are a few problems associated with

high dimensional model that represent lower dimensional dynamics [26]. When the

data is actually generated by a nonlinear dynamical system of dimension d, it would

occupy a d dimensional submanifold in a high dimensional embedded space RN

(d << N). Then one could find a large number of competing dynamical systems

which agree on the d dimensions but disagree on the N − d dimensions. The best

way to resolve this problem is to carry out the modeling using the atlas method and

develop local charts in the lower dimension d itself.

The method described in this chapter is useful to find the dimension of the

manifold and the equations for the local charts based on a numerical data. Further,

the method is useful in dealing with some issues involving the modeling and the

stability analysis of systems based on a time series data. The issues related to over

embedding– the delay embedding in a dimension much higher than required– will

be discussed in detail in the next chapter. One effective solution to the problems

generated by over embedding is to develop a model which is based on local charts

and for this purpose a good estimate of the underlying dimension of an embedded

data is required. Chapter 5 provides an example of such an application.



CHAPTER 4

Prediction based on Recurrence Neighborhoods

This chapter introduces a new method of prediction and modeling that exploits the

property of recurrence in a dynamical system. According to this model the dynamics

of the system can be approximated by a few overlapping recurrence neighborhoods

with specific affine transformations for each of them. The model wants to exploit the

inherent redundancy structure of the delay embedding for the purpose of reducing

computational load which is inevitable in nonlinear analysis. Global analysis of

the system is done in a higher dimensional space for this purpose. Local analysis

of the system is done in a lower dimensional space using charts specific to the

recurrence neighborhoods. It is observed that the recurrence timings– the time

delay between two adjacent recurrences– reveal lot of information about the system.

This property of recurrence when coupled with the redundancy of delay embedding

opens up a new area of prediction for the special class of signals that share the

property of recurrence. According to the model, if the recurrence timings and the

affine transformations specific to the neighborhoods are known, the entire dynamics

of the system can be predicted. The goal of this chapter is to demonstrate the model

using data generated by a well studied dynamical system: the Duffing oscillator.

4.1 Introduction

Ideas discussed in this chapter focus on a particular class of dynamical systems

that share a property known as Recurrence. Recurrence in general can be seen as a

repetition of patterns in a time series generated by a system. A dynamical system is

said to have the property of recurrence if a time series generated by the system keeps

on visiting the neighborhood of a point. Mathematical theories related to recurrence

were developed in 1987 by Eckmann et al. [30]. Analyzing recurrence patterns are

important in the study of dynamical systems and finding them in a time series is

a prominent method for data analysis [31, 32]. Owing to the rapid growth in the

theory of nonlinear dynamics in the last three decades, the property of recurrence has

58
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found applications in numerous fields as physiological data assessment, information

theory, economics and biomedical time series analysis [33, 34, 35, 36].

Recall another important property of dynamical systems which was observed

by Packard et al. when they could reconstruct the state–space of a system from a

time series generated by the system [16]. Takens in 1981 proved a theorem according

to which the state space of a system can be reconstructed in a high dimension using

time–delayed copies of a measured variable, known as delay embedding [25]. There

is a one–one similarity between the reconstructed space in the delay embedding and

the original state space of the system.

The proposed model is based on a few ideas from Topology, Nonlinear Dynam-

ics and Chaos theory– (i) recurrence patterns of a data series reveal lot of information

about the system that generated the data (ii) delay embedding matrices have in-

herent symmetries and a redundancy structure. The model demonstrates that the

best way to exploit the recurrence property of a signal for prediction is to couple it

with the delay embedding procedure. The objective of this chapter is to introduce

a novel method of modeling by coupling the properties (i) and (ii) to reduce the

computational load that is inevitable in nonlinear signal analysis. The possibilities

of the model are explored for a chaotic data generated by Duffing oscillator. The

prediction results are excellent and it is demonstrated with duffing data. Chapters

5 and 7 demonstrates applications of the model for biomedical signal analysis.

In what follows, section 4.2 discusses the methodology– the proposed new

model and the key ideas on which the model is built. Section 4.3 lists the details of

the dynamical system under study. An algorithm for finding the recurrence timings

of a time series and a neighborhood of a recurrent point in a delay embedding space

is given in this section. Section 4.4 discusses the details of the transformation used

for projection and the dynamics of the neighborhoods in both the high dimensional

space RN and the lower dimension Rd. It shows how to develop (i) conjugacy maps

across RN and Rd and (ii) evolution maps for various equivalence classes in Rd.

Results of the data analysis are given in Section 4.5. Section 4.6 is the conclusion

and it also has a discussion about the empirical values chosen for the projected

dimension d.
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4.2 Methodology

The proposed new model and the key ideas on which the model is built are

discussed in this section. An important property of differential equations that model

a given dynamics is that they generate a set of maps known as one–parameter group

of diffeomorphisms. This property is reviewed in next section.

4.2.1 Affine Approximations in small Neighborhoods for a Dynamical

System

A Differential equation generates maps at every time of its evolution. Consider

a differential equation of the form ẋ = f(x) that is defined on a manifold M ⊂ Rn.

The flow of this system can be generated by the set of maps ϕt(x) = ϕ(x, t) for

every x ∈ M and t ∈ R. The set of differentiable transformations ϕt : M → M

for every t ∈ R such that ϕs(ϕr) = ϕs+r = ϕr+s form a one–parameter group of

diffeomorphisms [47]; where ϕ0 is the identity map of M as ϕ0(x) = x for every x ∈
M and each map ϕt has a differentiable inverse ϕ−t such that ϕt(ϕ−t) = ϕ−t(ϕt) = ϕ0.

Hence given a set of initial conditions on the manifoldM , its evolution after a specific

time τ can be given by the specific map ϕτ .

Consider a point x1(0) which is recurrent with a recurrent time τ . Its evolution

x1(τ) belongs to a small neighborhood around x1(0). Let ϕτ be the transformation

that represents the evolution. Even if ϕτ is nonlinear, it has an affine form for this

small neighborhood. This follows from the properties of Taylor series expansion of

analytic maps (refer Appendix C for the theorem and its proof). Hence one can

simplify the dynamics in terms of affine transformations in small neighborhoods

everywhere. This gives a possibility of using a set of overlapping neighborhoods

with specific affine transformations for each of them to represent the local dynamics.

Recalling the Hartman-Grobman theorem that the behaviour of a nonlinear system

near an equilibrium point is qualitatively similar to the behaviour of a linear system

[49], this idea can be seen as a generalization of this theorem. The dynamics can be

simplified in terms of affine transformations in small neighborhoods everywhere and

linear transformations in small neighborhoods at rest points. Since the affine map

becomes a linear map at the rest point, this hypothesis reduces to the Hartman-
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Grobman theorem at the rest point.

According to the proposed model, the affine maps specific to the neighborhoods

can be empirically determined from a time series. The maps are developed in terms

of the coordinates of the delay embedding to exploit the symmetries of the delay

embedding for the purpose of modeling and prediction. The redundancy structure

of the delay embedding matrix is discussed in next section.

4.2.2 Inherent Symmetries of the Delay Embedding Matrix

Takens established the delay embedding theorem which proved a one–to–one

correspondence between the states of the system and the delay vectors constructed

from the time series generated by the system [25]. According to this theorem,

the reconstructed space in some higher dimension using time–delayed copies of a

measured variable and the original state space of the system are diffeomorphic to

each other as long as the embedding dimension is greater than twice the dimension

of an underlying dynamics. If d is the dimension of the original dynamics and N is

the embedding dimension for reconstruction, then the reconstructed system is said

to be diffeomorphic to the original dynamical system for N > 2d.

There is a special structure to the delay embedding matrix as it contains

lot of redundant information. Delay vectors that constitute the embedding matrix

are interconnected to each other. Due to this property, intermediate vectors can

be predicted from corresponding end vectors. If one knows where the initial and

final vectors go, the evolution of the intermediate columns can be predicted. This

property is demonstrated below for a 4× 4 delay embedding matrix.

Consider a short segment of time series x0, x1, ..xn which has the property of

recurrence is embedded in R4 as shown below.


x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

 (4.1)

Let these x vectors evolve to y vectors after one recurrence cycle as,
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
y0 y1 y2 y3

y1 y2 y3 y4

y2 y3 y4 y5

y3 y4 y5 y6

 (4.2)

Assuming that evolution of the first and last vectors at the end of one cycle is

known,


x0

x1

x2

x3

 −→


y0

y1

y2

y3

 (4.3)


x3

x4

x5

x6

 −→


y3

y4

y5

y6

 (4.4)

evolution of the middle vectors of the embedding matrix can be predicted from

the evolution of end vectors. One can write the 3d column as a sum of linearly

transformed end vectors –1st and 4th columns as shown below.


y2

y3

y4

y5

 =


0 0 1 0

0 0 0 1/2

0 0 0 0

0 0 0 0




y0

y1

y2

y3

+


0 0 0 0

1/2 0 0 0

0 1 0 0

0 0 1 0




y3

y4

y5

y6

 (4.5)

This relation is true even though the delay vectors belong to a nonlinear time

series. Since the column vectors of the embedding matrices are connected to each

other, evolution of one of the vectors can be written as the sum of a few linear

transformed evolution of other delay vectors as shown by Eq. 4.5. The aim of the

model is to exploit this property of the delay embedding to reduce the computational

load that is inevitable in nonlinear data analysis.

One goal of modeling a system based on a time series is to develop equations
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from a given time series [18, 19] for prediction or a description of the dynamics [20,

21]. These type of modeling methods generally fall into two categories: Global

methods that find equations valid for the entire statespace, and Atlas methods that

develop local charts for small neighborhoods of the statespace [22, 23]. According

to the proposed model, the delay embedding in a higher dimensional space is used

as a scaffolding for the model to analyze the global structure of the dynamics. The

delay embedding is followed by a projection to a lower dimension (which is closer

to the dimension of the actual dynamics) for the local analysis of the dynamics.

This projection will take care of two fundamental issues related to high dimensional

models that describe a low dimensional dynamics: (i) the ambiguity that many

models fit the data (ii) the fact that the models become less economical, requiring

more amount of data as the embedding dimension goes up. Both of these issues are

briefly reviewed in next section.

4.2.3 Issues of High Dimensional Models that describe a Low

Dimensional Dynamics

Global embedding of nonlinear systems often require high embedding dimen-

sions. When the data already belong to a projective space of the actual dynamics,

a delay embedding of the data in a higher dimension opens up a possibility of

numerous models fitting the data. If the data is generated by a non–linear dynam-

ical system of dimension d, it would occupy a d dimensional sub manifold in the

N–dimensional embedded space. One could have a large number of competing dy-

namical systems which will fit the data on d dimensions but disagree on the (N −d)
dimensions. (An example that demonstrate this ambiguity is discussed in Appendix

D.) This will result in an ambiguity associated with high dimensional models and

it can cause spurious inferences about the stability when the system is represented

in a dimension higher than the required value [26].

Other of issues reported with higher dimensional models that represents a lower

dimensional dynamics are: (i) increase in model dimension that expands the effect

of noise (ii) use of higher order polynomials in the model equation that increases the

number of coefficients to be estimated (iii) some orbits of the model statespace that
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goes outside the region containing the time series, thus making the model no longer

connected with the object under study [27]. In addition to taking care of the reported

issues, there is also a practical reason why one prefers a lower dimensional model.

A model in a lower dimensional space is economical in terms of data compared to

its high dimensional counterpart.

The key idea proposed here for a time series that exhibit the property of

recurrence is to represent the dynamics in a small neighborhood by an affine form.

The existence of an affine form implies the possibility of a linear model X → AX

with respect to a neighborhood. Now the model depends upon the property of

the A matrix that is unique to that neighborhood. Empirical determination of

A will require enormous amounts of data if the neighborhood belongs to a high

dimensional space. If the neighborhood belongs to a delay embedding space RN

where N is much higher than the actual dynamics, then N2 parameters are needed

to be estimated for the A matrix which require at least N2 neighborhood vectors.

Hence, for an R800 embedding we need to estimate 160000 parameters for A matrix

where as representation in R3 requires only 9 parameters to be estimated; thus

making the model in the lower dimensional space much more economical in terms

of the available data required for modeling. (Also note that the transformation A

in this case corresponds to a thin low dimensional manifold in R800 which will cause

strong restrictions on A that are difficult to express in a high dimension. But one

can effectively deal with A in if the dynamics is represented in a low dimension.)

4.2.4 A Solution to deal with the Issues of High Dimensional Embedding

According to the proposed model a delay embedding in a higher dimensional

space is required for global analysis. To tackle the issues related to higher dimen-

sional models, a practical solution based on Broomhead’s theorem from topology is

proposed here. According to this theorem, Finite Impulse Response (FIR) filters

preserve all the information one wants to extract by embedding techniques (refer

Appendix E for more details about the theorem) [48]. FIR filters that do not change

the dimension of the data preserve embedding [48, 72, 5].
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4.2.5 The Proposed New Model

Given a time series that exhibit the property of recurrence the proposed

method of modeling is as follows:

• A delay embedding of the data is done in a higher dimensional space RN .

Global analysis of the system is done in RN . The embedding dimension N

and the Recurrent timings (the array that record the time of recurrence for

the entire data) are empirically found from the data series.

• A Recurrent neighborhood is defined for a recurrent point in a high dimen-

sional space RN .

• The recurrent neighborhood in RN is projected to a lower dimensional space

Rd using an FIR filter and the local analysis of the system is done in Rd.

• Neighborhood vectors in the lower dimensional space are collected into a set of

equivalence classes based on their recurrent times (the time delay between two

adjacent recurrences). A set of affine maps are derived across these equivalence

classes. Once the recurrent timings are known, an evolution of vectors in the

lower dimensional space can be generated using the affine maps.

• Conjugacy maps are found between the recurrence neighborhoods recon-

structed in RN and Rd. Hence the evolution in RN can be predicted from

the evolution of the vectors in Rd.

Objective of this chapter is to explore these possibilities for a numerically gen-

erated data by an ideal dynamical system for a proper understanding and demon-

stration of the proposed method. The data generated by the Duffing oscillator was

specifically selected for the following reasons: (i) it is a well studied system in non-

linear dynamics, and (ii) floquet exponents of the system for stability analysis can

be calculated and verified experimentally as the magnitude of their sum is equal to

the trace of the system [50].
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Figure 4.1: State space of the Duffing oscillator under Chaos

4.3 Analysis of data generated by Duffing Oscillator

This section contains the results of numerical analysis. The proposed method is

used for the modeling and prediction of a data series generated by Duffing oscillator.

Duffing Oscillator is a periodically forced oscillator with a nonlinear elasticity as

represented by the second order differential equation of the following form.

d2x

dt2
+ c

dx

dt
+ kx+ δx3 = Fcos(ωt+ α) (4.6)

whose state space representation is,

dX

dt
= V (4.7)

dV

dt
= −cV − kX − δX3 + Fcos(ωt+ α) (4.8)

A data was generated from this system under chaos for parameter values c =

0.04496, k = 0, δ = 1,α = 0, F = 1.03 using an initial condition (1.226, 0.868).

Fig. 4.1 represents a numerically generated state space of the oscillator.
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Figure 4.2: Data generated by the Duffing Oscillator under Chaos. Three
overlapping delay vectors in R800 embedding of the data are
highlighted: the end vectors (blue curve at 100 and red curve
at 900) completely overlap the middle vector (green curve at
500).

Figure 4.3: Recurrence plot of ln(L)i Vs i, the index of the delay vec-
tors. Blue stems in the RT plot corresponds to the recurrent
neighbors.
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Duffing oscillator under chaos exhibits the property of recurrence. A time

series generated by the system shows repetition of patterns and it keeps on visiting

the neighborhood of that point. The time interval between two such consecutive

recurrences is defined as the recurrent time τ . The variable τ is not a constant

and it varies in general. Varying recurrent times is a common feature of time series

generated by nonlinear systems. Study of recurrence behaviour of the time series

reveals a lot of information about the system dynamics [30]. The recurrence timings

and a neighborhood for the system are identified from a time series as explained in

next section.

4.3.1 Identification of Recurrence Timings and Recurrent

Neighborhood from a time series

The time series is embedded in a high dimensional delay embedding space RN .

A specific reference point is identified in RN and the L2 norm of the distances of

all the vectors with respect to the reference point is recorded in an array L. A

recurrence plot can be obtained by plotting ln(L) Vs the index of the delay vectors.

(The recurrence plot introduced by Eckmann et al. is a visualization of a 2D binary

matrix with horizontal and vertical axes defining time, while each element of the

matrix will represent either 1 or 0 depending on their measurements at those time

indices are closer or not [30]. For the recurrence plot discussed here, there is a

flexibility for defining the threshold as the distances are not measured in binary).

Once the distances of all other vectors with respect to a reference vector is known,

a neighborhood for that reference vector can be identified. Algorithm 4.1 shows the

steps to empirically (i) identify a recurrence neighborhood in a high dimensional

Takens’ delay embedding space RN and (ii) calculate the recurrence timings for the

time series.

For numerical simulation, N was set higher than recurrence interval that was

used for prediction. For the duffing oscillator simulation, since period–1 cycle con-

sisted of 500 steps, N was set 800. The data analysis section also gives a prediction

for the period–3 cycle which consisted of 1500 steps and in that case N was set

1800. Three overlapping delay vectors in R800 embedding of the data are shown in
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Fig. 4.2. A recurrence plot ln(L) Vs the index of the delay vectors R800 is shown in

Fig. 5.4.

Algorithm 4.1 Identification of Recurrence Timings and Recurrence Neighborhood
in a Delay Embedding Space RN

1. Create a delay embedding of the data series in RN . Each column vector of the
delay embedding matrix can be seen as a point in RN .

2. Choose one vector of the embedding matrix as the reference point X0.

3. Define an array L to record the distance of all the vectors with respect to X0.

4. Set a threshold δ for finding a the local minima of L in every recurrence cycle.

5. As the distance crosses δ find the local minima for that recurrence cycle.

6. Choose the point with minimum distance with respect to X0 in every recur-
rence cycle as a member of recurrence neighborhood. The collection of all such
vectors is mentioned as the recurrent neighborhood of the reference vector X0.

7. Define an array RT to record the recurrence timings– time delay between
consecutive recurrences.

4.4 Dynamics in the Neighborhoods of Manifold in Rd and

RN

According to the proposed model the global analysis of the system is done in

the higher dimensional space RN and the local analysis is done in a lower dimensional

space Rd. A linear transformation A represents the FIR filter used for RN → Rd

projection. The A matrix has a dimension of (d×N) and it operates on an (N × 1)

vector of RN to generate a (d × 1) vector of Rd. The specific matrix A for the

RN → R3 projection, is given below.

A0,n = Real

(
1

N
exp

(
−i2πn
h0

))
A1,n = Imag

(
1

N
exp

(
−i2πn
h0

))
A2,n = Real

(
1

N
exp

(
−i2πn
h1

))
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Parameters chosen for Projection: For the numerical simulation of the

Duffing oscillator, number of points per period was set as 500. The constant h0

was selected to match the number of points per period and h1 was set 2h0. Hence

the parameter values chosen for A matrix were: h0 = 500, h1 = 1000, N = 800 and

n = 1...N − 1. An additional value for the embedding dimension, N = 1800 was

chosen for the numerical results explained in Section 4.5.

Regarding the similarity of dynamics in RN and Rd, Let us review the con-

cepts of similarity transformations and topological conjugacy briefly. Similarity

transformation in Linear algebra is a conformal mapping that exists between two

linear transformations as follows. Two n× n matrices A and B are called similar if

A = P−1BP , for some invertible n× n matrix P . If x → Ax and y → Bx then by

the existence of the invertible relationship y = Px, the mapping x→ Ax is equal to

x → P−1BPx [73]. There is a similar property which defines equivalence relations

in topological spaces named topological conjugacy. Let X and Y be two topological

spaces with two continuous evolution functions f and g such that f : X → X and

g : Y → Y . If there exists a homeomorphism h : X → Y such that f = h−1 ◦ g ◦ h,
then the evolution functions f and g are said to be topologically conjugate to each

other. This concept of topological equivalence is useful in the study of dynamical

systems as it helps to analyze systems with similar dynamics [4].

According to the proposed model, the data is embedded in a higher dimen-

sional space RN and then projected to a lower dimension space Rd. A topological

conjugacy between the neighborhoods reconstructed in RN and Rd are empirically

justified in this section by finding maps to go back and forth across the neighbor-

hoods. The goal is to predict the evolution in RN using the evolution of vectors in

Rd. Projection of the recurrent neighborhood from RN to Rd is simple using the lin-

ear transformation A. Following sub sections explains the process of going back and

forth across the neighborhoods in the lower dimension Rd and the higher dimension

RN . In Rd, members of the neighborhood are classified into different equivalence

classes based on their recurrent time τ . One can generate evolution maps in Rd for

each of these equivalence classes as shown in section 4.4.2. The affine map shown

in section 4.4.1 can be used for going back from Rd to RN .
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Figure 4.4: A few random vectors in the neighborhood of the Duffing
data in R800

4.4.1 Conjugacy maps defined across the neighborhoods in Rd and RN

Projection from RN to Rd is simple using the linear transformation A. But

going back from the lower dimension Rd to the higher dimension RN is not that

straight forward especially if the dynamics is nonlinear. Hence a conjugacy map is

developed in this section which is used to predict the vectors in the higher dimension

RN from the corresponding vectors in the lower dimensional space Rd. The method

of singular value decomposition (SVD) and a nonlinear generalization of SVD [52]

are used to find these maps.

Let the recurrent neighborhood matrices be denoted as RX in the higher

embedding dimension RN and RY the lower projected dimension Rd. For the nu-

merical analysis the values were N = 800 and d = 3. Let the neighborhoods contain

P vectors each. RX had dimension (P × 800) and RY had dimension (P × 3).

Total number of neighbors P = 1000 for the numerical simulations explained

here. A few neighborhood vectors of the Duffing data in R800 are shown in Fig. 4.4.

The set of affine transformations across these neighborhoods in Rd and RN are

empirically determined as follows.

Step 1: Find the centroid of the neighborhood and subtract it from the

neighbors to translate the neighborhood to origin. Let rX and rY represent the

recurrent neighborhood matrices translated to origin. Record the centroid of RX

and RY as RX and RY respectively. A few neighborhood vectors for the Duffing
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Figure 4.5: A few random vectors in the neighborhood of the Duffing data
in R800 after translation to origin (i) and the centroid RX (ii)

data after translation to origin along with the centroid are shown in Fig. 4.5.

RXn =
1

P

P∑
p=1

RXp,n for n = 1, 2 . . .N (4.9)

RY n =
1

P

P∑
p=1

RYp,n for n = 1, 2 . . . d (4.10)

Neighborhoods translated to origin are:

rXp,n = RXp,n −RXn for all p, for n = 1, 2 . . .N (4.11)

rYp,n = RYp,n −RY n for all p, for n = 1, 2 . . . d (4.12)

Step 2: Define a conjugacy map T , across the neighborhood matrices rX
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and rY such that,

(rY ).T = rX (4.13)

Step 3: rX of dimension P ×N , rY of dimension P × d are known matrices;

T of dimension d×N can be calculated by pre–multiplying rX with the generalized

inverse of rY .

T = (rY )−1.rX (4.14)

T represents a linear map across the neighborhoods rY, rX shifted to origin.

This implies an affine map of the form (β = Tα +RX) exists for every vector α in

RY and β in RX. Hence the map T and the centroid RX are known, a vector in

RN can be generated from a vector in Rd. In this manner one can predict any of

the recurrence vectors in RN from their Rd counterparts. This affine transformation

across the neighborhoods RX and RY represents the topological conjugacy between

the manifolds in RN and Rd.

4.4.2 Evolution maps across different equivalence classes in Rd.

Members who belong to the recurrence neighborhood in Rd can be classified

into different equivalence classes based on the recurrent time τ . Fig. 5.5 shows the

equivalence classes in R3 which corresponds to various periods of duffing oscillator

generated data. Numerically generated data of 600000 points (1200 cycles with

500 points per cycle) were used to plot the frequency depicted in this figure. X

axis shows the equivalence classes corresponding to recurrent timings 500 (period

1), 1000(period 2), 1500(period 3) . . . etc and Y axis shows the total number of

members in each equivalent class for this finite data.

Once the equivalence classes in R3 are identified, an evolution map for a par-

ticular equivalence class can be defined as explained below. Steps mentioned here

are similar to the steps 1–3 in Section 4.4.1 except that the transformation is de-

fined in Rd alone and the transformation matrix V has a dimension d × d. Steps

given below also shows the empirical values of the variables in R3 for a particular

equivalence class 1500 (period 3).
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Figure 4.6: Equivalence classes in R3 for the Duffing data. X axis shows
the equivalence classes corresponding to recurrent timings
500 (period 1), 1000(period 2), 1500(period 3) . . . etc. Y
axis shows the total number of members in each equivalent
class.

Let the Start and End matrices for the equivalence class 1500 in R3 be denoted

by SX, SY respectively. SX contains all the vectors that start with recurrent timing

1500 and SY contains all the vectors that end with recurrent timing 1500. Fig. 5.5

shows that the equivalence class 1500 contains 102 members. Hence SX and SY

have dimensions of 3×102 each. Now we can develop affine transformations to reach

SX from SY as follows. Once the parameters of the transformations are known, we

can predict a SY vector given an SX vector.

Step 1: Find the centroid of the neighborhoods SX, SY and subtract it from

the neighbors to translate the neighborhood to origin. Let sX and sY represents

the neighborhoods translated to origin. Record the centroids of SX and SY as SX

and SY respectively.

SX and SY have dimensions of 102× 3 each. Numerical values of few vectors

that constituted SX and SY matrices were,

SXT =


0.4364 0.4634 0.3966 0.4258 0.4239 . . .

−0.0658 −0.0761 −0.0511 −0.0232 −0.0975 . . .

−0.0690 −0.0771 −.1400 −0.0315 −0.0303 . . .


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SY T =


0.4667 0.4393 0.4545 0.4690 0.4669 . . .

−0.0860 −0.0514 0.0129 −0.0813 −0.0936 . . .

−0.0821 0.0274 −0.0303 −0.0803 −0.0777 . . .


Numerical values of the centroid vectors SX and SY in R3 were,

SX =


0.4325

−0.0583

−0.0574



SY =


0.4529

−0.0438

−0.0481


Step 2: Define a transformation V, across the matrices sX and sY such

that;

sX.V = sY (4.15)

Step 3: sX, sY both of dimension 102×3 are known matrices; V of dimension

3 × 3 can be calculated by pre–multiplying sY with the generalized inverse of sX.

The generalized inverses of sX were found using both linear and nonlinear SVD

procedure.

V = (sX)−1.sY (4.16)

Note that this transformation is a function of only the recurrent time τ . Em-

pirically determined V matrix for the period–3 equivalence class (τ = 1500) was,

V =


0.0506 0.0414 0.0035

0.0429 0.5758 −0.1028

0.0130 −0.0993 −0.1304


Step 4: Once the V matrix is estimated, prediction for any random starting

vector in 1500 equivalence class can be made. V multiplied by an R3 vector of

dimension 3 × 1 creates another vector in R3. Given any random vector α ∈ SX
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subtract the centroid SX to translate it to origin. Let rα be the translated vector.

α− SX = rα (4.17)

Step 5: If V is known rα ∈ sX can be evolved to rβ ∈ sY according to the

equation,

rα.V = rβ (4.18)

Step 6: rβ belongs to the 1500– End equivalence class in R3. The prediction

for β ∈ SY the original neighborhood can be made by adding centroid vector SY

for that equivalence class as,

rβ + SY = β (4.19)

Hence following steps 1–6 one can find the evolution of a vector that belongs

to the 1500 equivalence class. In this manner evolution maps for all the equivalence

classes can be found.

Once the recurrent timings for the entire time series is available, the algo-

rithm 4.2 can be used to predict the evolution of vectors in RN using their evolution

in Rd.

Algorithm 4.2 Prediction of the evolution of vectors in RN using their evolution
in Rd

1. Start with an initial vector in the higher dimension space RN .

2. Find the corresponding vector in the lower dimensional space Rd.

3. Locate the equivalence class in which the initial vector belongs to (using the
given information about the recurrent timings)

4. Evolve the vector in Rd according to the recurrent timings using the transfor-
mations corresponding to the specific equivalence classes.

5. Use the conjugacy maps defined from Rd to RN , to come back to the higher
dimensional space at the end of every recurrent cycle.

6. Stitch the RN vectors appropriately at their corresponding neighborhood lo-
cations (given by the recurrent times) for the prediction
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4.5 Result of Data Analysis

This section contains the analysis results for the duffing data using the pro-

posed new model. The data was embedded into RN and then projected it to Rd

by a linear transformation. Numerical simulation results are demonstrated here for

two choices of the delay embedding dimension N = 800 and N = 1800. Value of d

was set as 3. The conjugacy maps that take R3 vectors to RN vectors and evolution

maps in R3 were found as explained in previous sections. Both the standard and

nonlinear SVD procedures were used to find these maps. Predicted signals were

compared with the original signals using the scores explained below. Prediction

results for few random vectors are demonstrated with figures in following sections

using both the linear and nonlinear SVDs. Prediction using the standard SVD is

discussed in Section 4.5.2 and nonlinear SVD is discussed in section 4.5.3. A com-

parison of the errors for each pair these predictions are given in Section 4.5.4. The

scores for were calculated for the vectors that belong to the period 3 (τ = 1500)

equivalence class.

4.5.1 Scores for the Analysis of Results

Two types of scoring functions were used for comparing the prediction with the

original signal. If xi and yi are the original signal and predicted signal respectively

where i = 1, 2, ...N . Then the scoring functions were,

Q1(x, y) = 1− MSE(x, y)

V AR(x)
(4.20)

Q2(x, y) = corr(x, y) (4.21)

where,

MSE(x, y) =
1

N

N∑
i=1

(yi − xi)
2

V AR(x) =
1

N

N∑
i=1

xi
2 −

[
1

N

N∑
i=1

xi

]2
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4.5.2 Prediction results using standard SVD

This Section explains the results where the transformation matrix in Eq. 4.16

was found by a generalized inverse based on the standard SVD.

1. Prediction from R3 to R800: Here we show the prediction for two

random members: the 50th member and the 120th member in the R800 neigh-

borhood. In Fig. 5.7, P1 is the affine prediction, RM F is the centroid for the

R800 neighborhood, and the error of the original signal with respect to the pre-

dicted signal and the centroid vector also shown. It is clear from the Fig. 5.7

that the Affine predictions improves the centroid fit. Scores of affine predic-

tion for the 50th member were (Q1 = 0.9955, Q2 = 0.9985) and that of cen-

troid fit were (Q1 = 0.9604, Q2 = 0.9818). Scores of affine prediction for the

120th member were (Q1 = 0.9975, Q2 = 0.9988) and that of centroid fit were

(Q1 = 0.9479, Q2 = 0.9780).

2. Prediction from R3 to R1800: Here we show the prediction for two

random members again: the 50th member and the 120th member in the R1800

neighborhood. In Fig. 5.8, P1 is the affine prediction, RM H is the centroid

for the R1800 neighborhood,and the error of the original signal with respect to

the predicted signal and the centroid vector also shown. It is clear from the

Fig. 5.7that the Affine predictions improves the centroid fit. Scores of affine pre-

diction for the 50th member were (Q1 = 0.9896, Q2 = 0.9948) and that of cen-

troid fit were (Q1 = 0.9300, Q2 = 0.9753). Scores of affine prediction for the

120th member were (Q1 = 0.9785, Q2 = 0.9897) and that of centroid fit were

(Q1 = 0.9068, Q2 = 0.9697).

4.5.3 Prediction results using nonlinear SVD

This Section explains the results where the transformation matrix in Eq. 4.16

was found by a generalized inverse based on the nonlinear SVD.

1. Prediction from R3 to R800: Here we show the prediction for two

random members: the 50th member and the 120th member in the R800 neigh-

borhood. In Fig. 5.7, P1 is the affine prediction, RM F is the centroid for the

R800 neighborhood, and the error of the original signal with respect to the pre-
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Figure 4.7: P1 is the affine prediction, RM F is the centroid for the
R800 neighborhood, the error of the original signal with re-
spect to the predicted signal and the centroid vector also
shown. Scores of affine prediction for the 50th member were
(Q1 = 0.9955, Q2 = 0.9985) and that of centroid fit were (Q1 =
0.9604, Q2 = 0.9818). Scores of affine prediction for the 120th

member were (Q1 = 0.9975, Q2 = 0.9988) and that of centroid
fit were (Q1 = 0.9479, Q2 = 0.9780).
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Figure 4.8: P1 is the affine prediction, RM H is the centroid for the
R1800 neighborhood, the error of the original signal with re-
spect to the predicted signal and the centroid vector also
shown. Scores of affine prediction for the 50th member were
(Q1 = 0.9896, Q2 = 0.9948) and that of centroid fit were (Q1 =
0.9300, Q2 = 0.9753). Scores of affine prediction for the 120th

member were (Q1 = 0.9785, Q2 = 0.9897) and that of centroid
fit were (Q1 = 0.9068, Q2 = 0.9697).
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Figure 4.9: P2 is the affine prediction based on nonlinear SVD, RM F
is the centroid for the R800 neighborhood, the error of the
original signal with respect to the predicted signal and the
centroid vector also shown. Scores of affine prediction for
the 50th member were (Q1 = 0.99997, Q2 = 0.99999) and that
of centroid fit were (Q1 = 0.9604, Q2 = 0.9818). Scores of affine
prediction for the 120th member were (Q1 = 0.9998, Q2 = 0.9999)
and that of centroid fit were (Q1 = 0.9479, Q2 = 0.9780).
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Figure 4.10: P2a is the affine prediction based on nonlinear SVD, RM H
is the centroid for the R1800 neighborhood, the error of the
original signal with respect to the predicted signal and the
centroid vector also shown. Scores of affine prediction for
the 50th member were (Q1 = 0.9949, Q2 = 0.9978) and that
of centroid fit were (Q1 = 0.9300, Q2 = 0.9753). Scores of
affine prediction for the 120th member were (Q1 = 0.9691, Q2 =
0.9849) and that of centroid fit were (Q1 = 0.9068, Q2 = 0.9697).
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Figure 4.11: Scores Q1 and Q2 for both the linear and nonlinear SVD
based prediction in R800 for the 102 members of 1500 equiv-
alence class of vectors in R3 evolution.

dicted signal and the centroid vector also shown. It is clear from the Fig. 4.9

that the Affine predictions improves the centroid fit. Scores of affine predic-

tion for the 50th member were (Q1 = 0.99997, Q2 = 0.99999) and that of cen-

troid fit were (Q1 = 0.9604, Q2 = 0.9818). Scores of affine prediction for the

120th member were (Q1 = 0.9998, Q2 = 0.9999) and that of centroid fit were

(Q1 = 0.9479, Q2 = 0.9780).
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Figure 4.12: Variance of errors for both the linear and nonlinear SVD
based prediction in R800 for the 102 members of 1500 equiv-
alence class of vectors in R3 evolution.

2. Prediction from R3 to R1800: Here we show the prediction for two

random members again: the 50th member and the 120th member in the R1800

neighborhood. In Fig. 4.10, P1 is the affine prediction, RM H is the centroid

for the R1800 neighborhood,and the error of the original signal with respect to

the predicted signal and the centroid vector also shown. It is clear from the

Fig. 5.7 that the Affine predictions improves the centroid fit. Scores of affine pre-

diction for the 50th member were (Q1 = 0.9949, Q2 = 0.9978) and that of cen-

troid fit were (Q1 = 0.9300, Q2 = 0.9753). Scores of affine prediction for the

120th member were (Q1 = 0.9691, Q2 = 0.9849) and that of centroid fit were

(Q1 = 0.9068, Q2 = 0.9697).

The prediction scores for both the linear and nonlinear SVD based prediction

results for entire members of a particular equivalence class was also found. Fig. 5.9

shows Q1 and Q2 scores of 102 members of 1500 equivalence class for R3 to R800

prediction.
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Table 4.1: Variance of errors between the original and predicted signal
(for the three cases P1, P2, RM F) for R3 to R800 prediction of
the 50th and 120th members

Neighborhood Vector P1(std SVD) P2(nonlinear SVD) RM F(centroid fit)
50 0.00234 0.00002 0.02415
120 0.00173 0.00014 0.03361

4.5.4 Variance of Errors for the Prediction based on linear and nonlinear

SVD

Analysis results of the previous section shows that even the centroid based

predictions give decent scores. Hence one can use them if no much information is

available. Affine transformations based on the standard SVD gave better predic-

tions. The nonlinear SVD based predictions are the best choice as they improve

the scores significantly. Another score to compare the errors of these three cases of

predictions was defined as follows.

If xi and yi are the original signal and predicted signal respectively, where

i = 1, 2, ...N . Then the error is defined as ei = xi − yi and the variance of error is

defined as,

V AR(e) =
1

N

N∑
i=1

ei
2 −

[
1

N

N∑
i=1

ei

]2

Variance of errors for the three specific cases of prediction were calculated.

For R3 to R800 prediction of the 50th and 120th members, variance of errors (for

the three cases P1, P2, RM F depicted in figures) are listed in Table. 4.1. The

variance of errors for both the linear and nonlinear SVD based prediction for the

entire members of 1500 equivalence classes are shown in Fig. 5.10.

4.6 Conclusions

For the numerical simulations explained in this chapter the delay embedding

dimension N were chosen as 800 and 1800. Ideally the dimension for the delay

embedding should be greater than the recurrent interval one want to predict. For a

1500 recurrence cycle, choosing embedding dimension less than 1500, N = 800 gives
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a partial prediction for the signal, where N = 1800 gives a full prediction (Section

7.6.1 of Chapter 7 discusses the issue of partial prediction this issue in detail).

Regarding the dimension of the projected space Rd, numerical analysis was

done for projections to various lower dimensions i.e. for varying values of d, d =

2, 3, 4. Based on numerical simulations for data from R800 → R2 and R800 → R4,

It was observed that the prediction based on the equivalence classes in R3 and

R4 were equally good but the values in R2 was slightly better out of these three

choices. Hence it can be inferred that for the duffing case, even though the system

dimension is greater than 2 as it is a 2D non–autonomous system, d = 2 would be

enough for a local analysis of a neighborhood on the manifold. Stability analysis

section of Chapter 6 demonstrates that selecting d > 2 can generate spurious floquet

exponents for duffing data.

The goal of the chapter was to study the possibilities of the proposed new

model for the data generated by duffing oscillator. It is demonstrated that the

data can be modeled using the recurrence timings and transformations specific to

the equivalence classes of the recurrence neighborhoods. The prediction results

were excellent and the proposed methods are explored for the electrocardiogram

(ECG) data in the next chapter. Simulation results for R800 → R3 projection

demonstrated for duffing oscillator in this chapter can be used to make a comparison

of similar projection of ECG data in the next chapter. Stability analysis for both the

systems based on the data are done in Chapter 6. An application of some methods

discussed in this chapter for the prediction of multichannel data using RN → RN

transformations are discussed in Chapter 7.



CHAPTER 5

Topological structure of ECG signals

The goal of this chapter is to demonstrate the proposed new model, for analyzing

an electrocardiogram (ECG) data of the human heart. The ECG data exhibits the

property of recurrence and we will see in this chapter that the proposed model gives

an excellent prediction for the data. According to the proposed model the dynamics

of the system can be approximated by a few overlapping recurrence neighborhoods

with specific affine transformations for each of them. For the special case of ECG

data, the entire nonlinear structure of the data can be deduced from one small

neighborhood as shown in this chapter.

5.1 Introduction

The dynamics of the heart is fascinating and it exhibits both nonlinear de-

terministic and stochastic aspects. A typical ECG signal has a repetitive structure

in every cycle which can be connected to various actions of the heart during one

pumping cycle [74]. Further, the signal exhibits nonstationarity properties as its

statistical properties changes over time. The property of variation of recurrent in-

tervals with time is a prominent feature of nonlinear signals. A variation in the

beat–to–beat interval timings known as the Heart Rate Variability (HRV) is a typ-

ical characteristic of a healthy ECG measurement [65, 75]. Both stochastic and

nonlinear models are used by researchers to capture important aspects about the

heart dynamics [65, 76]. The analysis for the ECG signal presented in this chapter

takes an alternative and fruitful point of view.

The motivation to work on this problem was the Physionet challenge 2010

whose goal was to find a short segment of missing data from one of the channels

in a multichannel physiological data [37]. The aim was to develop a model that

can predict various physiological signals based on the information available on other

channels. While dealing with this issue we came across many questions. Let us focus

on two of them for the purpose of signal analysis: (i) how to model an ECG signal

87
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effectively? (ii) how is the heart rate linked to the heart dynamics? The methods

demonstrated in this chapter attempt to give a solution to these questions.

The key objective of this chapter is to apply the method of prediction discussed

in Chapter 4 for the analysis of ECG signals. The ECG signal exhibit the property

of recurrence. A typical single channel ECG recording is shown by Fig. 5.1. Note

that the beat–to–beat intervals or RR intervals of the ECG data is same as the

recurrence intervals of the signal. If the reference vector is selected such that it

matches a QRS peak location, then the address of all the recurrence neighbors will

match with all the QRS peak locations of the signal. We have seen that there is lot

of information that is available on the recurrence timings of the signal which can be

used for the purpose of modeling and prediction. Hence, if the recurrence timings

are known for the ECG data, the rest of the dynamics is quite simple. It is inferred

that the proposed model works very effectively for ECG signals due to the excellent

prediction it gives.

According to the model, If the affine maps specific to the equivalence classes

and the conjugacy maps across the lower and higher dimensional spaces are known,

a prediction can be done for the ECG signal using an additional information– the

recurrent timings. The maps corresponding to the equivalence classes (each with a

specific recurrent time) for the case of ECG could be seen as various possibilities for

the heart dynamics and the HRV could be seen as a switching between these different

possibilities. The objective of this chapter is to show how to model and predict an

ECG signal using transformations specific to the recurrence neighborhood, given the

recurrent timings. It is demonstrated that the entire ECG dynamics can be deduced

by studying a recurrent neighborhoods.

The chapter is organized as follows. Sections 5.2 discusses the property of

recurrence in ECG signals and lists an algorithm to identify the recurrent timings

for the signal in a high dimensional delay embedding space. Section 5.3. discusses

the details of the transformation that projects the data from the delay embedding

space RN to a low dimensional space Rd (Basic concepts of the proposed method are

already are discussed in Chapter 4). Further it discusses how to develop conjugacy

maps and evolution maps in RN and Rd for the ECG signal for the purpose of
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Figure 5.1: Data under study: an ECG recording of a healthy Male aged
36 years sampled at 1kHz

Figure 5.2: The heart rate variability plot for the ECG data depicted in
Fig. 5.1

prediction. Results of the data analysis are given in section 5.4. Section 5.5 has

a discussion about the empirical values chosen for the projected dimension d and

section 5.6 contains the conclusions of the study.
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Figure 5.3: Three overlapping delay vectors in R800 embedding of the
ECG signal. The blue curve (delay vector at 800) is over-
lapped by red curve (delay vector at 400) and green curve
(delay vector at 1200).

5.2 Analysis of ECG data

The ECG data exhibits the property of recurrence as it can been seen by the

repetition of wave patterns in every cycle. Fig. 5.1 shows the ECG recording of a

healthy Male aged 36 years sampled at 1kHz (data courtesy [77]). The heart rate

variability plot also known as RR variability plot (Beat–to–beat intervals plotted

with a delay) for this data is depicted in Fig. 5.2.

5.2.1 Identification of Recurrence Timings and Recurrent Neighbor-

hood for the ECG data

The recurrence timings and a neighborhood are identified from the ECG data

as follows. The time series is embedded in a high dimensional delay embedding

space RN . The delay vectors can be seen as interconnected fibers and hence there

is a possibility of predicting the intermediate fibers from corresponding end fibers.

Fig. 5.3 shows three overlapping delay vectors in R800 delay embedding of the ECG

data. For finding the recurrence timings and neighborhood of the data, start by

selecting a reference vector in RN and find the L2 norm of the distances of all other

vectors with respect to the reference point. Choose a threshold for the radius of the

neighborhood and select vectors in every recurrence cycle whose distance fall within
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the threshold. Select one vector which has the least distance to the reference vector

in every cycle to be a member of the neighborhood. The time interval between

the selected recurrent neighbors is recorded as an array of recurrent timings. An

algorithm to find the neighborhood for the reference point and the recurrence timings

are given by Algorithm. 5.1.

Algorithm 5.1 Identification of Recurrence Timings and Recurrence Neighborhood
for the ECG data in the Delay embedding space RN

1. Set an integer that is approximately equal to an average recurrence cycle of
the time series as the initial value for N .

2. Create a delay embedding of the data series in RN .

3. Choose a vector of the embedding matrix Xref ∈ RN as the reference point.
N should be selected such that this reference vector has only on QRS peak in
it. (Ideally select a vector that has the QRS peak approximately towards the
middle as Xref for the reasons explained step 8)

4. Define an array L to record the L2 norm of the distances of all the vectors
with respect to Xref .

5. Find the local minima of the distance curve L corresponding to each recurrence
cycle. Local minima correspond to the location of the vectors that constitute
the neighborhood (Set a threshold δ for finding the local minima. As the
distance becomes less than the δ value, select the point with least distance
from Xref in that recurrence cycle as a member of the neighborhood.)

6. Once the locations of the recurrence vectors are known, we can find the recur-
rence variability– the distance between two adjacent recurrences. Define an
array LM to record the recurrence variability.

7. Find the range of recurrence intervals– from LMmin to Lmax

8. If Xref is selected such that the QRS peak is towards the middle, then reset
the value of N closer to the LMmax. If Xref is selected such that the QRS peak
is in the beginning then N value should be lower closer to LMmin to satisfy
the condition that there should be one and only one peak in that vector.

9. Reset Xref , N and L array repeating steps 2–8 for fine tuning.
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Figure 5.4: L2 norm of the distance vectors and the location of the re-
current neighbors: L curve is the logarithm of the L2 norm of
the distance vectors. Black stems are the local minima of L
that correspond to the recurrent neighbors.

Chosen Parameter Values

The ECG data under study (a short segment is depicted in Fig. 5.1) had a

total of 604376 samples and it comprised of 840 recurrent cycles. Frequencies of

each of these recurrence intervals are shown in Fig. 5.5. Recurrent intervals were in

the range 646–802. Finding the range of recurrence intervals is important as it helps

to fine–tune the required dimension N of delay embedding space by appropriately

selecting the reference vector Xref . Since the recurrence intervals do not vary too

much in this special case of ECG data, there is a possibility of properly adjusting

the embedding dimension N such that the recurrent neighborhood vectors in RN do

a proper overlap of the recurrence intervals in the time domain signal. This property

is exploited for prediction demonstrated in the analysis section of this chapter.

For the numerical simulations N = 800 was set for the delay embedding.

(Note: Though the occurrence of intervals greater than 800 is rare, choosingN = 800

will give a prediction short of few points in recurrence intervals > N . e.g. prediction

short of 2 points in the 802 recurrence interval.) Fig. 5.4 depicts the distance of

all vectors with respect to a reference vector Xref ∈ R800 and the locations of vec-

tors that constitute the recurrence neighborhood. Though the recurrence locations

change according to the selection of the reference vector Xref , the recurrence vari-
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ability LM will be invariant. LM is also invariant of N as long as Xref contains one

and only one QRS peak. Also note that when Xref is selected as a vector starting

with an exact QRS peak, the recurrence locations will be identical to the QRS peak

locations of the ECG data. This procedure gives us a flexibility of finding the RR

variability as the recurrence variability which is identical to it, is independent of the

QRS peak locations. According to this method, one need not restrict to the exact

QRS peak locations for finding a recurrence neighborhood. This could be used as

an alternative for finding accurate QRS peak locations and heart rate which is an

active area of research in biomedical signal processing community [78, 79].

We see in later sections how the entire structure of the state space can be de-

duced by looking at one small neighborhood. This property may not be generic to

all dynamical systems, but for the special case of recurrence observed in ECG signal

under study, we show how to derive the nonlinear structure from a single neigh-

borhood by satisfying the conditions for embedding dimension N and the reference

vector for the neighborhood Xref .

5.3 Dynamics of the Neighborhoods in Rd and RN

Once the neighborhood is constructed in the delay embedding space RN , it

is projected to a lower dimensional space Rd as per the model. The linear trans-

formation A of dimension (3 × 800) is used for the R800 → R3 projection. For

the numerical simulations demonstrated in this chapter parameter values were:

N = 800, d = 3, h0 = N, h1 = 2N,n = 0...N − 1.

A0,n = Real

(
1

N
exp

(
−i2πn
h0

))
(5.1)

A1,n = Imag

(
1

N
exp

(
−i2πn
h0

))
(5.2)

A2,n = Real

(
1

N
exp

(
−i2πn
h1

))
(5.3)

A topological conjugacy between the recurrence neighborhoods reconstructed

in RN and Rd are demonstrated below. Evolution of the vectors in RN can be

predicted by the corresponding evolution of vectors in Rd. Following sub sections
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Figure 5.5: Equivalence classes in R3 for the ECG data. X axis shows
the equivalence classes corresponding to recurrence intervals
in the range 646 − 802 and Y axis shows the total number of
members in each equivalent class.

explains the process of going back and forth between the lower dimension Rd and

the higher dimension RN . In Rd, members of the neighborhood are classified into

different equivalence classes based on their recurrent time τ . One can generate

evolution maps in Rd for each of these equivalence classes as shown in Section 5.3.2.

The conjugacy map shown in Section 5.3.1 can be used for going back from Rd to

RN .

5.3.1 Conjugacy maps defined across the neighborhoods in Rd and RN

Projection from RN to Rd is a simple process using the linear transformation

A. But going back from the lower dimension Rd to the higher dimension RN is not

that straight forward especially if the dynamics is nonlinear. This section explains

the existence of affine transformations across the neighborhoods in Rd and RN , and

they are used to go from the lower dimensional space to the higher dimensional

space.

Let the recurrent neighborhood matrices be denoted as RX in the delay em-

bedding space RN , and RY in the projected space Rd. For the numerical analysis

the values set were N = 800 and d = 3. A total of 840 recurrence neighbors were

available in each of these matrices. Hence RX has dimension 840×800 and RY has
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Figure 5.6: A few vectors in the neighborhood of the ECG data in R800

before translation to origin (i), after translation to origin (ii)
and the centroid RX (iii)

dimension 840 × 3. If the parameters of the transformations are known, RX can

be predicted from RY using the map developed in this section. Steps to generate

affine transformation across RX and RY are listed below.

Step 1: Find the centroid of the neighborhood RX and RY . Let rX and

rY represent the recurrent neighborhood matrices translated to origin. Record the

centroid of RX and RY as RX and RY respectively. A few neighborhood vectors

for the Duffing data after translation to origin along with the centroid are shown in

Fig. 7.6.

Step 2: Define a conjugacy map T , across the matrices rX and rY such

that;

(rY ).T = rX (5.4)

Step 3: rX of dimension 840 × 800, rY of dimension 840 × 3 are known

matrices; T of dimension 3× 800 can be calculated by pre–multiplying rX with the
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generalized inverse of rY .

T = (rY )−1.rX (5.5)

T represents a linear map across the neighborhoods rY, rX shifted to origin.

This implies an affine map of the form (β = Tα + RX) exists for every vector α

in RY and β in RX. Hence the map T and the centroid RX are known, a vector

in R800 can be generated from a vector in R3. This affine transformation across

the neighborhoods RX and RY represents the topological conjugacy between the

manifolds in R800 and R3.

5.3.2 Evolution of the equivalence classes in R3

Members of the recurrence neighborhood in R3 can be classified into different

equivalence classes based on their recurrence intervals. Fig. 5.5 shows the equiva-

lence classes corresponding to various recurrence intervals of the ECG data. Once

the equivalence classes in R3 are ready, one can define transformation for a particular

equivalence class. The steps mentioned here are similar to the steps 1-3 in section

5.3.1 except that the transformation V is defined in R3 alone and the transformation

matrix T has a dimension 3× 3.

Analysis results for a particular equivalence class: 695 are given in this section.

Fig. 5.5 shows that this equivalence class has 17 members. Let the Start and End

matrices for this equivalence class in R3 be denoted by SX, SY respectively. SX

contains all the vectors that start with recurrent interval 695 and SY contains all the

vectors that end with recurrent timing 695. Hence SX and SY have dimensions of

17×3 each. The explicit steps of finding the transformation across the neighborhoods

in R3 are discussed below.

Step 1: Find the centroid of the neighborhoods SX, SY and subtract it from

the neighbors to translate the neighborhood to origin. Let sX and sY represents

the neighborhoods translated to origin. Record the centroids of SX and SY as SX

and SY respectively.

SX and SY have dimensions of 102× 3 each. Numerical values of few vectors
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that constituted SX and SY matrices were,

RXT =


−0.17084 −0.22662 −0.1791 −0.17524 −0.17983 . . .

−0.00561 −0.02428 −0.02579 0.0003 −0.01094 . . .

0.01052 0.007 0.04078 0.00469 0.00687 . . .

 .

RY T =


−0.18263 −0.18227 −0.20581 −0.18806 −0.18247 . . .

−0.01661 0.00412 −0.03492 −0.01039 −0.01833 . . .

0.01627 −0.00361 0.02956 0.00557 0.01384 . . .

 .

¯SX =


−0.19318

−0.02045

0.02182



S̄Y =


−0.19861

−0.01841

0.01356


Step 2: Define a transformation V, across the matrices sX and sY such

that;

sX.V = sY (5.6)

Step 3: sX, sY both of dimension 17×3 are known matrices; V of dimension

3 × 3 can be calculated by pre–multiplying sY with the generalized inverse of sX.

The generalized inverses of sX were found using both linear and nonlinear SVD

procedure.

V = (sX)−1.sY (5.7)

Note that V is a function of the recurrent time τ . Empirically determined V

matrix for the 695 equivalence class (τ = 695) was,

V =


0.56279 −0.86352 −1.29201

−0.51484 0.6968 0.08961

0.56033 −0.92404 −0.33528

 .
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Step 4: Once the V matrix is estimated, prediction for any random starting

vector in 695 equivalence class can be made. V multiplied by an R3 vector of

dimension 3 × 1 creates another vector in R3. Given any random vector α ∈ SX

subtract the centroid SX to translate it to origin. Let rα be the translated vector.

α− SX = rα (5.8)

α =


−0.17768

−0.03366

0.0512



rα =


0.0155

−0.01321

0.02937


Step 5: If V is known rα ∈ sX can be evolved to rβ ∈ sY according to the

equation,

rα.V = rβ (5.9)

rβ =


−0.01782

−0.01455

0.01104


Step 6: rβ belongs to the 695–End equivalence in R3. The prediction for

β ∈ SY the original neighborhood can be made by adding centroid vector SY for

that equivalence class as,

rβ + SY = β (5.10)

β =


−0.21643

−0.03296

0.0246


Hence following steps 1–6 one can find the evolution of a vector that belongs

to the 695 equivalence class. In this manner evolution maps for all the equivalence
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classes can be found.

5.3.3 Evolution in Rd and going back to RN

This section explains the process of going back and forth between the lower

dimension Rd and the higher dimension RN . Projection of the recurrent neighbor-

hood from RN to Rd is simple using the linear transformation A. In Rd, members of

the neighborhood are classified into different equivalence classes based on their re-

current times. One can generate evolution maps in Rd for each of these equivalence

classes as shown in section 5.3.2 and conjugacy maps developed in section 5.3.1 can

be used for going back from Rd to RN . Stitching the RN vectors appropriately at

their corresponding neighborhood locations according to the recurrent times gives

a prediction for the time domain signal.

Algorithm 4.2 given in Chapter 4 can be used for predicting the evolution of

vectors in RN using their evolution in Rd given the recurrent timings and the maps.

5.4 Results of Data Analysis

This section contains the simulation results of the modeling and prediction

algorithm for the ECG data. The data was embedded into RN and then projected

to Rd as per the model. The empirical values selected for the parameters for the

numerical simulation results of this section are: N = 800 and d = 3. Conjugacy

maps that take R3 vectors to RN vectors and evolution maps in R3 were determined

as explained in previous section. The techniques of standard and nonlinear SVD

were used for generating the evolution maps in Rd. Predicted signals were compared

with the original signals using two scores; Q1 based on mean squared error deviation

and Q2 based on correlation (more details on scoring functions are given in Section

4.5.1 of Chapter 4). Prediction results for few random vectors are demonstrated with

figures for both the cases of linear and nonlinear SVD based prediction. Prediction

using the standard SVD is discussed in section 5.4.1 and nonlinear SVD is discussed

in section 5.4.2. A comparison of the errors for each pair these predictions are given

in section 5.4.3. Section 5.4.5 contains the scores for the entire vectors that belong

to the equivalence class of recurrence interval 695.
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5.4.1 Prediction results using standard SVD

This section explains the results where the transformation matrix in Eq. 5.14

was found by a generalized inverse based on standard linear SVD.

Prediction from R3 to R800: Here we show the prediction for two random

members: the 60th member and the 150th member in the R800 neighborhood. In Fig.

5.7, P1 is the affine prediction, RM F is the centroid for the R800 neighborhood,

and the error of the original signal with respect to the predicted signal and the

centroid vector also shown. It is clear from the Fig. 5.7 that the Affine predictions

improves the centroid fit. Scores of affine prediction for the 60th member were (Q1 =

0.9830, Q2 = 0.9957) and that of centroid fit were (Q1 = 0.9589, Q2 = 0.9906).

Scores of affine prediction for the 150th member were (Q1 = 0.9945, Q2 = 0.9981)

and that of centroid fit were (Q1 = 0.9668, Q2 = 0.9855).

5.4.2 Prediction results using nonlinear SVD

This section explains the results where the transformation matrix in Eq. 5.14

was found by a generalized inverse based on nonlinear linear SVD. Prediction

from R3 to R800: Here we show the prediction for two random members: the

60th member and the 150th member in the R800 neighborhood using their R3 coun-

terparts. In Fig. 5.8, P2 is the affine prediction, RM F is the centroid for

the R800 neighborhood, and the error of the original signal with respect to the

predicted signal and the centroid vector also shown. It is clear from the Fig.

5.8that the Affine predictions improves the centroid fit. Scores of affine predic-

tion for the 60th member were (Q1 = 0.9897, Q2 = 0.9958) and that of cen-

troid fit were (Q1 = 0.9589, Q2 = 0.9906). Scores of affine prediction for the

150th member were (Q1 = 0.9969, Q2 = 0.9987) and that of centroid fit were

(Q1 = 0.9668, Q2 = 0.9855).

Scores of R3 to R800 Prediction for the entire equivalence class: The

prediction scores for both the linear and nonlinear SVD based prediction for entire

members of a particular equivalence class was found. Fig. 5.9 shows Q1 and Q2

scores of 17 members of 695 equivalence class for R3 to R800 prediction.
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Figure 5.7: P1 is the affine prediction, RM F is the centroid for the R800

neighborhood, and the error of the original signal with respect
to the predicted signal and the centroid vector also shown. It
is clear from the Fig. 5.7that the Affine predictions improves
the centroid fit. Scores of affine prediction for the 60th mem-
ber were (Q1 = 0.9830, Q2 = 0.9957) and that of centroid fit
were (Q1 = 0.9589, Q2 = 0.9906). Scores of affine prediction for
the 150th member were (Q1 = 0.9945, Q2 = 0.9981) and that of
centroid fit were (Q1 = 0.9668, Q2 = 0.9855).
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Figure 5.8: P2 is the affine prediction, RM F is the centroid for the R800

neighborhood, and the error of the original signal with respect
to the predicted signal and the centroid vector also shown. It
is clear from the Fig. 5.8that the Affine predictions improves
the centroid fit. Scores of affine prediction for the 60th mem-
ber were (Q1 = 0.9897, Q2 = 0.9958) and that of centroid fit
were (Q1 = 0.9589, Q2 = 0.9906). Scores of affine prediction for
the 150th member were (Q1 = 0.9969, Q2 = 0.9987) and that of
centroid fit were (Q1 = 0.9668, Q2 = 0.9855)
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Figure 5.9: Scores Q1 and Q2 for both the linear and nonlinear SVD based
prediction in R800 for the 17 members of 695 equivalence class
of vectors in R3 evolution.

5.4.3 Error Variances for the Prediction based on linear and nonlinear

SVD

Given that the centroid based prediction has decent scores, one can use that

if no much information is available. Affine transformations based on the standard

SVD gave better prediction. Nonlinear SVD based affine transformations are the

best choice as it improved the scores significantly. Error variance for these three

cases of predictions were also found (more details about the error variance function

is given in Section 4.5.4 of Chapter 4). Variance of errors for the three specific

cases of prediction were calculated. For R3 to R800 prediction of the 50th and 150th
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Figure 5.10: variance of errors for both the linear and nonlinear SVD
based prediction in R800 for the 17 members of 695 equiva-
lence class of vectors in R3 evolution.

Table 5.1: Variance of errors between the original and predicted signal
(for the three cases P1, P2, RM F) for R3 to R800 prediction of
the 50th and 150th members

Neighborhood Vector P1(std SVD) P2(nonlinear SVD) RM F(centroid fit)
50 0.01273 0.00707 0.03515
150 0.0050 0.00239 0.02503

members, variance of errors (for the three cases P1, P2, RM F depicted in figures)

are listed in Table 5.1. Fig. 5.10 shows the variance of errors for both the linear and

nonlinear SVD based prediction in R800 for the same 17 members of 695 equivalence

class of vectors in R3 evolution.

5.5 Topological structure of ECG signals

In the Analysis section we have shown the numerical results for ECG data

projected from a higher dimension R800 to the lower dimension R3. We have also

analyzed the results for projections for various lower dimensions i.e. for d = 2, 3, 4.

Based on numerical simulations for data from R800 → R2 and R800 → R4, we

have observed that the prediction based on the equivalence classes in R2, R3 gave

excellent scores with a slight decrease in R4 prediction scores. Simulation results

for R800 → R3 projection were explicitly demonstrated for the ECG data in this
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Figure 5.11: State space reconstructed in R3

Figure 5.12: State space reconstructed in R2

chapter, for the reader to make a comparison of results for the similar R800 → R3

projection of the duffing oscillator generated data in the previous chapter. We have

noticed some properties of the transformations specific to the equivalence classes

and that will be discussed in the stability analysis section of Chapter 6.

As we have discussed earlier ECG signal exhibits both stochastic and non-

linear deterministic properties. In a nonlinear deterministic perspective, empirical

estimates of correlation dimension of ECG data have been quite high– 15 or more

[80]. In this chapter, we presented an analysis that takes an alternative perspective.

We propose a model for a healthy heart, where the whole heart dynamics can be

separated into two: (i) the dynamics that generate RR intervals (ii) the regulating

effect of RR interval on pumping action of heart. It is not clear if the dynamics

behind (i) is chaotic or stochastic as by analyzing a random looking signal alone we

cannot specify if it is generated by deterministic chaos or a stochastic process as they
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Figure 5.13: Reconstruction the time domain signal by stitching the em-
bedding vectors appropriately at their neighborhood loca-
tions

are shown to be equivalent to each other [81]. But once the dynamics behind the

impulses are kept apart, the rest of the heart dynamics is fairly simple with a lower

dimensional structure. In Fig. 5.11 and 5.12 we show statespace of the ECG signal

in the lower dimensional spaces R3 and R2. In both the 2D and 3D pictures we can

see that the ECG data lies in a ribbon–like structure. Existence of this manifold

like structure was utilized for the predictions demonstrated in this chapter. In a

deterministic dynamics perspective we can see that the neighborhood points of the

state space have similar future. Hence we assume that the equivalence classes as the

collection of similar points who have similar future. Once we have a collection of

these equivalence classes, the impulses determines the switching between them. For

this ECG data, we found that a very good prediction can be obtained by using our

model and some additional information about the exact occurrences of recurrence.

Stitching the embedding vectors appropriately at their corresponding neighborhood

locations (given by the recurrent times) we can reconstruct the time domain signal

as shown in Fig. 5.13. Due to the specific property of these model maps, once they

are known, one could start at any random initial guess and then converge to the

actual data. Fig. 5.14 shows the convergence of 2 predictions from two random

different initial conditions.
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Figure 5.14: Convergence of 2 different predictions based on two different
initial conditions (i) and the difference between the predic-
tions E = Pred2− Pred1 (ii).

5.6 Conclusion

We have demonstrated a method to predict ECG signal based on the (i) evo-

lution maps specific to the equivalence classes in a lower dimension and (ii) the

conjugacy maps that exists across the lower and higher dimensions. We have found

that once the dynamics that is responsible for the variability in recurrences are sep-

arated, rest of the heart dynamics is very simple. We have shown that the data

lies in a ribbon like manifold structure in a low-dimensional space which can be

exploited for the purpose of prediction. In addition to that we have found some

properties of the evolution maps in lower dimension due to which the predictions

from any random initial guesses converges to the actual data. This property of the

maps will be is explored in the stability analysis section of next chapter.



CHAPTER 6

Stability Analysis based on Maps in the Recurrence

Neighborhood

An empirical method to develop affine maps specific to neighborhoods for data

generated by recurrent dynamical systems was explained in the last 2 chapters using

(i) a data series generated by the Duffing oscillator and (ii) an ECG measurement

of the heart. This chapter analyzes the properties of these maps for the stability

analysis based on data. A numerical method for calculating the floquet estimates

from the data are explained and the fact that –representing a system in a dimension

higher than the inherent dynamics of the system causes wrong inferences about

the stability of the system– is verified for the Duffing data. In the case of ECG

data, an estimate for the local dimension was made using the conjugacy property as

the exact dimension of the dynamics is unknown. A theoretical justification for an

experimental observation that the Heart Rate Variability (HRV) implies a healthy

functioning of the heart is given in this chapter. It is demonstrated that HRV implies

a stable dynamics where as a uniform heartbeat could result in instability based on

the properties of the affine maps derived from the data.

6.1 Introduction

Previous chapters demonstrated that the set of the affine transformations (spe-

cific to the equivalence classes of recurrent neighborhood) and recurrence timings

(intervals between consecutive recurrences) can be used for prediction and this was

verified for the duffing and the ECG data. One important result that came out of

the study was that the structure of the state space can be deduced by analyzing one

or a few recurrence neighborhoods. The data generated by the duffing oscillator as

specifically used to demonstrate the model as (i) it is a well studied system in non-

linear dynamics and (ii) for the stability analysis, floquet exponents of the system

can be calculated and verified experimentally as their sum is equal to trace of the

coefficient matrix of the system (for duffing oscillator under study, it is equal to −c

108
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where c is the damping coefficient of the system) [50]. One of the objectives of this

chapter is to demonstrate an empirical method to find the floquet coefficient of the

system based on a recurrent neighborhood. We further verify that if the estimated

local dimension of the manifold is correct, the floquet exponents of the system can

be accurately retrieved from the data.

Section 5.6 of Chapter 5 has briefly mentioned the convergence property of

the affine maps specific to the ECG signal. For this case, once the maps and the

recurrence timing are known, one could start at any random initial guess and then

converge to the actual data. Hence if the maps are known, any information about

the initial conditions are eventually unnecessary. It is demonstrated in this chapter

that this convergence is a property of asymptotically stable maps. Another objective

of this chapter is to explain a long standing puzzle about ECG signals is using this

property of the affine maps. It has been found that a good HRV is an indication

of a healthy functioning of the heart [75]. Using the maps derived from actual data

we show that uniform recurrence intervals can indeed lead to instability, whereas

non-uniform intervals might promote asymptotic stability. Here stability implies as

situation where the individual heart cells in the ventricles are synchronized with

each other thus inducing the rapid contraction of ventricles which is essential for

discharging blood out of the heart. Instability could be seen as situation where

the synchrony of the individual heart cells are lost thus resulting in a quivering of

ventricles rather than a proper contraction.

In what follows, Sections 6.2 gives a brief review about the stability of equi-

librium points and periodic orbits in a dynamical system. An empirical method to

estimate floquet coefficients from data is given in Section 6.3. The method was veri-

fied by accurately estimating the floquet coefficients for the Duffing system. Section

6.4 demonstrates an extension of this method to calculate the floquet exponents for

recurrent neighborhoods reconstructed in delay embedding space and various lower

dimensional projected spaces. Stability analysis for the ECG data is explained in

Section 6.5. Some theoretical details about the stability for Composition of maps are

discussed in section 6.6. Section 6.7 discusses the stability of the composition of the

affine maps specific to the ECG data under study and Section 6.8 is the conclusion.
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6.2 Stability of equilibrium points and periodic orbits of a

dynamical system

Nonlinear systems can have multiple equilibria and special solutions like pe-

riodic orbits. In general, a dynamical system can be said to be stable around its

equilibrium points and periodic orbits if small perturbations around them do not

significantly change the behaviour of the system. Consider a dynamical system

represented by,

Ẋ = F (X), X ∈ Rd (6.1)

A point X̄ of this is system is said to be an equilibrium point if F (X̄) = 0.

Hence the system is at X̄ at time t0, it remains there for all time t > t0.

The stability of equilibrium points in general can be defined based on the

following notions of Lyapunov and Asymptotic stability. The system is said to be

Lyapunov stable around X̄ if for every ϵ > 0, there exists a δ1(ϵ) > 0 such that, if

∥x(0) − X̄∥ < δ1, then ∥x(t) − X̄∥ < ϵ for all t ≥ 0. According to this condition,

the solutions in the neighborhood of an equilibrium point X̄ stay near X̄ forever.

Further the system is said to be Asymptotically stable around X̄ if (i) it is lyapunov

stable and (ii) also satisfies the condition of convergence that there exists δ2 > 0

such that if ∥x(0)− X̄∥ < δ2, then ∥x(t)− X̄∥ → 0 as t→ ∞ [82].

Stability of a periodic orbit can be also defined in a similar manner as that of

the equilibrium point. A poincare map P can be defined for the flow given by Eq.

6.1 as follows. Let S be a d − 1 dimensional surface defined transverse to the flow

of the system in Rd. P is a mapping defined on this surface S to itself such that,

xk+1 = P (xk) (6.2)

Where xk is the kth intersection of the flow on S. If x̄ is a fixed point of the

nth return map P n such that,

x̄ = P n(x̄) (6.3)

Then x̄ is said to be a period–n orbit of the system. Since periodic orbits

can be seen as fixed points of the poincare map, it can be said to be stable if the
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corresponding poincare map is stable at x̄ [2].

Since a periodic orbit can be seen as a fixed point of the corresponding poincare

map P , the periodic orbit is said to be stable if P is stable at the corresponding fixed

point x̄. To find the stability at x̄ of P , consider a small perturbation δ0 around it.

Let the first iteration of δ0 be δ1 such that,

x̄+ δ1 = P (x̄+ δ0)

Taylor series expansion of the map P at x̄ is,

P (x̄+ δ0) = P (x̄) + JP (x̄)δ0 +O(δ20)

JP (x̄) represents the Jacobian of P (linearisation of P ) at x̄. Neglecting the

higher order terms O(δ20), one can get a linear map for the evolution of perturbation

δ as,

δn = JP (x̄)δn−1 (6.4)

Thus the evolution of perturbations {δ0, δ1, . . . δn . . .} depends upon the eigen

values {λi} of JP (x̄). All perturbations will die out if all the eigen values are < 1

thus indicating the stability of the periodic orbit. These eigen values, that determine

the stability of the orbit are known as characteristic multipliers or floquet multipliers

of the corresponding periodic orbit [2]. Corresponding {ρi} such that {λi = eρiT}
where T is the period of the orbit are called the floquet exponents of the system [83].

6.3 An empirical method to estimate floquet coefficients

from data

Floquet multipliers that determine the stability of a periodic orbit of a dynam-

ical system can be found in general only by numerical integration [2]. According to

the floquet theory, if Φ(t) is the fundamental matrix of solutions of the dynamical

system, then there exists a non–singular monodromy matrix C associated with the

periodic solutions (of period T) such that Φ(t+ T ) = Φ(t)C. The eigen values {λi}
of C are known as the floquet multipliers of the system. Corresponding {ρi} such
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that {λi = eρiT} are called the floquet exponents of the system [83]. The mon-

odromy matrix C is analogous to the linearized Poincare map JP at the periodic

orbit of the system mentioned by Eq. 6.4.

This section gives a numerical method to calculate the floquet exponents from

the solutions of the system near a periodic orbit. For the simplicity of the equations

mentioned in this section, without loss of generality assume that the given dynamical

system belongs to R3. Let the 2D affine vector space that represents the floquet

modes in a small neighborhood around the periodic orbit of the system be:

x = f + aeρ1tp+ beρ2tq (6.5)

Note that f, p, q are periodic functions of time, a, b are scalar constants, and

ρ1, ρ2 are the floquet exponents. Corresponding linear vector space can be obtained

by removing the constant function f which represents the trivial floquet mode (the

floquet multiplier with value 1 as it corresponds to the perturbations along the

periodic orbit). Thus the linear vector space that represents the nontrivial floquet

modes is,

x = aeρ1tp+ beρ2tq (6.6)

Substituting g = eρ1tp, h = eρ2tq; where g, h are constant functions that do not

change for this vector space, Eq. 6.6 can be written as,

x = ag + bh (6.7)

The coefficients a, b represent the proportions how g, h vary for every members

of this vector space. Let x1, x2 be two specific members of this vector space,

x1 = a1g + b1h (6.8)

x2 = a2g + b2h (6.9)
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Define y as the evolution of x after a time period T such that y(t) = x(t+T ).

y(t) = x(t+ T )

= ag(t+ T ) + bh(t+ T )

= aeρ1Tg(t) + beρ2Th(t)

Denote λ1 = eρ1T and λ2 = eρ1T . λ1, λ2 represents the floquet multipliers

around the specific periodic orbit with period T .

y = aλ1g + bλ2h (6.10)

For two specific members y1, y2 of this space,

y1 = a1λ1g + b1λ2h (6.11)

y2 = a2λ1g + b2λ2h (6.12)

Eqs. 6.11 and 6.12 can be re-written in matrix form as,

[
y1 y2

]
=

[
g h

]a1λ1 a2λ1

b1λ2 b2λ2

 (6.13)

Similarly the sets of equations Eq. 6.8, 6.9 can be written in matrix form as,

[
x1 x2

]
=

[
g h

]a1 a2

b1 b2

 (6.14)

Define a transformation C across
[
x1 x2

]
and

[
y1 y2

]
as,

[
x1 x2

]
C =

[
y1 y2

]
(6.15)
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Substituting Eq. 14 and 15,a1 a2

b1 b2

C =

a1λ1 a2λ1

b1λ2 b2λ2

 (6.16)

RHS of this equation can be also written as,λ1 0

0 λ2

a1 a2

b1 b2

 =

a1λ1 a2λ1

b1λ2 b2λ2

 (6.17)

Hence, a1 a2

b1 b2

C =

λ1 0

0 λ2

a1 a2

b1 b2

 (6.18)

This is of the form AC = LA, then C = A−1LA which indicates that C,L

are similarity transformations that share identical eigen values. Thus λ1, λ2 are the

eigen values of C.

If x1, x2 and y1, y2 are numerical data of length k, then
[
x1 x2

]
and

[
y1 y2

]
are matrices of dimension k × 2 each. Hence matrix C of dimension 2 × 2 can be

determined using Eq. 6.15 as,

C =
[
x1 x2

]−1 [
y1 y2

]
(6.19)

Since
[
x1 x2

]
and

[
y1 y2

]
represents the empirical values (of evolution of

perturbations around the orbit), the monodromy matrix C and the floquet expo-

nents can be empirically determined. Next section uses this method to numerically

estimate the floquet coefficients for a Duffing oscillator data.
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6.3.1 Verification of the method to find the Floquet Exponents for Duff-

ing Oscillator from a data

Consider a data generated by the Duffing oscillator,

dX

dt
= V

dV

dt
= −cV − kX − δX3 + Fcos(ωt+ α)

for the parameter values c = 0.04496, k = 0, ω = 0.44964, δ = 1, α = 0,

F = 0.7.

For the numerical simulation results explained in this section, forcing period

was set 13.9738 seconds and the number of points per period was 500. A period 3

trajectory of the system and a small neighborhood around that orbit were identified.

Observe the evolution of n trajectories whose initial conditions are in the identified

neighborhood. Numerical results using 2 neighboring trajectories (for n = 2) are

given below. Identify a block of numerical data of length k = 800 each, for x1, x2

and y1, y2. Construct
[
x1 x2

]
and

[
y1 y2

]
matrices of dimension k × 2 using this

data.

The estimated C matrix of dimension 2× 2 using Eq. 6.19 was, 2.3863 5.2291

−1.1993 −2.5644


And the eigen values of the C matrix were,

−0.08905− 0.37937i

−0.08905 + 0.37937i

.
The eigen values of C matrix (denoted by λ1 = eρ1T and λ2 = eρ1T ) repre-

sents the floquet multipliers for the specific period (T ) under consideration. The

floquet exponents ρ1, ρ2 of duffing oscillator can be extracted from the eigen val-

ues as follows. If λ1, λ2 represents the eigen values of C for the period 3T (where
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T = 13.9738) orbit then,

ρ1 =
ln(λ1)

3T
= −0.022484− 0.04297i (6.20)

ρ2 =
ln(λ2)

3T
= −0.022484 + 0.04297i (6.21)

These empirically determined values can be verified to be correct as their sum

is equal to the trace = −c of the duffing oscillator (where c is the damping constant)

under study. The sum was ρ1+ ρ2 = −0.044964 and the chosen parameter value for

c was 0.04496.

If more number of neighbors (n > 2) are selected from the neighborhood,

the dimension of C (n × n) changes as it depends on the number of neighbors n.

Minimum number of trajectories required for simulation is 2. The non-zero eigen

values of C matrix remains invariant for n ≥ 2. As the number of neighbors are

increased n > 2, non–zero eigen values remains the same and the rest of n−2 values

are exactly zero.

The results can be reproduced for different values of the forcing period F and

periodicity T of the orbit. For a period 1 orbit where F = 0.4, the eigen values of

the C matrix were,−0.57926383 + 0.444915i

−0.57926383− 0.444915i

.
Corresponding floquet exponents were,

ρ1 =
ln(λ1)

T
= −0.0224814 + 0.177949i (6.22)

ρ2 =
ln(λ2)

T
= −0.0224814− 0.177949i (6.23)

And the sum of the exponents ρ1 + ρ2 = −0.044963 whose magnitude almost

equals damping constant c as expected. Hence the numerical method successfully

retrieved the floquet exponents of the Duffing oscillator system from a numerical

data.
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Figure 6.1: Evolution of a recurring orbit in the neighborhood of an at-
tracting period 3 orbit of the Duffing oscillator (i). Evolution
of the perturbations that finally settles in the periodic orbit
(ii).

6.4 Floquet Exponents in a Recurrence Neighborhood

Floquet coefficients that determine the stability of a periodic orbit can be

empirically determined by analyzing a neighborhood around the orbit of the sys-

tem. Now assume that all we have is a measurement of the system but have no

information about the dynamics that generated the data. The new proposed model

(demonstrated in chapters 4 and 5) requires a delay embedding of the data in a

higher dimension to reconstruct the global dynamics and further projection to a

lower dimension for analyzing the local dynamics. This section focusses on the sta-

bility analysis of the recurrent orbits in recurrent neighborhoods reconstructed in

both the higher and the lower dimensional spaces.
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Consider a recurring orbit of the Duffing oscillator in the neighborhood of a

periodic orbit. If the periodic orbit is attractive the trajectory eventually settles

on the periodic orbit. Evolution of the recurring orbit X in the neighborhood of

the period 3 orbit is shown in Fig. 6.1. The periodic orbit is attracting as the

perturbations Z eventually vanish and the trajectory X finally settles on the orbit.

6.4.1 Recurrent Neighborhood in the higher dimensional space RN

Construct a delay embedding of X in a higher dimensional space R800 and

identify a neighborhood (as explained in section 4.6 of chapter 4). Create a ma-

trix RX and RY of all the vectors that denote the start and end matrices of the

equivalence class corresponding to period 3 recurrence (as explained in section 4.8

of chapter 4).

The data segment X had 60000 samples. For the numerical simulations ex-

plained in this section, 39 neighbors members were identified for the equivalence

class in R800. Thus the dimensions of RX and RY matrices were 800× 39. Follow

the steps explained below to find the transformation across RX and RY specific to

the period 3 interval.

Step 1: Find the centroid of each of the neighborhoods and subtract it from

the neighborhood vectors for translating the neighborhoods to origin. Let rX and

rY matrices represents the neighborhoods (RX and RY matrices) translated to

origin. Record the centroid of the neighborhoods RX and RY as RX and RY .

Step 2: Define a transformation Γ, across rX and rY matrices such that;

rX.Γ = rY (6.24)

rX, rY are of dimension 800× 39 each. Γ of dimension 39× 39 can be numer-

ically estimated by pre-multiplying rY with the generalized inverse of rX.

Γ = (rX)−1.rY (6.25)

The eigen values of Γ matrix were,
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

−0.08900824983137 + 0.37937254166312i

−0.08900824983137− 0.37937254166312i

−0.18447707434417

0.10496200761857

−0.00002287163165

0.00000000000005 + 0.00000000001064i

0.00000000000005− 0.00000000001064i

0.00000000000623

. . .

. . .


Since the floquet multiplier near the period–3 orbit is already estimated in sec-

tion 6.3.1, it can be verified that the first 2 eigen values of the Γ matrix corresponds

to the actual floquet coefficients of the system. But the rest of the eigen values of

the Γ matrix are spurious values generated due to the over embedding of the system

in a higher dimensional space. This verifies the fact [26] that the reconstructed

manifold can produce spurious inferences about the stability of the dynamics when

the embedding dimension is higher than required.

6.4.2 Recurrent Neighborhood in lower dimensional space Rd

This section verifies that the estimation of floquet coefficients can be done

correctly only if the dimension of projected space is equal to the actual dimension

of the system that generated the data. The numerical results for projections from

R800 to various lower dimensional spaces R2, R3, R4 are analyzed here. Estimation

of floquet coefficients was done correctly when R2 which matches the exact local

dimension of the Duffing system.

The A matrix given below was used for projecting data from RN to Rd. This

section contains lists the estimated values of the floquet exponents in various lower
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dimensions i.e. for d values 4, 3, 2.

A0,n = Real

(
1

N
exp

(
−i2πn
h0

))
(6.26)

A1,n = Imag

(
1

N
exp

(
−i2πn
h0

))
(6.27)

A2,n = Real

(
1

N
exp

(
−i2πn
h1

))
(6.28)

A3,n = Imag

(
1

N
exp

(
−i2πn
h1

))
(6.29)

For RN to Rd projection, A matrix has a dimension (d × N). The constant

h0 was selected to match the embedding dimension and h1 was set 2h0. Hence the

parameter values chosen for projection were: h0 = 800, h1 = 1600, N = 800 and

n = 1...N − 1.

Let SX, SY represents the counterparts of RX,RY , the start and end matrices

of the equivalence class corresponding to period 3 interval in Rd. Follow the steps

explained below to find the transformation (specific to the period 3 interval in Rd)

across SX and SY .

Step 1: Find the centroid of the neighborhoods SX, SY and subtract it from

the neighbors to translate the neighborhood to origin. Let sX and sY represents

the neighborhoods translated to origin. Record the centroids of SX and SY as SX

and SY respectively. SX and SY have dimensions of 39× d each.

Step 2: Define a transformation Λ, across the matrices sX and sY such

that;

sX.Λ = sY (6.30)

Step 3: Estimate Λ of dimension d × d by pre–multiplying sY with the

generalized inverse of sX.

Λ = (sX)−1.sY (6.31)

Transformation Λ specific to the period 3 equivalence class was found for

R4, R3, R2 projections. Floquet estimates for these 3 cases are discussed below.



121

Floquet exponents in R4

Eigen values of the Λ matrix in R4 was,
−0.089032 + 0.37939i

−0.089032− 0.37939i

−0.0006535

0.0621768


And the corresponding estimates of the floquet exponents were,

−0.022479 + 0.04297i

−0.022479− 0.042967i

−0.17492 + 0.07494i

−0.06626


Since we have already found the floquet multiplier near the period–3 orbit in

section 6.3.1, we can see that the first 2 estimates correspond to the actual floquet

coefficients of the system. But the last two are spurious values generated due to

representation of the dynamics in a higher dimension.

Floquet exponents in R3

Eigen values of the Λ matrix in R3 was,


−0.088609 + 0.37927i

−0.088609− 0.37927i

−0.01586


And the corresponding estimates of the floquet exponents were,


−0.022492 + 0.042945i

−0.022492− 0.042945i

−0.01586


Again, we know that the first 2 of this array corresponds to the correct floquet

exponents. But the last one is a spurious mode that gets generated.
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Floquet exponents in R2

When the projected dimension has a dimension identical to the actual dynam-

ics, the eigen values of the map will correspond to the exact floquet modes. Eigen

values of the Λ matrix in R2 was,−0.08902 + 0.37935i

−0.08902− 0.37935i


And the corresponding estimates of the floquet exponents were,−0.022492 + 0.042945i

−0.022492− 0.042945i


In this case the sum of the floquet exponents adds up to the trace (−c) of the

system as expected. This simulation demonstrates that the stability estimates can

be done empirically if the dimension that represents the dynamics is equal to the

inherent dimension that generated the data.

6.5 Stability Analysis of ECG data

This section analyzes the stability of the affine maps specific to the ECG

data (developed in chapter 5), which corresponds to the equivalence classes in the

lower dimension space in R3. These affine maps are empirically derived and are

functions of only the recurrence timings. It was also shown that, given the set of

maps and the recurrence timings, one could start at any random initial guess and

then converge to the actual data. This property of convergence is a common case of

asymptotically stable maps. Using this property of the affine maps a justification for

an experimental observation about the heart rate variability is given in this section.

It has been found that a reduced heart rate variability is an indication of unhealthy

functioning of heart [75]. Using the maps derived from an empirical ECG data

we show that uniform recurrence intervals can indeed lead to instability, whereas

non-uniform intervals might promote asymptotic stability.

The maps corresponding to the equivalence classes as various possibilities for
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heart dynamics. A variability in the heart rate implies a switching between these

various possible dynamics. Hence one can propose a hypothesis that the switching

process is determined by the impulses that reach the SA node and this switching

process selects any one possibility of different possible combination of these affine

maps. Here stability implies a situation where the individual heart cells in the

ventricles are synchronized with each other thus inducing the rapid contraction of

ventricles which is essential for discharging blood out of the heart. Instability could

be seen as situation where the synchrony of the individual heart cells are lost thus

resulting in a quivering of ventricles rather than a proper contraction.

6.6 Stability of composition of maps

For linear transformations, the gist of the stability result is quite simple. Con-

sider 2 two linear transformations represented by matrices A and B with follow-

ing properties: (i) both have their determinant < 1 indicating that they are area

contraction maps and (ii) at least one of the eigenvalue has a magnitude is > 1

indicating that the maps are individually unstable. This will result in a possibility

were a monotonous repetition of the transformations (corresponding to the sequence

AAA . . . or BBB . . .) is unstable but a switching of them (ABAB . . .) might lead

to stability.

Let A and B be,

A =

1.5 0

0 0.3


B =

0.2 0

0 2


The determinants

∣∣∣A∣∣∣ = 0.45 and
∣∣∣B∣∣∣=0.4 are < 1. But both A,B have one eigen-

value whose magnitude is > 1. Also note that both A and B are commutative

as,

AB = BA =

0.3 0

0 0.6


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A monotonous repetition of the transformations AAA . . . or BBB . . . is un-

stable as on of the eigen values explodes. A finite composition of them are given

below,

A20 =

3325.2567 0

0 10−10


B20 =

10−8 0

0 1048576


But a switching of them (ABAB . . .) is stable as both the eigen values < 1. For a

finite composition,

(AB)10 =

0.000006 0

0 0.006


Permutations of A, B in this combination of transformation does not matter as A

and B both commutative.

Now lets consider two non–commutative transformations C and D such

that CD ̸= DC with the same properties as above: Determinant < 1 and at least

one eigenvalue whose magnitude is > 1.

C =

1.1 0.6

0.3 0.4


D =

0.5 0.3

0.1 1


The determinants

∣∣∣C∣∣∣ = 0.26 and
∣∣∣B∣∣∣=0.47 are < 1.

The eigen values of C =

1.3
0.2

 and the eigen values of D =

0.446
1.05


Since C and D are non–commutative,0.61 0.93

0.19 0.49

 = CD ̸= DC =

0.64 0.42

0.41 0.46


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A monotonous repetition of the transformations CCC . . . or DDD . . . is un-

stable. For a finite composition,

C20 =

155.5 103.66

51.83 34.55


C20 has eigen values

190.05
10−9



D20 =

0.26 1.42

0.47 2.61


and D20 has eigen values

10−13

2.87


Now we have considered switching of them (CDCD . . .). For a finite compo-

sition,

(CD)10 =

0.44 0.85

0.17 0.33


This particular permutation (CD)10 was stable as all the eigen values

 0.77

10−13

 had a

magnitude less than < 1. Another permutation (DC)10 of this combination too was

stable as all the eigen values

 0.89

10−12

 had a magnitude less than < 1. But we found

that some other permutations of the same combination of maps [C10D10], [D10C10],

[(DDCC)5] were unstable as they had at least one eigen value > 1. The eigen values

of these finite compositions were

10−11

10.8

,
10−10

10.8

,
1.36

10−8

 respectively.

We have seen some numerical examples of matrices where combinations of

transformations were stable even though the individual ones that made the combi-

nation were unstable. In the case of non-commutative maps we saw a possibility of

some permutations of a combination of maps being stable while others not. Now we
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will explore the theoretical details about the stability of nonlinear maps and their

affine equivalents and will introduce few theorems on the stability of the composition

of maps.

6.6.1 Asymptotic Stability of maps

A fixed point x̄ of a map x 7→ F (x) is said to be Lyapunov stable if given

any ϵ > 0, there is a δ > 0 such that ||F n(x) − x̄|| < ϵ for all integers n > 0 for

all ||x − x̄|| < δ. And if for all x, F n(x) → x̄ as n → ∞ then x̄ is said to be

asymptotically stable.

Theorem 6.1. If F is a nonlinear real analytic map, then F has an affine repre-

sentation f .

Proof : If F is analytic, it has a valid taylors series at any point a. For any

small neighborhood of a,

F (a+ x) = F (a) + J(a)x+ o(x2) (6.32)

Where o(x2) represents all the higher order components of the Taylor series. J(a)

is the matrix of partial derivatives of F (i.e. Jacobian matrix) at point a. Then the

affine approximation of F at a can be written as,

fa(x) = F (a) + J(a)x (6.33)

fa(x) can represent F (x) in a neighborhood of a, if for every ϵ > 0, there exits a

δ > 0 such that for all x, with |a− x| < δ , |F (a+ x)− fa(x)| < ϵ.

Comparing Eq. 6.33 with standard from of affine transformations f(x) =

Ax + c, A = J(a) is of dimension (d × d) and c = F (a) is of dimension (d × 1) if

map f is defined in Rd.

Theorem 6.2. If x̄ is the rest point of the affine map f(x) = Ax+ c, then f(x) can

be also written as a linear map with respect to its rest point.

Proof : x̄ is the rest point of f(x), hence x̄ = Ax̄ + c and x̄ = (I − A)−1c.

Define a new co-ordinate y = x− x̄. Substituting for x we get, y+ x̄ = A(y+ x̄)+ c.
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Thus y = Ay which is a linear map.

Theorem 6.3. Asymptotic stability of the map f depends on the eigen values of A.

If all eigen values of A < 1; then the map f is asymptotically stable.

Proof : An affine map of form f(x) = Ax + c can be written as a linear

map of form y = Ay (Theorem 1). If the eigen values of the Jacobian matrix A

has a magnitude < 1, then the perturbations eventually dies out. Let the eigen

vectors {ei} of matrix A form a basis for the initial perturbation vector say δ0

such that, δ0 =
N−1∑
i=0

αiei for some scalars αi. Its evolution can be represented as

δ1 = Aδ0 = A
N−1∑
i=0

αiei =
N−1∑
i=0

λiαiei. Iterating k times, δk =
N−1∑
i=0

λi
kαiei. Hence if all

|λi| < 1, then ||δk|| → 0 causing the perturbations along all the eigen directions die

out. Otherwise if |λi| > 1, then the perturbation along that ei will grow [2].

Theorem 6.4. Composition of affine maps are also affine.

Proof : Consider two affine maps of the form f1(x) = A1x + c1 and f2(x) =

A2x+ c2. Then,

f1(f2(x)) = A1(A2x+ c2) + c1

= A1A2x+ A1c2 + c1

= Bx+ e

where e = Ad + c. Note that the Jacobian of the composition B is equal to the

product of the individual Jacobian matrices A1 and A2.

Theorem 6.5. An affine composition f1f2 is asymptotically stable if the product of

the individual Jacobian matrices A1A2 has the magnitude all eigen values < 1.

Proof : Same as proofs of Theorem 3 and 4. Further, the Jacobian matrix of

the composition f1f2 is the product of the individual Jacobian matrices A1 and A2.

If the product has the magnitude of its eigenvalues < 1 then f1f2 is asymptotically

stable.
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Theorem 6.6. For the infinite composition of affine maps (of the form fff . . .),

where f(x) = Ax+ c, the stability depends on the eigen values of the A. If the mag-

nitude of all eigen values of A are < 1, then infinite composition is asymptotically

stable.

Proof : same as proof of Theorem 5.

Theorem 6.7. For affine maps f1(x) = A1x+ c1 and f2(x) = A2x+ c2, If A1 and

A2 commutes and if a particular composition f1f2f1f2 . . . is unstable then all the

permutations of that composition are unstable.

Proof : If a particular composition f1f2f1f2 . . . is unstable then the corre-

sponding Jacobian A1A2A1A2 . . . will have at least one eigen value with a magnitude

> 1. Since A1 and A2 commutes, the order in which f1 and f2 they appear does not

matter. Thus all permutations of this composition f1f2f1f2 . . . are unstable.

Theorem 6.8. If f1, f2 are stable; then the infinite composition f1f2f1f2 . . . will

eventually oscillate between exactly two points. The first point is the fixed point of

f1f2(x) = x the second is the fixed point of f2f1(x) = x .

Proof : Assume that the compositions fg and gf have fixed points x̄ and

ȳ respectively. Then fg(x̄) = x̄, gf(ȳ) = ȳ. Construct an infinite set S of fi-

nite compositions that constitute the above infinite sequence. Let the set be,

S = {f, fg, fgf, fgfg, fgfgf, . . .}. Note that each of the finite composition will

settle to either x̄ or ȳ. This does not guaranty convergence. But if f, g are stable

infinite composition can be stable in the sense that it switches between the individ-

ual rest points x̄ and ȳ. Hence x̄ and ȳ form a limit set for the infinite sequence of

maps fgfg . . ..

Theorem 6.9. Any infinite composition of maps f1f2f3f4 . . . are stable if (i) the

magnitude of the eigen values of the Jacobian matrices corresponding to the finite

compositions of the infinite composition of maps, form a Cauchy sequence and if

(ii) limit point of the above Cauchy sequence is < 1. (i) and (ii) together is the

sufficient condition for stability of the infinite composition.
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Proof : Construct an infinite set S of finite compositions of maps that con-

stitute the infinite composition as, S = {f1, f1f2, f1f2f3, . . .}. Define an infinite

sequence of numbers that d1, d2, d3, . . . that correspond to the magnitude of eigen

values of the Jacobian matrices of individual composition of maps in the set S. If the

limit point of the above sequence d < 1, then the infinite sequence is asymptotically

stable.

6.7 Stability of Affine maps specific to the equivalence

classes of the ECG data

In this section we will see the properties of the affine maps specific to the

equivalence classes which were empirically determined from a healthy ECG data.

Determinants and Eigenvalues of the Jacobians of the affine maps had following

features.

1. Most of the Jacobians of the affine maps had a determinant < 1 (as shown in

Fig. 6.2 whose X–axis shows the RR interval corresponding to the particular

equivalence class whose evolution is specified by the affine map and Y–axis

shows the determinant of the Jacobian of that affine map).

2. Most of them have at least one eigenvalue with magnitude > 1. (as shown in

Fig. 6.3 whose X–axis shows the RR interval corresponding to the particular

equivalence class whose evolution is specified by the affine map and Y–axis

shows the first two eigen values of the Jacobian of that affine map. For most

of them the first eigen value is > 1 and the second one is < 1).

3. HRV implies a composition of various affine maps. The corresponding Jaco-

bian matrix of the composition map had a determinant < 1 and its eigenvalues

had magnitudes < 1. Let us consider a composition of affine maps correspond-

ing to a short ECG data segment that consist of 10 cycles with the actual RR

pattern of {712, 702, 738, 706, 696, 787, 737, 692, 751, 736}. Most of these affine

maps had at least one eigenvalue with a magnitude > 1. But the Jacobian
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of the composition had eigen values


0.83966

−0.00027

10−11

. Hence the composition was

stable even though the individual maps were unstable.

4. If there is no RR–variability, it implied a monotonous repetition of one of the

affine maps. Consider a possibility of being stuck at a uniform heart rate of

674 repeatedly. Jacobian of the affine map specific to the equivalence class

corresponding to an RR interval 674 had the following property: Determi-

nant of the Jacobian was −0.55567. Eigenvalues were


−3.03673

0.91204

0.20063

. Now the

monotonous repetition of the affine map corresponding to this equivalence

class will result in exploding the eigen value whose magnitude is > 1. Eigen

values of the Jacobian of the affine map corresponding to a repetition of 10

cycles of this map were


66689.75999

0.39825

10−13

. Hence the monotonous repetition was

unstable as the individual map itself was unstable.

Using Theorem 9 discussed in section 6.8, we can formulate a stability con-

dition for the affine maps corresponding to various RR intervals of ECG data as

follows. The Jacobian of most of these affine maps had a (i) determinant < 1

indicating that they are contraction maps and (ii) at least one eigenvalue whose

magnitude > 1 indicating that the maps are individually unstable. The composi-

tion of these maps can be stable if they satisfy the conditions:

1. magnitude of the eigen values of the Jacobian matrices corresponding to the

finite compositions of the affine maps form a Cauchy sequence

2. limit point of the above Cauchy sequence is < 1.

Condition (1) and (2) are sufficient for the stability of the composition.

Proof: same as the proof of the Theorem 6.9 discussed in section 6.6.
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Figure 6.2: Determinants of the Jacobians of the Affine maps correspond-
ing the equivalence classes. X–axis shows the RR interval
corresponding to the particular equivalence class whose evo-
lution is specified by the affine map and Y–axis shows the
determinant of the Jacobian of that affine map.

6.7.1 Importance of being Non-Commutative

It does appear that the property of non-commutativity is essential for sta-

bility as it indicates a proper functioning of the heart. The numerical simulations

confirmed an already known fact that a uniform heart rate results in an unstable

condition. In retrospect this has been explained using the non-commutativity of the

set of affine transformations which are empirically found. Thus we may conclude

that the heart cells would not synchronize with uniform heart rate but could well

do so in the case of a non–uniform heart rate. Fig. 6.4 shows the convergence of 2

farther initial conditions to an ECG data segment, for a combination of maps that

corresponded to actual RR intervals (which showed a heart rate variability). Fig. 6.5

shows the explosion and divergence of two ECG trajectories starting on 2 nearby

initial conditions, using one map (corresponding to the RR interval 674) which was

used repeatedly (as in a uniform heart rate condition).
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Figure 6.3: Eigen values of the Jacobians of the Affine maps correspond-
ing the equivalence classes. X–axis shows the RR interval
corresponding to the particular equivalence class whose evo-
lution is specified by the affine map and Y–axis shows the
first two eigen values of the Jacobian of that affine map. For
most of them the first eigen value is > 1 and the second one
is < 1.

6.7.2 Reduced Heart Rate Variability

A reduced heart rate variability which is very common in patients with heart

conditions can be seen as a switching of the affine maps with a restricted symbolic

sequence. A non–restricted symbolic sequence will imply that the system has the

ability to select from a set of all possible permutations and combinations of the maps

specific to various recurrence intervals. A restricted symbolic sequence denotes a

condition where the topological entropy of the sequences are highly reduced, there

by some permutations of certain combinations are not allowed. Switching of maps

with a restricted symbolic sequence in this context may be similar to something as

follows: If f1, f2 are the non–commutative maps, a restriction can be applied as an

example: f1 can be followed by f2 at most say 3 times. There is also a possibility

that some permutations of the composition of maps have unstable rest points (If

one of them is unstable all of them are unstable. These maps may form their own
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Figure 6.4: Convergence when starting on 2 farther initial conditions, us-
ing a combination of maps (non-uniform heart rate). Error of
2 trajectories that start on 2 nearby initial conditions, evolv-
ing using one map over and over again

omega limit sets of going from infinity to infinity). The switching sequences will

create a dynamics like a cantor set. This sequence will have uncountable infinity of

omega limit points which are in a compact attractor.

6.8 Conclusion

This chapter analyzed the properties of the maps specific to the equivalence

classes for both the duffing oscillator generated data and the ECG data. The empir-

ically derived affine maps across the equivalence classes were functions of only the

recurrence timings. It is further verified that representing the data in a dimension

higher than the original dimension of the system that generated the data can cause

wrong stability conclusions. It is demonstrated for the duffing oscillator data that
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Figure 6.5: Divergence when starting on 2 nearby initial conditions, using
one map over and over again (uniform heart rate). Error in 2
trajectories that convergence when starts on 2 farther initial
conditions and evolving using a combination of maps.

for empirically determining the exact values of the floquet exponents, the neigh-

borhood has to be represented in the proper local dimension of original system i.e.

d = 2. A theoretical foundation of an experimental observation about the ECG

data is discussed in this chapter. Heart rate variability is known to be a must for

the healthy functioning of heart. Based on the properties of the affine maps, the

chapter demonstrated that heart rate variability implies a stable dynamics where as

a uniform heartbeat may lead to an instable dynamics.



CHAPTER 7

Predicting Multichannel data using Recurrent

Neighborhoods

A contribution of the thesis to the existing body of knowledge in the field of biomed-

ical signal processing is discussed in this chapter. This chapter extends of the meth-

ods of prediction explained in chapters 4 and 5 for processing multichannel data.

An online data set of 300 patients published by Physionet as part of the challenge

2010 was used for data analysis. The challenge was to find a short stretch of missing

data in a channel using the information available in other channels. The method

of prediction based on recurrent neighborhoods gives a very accurate prediction for

certain type of signals that have identical recurrent timings (as in the case of ECG

and Blood pressure signals); but the method gave poor results when the recurrent

timings of the signals were not identical (as in the case of ECG and Respiration

signals. They had non–identical recurrence timings but interestingly they showed

a phase locked behaviour, exploitation of which could be a future direction of re-

search). Various local models based on the recurrent neighborhood were found for

signals in the multichannel data for the purpose of prediction. The ideas were op-

timized for the data set A, for which missing data was separately provided and

later for set B, for which online feedback was available. This chapter contains the

results for all the data in set C for which the total score was ranked 6 among the

participants of the challenge 2010 by Physionet.

7.1 Introduction

Real time monitoring of physiological signals are important in clinical research

and diagnosis of diseases. It is reported that signal corruption and signal loss are very

common in the hospital settings [37]. A trained personal may be able to deal with

some of the signal distortions as loss of signals or random noises due to the cognitive

abilities of human brain. It is a challenging task to develop an algorithm that

can mimic some of these cognitive tasks to identify the signal corruption based on

135
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available contextual information. Intelligent algorithms that can simulate cognitive

skills to fill the gaps based on the context thus taking care of the signal corruption

for the purpose of diagnosis and forecasting is a crucial in the area of biomedical

research [37]. This chapter explores some algorithmic solutions that can be used

for noise removal and signal reconstruction. The methods used here are extensions

of the modeling method explained in chapters 4 and 5 to deal with the said issues.

An online data set of 300 ICU patients published by Physionet as part of

the challenge 2010, named ‘Mind the Gap’ was used for the study. The data set

had multichannel physiological ICU recordings of around 12–15 leads each that

included various electro-cardiogram (ECG) leads, blood pressure (BP) leads, respi-

ration(RESP) and fingertip plethysmogram (PLETH) outputs. The challenge was

to find a short stretch of missing data in a channel using the information available

in other channels. Though the recordings contains a measurement of various physi-

ological functions, one can see that some of these signals, for example various ECG

channels and BP channels could carry a lot of mutual information as they basically

represent activities of the cardiovascular system. Similarly there a possibility of

some relationship between different channels that are simultaneously recorded. A

model that can exploit the redundancy and mutual relationships across channels to

predict or reconstruct the lost or corrupt information is highly desirable under these

circumstances.

Different methods for analysis and prediction were used by the groups that

participated in the challenge to address these issues mentioned above [44]. Neural

network based methods are known to be the best among successful methods that

solve similar problems as many of them can give reasonable predictions with in-

tense training sessions [37, 46]. Though it was once difficult to use neural networks

for modeling complex signals such as physiological data, the development of novel

training strategies gave hope for solving complex problems [84, 85, 86]. The winner

of the challenge 2010, Rodrigues has used an efficient multi–layered neural network

method that uses an adaptation of Geoffrey Hinton training strategy for the pre-

diction between channels for multi–channel physiological data [45]. Sullivan et.al,

another participant who scored high in challenge have reported that focused time
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delay networks are more robust, computationally efficient, and accurate when com-

pared to distributed time–delayed networks and nonlinear autoregressive networks

to deal with the prediction problem [87]. Radial basis function (RBF) networks,

another class of artificial neural networks too could give a set of reasonable pre-

diction scores [88]. But the main drawbacks of neural network based methods are

the following: (i) they are computationally very extensive (ii) most of them de-

mand a long training time (iii) prediction is limited to the patterns or behaviors

that are available during the training time otherwise that behavior is not learned or

completely lost during prediction.

Apart from neural networks, some algorithms that were based on kalman fil-

ters, adaptive filters and their combinations also gave good quality predictions for the

missing channels [38, 39]. Hartmann has used a robust method based on adaptive

filters that identifies linear-static interconnections between channels as composite

Infinite Impulse Response (IIR) transfer functions [38]. Though these interconnec-

tions could be time variant, they were assumed to be static over short time windows.

A genetic algorithm that was used for the finding the filter coefficients and fitness

function by minimizing the mean square error and maximizing the correlation guar-

anteed good prediction results. A collection of methods like linear regression, pattern

matching, ECG derived Respiration techniques were also used for the prediction of

different types of signals [40]. Some alternative approaches used algorithms based

on average substitution, principal component analysis and wavelet decompositions

for prediction [41, 42, 43].

The methods explored in this chapter exploits conjugacy that exists between

different channels in a simultaneous recoding. Dynamic models were developed for

various signals and these models were successfully used for the prediction across the

channels. For some of the signals, when the recurrent timings were identical (as in

the case of ECG and BP) the prediction results were excellent as shown in the data

analysis section of this chapter.

The chapter is organized as follows. Section 7.2 lists the key objectives of

the chapter. The methodology followed, the data set understudy and details of

the proposed model are explained in section 7.3. Section 7.4 contains the results
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of data Analysis. This section demonstrate the prediction across various channels

with figures. The prediction scores for the entire data set C is given in section 7.5.

Section 7.6 discusses the analysis results and the chapter concluds in section 7.7.

7.2 Objectives

• Extend the method of prediction based on recurrence neighborhoods for mul-

tichannel physiological data

• Demonstrate the application of the method of prediction and modeling for a

multichannel physiological data set of 100 recordings and analysis the Predic-

tion results

7.3 Methodology– Extension of the Proposed Model for

analyzing Multichannel Data

The property of recurrence in signals was explored in detail in Chapter 5. An

objective of this chapter to extend the method of modeling based on the recurrence

property of signals to analyze a multichannel recording of physiological signals.

These recordings contain simultaneous measurements of cardiovascular signals of a

patient in hospital settings. The signals in these channels exhibit the property of

recurrence as demonstrated in the following sections.

The model for prediction is based on an assumption that if two signals in the

same multichannel recording exhibit the property of recurrence, there is a possibility

of the existence of a topological conjugacy across the respective recurrent neighbor-

hoods. This assumption is made as all the events that happen in these signals are

related or the signals are synchronized in some generalized manner based on the

facts : (i) all signals are simultaneous measurements of the same cardiovascular

system and (ii) all share the property of recurrence– some of the signals (all ECG

and BP channels) have identical recurrent timings with respect to each other; in

the case of non–identical recurrent timings (as ECG, CVP, RESP), the signals are

synchronized in a phase locked behaviour.
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The concept of topological conjugacy property of dynamical systems was dis-

cussed in Chapter 4. If X and Y be two topological spaces with two continuous

functions f and g such that f : X → X and g : Y → Y ; existence of a homeo-

morphism h : X → Y such that f = h−1gh implies that f and g are topologically

conjugate to each other [4].

For the case of multichannel-channel physiological data, assume x(t) and y(t)

represents two simultaneous channels that exhibit the property of recurrence. Let

RX and RY be the recurrence neighborhoods reconstructed from the data x(t) and

y(t) respectively. A topological conjugacy is said to be existing between the re-

currence neighborhoods RX and RY , if there exists an invertible map that can go

back and forth across the neighborhoods RX and RY . Section 7.3.4 discusses the

existence of such a transformation across the neighborhoods. In general conjugacy

implies that data in one channel can be transformed into data at another channel

and vice versa. Note that the evolution equations that govern x(t) and y(t) could be

stochastic, nonlinear, or any high–dimensional deterministic functions. The topo-

logical conjugacy that exists between the recurrent neighborhoods of x(t) and y(t)

can be exploited for the purpose of prediction and modeling as demonstrated in this

chapter.

7.3.1 Data set under Study

The online data resource of 300 sets of data provided by Physionet is used

for the analysis and testing of our algorithms [51]. These are ICU patient monitor

recordings that are simultaneously recorded multiple channel physiological data for

each patient. This archive contains 3 data sets A,B,C each containing 100 record-

ings each that are 10 minute in length with a sampling frequency of 125 samples per

second. The signals vary across the records and they include various ECG channels,

continuous invasive blood pressure, intra-cranial pressure, central venous pressure,

respiration and raw fingertip plethysmogram outputs. For a typical multichannel

recording of length 10 minute, the last 30 seconds of one of the randomly chosen

channel was replaced by a gap (a flat line signal) as shown in Fig. 7.2. The goal of

the physionet challenge 2010 was to reconstruct the missing signal in each record us-
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Figure 7.1: info about c21m.dat.

ing the information available in other channels. These data set were made available

online for the Physionet challenge 2010–Mind the Gap and is still available online

to support for further study [51].

7.3.2 Identification of a Recurrent Neighborhood in a high dimensional

Delay Embedding Space

Recurrent timings are important for determining the dimension of Delay em-

bedding space. The conditions for the embedding dimension is same as that given

in Section 5.2.1. of Chapter 5. These conditions guarantee that the columns of

the recurrent neighborhood matrices do a proper overlap of the time domain signal.

The study of a single neighborhood recurrence can yield all information about the

dynamics for the right choice of embedding dimension N . Note that choosing a

smaller embedding dimension than required will result in a non proper overlap of

the time domain signal that give a partial prediction. In that case one needs to find

multiple overlapping recurrent neighborhoods for the prediction of the entire signal

(this will be discussed in detail in the following Section 7.6).

All figures used in this chapter to discusses the technical details of the model-

ing are generated using a representative data set ‘c21.dat’ from the set C [1]. The
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Figure 7.2: RESP, ECGII, PLETH, ABP signals of the 8–channel record
c21.dat. Short data segments of the signals in the last 40
seconds are scaled and shifted to fit the figure. ABP signal
missing in the last 30 seconds is denoted by a flat line.

Figure 7.3: Heart Rate Variability (HRV) plot generated using ECGII
signal of c21.dat
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information file attached to this data record which contains the channel–signal de-

tails are shown in Fig. 7.1. All algorithms that were used for analysis and plotting

figures for this chapters were developed in the technical software package MATH-

CAD version 14.0. Since the data set C understudy contains the vital signals of sick

patients in ICU, they show a lesser heart rate variability (HRV) in general. One

can make a comparison of the HRV of c21.dat shown in Fig. 7.3 to the HRV of a

healthy person shown in Fig. 5.5 of Chapter 5.

The channel 4 – ECGII and channel 7– ABP of the c21.dat are used for the

analysis to find the conjugacy across the recurrence neighborhoods of these data if

it exists. Both the ECGII and the ABP signals have identical recurrent timings as

shown by Fig. 7.4. An assumption is made that all the events that happen in signals

ECGII and ABP are related or the signals are synchronized in some generalized

manner based on the facts : (i) both are simultaneous measurements of the same

cardiovascular system and (ii) both share identical recurrent timings. The data

ECGII and ABP are embedded in a higher dimension RN where N = 111 (values

of N generally depend upon the range of recurrent timings and it varies across the

data sets). Recurrence locations for the ECGII, ABP signals were identified using

the Algorithm 5.1 mentioned in Section 5.2.1 of Chapter 5. Once the recurrent

neighborhood matrices for both the signals ECGII and ABP are ready in RN , the

next step is to finding transformations across them which is explained in detail in

the following section.

7.3.3 Modeling and Prediction across Recurrence Neigbhourhoods in

RN

Objective of the study is to predict a segment of the data that is missing in

one of the channels in a simultaneous multichannel recording. Proposed method

of prediction is as follows. Identify two separate channels in the multichannel data

set: one of them is the channel where data is missing and the second one can

be any other channel which has data available corresponding to time where the

data is missing in the other channel. Modeling and prediction windows in the

two selected channels of a multichannel recording are pictorially represented by Fig
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Figure 7.4: Identical recurrent timings for ECGII and ABP signals: L2

norms of distances of the vectors with respect to a reference
vector in R110 for ECGII and ABP data of c21.dat

Figure 7.5: Modeling and prediction windows in 2 channels of a multi-
channel recording. Channel 2 contains the missing data seg-
ment for which a prediction is made using data available in
Channel 1. A1, B1 are the modeling windows across which a
conjugacy map T is identified. T is used for prediction of data
in the window B1 from window A2.
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Figure 7.6: Few random neighborhood vectors in R110 before translation
to origin (i) centroid of the neighborhood (iii) and the same
vectors after translation to origin (ii) for the ECGIII data of
c21.dat.

7.5. Channel 2 contains the missing data segment for which a prediction is made

using data available in Channel 1. For finding a transformation that capture the

relationship exists across the channels 1 and 2, recurrent neighborhoods are identified

in the delay embedding space RN for the data in the modeling windows A1, B1 in

both the channels. A conjugacy map identified across the recurrent neighborhoods

corresponding to the data in A1, B1 and this T is used for prediction of data in the

window B2 from window A2. Modeling windows are chosen ahead but preferably

closer to the prediction windows as an assumption is made that the parameters of

the conjugacy map do not vary much across the windows.
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7.3.4 Finding Transformations across the Recurrent Neighborhoods in

RN

Identify channels 1 and 2 for the prediction and modeling and record the

recurrence timings for the signals in these channels using the Algorithm 5.1 given

in Section 5.2.1. Once the modeling windows A1, B1 are identified; create recurrent

neighborhood matrices denoted by RX,RY as explained in Section 5.2.1. This

section explains the existence of an affine transformation across these matrices RX

and RY . If the parameters of the transformation are known, RY can be predicted

from RX.

Step 1: Find the centroid of each of the neighborhoods and subtract it from

the neighborhood vectors for translating the neighborhoods to origin. Let rX and

rY matrices represents the neighborhoods (RX and RY matrices) translated to

origin. Record the centroid of the neighborhoods RX and RY as RX and RY . If

the neighborhood in RN (represented by matrix RX,RY ) contains P vectors each,

the dimension of RX,RY are (P ×N) and the centroids are:

RXn =
1

P

P∑
p=1

RXp,n for n = 1, 2 . . .N (7.1)

RY n =
1

P

P∑
p=1

RYp,n for n = 1, 2 . . .N (7.2)

Neighborhoods translated to origin are:

rXp,n = RXp,n −RXn for all p, for n = 1, 2 . . .N (7.3)

rYp,n = RYp,n −RY n for all p, for n = 1, 2 . . .N (7.4)

Fig. 7.6 depicts few neighborhood vectors before and after translation to origin

along with the centroid for the case of ECGII data (channel 4 of the c21.dat).

Step 2: Define a transformation T of dimension (N ×N), across the matrices

rX and rY such that;

rX.T = rY (7.5)

Step 3: Estimate T by pre-multiplying rY with the generalized inverse of
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rX. (For the numerical simulation results explained in the following sections the

generalized inverse of rX was calculated by using singular value decomposition by

retaining approximately N/2 singular values).

T = (rX)−1.rY (7.6)

T represents the linear map across the neighborhoods rX, rY shifted to origin.

This implies an affine map of the form (β = Tα + RY ) exists for every vector α in

RX and β in RY . For the purpose of prediction an assumption is made that the

parameters of the affine map does not change for the vectors in the neighborhoods

in the prediction window A2, B2.

Let SX, SY represents the recurrent neighborhood matrices in the prediction

windows A2, B2. SY is unknown as it represents the missing data in Channel 2.

Step 4: Record the centroid of the neighborhoods SX as SX. Since SY is unknown

assign SY = RY . Let sX and sY matrices represents the neighborhoods (SX and

SY matrices) translated to origin.

SXn =
1

P

P∑
p=1

SXp,n for n = 1, 2 . . .N (7.7)

SY = RY (7.8)

Neighborhoods translated to origin are:

sXp,n = SXp,n − SXn for all p, for n = 1, 2 . . .N (7.9)

Step 5: Define a linear map across the neighborhoods sX, sY . Find an esti-

mate for the unknown variable sY using known variables T and sX.

sY = sX.T (7.10)

Step 6: sY represents the neighborhood shifted to origin, to predict the neigh-

borhood matrix SY corresponding to the window B2, use the affine transformation
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of the form (β = Tα + SY ) for every vector α in SX and β in SY .

Step 7: SX matrix represent the vectors in a higher dimensional space

RN . Prediction for the window B2 can be reconstructed by stitching the embed-

ding vectors appropriately at their corresponding recurrence neighborhood locations

(recorded in the array of recurrence timings).

7.4 Data Analysis and Results

This section contains the simulation results of the modeling and prediction

algorithm for a particular data set ‘c21m.dat’. This data set has 8–channels and

with various physiological signals (RESP, various ECG channels ECG II, III, V,

PLETH, ABP, CVP). ABP is the missing channel which has a flat line for the last

30 seconds in the data set c21.dat. Various pairs of these channels are used to

implement and demonstrate the algorithms in this section. For each pair of the

signals, the signal available in the modeling window B2 (here onwards referred as

the target signal) was masked and the steps mentioned in previous section 7.2.4 is

used for prediction. The target signal and the resultant prediction were compared

with a set of scores. Two scoring functions explained in Section (Q1 based on mean

squared error and Q2 based on correlation)are used for comparing the prediction

with the target signal. Prediction results for various pairs of signals in the data set

c21.dat is demonstrated with figures (Fig. 7.7– Fig.7.18) in this section. The scores

for missing signals in the entire data set (100 multichannel recordings in set C [1])

are given in tables (Table 7.1, 7.2 and 7.3). The scores were calculated for 3750

samples in the last 30 seconds of the 10 minute data set (sampling frequency is 125

Hz).

1. Prediction of ABP signal from ECGIII signal: ABP on 7–channel is

predicted using the ECGIII on 5–channel. Fig 7.7 shows a short segment of data

of these two channels. Both the ECG and ABP waves are repeated with similar

time periods. (They share identical recurrent timings as shown in Fig. 7.4). Fig. 7.8

shows the predicted ABP signal and the original along with the error in prediction.

Scores of Prediction are (Q1 = 0.9757, Q2 = 0.9932).

2. Prediction of ECGV signal from ECGIII signal: Prediction is done
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Figure 7.7: ECGIII and ABP signals of c21.dat (a short data segment of
both the signals scaled and shifted to fit the figure).

Figure 7.8: Predicted ABP signal and the original (i) and the error in
Prediction, Error = ABPorg − ABPpred (ii). Scores for Pre-
diction (Q1 = 0.9757, Q2 = 0.9932)
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Figure 7.9: ECGIII and ECGV signals of c21.dat (a short data segment
of both the signals scaled and shifted to fit the figure).

for the 6–channel ECGV using the signal on 5–channel ECGIII. Fig. 7.9 shows a

short segment of data of these two channels. Both the ECGIII and ECGV waves

have identical time–periods. Fig. 7.10 shows the predicted ECGV signal and the

original ECGV signal along with the corresponding error signal. Scores of Prediction

are (Q1 = 0.9933, Q2 = 0.9967).

3. Prediction of CVP signal from ECGII signal: Here the prediction

was done for the 2–channel CVP using the signal on 4–channel ECGII. Fig. 7.11

shows a short segment of data of these two channels. Both the ECGIII and CVP

waves have different time-periods of repetition. Fig. 7.12shows the predicted CVP

signal and the original CVP signal along with the corresponding error signal. Scores

of Prediction are (Q1 = 0.6915, Q2 = 0.8508).

4. Prediction of CVP signal from RESP signal: Prediction is done

for the 2–channel CVP using the signal RESP on 1–channel. Fig. 7.13 shows a

short segment of data of these two channels. Both the CVP, RESP waves have

identical time-periods of repetition. Fig. 7.14 shows the predicted CVP signal and

the original CVP signal along with the error in prediction. Scores of Prediction are

(Q1 = 0.6149, Q2 = 0.8019). Note that the scores of RESP–CVP prediction are

slightly lesser than the ECGII–CVP prediction scores.
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Figure 7.10: Predicted ECGV signal and the original (i) and the error
in Prediction, Error = ECGV org − ECGV pred (ii). Scores of
Prediction (Q1 = 0.9933, Q2 = 0.9967).

Figure 7.11: ECGIII and CVP signals of c21.dat (a short data segment
of both the signals scaled and shifted to fit the figure).
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Figure 7.12: Predicted CVP signal and the original (i) and the error in
Prediction, Error = CV Porg − CV Ppred (ii). Scores of Pre-
diction are (Q1 = 0.6915, Q2 = 0.8508).

Figure 7.13: CVP and RESP signals of c21.dat (a short data segment of
both the signals scaled and shifted to fit the figure).
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Figure 7.14: Predicted CVP signal and the original (i) and the error in
Prediction, Error = CV Porg − CV Ppred (ii). Scores of Pre-
diction were (Q1 = 0.6949, Q2 = 0.8019).

5. Prediction of PLETH signal from ECGII signal: Here the prediction

was done for the 3–channel PLETH using the signal on 4–channel ECGII. Fig. 7.15

shows a short segment of data of these two channels. Note from the figure that the

high frequency component of the PLETH wave have identical repetition time with

respect to ECGII signals. But there is low frequency component that repeats with a

longer time period (almost a 5:1 ratio with the ECG wave). Fig. 7.16 shows the pre-

dicted PLETH signal and the original PLETH signal along with the corresponding

error signal. Scores of Prediction were (Q1 = 0.9162, Q2 = 0.9574).

6. Prediction of RESP signal from ECGV signal: Here the pre-

diction was done for the 1–channel RESP using the signal on 6–channel ECGV.

Fig. 7.17shows a short segment of data of these two channels. From the figure we

can see that both the ECGV and RESP waves have different time-periods of repeti-

tion. Fig. 7.18 shows the predicted RESP signal and the original RESP signal along
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Figure 7.15: PLETH and ECGII signals of c21.dat (a short data segment
of both the signals scaled and shifted to fit the figure).

Figure 7.16: Predicted PLETH signal and the original (i) and the error
in Prediction, Error = PLETHorg − PLETHpred (ii). Scores
of Prediction are (Q1 = 0.9162, Q2 = 0.9574).
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Figure 7.17: ECGV and RESP signals of c21.dat (a short data segment
of both the signals scaled and shifted to fit the figure).

with the corresponding error signal. Scores of Prediction were (Q1 = 0.6023, Q2 =

0.8248).

7.5 Prediction Scores for the entire Data set under study

Table. 7.1, Table. 7.2, Table. 7.3 contains the (Q1, Q2) scores of ECGI, ECGII,

ECGIII, ECGV, AVR prediction for the missing channel for the data records in Set

C of Physionet Challenge 2010 archive [1]. Table. 7.4 and Table. 7.5 gives the scores

for ABP, ICP, CVP signals. Table. 7.6 contains the PLETH prediction scores and

Table. 7.7 has RESP prediction scores.

7.6 Discussion of Analysis Results

The introduced method of modeling was based on an affine transformation

across the recurrent neighborhoods in a higher dimensional delay embedding space.

This implied a possibility of developing transformations across the signals that are

simultaneously recorded in a data set. For the prediction of 30s window data of

length 30s was used for finding the conjugacy map. The parameters of the map
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Figure 7.18: Predicted RESP signal and the original (i) and the error
in Prediction, Error = RESPorg − RESPpred (ii). Scores of
Prediction are (Q1 = 0.6023, Q2 = 0.8248).

Table 7.1: ECGII, ECGIII, ECGI Prediction Scores for data records in
Set C [1]

Name of the data record Predicted Channel Score Q1 Score Q2
c08 ECG II 0.9913 0.9965
c27 ECG II 0.9826 0.9914
c33 ECG II 0.7318 0.8623
c43 ECG II 0.9818 0.9909
c45 ECG II 0.9987 0.9994
c55 ECG II 0.9987 0.9994
c70 ECG II 0.9982 0.9991
c81 ECG II 0.9955 0.9978
c86 ECG II 0.9922 0.9961
c90 ECG II 0.9911 0.9958
c98 ECG II 0.9782 0.9898
c82 ECGIII 0.9923 0.9968
c84 ECGI 0.0121 0.6656
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Figure 7.19: Recurrent timings for various signals in the data set c21.dat :
(i) ECGII and CVP, (ii) ECGII and PLETH, (iii) RESP and
CVP.
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Table 7.2: ECGV Prediction Scores for data records in Set C [1]

Name of the data record Predicted Channel Score Q1 Score Q2
c02 ECG V 0.8857 0.9429
c07 ECG V 0.9976 0.9988
c18 ECG V 0.9976 0.9988
c22 ECG V 0.8869 0.9430
c23 ECG V 0.9602 0.9804
c30 ECG V 0.6921 0.8516
c35 ECG V 0.9720 0.9859
c49 ECG V 0.9948 0.9974
c52 ECG V 0.4364 0.7286
c57 ECG V 0.9831 0.9922
c64 ECG V 0.9204 0.9611
c75 ECG V 0.9245 0.9626
c79 ECG V 0.9874 0.9937
c89 ECG V 0.9763 0.9882
c99 ECG V 0.8331 0.9272

Table 7.3: AVR Prediction Scores for data records in Set C [1]

Name of the data record Predicted Channel Score Q1 Score Q2
c09 AVR 0.9850 0.9929
c10 AVR 0.9660 0.9834
c29 AVR 0.9973 0.9989
c38 AVR 0.2988 0.6334
c58 AVR 0.9754 0.9892
c71 AVR 0.8381 0.9169
c74 AVR 0.9971 0.9986
c78 AVR 0.9971 0.9985
c80 AVR 0.9051 0.9547
c88 AVR 0.9460 0.9745
c92 AVR 0.9736 0.9868

were developed based on a short data segment in the modeling window preceding

the prediction window and they were assumed to be invariant across the windows

for the purpose of prediction.

Analysis results on Table 7.1– Table 7.7 show that the predictions gives a

good fit to the actual target for some of the signals of the data set under study. It

is inferred that the model could potentially reflect the changes in the cardiovascular
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Table 7.4: ABP prediction scores for data records in Set C [1]

Name of the data record Predicted Channel Score Q1 Score Q2
c01 ABP 0.9229 0.9776
c04 ABP 0.9889 0.9951
c14 ABP 0.7590 0.8837
c19 ABP 0.9034 0.9723
c20 ART 0.9914 0.9958
c21 ABP 0.9724 0.9950
c31 ART 0.9691 0.9895
c34 ABP 0.9881 0.9956
c36 ABP 0.7650 0.8827
c37 ABP 0.9869 0.9945
c47 ABP 0.9553 0.9779
c56 ABP 0.9507 0.9952
c66 ABP 0.9320 0.9680
c68 ABP 0.9965 0.9984
c73 ABP 0.8399 0.9172
c76 ABP 0.9833 0.9920
c93 ABP 0.9751 0.9875
c95 ABP 0.9431 0.9803

Table 7.5: ICP, CVP prediction scores for data records in Set C [1]

Name of the data record Predicted Channel Score Q1 Score Q2
c13 ICP 0.9336 0.9807
c17 ICP 0.5631 0.8900
c26 ICP 0.0000 0.9217
c53 ICP 0.9177 0.9882
c54 ICP 0.0000 0.8899
c11 CVP 0.0000 0.4347
c15 CVP 0.8323 0.9138
c41 CVP 0.0000 0.5117
c42 CVP 0.6050 0.8136
c46 CVP 0.0000 0.0000
c48 CVP 0.2570 0.6844
c59 CVP 0.8270 0.9147
c67 CVP 0.0000 0.3978
c72 CVP 0.7851 0.8928
c77 CVP 0.0000 0.1229
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Table 7.6: PLETH prediction scores for data records in Set C [1]

Name of the data record Predicted Channel Score 1 Score 2
c05 PLETH 0.0000 0.6145
c06 PLETH 0.0000 0.1192
c28 PLETH 0.8008 0.8975
c39 PLETH 0.9946 0.9973
c50 PLETH 0.2130 0.7856
c60 PLETH 0.8345 0.9180
c61 PLETH 0.0000 0.5775
c62 PLETH 0.0000 0.1641
c83 PLETH 0.9401 0.9697
c85 PLETH 0.0000 0.1961
c87 PLETH 0.1364 0.4020
c94 PLETH 0.0000 0.0000
c96 PLETH 0.9571 0.9829
c97 PLETH 0.7438 0.8647

Table 7.7: RESP prediction scores for data records in Set C [1]

Name of the data record Predicted Channel Score 1 Score 2
c00 RESP 0.5676 0.9055
c03 RESP 0.0000 0.4794
c12 RESP 0.2884 0.6764
c16 RESP 0.0000 0.0000
c24 RESP 0.4761 0.7165
c25 RESP 0.0000 0.1651
c32 RESP 0.0000 0.2691
c40 RESP 0.2395 0.6362
c44 RESP 0.8456 0.9198
c51 RESP 0.0000 0.2190
c63 RESP 0.5549 0.8054
c65 RESP 0.6169 0.7979
c69 RESP 0.0000 0.0337
c91 RESP 0.6995 0.8440

system efficiently for specific signals (ECGI, ECGII, ECGIII, ECGV, AVR, ABP).

An excellent quality of reconstruction was obtained for all the ECG and BP signals.

The PLETH, RESP, CVP scores were not as good as the ECG and BP scores. One

reason for the bad prediction could be that either there is no connection between

the channels (ECG Vs PLETH, RESP, CVP signals) or the connection was highly
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Figure 7.20: Pictorial Representation of insufficient embedding dimen-
sion resulting in recurrent vectors doing improper overlap
of the time domain signal.

non-linear or the model developed was inefficient to extract the connection.

It is observed that RESP, CVP have identical recurrence patterns with respect

to each other but a different recurrent timing with respect to the ECG signals

as shown in 7.19. For the simulation results explained in the analysis section,

recurrent neighborhoods and the recurrent timings were calculated with respect

to the ECG /BP signals. There is an opportunity to improve the reconstruction

of RESP, CVP signals by finding the recurrent neighborhoods and the recurrent

timings with respect to them instead of ECG signal which we plan as a direction

for future research.

7.6.1 When the Embedding dimension N Value is less than Required

An estimate of the embedding dimension is made such that the vectors of the

recurrent neighborhood in RN do a proper overlap of the time domain signal at the

recurrent timings. When the embedding dimension is not adequate the embedding

vectors of the neighborhood fail to overlap the time domain signal as shown in

Fig. 7.20 which will result in an partial prediction of the signal. In this case, multiple

recurrent neighborhoods can be used to predict the entire structure.

Fig. 7.21 show the partial prediction for ABP signals using ECGII signal of

c21.dat when the embedding dimension was chosen as 30 instead of 110. In this case
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Figure 7.21: Pred1 (i), Pred2 (ii) and Pred3 (iii) are partial predictions
for ABP signals using ECGII signal of c21.dat when the
embedding dimension was chosen as 30 instead of 110.
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Figure 7.22: Patching up the partial predictions Pred1 (i), Pred2 (ii) and
Pred3 (iii) of the from multiple recurrent neighborhoods in
R30 depicted in Fig. 7.21 for a full prediction of the ABP
signal.

multiple recurrent neighborhoods in R30 can be used for full prediction of signal.

Fig. 7.22 shows the possibility of patching up the partial predictions for the full

prediction of the entire signal.

7.7 Conclusions

This chapter demonstrated the efficacy of the model for the purpose of recon-

struction of missing signals in a multichannel data set. It was observed during the

data analysis that the scores of reconstruction is dependent on the quality of the

signals that were available on the channels based on which the model was made. If

the signals available in the modeling and prediction windows were noisy or clipped,

prediction score were affected. The introduced method of modeling was based on

an affine transformation across the recurrent neighborhoods in a higher dimensional

delay embedding space. For the prediction of 30s window data of length 30s was

used for finding the conjugacy map and the parameters of the map were assumed to

be invariant across the windows for the purpose of prediction. Since the parameters

of the map were developed based on a short data segment in the modeling window

preceding the prediction window there was no need of extensive training strategies

which drastically reduced the time of prediction. This is one advantage of the pro-

posed method compared to the current best algorithms that deals with the same
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issue of signal corruption and predictions. An immediate application of the method

is the cure of loss/corruption of data in one of the channel, using the available data

in other channels.

The results discussed in this chapter are motivated by Physionet Challenge

2010. The scores for 100 data records in set C given in Tables 7.1–7.7 had a total

score of (Q1 = 67.42, Q2 = 80.95) which ranked 6 among the participants of the

challenge.



CHAPTER 8

Conclusions and Future Research Directions

8.1 Summary of Results

The foundation of this thesis was an exploratory research for finding new,

effective methods for analyzing physiological signals. Modeling a system based on

an observed time series is a difficult problem in general as the measurements contain

only partial information about the system and further it could be noisy. The goal of

the thesis is to develop a new methods of modeling a system based on a time series

with a dynamical system perspective.

The method proposed in this thesis is specific to a special class of nonlinear sig-

nals that exhibits the property of recurrence. It is demonstrated here that the best

way to make use of the recurrence property for prediction and modeling is to couple

it with the topological technique of the delay embedding. The special structure of

the delay embedding matrices are investigated as it contains lot of redundant infor-

mation. One of the goals for the modeling was to exploit this redundant property

to reduce the computational load that is inevitable in nonlinear data analysis.

The proposed model used a delay embedding at a higher dimensional space

for the global representation of dynamics and a projection to a lower dimensional

space for the local analysis of the system dynamics. The projection was done using

an Finite Impulse Response (FIR) filters to tackle the issues of over embedding.

According to Broomhead’s theorem from Topology FIT filters preserve all the infor-

mation one wants to extract by embedding techniques. Since a filtered time series

of a system preserves the embedding, a projection from the high dimensional space

to a lower dimensional space was used for the local analysis. This projection took

care of two fundamental issues related to high dimensional models that describe a

low dimensional dynamics: (i) the ambiguity that many models fit the data and (ii)

the fact that the models become less economical, requiring more amount of data as

the embedding dimension goes up.

As per the model, the recurrence neighborhoods were empirically determined

164



165

in the delay embedding space RN and the projected low dimensional space Rd. The

recurrent neighborhood in Rd is subdivided into various equivalence classes based

on the recurrence times– the time delay between tow adjacent recurrences. A set

of affine maps (which are functions of only the recurrent times) were derived across

these equivalence classes. This procedure resulted in a possibility of simplifying the

dynamics in terms of affine transformations in small neighborhoods. Thus, the set

of overlapping neighborhoods with specific affine transformations for each of them

was used to represent the local dynamics.

A topological conjugacy that exists between the recurrence neighborhoods re-

constructed in both the lower and the higher dimensional spaces was demonstrated.

Once the model is ready, given the recurrence timings (the interval between two con-

secutive recurrences) of the data, the entire data can be predicted. The proposed

methods were demonstrated for the analysis of (i) data generated by the Duffing

oscillator and (ii) an Electrocardiogram (ECG) record. It is shown that the entire

nonlinear structure can be deduced from one or few overlapping neighborhoods for

these data.

One of goals of the thesis was to introduce a new modeling method for nonlin-

ear signals focusing on signal processing applications. A novel technique of nonlinear

generalization of SVD was proposed for detecting and quantifying nonlinearity in a

time series. This method is an extension of the standard SVD technique in linear

algebra. Thesis demonstrated the technique of nonlinear SVD to retrieve nonlin-

earity from data generated by chaotic dynamical systems: Logistic map, Henon

map, Van der Pol oscillator and Duffing oscillator. The recovery of parameters are

shown in the following scenarios: (i) data generated by nonlinear maps and flows

(ii) comparison of the method for both noisy and noise-free nonlinear data (iii) sur-

rogate data analysis for both the noisy and noise-free cases, and also discussed two

particular applications of the method: (i) Mathematical Modeling and (ii) Chaotic

Cryptanalysis.

The method of nonlinear SVD is further extended to find the dimension of the

system based on the time series. If the data on a manifold embedded in some RN is

available a method to compute the dimension of a manifold using nonlinear SVD is
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discussed in the thesis. Two specific cases are discussed: For the simple case where

the manifold is in the form of a lower dimensional affine subspace, the standard SVD

is used to (i) calculate the dimension of the manifold and (ii) to get the equations

which define the subspace. For the general case of manifolds, the nonlinear SVD

is used (i) to search for an upper bound for the dimension of the manifold and (ii)

to find the equations for the local charts of the manifold. This introduced method

is highly useful in the context of the Takens’ embedding- a technique that is used

through out this thesis for data analysis. Finding a good estimate of the underlying

dimension of an embedded data is a requirement while modeling a system based on

local charts. Thesis provides examples of this type of modeling.

The method of modeling and prediction proposed in this thesis is expected to

be of general utility for a large class of problems. One of the objectives of the thesis

was to use these methods for the analysis of ECG data. First, the possibilities of the

model were explored for a numerically generated data by an ideal dynamical system

for a proper understanding and demonstration of the proposed method. The data

generated by Duffing oscillator was specifically selected for this purpose as it is a well-

studied system in nonlinear dynamics and it exhibited the property of recurrence.

Then, the method was demonstrated for the analysis of the ECG record. For both

the cases of the Duffing data and the ECG data the entire nonlinear structure was

deduced from one or few overlapping neighborhoods.

A stability analysis for the data is done and it is verified using the Duffing

data, that representing a system in a dimension higher than the inherent dynamics

of the system leads to wrong inferences about the stability of the system. Since

the exact dimension of the dynamics that governs ECG data is unknown, nonlinear

SVD was used to find both the dimension of the manifold and the local dynamics.

The local dimension of the manifold is equal to the local dimension of the system

due to the conjugacy property. For the ECG data, an inference about the stability

was made by studying the properties of affine maps specific to the neighborhoods.

Heart rate variability, variability in beat-to-beat intervals of the heart, is known to

be a necessity for healthy functioning of the heart. Based on the properties of the

affine maps it is demonstrated that heart rate variability implies a stable dynamics
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where as a uniform heartbeat could result in instability.

In addition to that dynamic models for various components of a multichannel

physiological record– ECG (different channels), Arterial blood pressure, Central

venous pressure, Intra Cranial Pressure, were developed and these models were used

successfully for the prediction of one signal using others. The prediction results were

excellent for the ECG and BP signals and the scores scores were low only when

the signal was extremely noisy, lost or clipped. An immediate application of the

proposed model is the cure of loss/corruption of data in one of the channel in a

multichannel record, using available data in all the channels.

8.2 Contributions of the Thesis

While analyzing the signals understudy it was observed fact that there is

lot of information available on RR intervals which can be used for the purpose of

modeling. In addition to that the information available on RR intervals was used for

the stability analysis in the thesis. The motivation for this study was the Physionet

challenge 2010 which was about predicting a short segment of missing data from one

of the channels in a multichannel physiological record. A few important questions

which were under consideration while working on this issue were:

• Modeling various ECG and BP signals effectively by exploiting the recurrence

property exhibited by the signals.

• Modeling a relationship that exists across various ECG channels and BP chan-

nels signals in a deeper physiological point of view as they are different mea-

surements of the same cardiovascular system.

• Relationship between heart rate variability and heart dynamics.

• Theoretical explanation of a well known experimental observation that the

lesser is a potential predictor for various heart ailments.

The research embodied in this thesis is attempt to answer these questions.

Thesis demonstrates a an effective way to model various ECG and BP signals by

exploiting the recurrence property. For some specific class of signals like various
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ECG signals and Blood pressure, the cross predictions were excellent implying a

generalized synchronization that exists between them. Thesis gives a theoretical

explanation for a the observation that the good heart rate variability is linked to a

healthy heart dynamics.

The proposed model in the thesis has a new perspective for analyzing biomed-

ical signals. The model was developed using many ideas of Topology, Nonlinear

Dynamics and Chaos theory. A contribution of the thesis to the existing body of

knowledge in the field of physiological signal processing is demonstrated in the the

thesis. Real time monitoring of vital physiological signals have an important rel-

evance in clinical research and diagnosis. Corruption or loss of these signals are

common as there is high chance for the signals to get distorted or lost or get im-

mersed in noise in the hospital settings. A trained person may be able to deal with

some of the noises and loss of signals in physiological data due to the cognitive

abilities of human brain. But it is always challenging for an algorithm to mimic

cognitive skills to recognize and ignore noises based on the contextual information.

Taking care of the corruption and loss of signals for the purpose of diagnosis and

forecasting is crucial in the area of biomedical research.

The proposed prediction methods were used to analyse an online data set of

300 multichannel records published by the Physionet. The introduced algorithms

relied on the topological conjugacy between simultaneously recorded signals. For

some specific class of signals like various ECG signals and BP, the cross predictions

were excellent implying a generalized synchronization that exists between them.

Analysis results showed that the predictions gives a good fit to the actual target for

some of the signals of the data set under study. It is inferred that the model could

potentially reflect the changes in the cardiovascular system efficiently for specific

signals and a excellent quality of reconstruction was obtained for all the ECG and

BP signals.

Thesis further discusses some new techniques and algorithms for nonlinear

data analysis. A nonlinear extension of well known linear algebra technique SVD

is proposed. Nonlinear SVD is proposed for finding the dimension of the manifold

where the data resides. This method has potential for analyzing local dynamics
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of the system as in general while analyzing the experimental data the system that

generated the data is unknown.

Unique contribution of this thesis is that it has developed a new model for

prediction by combining the recurrence properties of the signal and the topological

ideas. The current best methods to deal with the missing data in multichannel

records are mostly based on neural networks with different training strategies. But

the main drawbacks of neural network based methods are the following: (i) they

have a high computational load and long training time (iii) prediction is limited to

the patterns that are available during the training sessions otherwise that behavior

is not learned and lost during prediction. The proposed method gives an excellent

prediction without any extensive training time. The possibilities of the model are

explored using data generated by Duffing oscillator successfully and hence the model

is expected to be potentially useful in many real-world applications.

8.3 Future Research Directions

The proposed method of prediction worked extremely well (in a range of scores

0.90 to 0.99 for most of cases) for cardiovascular signals (various ECG signals and

some blood pressure (ABP,ICP) signals) that had identical recurrent timings. This

can be attributed to the fact that they carried a lot of mutual information by ba-

sically representing activities of the same system. Also there was a possibility of

some relationship between different channels that are simultaneously recorded from

the same person. The model could efficiently exploit the redundancy and mutual

relationships across some channels to predict or reconstruct the lost or corrupt as

discussed in the last chapter of the thesis. But prediction were not that efficient

for some other signals: plethmosgraphy (scores ranging around the value 0.5 with a

highest score approaching 0.99) and CVP (score ranging around 0.5 with a highest

score approaching 0.91) and Respiration (wide range of scores from 0 to 0.9 with 2

data sets scoring up to 0.92). Prediction scores for CVP and Plethmosgraphy were

in general better than the prediction scores for the Respiration data. Plethmosgra-

phy signal had the same recurrence timings as the ECG and BP signals. CVP and

Respiration signals had a different recurrence timings compared to ECG but they
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were in phase synchronization with the ECG signals roughly in a 3 : 1 ratio. There

are some experimental observations about a feed back that exists between the car-

diovascular system and the respiratory system. One can manipulate breathing rate

to control heart rate. Meditation based techniques like deep breathing are known

to reduce the blood pressure to a healthy lower rate there by improving the heart

rate variability.

One of the key inference based on the study of the multichannel data set is that

the prediction model was extremely accurate for signals that has identical recurrence

timings given that it measured the activity of the same organ as in the case of ECG

and ABP of the cardiovascular system. But the prediction was not excellent for

signals that had (i) identical recurrent time but measured different activities (as in

the case of ECG and Plethmosgraphy), (ii) different recurrence timings (as in CVP

and RESP signals). It was also observed that even in the case of different recurrence

timings ECG and RESP were synchronized in a phase locked behaviour though the

recurrence timings were different. This opens up a new direction of research for

improving the model (i) when signals have different recurrent timings (ii) when

the signals have same recurrent timings but they represents vital measurements of

different systems within the body. Another important extension of research would

be developing an algorithm feasible for real time processing of multichannel data in

medical labs.

On a dynamical system perspective, the proposed model relied on a hypothesis

that the dynamics on the manifold can be simplified in terms of affine transforma-

tions in small neighborhoods everywhere. Thesis demonstrated the possibility of

simplifying the dynamics in terms of affine transformations in small neighborhoods.

The set of over lapping neighborhoods with specific affine transformations for each

of them was used for the local analysis. The justification of this hypothesis was

done numerically using on topological techniques of delay embedding and projection

and the conjugacy transformations across the manifolds. Recalling the Hartman-

Grobman theorem that the behaviour of a nonlinear system near an equilibrium

point the system is qualitatively similar to the behaviour of a linear system [49],

a generalization of this theorem could be worked out prove the hypothesis that the
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dynamics of recurrent systems can be approximated by linear transformations in

small neighborhoods at rest points, and affine transformation elsewhere. This could

be possible of direction of future research for the local analysis of manifolds from ex-

perimental data. Additionally, thesis has shown that recurrence timings can reveal

lot of the information about the system dynamics that can be used for prediction

and modeling. The property of recurrence timings can be explored more in the

context of symbolic sequences that are already proven to contain information about

the initial condition of the system under study.

The thesis contains a peripheral result related to floquet theory, which did

not fall into the main objectives of the thesis. Floquet theory deals with finding

stability of the system around its periodic orbits. The floquet modes can be seen

as affine spaces in the function domain. There are some standard methods that

are available for finding various periodic orbits in the system for analyzing stability.

The thesis demonstrated a method to find floquet modes of the recurrent orbits of

duffing oscillator. The condition that orbit need to be periodic is not necessary as

the recurrent orbits too can be seen as affine spaces. Floquet theory is important as

the issue of stability is crucial in time series analysis. Ability to determine floquet

coefficients from real time data could be a goal of future research.



APPENDIX A

Proof of Theorem 3.2

The Q linear algebraic homogeneous equations can always be written as,

GZ = 0 (A.1)

where G is Q×N constant matrix of maximal rank Q, and Z is a column vector of

dimension N representing the co-ordinates in RN .

Now consider the transpose of the data matrix A. Each of the columns of AT

represents a vector which will also belong to the subspace governed by the Eq. 3.3

of Chapter 3. Recalling Eq. 3.6 of Chapter 3,

V TAT = WUT

Now if we denote any of the columns of AT byX and the corresponding column

of the UT by u,

V Tx =Wu (A.2)

x = VWu (A.3)

But x lies on the subspace defined by GZ = 0.

Substituting Eq. A.3 for Z in Eq. A.1 we get,

GVWu = 0 (A.4)

u is the equivalent co-ordinates of the data points in the U matrix. Since Eq. A.4

has to be true for all u,

GVW = 0 (A.5)

Consider the matrix product M = GV . G has rank Q and V being an orthog-

onal matrix is of full rank N which is higher than Q. Now by using the Sylvester’s
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inequality for the product of two matrices [89], rank of the product GV is at least

Q+N −N = Q. In fact, we know that it is Q because G has only Q rows.

Now consider the product ofM withW and let the rank ofW be R. Again by

using the same inequality, the rank ofMW is at least Q+R−N . But we know that

it is zero, because of Eq. A.5. This implies that the rank ofW is at the most N−Q.
Since W is a diagonal matrix, it means that at least Q of the diagonal elements, the

singular values must be zero. This proves the Theorem 3.2 for the linear subspace.



APPENDIX B

A verification of using the procedure of nonlinear SVD to

find explicit nonlinear equations for charts on the manifold

Consider X data, 100 random numbers selected from a uniform noise distribution in

the interval [0,1]. Generate Y data from X using a quadratic equation of the form

Y = aX + bX2 + c; where the coefficients were a = 2, b = 3, c = 1.5. Now the goal

is to predict a, b, c from the data X, Y using the procedure of nonlinear SVD. The

procedure to determine the coefficients of a quadratic equation are explained below.

step 1: Create a data matrix D with columns X,X2, Y .

step 2: Remove the means X̄, X̄2, Ȳ from the columns X,X2, Y to create a

matrix A with columns x1, x2, x3, where x1 = X − X̄, x2 = X2 − X̄2, x3 = Y − Ȳ .

Record the means: X̄ = 0.50593, X̄2 = 0.33601, Ȳ = 3.51989

step 3: Do the SVD of A matrix. The singular values of the A matrix in this

case were, 
14.62048

0.52504

1.21589× 10−15


And the third column of the V matrix were,

0.53452

0.80178

−0.26726


The 3rd singular value can be considered to be zero because of the rounding error.

step 4: Using the Eq. 3.3 of Chapter 3, get a relationship between the third

column of V matrix and the coordinates x1, x2, x3 as,

0.53452x1 + 0.80178x2− 0.26726x3 = 0
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x3 =
0.53452

0.26726
x1 +

0.80178

0.26726
x2

x3 = 2x1 + 3x2

Substitute for the actual data coordinates,

Y − Ȳ = 2(X − X̄) + 3(X2 − X̄2)

Y − 3.51989 = 2(X − 0.50593) + 3(X2 − 0.33601)

Y = 2X + 3X2 + 1.5 (B.1)

Hence the parameters of the quadratic equation are recovered.



APPENDIX C

Affine approximation of an Analytic Map in a small

neighbourhood

Theorem C.1. If F is a nonlinear real analytic map, then F has an affine repre-

sentation f at any point a.

Proof : If F is analytic, it has a valid taylors series at any point a. For any

small neighborhood of a,

F (a+ x) = F (a) + J(a)x+ o(x2) (C.1)

Where o(x2) represents all the higher order components of the Taylor series. J(a)

is the matrix of partial derivatives of F (i.e. Jacobian matrix) at point a. Then the

affine approximation of F at a can be written as,

fa(x) = F (a) + J(a)x (C.2)

for every ϵ > 0, there exits a δ > 0 such that for all x, with |a − x| < δ , |F (x +

a)− fa(x)| < ϵ. Eq. 2, is an affine transformation of the form,

f(x) = Ax+ c (C.3)

If f is defined in Rn, A = J(a) is of dimension (n×n) and c = F (a) is of dimension

(n× 1). Note that Eq. C.3 can be linearized with respect to a rest point as shown

by the following theorem.

Theorem C.2. If x̄ is the rest point of the affine map f , then f can be also written

as a linear map with respect to its rest point.

Proof : x̄ is the rest point of f , hence x̄ = Ax̄+ c and x̄ = (I − A)−1c. Define

a new co-ordinate y = x− x̄. Substituting for x, y+ x̄ = A(y+ x̄)+c , hence y = Ay

which is a linear map.
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APPENDIX D

Example: Ambiguities in Higher Dimensional Models that

represents Lower Dimensional Dynamics

Consider a 2D dynamical system given by the following set of equations, generates

data with an initial condition say (a, b);

ẋ = y (D.1)

ẏ = f(x, y) (D.2)

Assume that one finds a model for this system in 3D as,

ẋ = y (D.3)

ẏ = z (D.4)

ż =
∂f

∂x
y +

∂f

∂y
z (D.5)

This gives us a freedom to choose an initial condition for the z variable. If one

choose it as c, the corresponding 2D system would be,

ẋ = y (D.6)

ẏ = f(x, y) + c− f(a, b) (D.7)

And if c = f(a, b) the model corresponds to the original 2D system. In general

as c varies one gets different models of 2 dimensional manifolds in 3D [26].
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APPENDIX E

Embedding Theorems

For a differentiable manifold M , a function D : M → RN is an embedding if

the image of the manifold DM ⊂ RN is also a manifold, and if the map between

the manifolds D : M → DM is a diffeomorphism. Consider a dynamical system

represented by (M,ψ) where M is a smooth manifold of dimension d on which the

system evolves and ψ is the evolution function. Let the state of the system be

denoted as, x ∈ Rd. Let h be an observation function of the system h : Rd → R

that gives a time series {y} = {h(x)} where y ∈ R.

Then N -dimensional delay vectors {z}, z ∈ RN can be constructed from the

time series {y} as zi = (yi, yi+1, . . . yi+N−1). Each of these delay vectors {z} are

functions of the state variable x, since they are related to the evolution function ψ

as, zi = (h(xi), h(ψ(xi)), . . . h(ψ
N−1(xi)). Define the delay map Dψ,h(x) as,

Dψ,h(x) = (h(xi), h(ψ(xi)), . . . h(ψ
N−1(xi)) (E.1)

E.1 Takens’ delay embedding theorem

Theorem E.1. Let M be a compact manifold of dimension d. For pairs (ψ, h) with

ψ a diffeomorphism of M and h a smooth real valued function on M , it is a generic

property that Dψ,h :M → RN is an embedding if N > 2d. [25]

This theorem proves a one–to–one correspondence between the statespace and

the delay vectors generated from its time series yi [25]. Hence for most of the

evolution functions ψ and observation functions h, the delay map Dψ,h ∈ RN is an

embedding if N is large enough [90].
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E.2 Broomhead’s Theorem on Finite Impulse Response

(FIR) filters that preserves embedding

The delay embedding theorem has found lots of practical applications as it

opened a new method to retrieve information about the system from a time series.

Takens theorem guarantied that the reconstruction would still be a copy of the

original system and hence one could extract information about the original dynamics

from the reconstructed system. But real world systems are far away from this ideal

case, as in most of the practical cases we have only partial information about the

system and the measurements itself could be noisy. So there was this important

question whether the delay embedding is preserved even if the time series of a system

is filtered. In 1992 Broomhead et.al. proved that finite order nonrecursive filters

preserves all the information one want to extract by delay embedding techniques [48].

Consider the real valued measurements {yj} of the dynamical system (M,ψ).

Delay embedding specified by Takens theorem assumes that the dynamical system

evolves on an attractor which can be thought of as a subset of a finite dimensional

differentiable manifold M . Apply a non-recursive filter to the measurements {yj}
to get a new time series {uj} as follows,

uj =
n∑
k=1

bkyj−k

= B ∗ yj

where B = b1, b2, . . . bn is a finite vector of filter coefficients. Then the theorem can

be stated as follows,

Theorem E.2. Let {yj} be a time series of measurements made on a dynamical

system (M,ψ) which satisfies the hypotheses of Takens theorem. Then, for triples

(B,ψ, y) it is a generic property that the method of delays, which constructs, from the

time series {uj} vectors of the form (uj, uj−1, . . . uj−m+1) for any finite m > 2d+ 1

and uj = B ∗ yj gives an embedding of M .
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