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Nonlinear oscillations of a bubble carrying a constant charge and suspended in a fluid, undergoing

periodic forcing due to incident ultrasound are studied. The system exhibits period-doubling route

to chaos and the presence of charge has the effect of advancing these bifurcations. The minimum

magnitude of the charge Qmin above which the bubble’s radial oscillations can occur above a

certain velocity c1 is found to be related by a simple power law to the driving frequency ω of the

acoustic wave. We find the existence of a critical frequency ωH above which uncharged bubbles

necessarily have to oscillate at velocities below c1. We further find that this critical frequency

crucially depends upon the amplitude Ps of the driving acoustic pressure wave. The temperature

of the gas within the bubble is calculated. A critical value Ptr of Ps equalling the upper transient

threshold pressure demarcates two distinct regions of ω dependence of the maximal radial bubble

velocity vmax and maximal internal temperature Tmax. Above this pressure, Tmax and vmax

decrease with increasing ω while below Ptr, they increase with ω. The dynamical effects of the

charge and of the driving pressure and frequency of ultrasound on the bubble are discussed.

PACS numbers: 05.45.-a, 05.90.+m, 43.25.Yw, 43.35.Hl

I. INTRODUCTION

The stability and oscillations of a gas bubble suspended

in a liquid under the influence of an acoustic driving pres-

sure field in the ultrasonic frequency range have been

the subject of a large volume of scientific literature [1–

14]. Studies on the system have been made from different

viewpoints coming from its diverse applications and oc-

currences. Ultrasound is routinely used in medical ultra-

sonography including echocardiography, lithotripsy, pha-

coemulsification, use in treatment of cancer and for den-

tal cleansing. Other significant applications of ultrasonic

forcing of fluids in which studies of bubble dynamics and

∗Author to whom correspondence should be addressed. Electronic

mail: janaki05@gmail.com

cavitation become very important are in sonochemistry,

sonoluminescence, ultrasonic cleaning of materials, waste

water treatment and in focussed energy weapons. Cavita-

tion events which involve violent collapse of micron-sized

bubbles in the fluid can cause immense damage to the

surfaces they are in contact with. Studies of cavitation

events in pumps, turbines, surfaces exposed to hydrody-

namic flow, etc., continue to be of immense interest in

industries and in technological designs of devices.

Rayleigh’s study of bubble cavitation was motivated

by the need to understand and explain the damage

to ships’ propellers [1]. Under ultrasonic forcing, the

behaviour of a bubble in a fluid depends heavily upon

its ambient radius and the amplitude and frequency

of the driving sound field. Thus the bubble can show

regular oscillatory behaviour which can be periodic or it

http://arxiv.org/abs/1304.4916v1


2

can show highly irregular oscillations which are chaotic

and of unpredictable amplitude. For applications where

damage caused on surfaces due to bubble cavitation

can be disastrous, such as in medicine, it is desirous

to operate the sonic device in a “safe” regime, and /

or to be able to have control over the bubble’s motion.

Often in biological systems, it is known that bubbles in

fluids can be electrostatically charged. Studies of the

dynamics governing the oscillations, growth and collapse

of charged bubbles are therefore of immense relevance

because of their prevalence in diverse applications and

situations. Experimental and theoretical work on the

presence of charge on gas bubbles in fluids goes back

to, for example, the work of McTaggart, Alty and

Akulichev [9, 10, 16, 17], and more recently the work of

Shiran and Watmough and Atchley [11, 12, 18]. None of

the work, though, has addressed the issue of dynamics

of a charged bubble under ultrasonic forcing.

It is interesting to know what effect the presence of

electric charge on the bubble would have and see if the

motion of such a charged bubble forced by ultrasound

would vary significantly from that of an electrically

neutral bubble in a fluid. This especially becomes of

practical significance when we are looking at cavitation

phenomena in fluids in real-life, be it in the context of

cavitation in mechanical systems or in the case of bub-

bles in fluids in living tissue in a medical context. Apart

from the work in [15], we are not aware of any other

studies in the literature of the dynamics of acoustically

forced charged bubbles suspended in a fluid. Their work

however used the value 4/3 for the polytropic constant

which entailed cancellation of all the charged terms; thus

their work does not really address the issue of charge

which it sets out to do. The extremely nonlinear nature

of the system, and the presence of a large number of

parameters do not facilitate a straightforward analysis

and it becomes essential to take the aid of numerical

methods to get an understanding of the dynamics

governing the observed behaviour. In this work we

report some studies on the dynamics of a charged bubble

in a liquid (which we take to be water) when ultrasound

is incident on it. We assume that heat transfer across

the bubble takes place adiabatically, and the gas is a

monatomic ideal gas. We therefore take the polytropic

constant Γ = 5/3.

In Section II we discuss briefly the nature of the radial

dynamics of a charged bubble. Starting with a modified

Rayleigh-Plesset equation, we obtain the time series of

the bubble radius as also of its radial velocity and tem-

perature. We also calculate the phase portrait of the

bubble, under different pressure regimes.

In Section III we discuss the pressure thresholds that

influence bubble dynamics; we introduce the expansion-

contraction ratio ζ which we had introduced in [23] that

enables us to locate the presence of the Blake and up-

per transient threshold pressures easily when plotted as

a function of the driving pressure amplitude Ps. The ef-

fects of driving frequency ω and charge on ζ are demon-

strated in the present work.

The influence of Ps and ω on the bubble dynamics are

investigated in detail in Section IV. We obtain an expres-

sion for the minimum charge required on a bubble for ra-

dial oscillations to occur at some velocity c1, as also the

dependence on the forcing pressure amplitude Ps of the

maximum forcing frequency ωH at which an uncharged

bubble will oscillate with velocity c1.

We then obtain, in Section V, the bifurcation diagrams

for the system with driving frequency as the control pa-

rameter, and also the bifurcation diagram with charge as

the control parameter. We observe that the presence of

charge on the bubble advances period-doubling bifurca-

tions with driving frequency as control parameter. In-

creasing Ps causes the advancement of period doubling

and halving bifurcations for charged as well as uncharged

bubbles, and bands of chaotic behavior are observed at

large Ps.

The effect of charge and driving frequency on the max-
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imal temperature are discussed in Section VI. We note

that the pressure regime in which the bubble is being

forced (whether Ps is above or below the upper transient

threshold pressure) determines the frequency dependence

of the temperature, and we obtain rough limits on the

maximum charge a bubble may carry depending on its

ambient radius.

We conclude the paper with a summary of the results in

Section VII.

II. RADIAL DYNAMICS OF THE CHARGED

BUBBLE

In real-life situations, bubbles in fluids often have some

electric charge sticking to them. This has been seen in

the case of gas bubbles in various liquids as well as for

cavitation events in water. In our work, we adapt the

procedures for describing cavitation and forced bubble

oscillations (that has a long and extensive literature), to

include the presence of charge.

Description of ultrasonically forced bubble motion in a

fluid has been made through the Rayleigh-Plesset equa-

tion [1–3] and its variants [5, 6, 8, 13, 14, 19–22] modified

to take into account compressibility of the fluid or var-

ious other factors. Proceeding as we did in our earlier

work [23], we further modify the form of the Rayleigh-

Plesset equation for the evolution in time of the bubble

radius R(t) employed by [19] to include the presence of

a constant charge Q on the bubble as follows [15]:

((

1−
Ṙ

c

)

R+
4η

cρ

)

R̈ =
1

ρ

(

P0 − Pv +
2σ

R0

−
Q2

8πǫR4

0

)

×

(

R0

R

)3Γ
(

1 +
Ṙ

c
(1− 3Γ)

)

−
Ṙ2

2

(

3−
Ṙ

c

)

+
Q2

8πρǫR4

(

1−
3Ṙ

c

)

−
2σ

ρR
−

4η

ρ

(

Ṙ

R

)

−
1

ρ
(P0 − Pv + Pssin(ωt))

(

1 +
Ṙ

c

)

−
R

ρc
Psωcos(ωt) (1)

R0 denotes the ambient equilibrium radius of the

bubble, P0 the static pressure, and Pv = 2.34kPa,

the vapour pressure of the gas. We denote by Ps and

ω = 2πν respectively (ν being the driving frequency), the

amplitude and angular frequency of the ultrasound forc-

ing field. We consider water to be the liquid surrounding

the bubble, and having density ρ = 998kg/m3, viscosity

η = 10−3Ns/m2, surface tension σ = 0.0725N/m,

and the velocity of sound in the liquid c = 1500m/s,

P0 = 101kPa, Γ is the polytropic index and ǫ = 85ǫ0,

where ǫ0 is the vacuum permittivity.

The modified Rayleigh-Plesset equation above can be

simplified and rewritten in dimensionless form [23] as

(

1−
ṙ

c∗

)

rr̈ + F r̈ +
ṙ2

2

(

3−
ṙ

c∗

)

= H (1− P∗v +M)

(

1

r

)3Γ (

1 +
ṙ

c∗
(1− 3Γ)

)

+
C

r4

(

1−
3ṙ

c∗

)

− S
1

r
− Fc∗

(

ṙ

r

)

− H (1− P∗v + P∗s sin(τ))

(

1 +
ṙ

c∗

)

−H
rP∗s

c∗
cos(τ)

(2)

where r = R/R0, τ = ωt, P∗v = Pv/P0, P∗s = Ps/P0

and the overdot here corresponds to differentiation with

respect to τ , and where the following dimensionless con-

stants have been used:

c∗ =
c

R0ω
; F =

4η

ρR0c
; H =

P0

R2

0
ω2ρ

;

M =
1

P0

(

2σ

R0

−
Q2

8πǫR4

0

)

C =
Q2

8πǫR6

0
ω2ρ

; S =
2σ

ρR3

0
ω2

We have employed the dimensionless form of the

equations for obtaining their numerical solutions. In all

the expressions that follow, and in the numerical results

shown in graphs, we have rescaled the quantities by the

appropriate factors and only displayed the dimensional

form for a physical grasp of the magnitudes of the

quantities involved.

The presence of charge Q counters the effect of surface

tension, reducing its effective value, and induces several
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interesting changes to the dynamics of bubble oscilla-

tions. In a previous work [23] we had obtained for the

charged bubble, the Blake threshold and radius and

also some results for the upper transient threshold for

cavitation. In the following sections, we describe some

interesting consequences of the presence of charge on a

bubble.

As the bubble expands and contracts, the surface

charge density decreases or increases respectively. The

presence of charge lowers the surface tension and for

sub-micron sized bubbles, dominates over it, influencing

the minimum and maximum values of the radius and

the maximum velocities achieved by the bubble, and

changing its point of collapse. A charged bubble achieves

higher temperatures within it than an uncharged one,

the collapse of the bubble being more violent in the

charged case.

The above results indicate that since the bubble os-

cillations are more energetic for the charged bubble, the

temperature attained by the gas within the bubble during

its oscillations, would be higher as well. To confirm this,

we calculate the temperature using equation (3) [20].

T (t) = T (0)

(

R3

0
− h3

R3 − h3

)Γ−1

, (3)

where h is the van der Waals hard core radius for the gas,

h = R0/8.86 for Argon [22]. This equation is obtained

under the assumption that there is no exchange of heat

from the gas to its surroundings, that the system is es-

sentially adiabatic.

This assumption is not strictly true as in reality the

equation of state of the gas enclosed within the bubble

can be either adiabatic or isothermal, depending upon

the rate of collapse of the bubble and whether or not the

various relaxation time-scales permit thermal diffusion to

occur to and from the bubble. We use the expression in

order to get an idea of the magnitudes achievable by the

temperature in the presence of charge. To better visual-
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FIG. 1: A. Time series of R, and B. Phase portrait (R vs Ṙ),

for R0 = 5µm and bearing charge Q = 0(blue online) and Q =

0.38pC (red online), Ps = (a) 1.0P0, (b) 1.12P0, (c) 1.25P0.

Amplitudes of R, Ṙ are larger; the phase portrait spans a

larger space for the charged bubble than for the uncharged

case (color online).
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FIG. 2: Time series of temperature (in K) plotted as a func-

tion of time for R0 = 5µm at driving frequency ν = 20kHz,

and bearing charge Q = 0(blue online) and Q = 0.38pC (red

online) for three values of Ps : (a) 1.0P0, (b) 1.12P0, (c)

1.25P0. Temperatures T are larger for the charged bubble

than for the uncharged case (color online).

ize the effect that the amplitude of the forcing pressure

Ps and charge Q have on the bubble dynamics, we con-

sider a bubble being driven at 20 kHz, i.e., the lower

limit of the ultrasonic spectrum. Even in this lowest

ultrasonic regime, the time series of bubble radius, ra-

dial velocity, and temperature all show an enhancement

in values due to charge. Moreover, Ps crucially deter-

mines the dynamics of the bubble as illustrated in Fig-

ures (1,2 A-B, a,b,c). We have considered three values of

Ps, Ps = 1.0P0, 1.12P0 and 1.25P0. These pressures are,

respectively, below the Blake threshold PBlake, at the

upper transient pressure threshold Ptr, and above Ptr.

As can be seen, the pressure regime in which the bubble

dynamics occurs, crucially determines the behavior. At

Ps = 1.0P0, Tmax ≈ 370K, the uncharged bubble tem-

perature being marginally less than that for the charged

bubble (Q = 0.38 pC); for Ps = Ptr = 1.12P0, Tmax goes

up to about 1520 K for the charged bubble and about

1320 K for the uncharged case; and for Ps = 1.25P0,

Tmax shoots up still further, to about 24,000 K for the

charged (and approximately 21,000 K for the uncharged)

bubble. These temperatures vary by orders of magnitude

and spell out the importance of Ps and Q.

III. PRESSURE THRESHOLDS

The Blake threshold determines the pressure threshold

beyond which an acoustically forced bubble undergoes

drastic expansion. After the Blake threshold and

preceding the onset of bubble collapse following a larger

threshold known as the upper transient threshold, Ptr,

the bubble is essentially in an unstable regime.

Depending upon whether the amplitude of the applied

acoustic forcing pressure is greater or lesser than Ptr, the

response of the bubble to the frequency of the applied

pressure wave varies drastically.

At low amplitudes of the forcing pressure (i.e., Ps <

Ptr), increasing driving frequency causes a proportional

increase in the bubble’s maximum radial velocity vmax.

This happens upto some critical value of the frequency

for that Ps after which vmax rises more steeply but ac-

companied with large oscillations.

At larger amplitudes of the forcing pressure, with Ps ap-

proaching the value of the Blake and upper transient

threshold pressures, the situation is different. vmax first

decreases with increasing driving frequency upto a fre-

quency ωhc, after which vmax rises with frequency but

with large oscillations. As could be expected from the

above observations, a similar observation can be made

regarding the maximum temperature Tmax of the gas in-

side the bubble.

A useful graphical illustration of the transient threshold

pressures, i.e. of the Blake threshold (PBlake) and the up-

per transient threshold (Ptr) pressures, can be obtained
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by plotting ζ = (Rmax − R0)/(R0 − Rmin) as a func-

tion of the amplitude of driving pressure. This quantity

FIG. 3: Plots of Rmin (left) and Rmax/Rmin (right) as func-

tions of Ps for different values of ambient radius (for Q = 0

and Q = 0.4 pC) at 20kHz forcing frequency. (color online).

ζ, which we call the expansion-contraction ratio, handily

shows the location of both the Blake and the upper tran-

sient thresholds. Both these thresholds cannot be identi-

fied easily at the same time from, for example, a plot of

Rmax/Rmin as a function of applied pressure amplitude.

In Figure (3), the points of inflection of the curves corre-

spond to the Blake threshold pressures for the respective

R0 values. The effect of charge is clearly seen in reducing

the threshold pressure as compared to the charged case.

The upper transient threshold cannot be easily pinned

down from this plot. While the Blake threshold is in-

dicative of the threshold of the expansive growth of the

bubble, the upper transient threshold demarcates where

the violent collapse of the bubble occurs. A plot of ζ ver-

sus Ps for different values of R0 as shown in Figure (4)

shows a rise of the curve till it peaks (at Ps = PBlake) fol-

lowed by a trough or well (at Ps = Ptr) before rising up

steeply for higher Ps (this has been discussed in some de-

tail in our earlier work [23]). At pressures between PBlake

and Ptr the bubble is in an unstable regime. This also

explains the presence of large fluctuations or oscillations

in the velocity vs. frequency plots at such intermediate

pressures. The presence of charge shifts the threshold

pressures to lower values. With increasing ambient ra-
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FIG. 4: Plot of ζ = (Rmax − R0)/(R0 − Rmin) as a func-

tion of forcing pressure amplitude Ps and R0 at 20kHz. The

schematic at right shows the locations of the Blake threshold

pressure and the upper transient threshold pressure on the

ζ − Ps curve. Increasing bubble charge shifts the curve down

and to the left, while increasing driving frequency decreases

the steepness of the curve and flattens it.(color online).

dius R0, ζ loses its distinctive peak-valley appearance

gradually.

The maximum radius attainable by the bubble gradually

increases with charge for a given driving frequency [23].

This can be understood from the fact that the presence

of charge on the bubble decreases the effective surface

tension. This causes the bubble to expand more easily

in the negative pressure field. A casual reading might

give rise to the observation that by the same argument,

the minimum radius reached by the bubble would like-

wise follow a similar trend, with Rmin for a charged bub-

ble having a larger value than that of a neutral bubble.

However, this is not so. It should be borne in mind that

Rmin is influenced by the maximal velocity the bubble

is able to reach. The greater the velocity, the smaller

the Rmin that it collapses to. Hence, perhaps counter-

intuitively, charged bubbles undergoing forced oscilla-

tions, will achieve smaller values ofRmin than electrically

neutral bubbles.

Thus presence of charge leading to greater bubble expan-

sion, in turn results in the bubble collapse being much
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more rapid and violent, shrinking the bubble volume

more than in the case of the uncharged bubble. This can

be seen in Figure (3) (left), where the minimum radius,

Rmin, reached by the bubble at the moment of collapse

is plotted as a function of the driving pressure Ps and R0

for the charged and uncharged bubble. As was shown in

greater detail in our earlier work [23], Rmin reduces with

increasing Q.

IV. INFLUENCE OF AMPLITUDE AND

FREQUENCY OF DRIVING PRESSURE FIELD

The maximum radial velocity of the bubble attained

during its collapse or contracting phase depends also on

the driving frequency, the charge present on the bubble,

as well as the amplitude of the driving pressure wave, as

also on the initial radius R0 of the bubble in its quiescent

state. Figure 5 are plots of the maximal radial velocity

as functions of the driving frequency (a) and pressure Ps

(b). There are several interesting features evident from

the figures.

The behaviour of vmax above Ps = Ptr is different from

that below it. The plots shown are for a bubble of R0 =

5µm for which Ptr = 1.12P0. Fig.(5a) shows that at Ps <

Ptr, vmax increases as a function of driving frequency ν

while for Ps > Ptr Fig.(5b), it decreases. Increasing the

driving frequency induces instability by producing large

amplitude oscillations.

For a given magnitude of pressure amplitude Ps, the

magnitude of charge present influences the dynamical

regime of the bubble. If the driving angular frequency of

the applied pressure wave is ω at a certain pressure ampli-

tude, for bubble oscillations to occur with some maximal

radial velocity Ṙ = c1, the charge present on the bubble

should have some minimum magnitude Q = Qmin(ω).

At low frequencies, even an uncharged bubble might os-

cillate at that velocity; however at higher frequencies, if

charge Q < Qmin, the radial bubble velocity would be

smaller than c1. This is because as frequency increases,
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FIG. 5: Maximum velocity vs (a) driving frequency, plotted

at 7 different Ps values and for zero & non-zero values of

charge; the Ps = 1.12P0 curves (number 6, darkest (Q = 0

black online) & just above that (Q = 1pC, dark green online))

correspond to the upper transient threshold pressure Ptr (for

R0 = 5µm) and clearly demarcate distinct behaviour for Ps >

Ptr and Ps < Ptr. (b) vmax vs. Ps for different frequencies

for R0 = 5µm, at 5 different driving frequencies (20 to 40

kHz, increasing from left to right), for zero (•) and non-zero

(Q = 0.4pC ,triangle) charge. (color online).

the bubble does not get sufficient time to complete its

expansion, so that its subsequent collapse occurs with

smaller radial velocity than if expansion to a greater size

had been done. The presence of charge reduces the sur-

face tension and encourages expansion to larger radial



8

dimension and the consecutive, more violent collapse to

a smaller radius.

That the change in Qmin(ω) with ω show a bifurcation

in the parameter space is clear from Figure 6. This tran-

sition from zero to non-zero Qmin occurs at an angu-

lar frequency ωH . For Ps = 1.35P0 and R0 = 5µm,

ωH = 23kHz. The magnitude of Qmin varies with driv-
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FIG. 6: Qmin versus frequency ω iso-velocity plots (v ≈ 1500

m/s) for a) R0 = 5µm, for Ps = 1.35P0 (Qmin is in pC, ω in

kHz); b) schematic illustrating the nature of the iso-velocity

plot, Qmin ∼ (ω−ωH)0.25; c) plot showing the dependence of

ωH on Ps for different values of R0 (curves 2,3,4,5,6,& 7 corre-

spond to corresponding R0 values in µm); d) plot illustrating

variation of (dωH/dPs) with R0. (color online).

ing frequency as

Qmin ≈ a(ω − ωH)b, (4)

where the prefactor a has appropriate dimensions and

depends on the value of the initial ambient bubble radius

R0, and b ≈ 0.25.

We could attempt to give a simple explanation for the

frequency dependence of Qmin. We could argue that for

a given value of constant maximal radial velocity c1, the

kinetic energy of the bubble would scale as the electro-

static contribution ∼ Q2/Rmin, so that Q2 ∼ a2c1Rmin,

a2 being a prefactor with appropriate dimensions. Since

for high applied pressures (that is, for values of Ps above

the Blake threshold pressure or of the order of or above

the upper transient threshold pressure) we know that the

minimum bubble radius scales as the two-fifths power of

the driving frequency Rmin ∝ ω2/5, it would follow that

Q2 ∝ c1ω
2/5 so that Q ∝ ω0.2, which is close but not

equal to the observed exponent of 0.25. Hence, this ar-

gument, while it serves to give a lower bound for Qmin,

is insufficient.

Proceeding more systematically therefore, we start by

making a linearization of the Rayleigh-Plesset equation.

Proceeding along the lines of [5], the driving sound pres-

sure is introduced through a small perturbation α, so

that the total external field Pext can be written as:

Pext = P0(1− α cosωt) (5)

The bubble oscillationsR(t) about the equilibrium radius

R0 can then be expressed as

R = R0(1 + x(t)) (6)

where x(t) is a small quantity of order α. Substituting

this equation in the Rayleigh-Plesset equation (1) and

linearizing it, we get

ẍ+ βẋ+ ω2

0
x = −Fext (7)

where the damping coefficient β, natural frequency of

oscillation ω0 of the bubble and Fext are given by

β =
1

ρcR0

(

1 + 4η
cρR0

)

(

4φ/R5

0
+

3Q2

8πǫR4

0

+
4ηc

R0

)

ω2

0 =
1

ρR2

0

(

1 + 4η
cρR0

)

(

5φ/R5

0 −
2σ

R0

+
4Q2

8πǫR4

0

)

(8)

Here only terms linear in x and its derivatives have been

retained and φ/R5

0
is the equilibrium gas pressure in the

bubble defined by

φ/R5

0
= (P0 − Pv +

2σ

R0

−
Q2

8πǫR4
0

). (9)
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The particular situation of looking for conditions where

the radial velocity is constant is thus implicitly satisfied.

In eqn.(7), Fext is given by

Fext = −Ps

(

1 +
R2

0
ω2

c2

)
1

2

(

R2
0
+ 4ηRo

cρ

)

× cos

(

ωt− arctan

(

c

R0ω

))

≈ −Ps

(

1 +
R2

0
ω2

c2

)
1

2

(

R2

0
+ 4ηRo

cρ

) cos

(

ωt−
π

2
+

R0ω

c

)

(10)

where in arriving at the last line of eqn.(10), use has

been made of the fact that R0ω
c ≪ 1. Scaling the time

as t̂ = ω0t for convenience, eqn.(7) can be solved exactly.

Dropping the hat (̂) over t for convenience of notation in

all of the following, the steady state part of the solution

is found to be

x = −

Ps

(

1 +
R2

0
ω2

c2

)
1

2

ρ
(

R2

0
+ 4ηRo

cρ

)

1

(ω2
0
− ω2)

2
+ ω2β2

×

(

(ω2

0
− ω2) cos(

ω

ω0

t+ θ) + ωβ sin(
ω

ω0

t+ θ)

)

(11)

v = ẋ = −

Ps

(

1 +
R2

0
ω2

c2

)
1

2

ρ
(

R2

0
+ 4ηRo

cρ

)

ω

ω0

ja
1

(ω2

0
− ω2)

2
+ ω2β2

×

(

−(ω2

0 − ω2) sin(
ω

ω0

t+ θ) + ωβ cos(
ω

ω0

t+ θ)

)

(12)

where θ denotes the phase.

Combining eqns.(11) and (12) we obtain

ω2

ω2
0

x2 + v2 =
ω2

ω2
0

P 2

s

R4

0
ρ2(1 + 4η

cρR0

)
2

1
(

(ω2

0
− ω2)

2
+ ω2β2

)

(13)

Again using eqn.(6) to rewrite x = R/R0 − 1 ,and

v = Ṙ/R0 in eqn.(13), we obtain after some algebra an

equation for ω:

ω4+
K

ρ2R4

0

(

1 + 4η
cρR0

)2
ω2+

G2

ρ2R4

0

(

1 + 4η
cρR0

)2
= 0 .

(14)

where

G = 5(P0 − Pv) +
8σ

R0

−
Q2

8πǫR4
0

K = −
2R2

0

c2
(c2ρ+ P0 − Pv)G+

R2

0

c2

(

4ηc

R0

− (P0 − Pv)

)2

−

R6

0
P 2

s ρ
(

1 + 4η
cρR0

)

[

ρR4

0

(

1 + 4η
cρR0

)

(R2 − 2RR0 +R2

0
) +GṘ2

] (15)

This leads to the following expression for ω

ω =
1

ρR2

0

(

1 + 4η
cρR0

)

×



−K ±

(

K2
− 4ρ2R4

0

(

1 +
4η

cρR0

)2

G2

)1/2




1/2

(16)

After a careful look at each of the terms in this equation,

we find that the dominant contribution of Q to dω/dQ

occurs as a cubic term :

dω

dQ
∼ a3Q

3, (17)

a3 being a prefactor with appropriate dimensions. In-

tegrating both sides of this equation between the limits

corresponding to Q = 0 and Q gives

ω − ωH ∼ a3Q
4, (18)

where ωH is the frequency for the bubble with zero charge

at which the Ṙmax = c1, so that

Q ∼ a′
3
(ω − ωH)1/4, (19)

(the prefactor a′3 having appropriate dimensions), repro-

ducing eqn.(4) that was obtained from an analysis of the

numerical results shown in the plots in Figure (6). Hence

it is very easy to predict the minimum charge Qmin re-

quired on a bubble at a given applied pressure amplitude

for attaining some particular value of the bubble’s radial

velocity, once ωH is known.

There is another interesting feature to be noted in this

transition. The value of the frequency ωH depends on

the magnitude of the amplitude Ps of the driving pres-

sure wave. Indeed, for a given ambient bubble radius R0,

ωH takes the simple linear form

ωH = b1 + b2Ps, (20)



10

0.4 0.6 0.8 1 1.2 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

 P
s
/P0 

 Q
h
 (

p
C

) 

 

 

ν = 20kHz
ν = 25kHz
ν = 30kHz

R
min

 < h

R
min

 > h

FIG. 7: Qh as function of Ps for a bubble of R0 = 2µm

for three different values of driving frequencies ν. The value

of Ps at which Qh = 0, increases with increasing frequency.

The physically reachable region is the area below the curve

corresponding to Rmin > h. The region above the curve cor-

responds to the (unphysical) regime where Rmin < h. (color

online).

where b1 and b2 vary with R0. This can be seen clearly

from the plot (Figure (6)c). A further functional depen-

dence of b2 on R0, that is, of the slope dωH/dPs on R0,

is also found (Figure (6)d), and is of the form

dωH

dPs
∼ R−0.9

0
. (21)

The maximal charge, Qmax, which a bubble can carry,

is bounded by the fact that beyond a value Qh of the

charge, bubble dimensions may reduce to below the value

of the van der Waals hard core radius for the gas enclosed,

which is physically untenable.

Hence, the value of Qh, the physically feasible maxi-

mal limit to the charge the bubble may carry, will be less

than Qmax for a particular R0. Moreover, it depends as

well on the amplitude of the forcing pressure Ps, with

Qh decreasing with increasing Ps and also with decreas-

ing driving frequency. Figure (7) show plots of Qh as a

function of Ps for three different driving frequencies, for

R0 = 2µm. Below a certain value of Ps, Qh becomes

nearly independent of frequency as well as Ps.

V. BIFURCATION DIAGRAMS

That the driving frequency influences the bubble

dynamics is unquestionable. Techniques of dynamical

systems theory have been used for long in the litera-

ture to understand bubble stability under variation of

parameters (see for example [19, 24–27]. Parlitz, et

al. [19] have, in their work, extensively investigated the

frequency bifurcation diagrams for the bubble radius at

various values of the driving amplitude pressure, Ps.

In Figs.(8-11) we have shown the bifurcation diagrams

for the maximum radial amplitude Rmax of the given

time series of the bubble, with the driving frequency as

the control parameter for R0 = 1.45µm, 2µm and 5µm

for uncharged and charged bubbles.

The bifurcation diagrams for various sets of parameters

are constructed by sampling the time series after making

sure the transients have decayed, for every time period

T = 1/ν of the external acoustic driving pressure elapsed.

These sample points are precisely the points of intersec-

tion of the trajectories in phase plane with the Poincare

cross section, and the orbit formed by the points repre-

sents the Poincare map. The bifurcation diagram is then

constructed by plotting the sampled points calculated for

a range of values of the control parameter (frequency or

charge) and then plotting it with the control parame-

ter on the horizontal axis and the sampled points on the

vertical axis.

In the response curves where period-doubling bifur-

cations occur, the branches always merge back to give

period-1 oscillations.

The presence of non-zero charge on the bubble ad-

vances period-doubling bifurcations with the driving fre-

quency as the control parameter. This is demonstrated in

the bifurcation diagrams in Figs.(8-9). For an uncharged

bubble with ambient radius R0 of 2microns at a driving



11

a b

c d

FIG. 8: Bifurcation diagram of a bubble oscillator with driv-

ing frequency as the control parameter, and for R0 = 2µm

and (top): Ps = 1.2P0 (i.e., Ps < Ptr), and (bottom):

Ps = Ptr = 1.3P0. Q = 0 in (a) and (c), and Q = 0.2pC in

(b) and (d).

pressure of 1.2P0, period doubling is first seen at around

720kHz for the uncharged bubble, while the presence of

0.2pC charge advances it to about 600 kHz (Fig.(8, a,b)).

We observe that there are no chaotic regimes present at

least till driving frequencies of 1000kHz for low driving

pressures such as this.

Figs.(8-10) show that increasing the external pressure

Ps also has the effect of advancing the succession of

period-doubling-period-halving bifurcations both for the

charged as well as for the uncharged systems. For in-

stance at 1.3P0 (Figs.8 c,d), the first period doubling bi-

furcation occurs at a forcing frequency of approximately

320kHz, followed by period halving bifurcation at 350kHz

leaving period 1 oscillations, whereas on introduction of

charge Q = 0.2pC, the first period doubling bifurcation

makes its appearance much earlier, at about 295 kHz,

only to merge back to period 1 oscillations through a pe-

riod halving bifurcation at 315 kHz. As one increases the

driving frequency further, one observes the occurrence of

FIG. 9: Bifurcation diagram with respect to driving frequency

of a bubble oscillator with R0 = 2µm and Ps = 1.4P0 for

an uncharged bubble (top) and having charge Q = 0.2pC

(bottom). (Note that Ps > Ptr.)

a sequence of period-doubling - period-halving bifurca-

tions.

It should be noted that the chaotic regions make their

appearance at the upper transient threshold pressure Ptr

(which for an uncharged bubble of R0 = 2µm is 1.3P0),

and become more prominent for Ps > Ptr (Fig.9).

At large driving pressures, bands of chaotic regimes

are present at high values of the forcing frequency, in

agreement with observations of time series data. We
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FIG. 10: Bifurcation diagram with respect to driving fre-

quency of a bubble oscillator with R0 = 5µm and for Q =

0.8pC. The driving pressure Ps = 1.4P0 (Here, Ps > Ptr).

Successive images (b,c,d) show magnification of preceding in-

sets showing period-doubling and chaos.

show this in Figs.(9) for Ps = 1.4P0 : chaotic behaviour

is seen to be present even at around 270-300kHz for

charged and uncharged bubbles.

In Figs.(10) the sequence of period-2 and period-1

oscillations generated is shown for a slightly larger

bubble, with R0 = 5µm and bearing charge Q = 0.8pC,

driven at pressure amplitude Ps = 1.4P0.

From these observations and other plots (not shown

here) we deduce that the maximal radial amplitude

of the bubble of a given equilibrium radius R0 shows

chaotic behaviour as a function of the driving fre-

quency ν, for Ps ≥ Ptr at large values of ν. It

was shown in [23] that Ptr = 1.12P0 for R0 = 5µm

and Ptr = 1.3P0 for R0 = 2µm for the uncharged bubble.

For smaller frequencies, such as in the sonolumines-

cent regime, the presence of charges do not appear to

introduce period-doublings in the system. However, the

a

b

FIG. 11: Bifurcation diagram of a bubble oscillator with driv-

ing frequency as the control parameter for a smaller bubble.

R0 = 1.45µm and Ps = 1.4P0.

(a) Q = 0; (b) Q = 0.1pC.

effect of charges in bringing about drastic changes in the

bubble stability is more pronounced for smaller values of

R0. This is demonstrated in Figs.(11 a,b) for a bubble

with R0 = 1.45µm and driving pressure amplitude Ps of

1.4P0.

The presence of 0.1pC charge on the bubble (Figs.(11b))

induces a period-doubling bifurcation at a driving fre-

quency of 880 kHz followed in quick succession by a

period-halving bifurcation at 1040 kHz. These are ab-

sent for an uncharged bubble (Fig.(11a)).
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FIG. 12: Bifurcation diagram of a bubble oscillator with

charge Q as the control parameter, and with R0 = 2µm and

Ps = 1.4P0 and at ν = 300kHz. Non-chaotic windows are

seen, most prominent one centred around Q = 0.125pC.

In Fig.(12) we obtain the bifurcation diagram of a bub-

ble of R0 = 2µm driven by sonic pressure amplitude of

1.4P0 and frequency 300 kHz with charge as the con-

trol parameter. The choice of 300 kHz for the driving

frequency has been made using the bifurcation diagram

with frequency as the parameter (Fig.(9)) where the sys-

tem is just beginning to get chaotic at this frequency. In

Fig.(12) we see an interesting non-chaotic region centered

around Q = 0.125pC with period-doubling and period-

halving cascades. While constructing the bifurcation di-

agrams care has been taken to ensure that we work only

within the range of charges permissible for a bubble of a

given ambient radius.

VI. THE COLLAPSING BUBBLE: FREQUENCY

& CHARGE DEPENDENCE OF TEMPERATURE

Investigating the maximum temperature as a function

of the driving frequency, we obtain the interesting re-

sult that there exist two distinct domains of behavior of

Tmax depending upon the amplitude of the driving pres-

sure, Ps.

At lower pressures, i.e, for Ps < Ptr (for example for

Ps = 1.1P0 for R0 = 5µm), Tmax increases with driv-

ing frequency. However, as this value of Ps falls in the

vicinity of the transient threshold in the unstable regime

(Fig.(4a)), we would expect Tmax to show large oscilla-

tions with frequency, as is also seen in Fig.(13a).

At higher pressures, i.e, for Ps > Ptr (for example for

Ps = 1.25P0 for R0 = 5µm), the maximal temperature’s

frequency dependence is the opposite, with Tmax decreas-

ing uniformly with increasing frequency, showing oscil-

latory behavior (Fig.(13b)). Tmax shows a frequency-

dependence of the form

Tmax = a4 × (ν − a5)
−4/5, (22)

a4 and a5 being constants with appropriate dimensions.

This is understood by recalling that the temperature is

obtained from

T = T (0)

(

R3

0 − h3

R3 − h3

)2/3

, (23)

for Γ = 5/3. Making the approximation that (h/R0)
3 <

1 and also that (h/R)3 < 1 is sufficiently small at most

values of R, we can approximate Eqn.(23) by

T ≈ T (0)R2

0/R
2. (24)

Since at regimes at or near the Rayleigh collapse, R(t) ∼

ω2/5, it immediately follows that

T (t) ∝ ω−4/5. (25)

Values of Tmax at lower pressures are less than that at

higher pressures. Temperature Tmax rises steeply with

pressure Ps after some critical value of the pressure that

equals the upper transient pressure threshold. Temper-

ature calculations have also been reported by Wu and

Roberts [28] and Yasui [29] giving high magnitudes of

the temperature. The presence of charge serves to reduce

the pressure at which a maximum temperature Tmax is
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FIG. 13: Maximum temperature Tmax vs. ν for different

values of charge Q at (a) Ps = 1.1P0 (lower / medium

pressure,Ps < Ptr) & (b) Ps = 1.25P0 (high pressure, Ps >

Ptr); the contrasting behavior above and below Ptr can be

seen. (color online).

reached. As seen in Fig.(5b), increasing the driving fre-

quency shifts the curves to the right, i.e., the same maxi-

mal bubble velocity vmax that is obtained at some driving

frequency ω1 for a pressure amplitude Ps1 is reached for

a higher frequency ω2 > ω1 only at a higher pressure

Ps2 > Ps1. Figs.(5b) and (14) where vmax vs. Ps, and

Ptr vs. Q and Tmax vs. Q plots respectively are shown

for R0 = 5µm and 2µm for charged and uncharged bub-

ble at different driving frequencies, illustrate the effect
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FIG. 14: (a) Ptr decreases with increasing Q over all driving

frequencies. At a given charge, higher driving frequencies

imply higher Ptr. (b) The Ptr −Q curves when scaled by Ptr

at Q = 0, Ptr0, all fall on a master curve obeying eqn.(26).

(c) Tmax vs. Q curves plotted at pressure value equalling the

corresponding upper transient threshold value Ptr for that

particular value of Q, all fall nearly on the same curve. Plots

are for R0 = 2µm. (color online).

of driving frequency and charge on bubble velocity, tem-

perature and the location of the upper transient pressure

threshold.

The net effect of charge is to raise the possible Tmax

for a bubble in comparison to the uncharged bubble. A

comparative plot of Tmax reached at the upper transient
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threshold pressure Ptr as a function of charge Q is shown

for a few values of the driving frequency ν in Fig.(14).

The temperature Tmax increases with charge Q for all

forcing frequencies.

The value of Ptr (for a given bubble-charge,Q) increase

with ν. Ptr at a given driving frequency decreases with

increasing Q. The dependence of Ptr on Q over all fre-

quencies can be captured by a normalized plot of Ptr/Ptr0

against Q, where Ptr0 is the upper transient threshold

pressure value at zero charge, for a given frequency. This

yields a master curve approximately obeying a relation

of the form

Ptr =
Ptr0

1 + 0.794Q2
, (26)

as seen in Fig.(14b). The maximal value of temperature

Tmax reached in a driven oscillating bubble, at the cor-

responding, respective Ptr (which varies with ν and Q),

over all values of charge Q, seems almost independent of

the driving frequency ν, as shown in Fig.(14c).

At higher pressures, beyond the upper transient

threshold pressure, bubble velocities become larger and

of the order of c. We argue that the maximal kinetic

energy 1

2
MṘ2 ≈ 1

2
Mc2 would approximately equal the

dominant electrostatic contribution to the potential en-

ergy Q2/(4πǫR0), so that using M = 4πR3

0
ρ/3, Q2 ∼ R4

0
.

This argument is independent of the driving frequency at

which the bubble is being forced. At a sufficiently high

charge Qmax, a bubble of ambient radius R0 will col-

lapse to the same minimum radius Rmin, independent of

the driving frequency of the forcing pressure amplitude.

However, this Qmax value will typically be greater than

QH , the upper bound imposed on the charge Q by the

physically realistic requirement that Rmin does not go

below the van der Waals hard-core radius. Thus while

this results in QH being the greatest, physically realistic

value of charge that a bubble can carry, we can still read

off the value of a larger Q = Qmax from Rmin vs Q plots

at high driving pressures, by identifying the Q at which

frequency independence of the curves sets in and all the

curves for different driving frequencies all converge to the

same Rmin. More detailed discussions ofRmin dependen-

cies are included in our earlier work [23], and we do not

show the plots here.

Hence a comparative estimate of this maximal charge a

bubble can carry, Qmax, for two different values of the

initial bubble radius R0, say, R0a and R0b, would be ob-

tained from

(

R0a

R0b

)2

∼

(

Qmaxa

Qmaxb

)

, (27)

(for larger bubbles, of order O(µm) and above). This is

essentially a statement that the maximal surface charge

density a bubble can carry is approximately same re-

gardless of its initial ambient radius for micrometer and

larger bubble radius, given that all other system pa-

rameters like the surface tension, pressure conditions,

viscosity, etc. remain unchanged, while the influence

of the effective surface tension (including the correc-

tion for charge present) is predominant in the submicron

range. Indeed, for sub-micron and at very small bubble

sizes where the surface tension and charge terms become

just comparable, we would have instead (comparing elec-

trostatic energy with surface tension or elastic energy)

Q2/R0 ∼ kR2

0
= mω2

bR
3

0
, with k = mω2

b being an ef-

fective spring constant and ωb some natural frequency

and m the oscillator mass, so that on substituting for

m = (4/3)πρR3

0
, we get

(

R0a

R0c

)3

∼

(

Qmaxa

Qmaxc

)2

(28)

for two different values of the initial bubble radius R0,

R0a and R0c.

That such a non-rigorous approach cannot give any ac-

curate numbers is obvious. Nonetheless, it is useful in

giving us rough estimates of the maximal charge that

the bubble can carry, in the absence of a constraint such

as that imposed by the van der Waals hard-core radius.

A comparison of the numbers so obtained in this rough

and ready way to that obtained from the numerical re-

sults is given below in Table 1 for three different values
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of ambient bubble radius R0, at Ps = 1.35P0.

TABLE I: Qmax ratio from Eqn.(27) (through R0 ratio) com-

pared with numerical values of Qmax from data.

Table 1

R0a R0b Qmaxa Qmaxb

(

R0a

R0b

)

2
(

Qmaxa

Qmaxb

)

2 µm 5 µm 0.23 pC 1.24 pC 0.16 0.18

10 µm 2 µm 4.7 pC 0.23 pC 25.0 20.43

10 µm 5 µm 4.7 pC 1.24 pC 4.0 3.79

VII. CONCLUSIONS

The presence of charge on a bubble suspended in a fluid

influences the bubble’s oscillations under ultrasonic forc-

ing, and some of the aspects of the dynamics have been

addressed in this work, taking the polytropic constant

Γ = 5/3 which governs the equation of state for adiabatic

heat transfer. A dimensionless constant ζ which we intro-

duced in an earlier work [23] helps us to identify clearly

the Blake threshold and the upper transient threshold Ptr

for acoustic cavitation. We use this to understand the

influence of driving pressure Ps and frequency ν of the

applied ultrasonic field on the bubble oscillations. The

presence of charge reduces the effective surface tension on

the bubble walls so that its maximum radius Rmax at-

tained during the expansion phase is larger than when it

is uncharged; similarly the minimum bubble radius dur-

ing collapse Rmin is much smaller in magnitude when the

bubble is charged. The charged bubble undergoes a more

violent collapse, achieving far higher temperatures in its

interior in comparison with the uncharged one. We find

that when Ps < Ptr, the maximum temperatures Tmax

achieved in the bubble increase with increasing ν and

charge. For Ps > Ptr, Tmax obeys a power law decrease

with respect to ν, with an exponent of -4/5. The power

law behaviour is also obtained analytically through scal-

ing arguments near the regime of Rayleigh collapse.

Bifurcation diagrams of the maximal radial amplitude

of the bubble as a function of the driving frequency show

the presence of chaotic regimes for Ps ≥ Ptr for any given

ambient bubble radius at fairly large driving frequencies.

The route to chaos is through period-doubling followed

by period-halving bifurcations. The effect of charge is to

always advance these bifurcations. At the lower end of

the ultrasound spectral range, for instance in the sonolu-

minescent regime, the presence of charges do not appear

to induce any period-doublings.

Consistent with the fact that the presence of charge has

a greater dominating effect over surface tension on bub-

bles of smaller equilibrium radii [23], the bifurcation di-

agrams demonstrate that the effect of charges in dras-

tically changing bubble stability is more pronounced for

smaller bubbles.

We obtain also the bifurcation diagram of the maxi-

mal radial amplitude at any given Ps as a function of

the charge at large driving frequency. Here too, period-

doublings and period-halvings are seen interspersed with

large chaotic regimes.

We obtain analytically an estimate of the minimum

chargeQmin required on a bubble at a given magnitude of

applied pressure to attain a certain value c1 of the bubble

radial velocity. We find that this is related by a simple

power law to the driving frequency of the acoustic wave.

We show that above a critical frequency ωH , uncharged

bubbles necessarily have to oscillate at velocities below

c1. The calculations are reproduced numerically also.

Further, ωH depends upon Ps.
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