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We show that no orthogonal arrays OA(16λ, 11, 2, 4) exist with λ = 6 and 7. This
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Introduction
In the Fifth International Students’ Olympiad in Cryptography NSUCRYPTO’2018

[1, 2] the following problem was stated. Given three positive integers n, t, and λ such that
t < n, we call a λ2t × n binary array (i.e., matrix over the two-element field) a t− (2, n, λ)
orthogonal array if in every subset of t columns of the array, every (binary) t-tuple appears
in exactly λ rows; t is called the strength of this orthogonal array. Find a 4 − (2, 11, λ)
orthogonal array with minimal value of λ. So far, the best known answer to this question
is λ = 8. Delsarte’s Linear Programming Bound [3, Theorem 4.15 and Table 4.19] implies
λ > 6.

In this short note, we use the terminology of the monograph [3] and we denote a
t− (2, n, λ) orthogonal array by OA(2tλ, n, 2, t). The integers N = 2tλ and n are called the
number of runs and the number of factors of the array. In an orthogonal array, the same
row can occur multiple times. The orthogonal array is simple, if each row occurs exactly
once.

Our solution to the problem is stated in the following theorem.
Theorem 1. No orthogonal arrays OA(16λ, 11, 2, 4) exist with λ = 6 and 7.
A Boolean function f : Fn2 → F2 is correlation-immune of some order t < n (in brief,

t-CI) if fixing at most t of the n input variables x1, . . . , xn does not change the output
distribution of the function, whatever are the positions chosen for the fixed variables and
the values chosen for them. Equivalently, the support of the function must be a simple
binary orthogonal array of strength t [4, 5]. The weight of a Boolean function is the size of
its support. Low weight t-CI Boolean functions have practical importance in cryptography,
since they resist the Siegenthaler attack. Furthermore, t-CI Boolean functions allow reducing
the overhead while keeping the same resistance to side channel attacks; see [5] and the
references therein.
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Theorem 1 allows us to determine the minimum weights of tth-order correlation-immune
Boolean functions in n variables,

n ∈ {11, 12, 13}, t ∈ {4, 5}.

These values were marked as unknown in [4, Table 2] and [5, Table 2].
We would like to thank Claude Carlet (Paris, France and Bergen, Norway) for his

detailed comments on the previous version of this paper.

1. Proof of the theorem
Our proof uses the results [6 – 9]. D.A. Bulutoglu and F. Margot [6] used integer linear

programming (ILP) methods, while the algorithms [7, 8] are based on the systematic study
of the extensions of orthogonal arrays by new columns. Moreover, both approaches must
deal with the isomorphism problem of orthogonal arrays.

Proof of the Theorem 1. From [6, Table 1], [7, Table III] and also [9] we can see that
no OA(96, 8, 2, 4) and no OA(112, 7, 2, 4) exist. We explain the relevant rows of the two
tables. In [6, Table 1] there are 4 columns with the following meanings (see Table 1):
— OA gives the parameters of the classified orthogonal array;
— m′ is the number of linearly independent equality constraints of the generated ILP

problem;
— pmax is an upper bound on the maximum number of times a run can appear in an

OA(2tλ, n, 2, t);
— h is the number of non-isomorphic orthogonal arrays with the given parameters.

Ta b l e 1

OA m′ pmax h
OA(96, 8, 2, 4) 163 2 0
OA(112, 7, 2, 4) 99 3 0

From this table we can see that if λ = 6 then no orthogonal array exists with n = 8, which
implies that no OA exists with n > 8. Similarly if λ = 7 then no orthogonal array exists
with n = 7, thus no OA exists with n > 7.

In [7, Table III] (see also Table 2) orthogonal arrays with strength 4 are included, where
— N gives the run-size of the classified orthogonal array;
— the notation 2a for the factor set means a binary array with a factors;
— amax is the maximum number a, such that there exists an OA with N runs and a factors;
— the numbers ma, a ∈ {t + 1, . . . , amax}, in the last column denote the number of

isomorphism classes of arrays with N runs and a factors.

Ta b l e 2

N Factor set amax Isomorphism classes
96 2a 7 4, 9, 4
112 2a 6 4, 3

This means that with run-size 96 the maximum number a such that an OA(96, a, 2, 4)
exists is 7, and with run-size 112 the maximum number a with an existing OA(112, a, 2, 4)
is 6.

Remark 1. According to [8], the number of isomorphism classes of binary orthogonal
arrays with run-size N = 128, factor-size n = 11, and strength t = 4 is 477. The papers [6, 7]
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claim to achieve the above results within a few seconds. Using SageMath [10], the GLPK
package [11] and the integer linear programming solver SCIP [12], a straightforward
implementation of the formulas of [6] used 51 630 s and 481 s CPU time for the nonexistence
of OA(96, 8, 2, 4) and OA(112, 7, 2, 4), respectively.

2. Minimum weight of correlation-immune Boolean functions
Using the notation of [3], we denote by F (n, 2, t) the minimal number of runs N in

any OA(N, n, 2, t) for given values n and t. Theorem 1 says that F (11, 2, 4) > 128, and in
fact, equality holds. Let ωn,t denote the minimum weight of t-CI Boolean functions in n
variables. Equivalently, ωn,t is the minimum number of runs in a simple orthogonal array
with number of factors n and strength t. Hence,

F (n, 2, t) 6 ωn,t. (1)

Suppose A is an OA(N, n, s, t). As in [3, p. 5], one can construct an OA(N/s, n−1, s, t−1),
say A′. Clearly, if A is simple then A′ is simple too. This implies

F (n− 1, 2, t− 1) 6
1

2
F (n, 2, t),

ωn−1,t−1 6
1

2
ωn,t. (2)

We are now able to fill some unknown values of [4, Table 2] and [5, Table 2].
Proposition 1. For the minimum weight of t-CI Boolean functions in n variables, we

have

ω11,4 = ω12,4 = ω13,4 = ω14,4 = ω15,4 = 128; (3)
ω11,5 = ω12,5 = ω13,5 = ω14,5 = ω15,5 = ω16,5 = 256. (4)

Proof. The Nordstrom—Robinson code and also Sloane gives a simpleOA(256, 16, 2, 5),
see [1, 13, 14]. Straightforward computation shows that deleting the last 5 columns of it,
the resulting orthogonal array is simple. Hence, ωn,5 6 256 for n ∈ {11, . . . , 16}. By (2),
ωn,4 6 128 for n ∈ {10, . . . , 15}. Theorem 1 implies F (n, 2, 4) > 128 for n > 11. From (1)
and (2) follow (3) and (4).
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