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1. Introduction

Quantum transport is one of the most common – and at the 
same time most tedious – concepts in condensed matter physics 
dating back to the beginning of mesoscopic physics when the 
first transport algorithms were developed [1–7]. Solving a quan-
tum transport problem provides access to currents, conductances, 
density of states, and other key properties of nanosystems includ-
ing novel structures such as topological insulators, for example.

In this paper we present tinie: a modern, versatile implemen-
tation of the Green’s function method for solving the equilib-
rium quantum transport properties of a generic two-dimensional 
(2D) nanostructure. 2D systems are not only convenient theoreti-
cal models, but they are also experimentally realizable in various 
settings including, e.g., semiconductor structures [8–11], quantum 
Hall systems [12,13], topological insulators [14,15], quantum dots 
[9–11,16–21], graphene [22–24] and other single-layer atomic sys-
tems. Nevertheless, we point out that the core functionalities of 
our implementation can be directly extended to three-dimensional 
systems.

Although the Green’s function formalism (see, e.g., Refs. [25–
27]) used in our program has been employed before [28–32], tinie

approaches the quantum transport problem from a different point 
of view by separating it into two parts: (i) the eigenvalue problem 
of a closed system and (ii) the transport in a connected system. 
The first task is outsourced to external packages which can be cho-
sen optimally for a given eigenvalue problem. The transport part 
can then be performed by employing the presented software pack-
age tinie.

By default, tinie is designed to be compatible with itp2d pack-
age [33] which is optimized for solving tens of thousands of eigen-
states of the time-independent Schrödinger equation for an arbi-
trary external potential, allowing various experimentally relevant 
shapes for quantum dots, for example. The itp2d package utilizes 
the imaginary time propagation method [34–36], which is partic-
ularly suited for 2D problems with perpendicular magnetic fields 
due to the existence of an exact factorization of the exponential ki-
netic energy operator in a magnetic field [34,37,38]. However, tinie

is directly compatible with other eigenfunction solvers as well. In 
addition, it is straightforward to combine tinie with real-space 
electronic-structure methods based on density-functional theory, 
e.g., the octopus code package [39].

After solving the given eigenvalue problem, the quantum trans-
port properties of an open system can be determined by employing 
the versatile numerical environment given by tinie. As an input, 
the transport code only requires the eigenenergies of the closed 
system and the matrices describing the coupling between the con-
sidered system and the attached leads. A tool for computing these 
coupling matrices is included. In general, tinie provides a way to 
study equilibrium quantum transport in a multi-terminal system 
with an arbitrary lead configuration at zero and finite tempera-
ture, even in the presence of an external, homogeneous magnetic 
field. tinie is written in modern Python (version 3.6). Furthermore, 
it offers a modular platform that can be easily extended without 
sacrificing the speed or user-friendliness.

The structure of the paper is as follows: In Sec. 2, we introduce 
the quantum transport scheme behind our implementation, which 
is described in Sec. 3. In Sec. 4, we present numerical results of a 
few prototype systems simulated with tinie. We finish with a brief 
discussion and the summary of the paper in Sec. 5.

2. Theoretical background

In order to give a self-contained presentation, we consider first 
the conventional Landauer-Büttiker approach within the Green’s 
2

function formalism, which forms the theoretical basis for the quan-
tum transport routines in tinie. A reader who is already familiar 
with the formalism can advance directly to Sec. 3, where we de-
scribe the design of our implementation in detail.

2.1. Landauer-Büttiker formalism

A generic framework for quantum transport is covered by a 
scattering formalism (see, e.g., Ref. [25]). Instead of describing 
states in a closed geometry, we consider the scattering of elec-
trons in a finite system, or a quantum device, coupled to infinite 
leads. The formalism developed by Landauer [1,6] and later com-
plemented by Büttiker [5,7] provides an intuitive physical descrip-
tion for a current flowing in a nanoscale or mesoscopic structure. 
The system is composed of reservoirs acting as leads and a cen-
tral part – or conduction device – that describes a molecule or a 
quantum well, for example. The electronic current is understood in 
terms of transmission probabilities for an electron traveling from 
one reservoir to another through the conducting device. In the 
steady-state regime, the measured current in a reservoir is the 
difference between the currents flowing in and out of the reser-
voir.

Derived from the time-dependent Schrödinger equation [40,41], 
the Landauer-Büttiker formula gives a microscopic understanding 
for a tunneling current in a transport setup. The leads are initially 
uncoupled to the central conducting device, being in equilibrium at 
different chemical potentials. After the coupling between the leads 
and the central device is switched on, the Landauer-Büttiker for-
mula is recovered as the long-time limit t → ∞ of the expectation 
value of the current operator. However, the idea of instantaneous 
attaching of the leads to the central device is experimentally un-
reasonable. Thus, an alternative approach has been presented in 
Ref. [42]. Here, the whole system is assumed to be already ini-
tially connected but in equilibrium at a unique chemical potential, 
which is driven out of equilibrium by an applied bias voltage. 
Even though the initial point of view is different in this approach, 
the same Landauer-Büttiker formula is recovered. As was shown 
later in Ref. [43], the initial preparation of the system does not 
affect the steady-state limit described by the Landauer-Büttiker 
formula.

The formalism of Landauer and Büttiker may also be rigorously 
derived from the microscopic theory based on the non-equilibrium 
Green’s function formalism (see, e.g., Ref. [27]). The interpretation 
of the system’s properties in terms of Green’s functions is therefore 
completely equivalent to the Schrödinger equation. Furthermore, 
the Fisher-Lee relation [2] connects the non-equilibrium Green’s 
function formalism to the mathematically equivalent wave function 
formulation of the scattering problem. When applied to quantum 
transport, the non-equilibrium Green’s function method enables 
the calculation of currents in a multi-terminal system for all times. 
The steady-state value of current agrees with the Mier-Wingreen 
formula [44,45], under the assumptions that initial correlations 
and initial-state dependencies are washed out in the limit t → ∞, 
and, in the same limit, the invariance under time translations is 
reached. Restricting to the non-interacting case, the well-known 
Landauer-Büttiker formula [1,7] is again obtained for the steady-
state current.

2.2. Transport setup

The Landauer-Büttiker formalism offers a physically appeal-
ing first-principle approach to study steady-state currents in con-
ducting quantum device such as a quantum dot [46] (QD) or a 
molecule. We look at a specific setup of partitioning the system 
of interest into leads and a QD. The structure of a transport setup 
is illustrated for a three-terminal system in Fig. 1. In general, the 
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Fig. 1. Typical setup of a multi-terminal transport system. In this case, three leads 
are coupled to the quantum device.

Hamiltonian of the studied transport system can be divided into 
the block form of⎛
⎜⎜⎜⎜⎜⎝

H L1 0 0 · · · 0 V 1
0 H L2 0 · · · 0 V 2
...

. . .
...

...

0 0 0 · · · H LN V N

V †
1 V †

2 · · · V †
N HC

⎞
⎟⎟⎟⎟⎟⎠ .

Here it is assumed that the leads α = 1, . . . , N are coupled only 
through the QD and the direct couplings between the leads are 
zero.

To determine the electric transport through the QD, we need 
three distinct elements appearing in the partition above: the 
Hamiltonian ĤC of the QD, the Hamiltonians Ĥ Lα of all the at-
tached leads, and the coupling V̂α between each lead and the QD. 
In particular, the eigenenergies {EC } and the corresponding states 
{|ψC 〉} of the isolated QD can be obtained by interfacing with a 
suitable eigenvalue solver, such as itp2d [47]. Secondly, the eigen-
functions {|ψLα 〉}α and their energies are assumed to be either 
known analytically, or they can be solved numerically. For con-
venience, here we use the Latin indices for the individual states in 
the lead, whereas the Greek indices refer to the entire lead. Finally, 
the couplings defining the connection between the leads and the 
QD can be either provided manually, or estimated numerically as 
discussed below in Sec. 3.2.

2.3. Embedding self-energy technique

The blocks of a transport setup are combined together for quan-
tum transport within the embedding self-energy technique. Here the 
open system of a device connected to the reservoirs is mapped to 
a closed system, where the leads are taken into account as self-
energy terms. Similar self-energy terms also capture the effects 
of the electron-phonon and electron-electron interactions, which 
are neglected here. The term embedding [25–27] highlights the fact 
that the considered self-energies stem from the coupling between 
the central region and the lead environment. They can be viewed 
to result in an effective Hamiltonian arising from the interaction of 
the QD with the leads.

The dynamics of an electron in a QD is encoded in retarded and 
advanced Green’s functions [27]:

Ĝ R(ω) =
[
ω1 − ĤC −

∑
α

�̂R
α(ω)

]−1

,

Ĝ A(ω) =
[
ω1 − ĤC −

∑
�̂A

α(ω)

]−1

,

(1)
α

3

where 1 is the identity operator. The couplings to the terminals 
are now taken into account by introducing the embedding retarded 
and advanced self-energies, which are defined, respectively, as

�̂R
α(ω) = V̂ †

α g R
α(ω)V̂α and �̂A

α(ω) = V̂ †
α g A

α(ω)V̂α, (2)

where Vα describes the coupling of the lead α to the QD, and 
g R
α(ω) and g A

α (ω) are the retarded and advanced Green’s functions 
of the lead α at energy ω, respectively (see, e.g., Ref. [27]). In the 
terms of the lead Hamiltonian H Lα , these Green’s functions are

g R
α(ω) =

[
(ω + iη)1 − Ĥ Lα

]−1

g A
α(ω) =

[
(ω − iη)1 − Ĥ Lα

]−1
.

The positive infinitesimal η accounts for the proper causal struc-
ture in the retarded and advanced Green’s functions: the retarded 
Green’s function is analytic in the upper-half of the complex plane, 
whereas the advanced function is analytic in the lower-half of the 
plane. We could have included an infinitesimal imaginary part in 
the Green’s functions in Eq. (1) as well, but the self-energy stem-
ming from the coupling to leads effectively gives rise to a finite
imaginary contribution that will swamp it.

For each lead α, we associate a rate operator [27], or a level-
width function, which is given by the difference of the self-
energies as

�̂α = i
[
�̂R

α(ω) − �̂A
α(ω)

]
. (3)

Thus, the imaginary part of the embedding self-energy func-
tions (2) gives rise to the broadening of the energy levels. Intu-
itively, the real part of the embedding self-energy could be ab-
sorbed into the Hamiltonian of the device, therefore only shifting 
the poles of the Green’s function, whereas the imaginary part of 
the embedding self-energy gives the width of the peaks. In a phys-
ical view, the coupling of the QD to the leads shifts its energy 
levels arising from the real part of the embedding self-energy. 
However, these levels have a finite life-time as an electron can es-
cape from the QD to the leads, or vice versa, which is characterized 
by the rate-operators.

Similarly, one often encounters a difference of the retarded and 
advanced Green’s functions, known as the spectral function [27],

Â = i
[

Ĝ R(ω) − Ĝ A(ω)
]
.

Since the spectral function describes the spectral density in the 
QD due to the lead self-energy, we may weigh the function by the 
occupation probability and integrate over the energy to obtain the 
non-equilibrium density matrix for the QD:

ρ̂ =
∫

dω

2π
fFD(ω − μ) Â(ω),

where μ is chemical potential, and the Fermi-Dirac function with 
temperature T is defined as

fFD(ω; T ) =
(

eω/T + 1
)−1

.

In the absence of interactions, the steady-state current can be 
expressed in the terms of the transmission between two distinct 
leads α and β [25–27] as

Tαβ(ω) = Tr
[

Ĝ R(ω)�̂β(ω)Ĝ A(ω)�̂α(ω)
]

(4)

The transmission Tαβ is directly related to the probability for an 
electron of energy ω to be transmitted from the reservoir α to 
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the reservoir β via the QD. On the other hand, the backscattering 
transmission α = β is given by

Tαα(ω) = Tr
[(

1 − i�̂α(ω)Ĝ R(ω)
)(

1 − i�̂α(ω)Ĝ R(ω)
)]

. (5)

The current contribution from the reservoir α to the reservoir 
β is described by the partial current

iαβ = 2
∫

1

2π

[
fFD(ω − Vα − μ; T )

− fFD(ω − Vβ − μ; T )
]
Tαβ(ω)dω.

(6)

The factor of two in front of the integral stems from the spin de-
generacy. The total current is then determined as a sum over all 
partial currents for the particular lead:

Iα =
∑
β

iαβ.

It should be emphasized that the total current is unaffected by 
the backscattering (5), as the partial currents vanish for the case 
α = β . In the linear response regime, the total current acquires an 
Ohmic form of

Iα =
∑
β

Gαβ

(
Vα − Vβ

)
,

where the average conductance Gαβ is

Gαβ(ω) = 2

2π

∫
Tαβ(ω′) 1

4T
sech2

(
ω′ − ω

2T

)
dω′, (7)

with FTH(ω) being the thermal broadening function determined as

FTH(ω) = 1

4T
sech2

( ω

2T

)
at temperature T (see, e.g., Ref. [25]). Furthermore, in the zero-
temperature limit, the conventional Landauer-Büttiker formula [1,
5–7] is recovered:

lim
T →0

Gαβ(ω) = 2

2π
Tαβ(ω). (8)

2.4. Gauge transformation for a magnetic field

In case of a non-zero perpendicular and constant magnetic field 
B, we must make sure that the gauge of the vector potential A is 
consistent with the various choices of the frame of reference of the 
central region and its accompanying reservoirs.

The inclusion of an external magnetic field in tinie is one of its 
novelty factors. We assume that the vector potential of the central 
region is of the linear gauge form A = −B yx̂. This choice for the 
gauge provides us with solutions to the Schrödinger equation that 
are separable in x and y coordinates, i.e., we may express ψ(x, y)

as ψ(x, y) = φ(x)χ(y) if ψ(x, y) is a viable solution.
Let us suppose we have a reservoir, which is rotated by an 

arbitrary angle θ and centered at (x0, y0) with respect to the ori-
gin, which we assume to be the center of the central region. We 
are then provided with the reservoir eigenfunctions of the form 
ψ̃(x̃, ỹ), where

x̃(x, y) = (x − x0) cos θ + (y − y0) sin θ

ỹ(x, y) = −(x − x0) sin θ + (y − y0) cos θ.
(9)

Our task is to map the eigenfunction ψ̃(x̃, ỹ) with the vector 
potential Ã = −B ỹ ˆ̃x into an eigenfunction ψ(x, y) with the vector 
potential A = −B yx̂, same as for the central region. Fig. 2 shows 
4

Fig. 2. Schematic representation of a multi-lead system and the coordinate bases 
within the two leads. Angle θ represents the angle between the two bases, and is 
in this case 90◦ , but may be arbitrary in general.

an example of how the coordinate systems in the leads are re-
lated. Since we already know how to map the coordinates from 
one frame to another, we only need to take care of the gauge 
transformation of the vector potential. Such a transformation is 
represented by a complex phase shift ei�(x,y) of the eigenfunction. 
Here, we can write [48] that

�(x, y) = −B(x − x0)(y − y0) sin2(θ)

+ 1

4
B((y − y0)

2 − (x − x0)
2) sin(2θ).

(10)

To summarize, our gauge transformation of the vector potential 
has a form

ψ(x, y) = ei�(x,y)ψ̃(x̃(x, y), ỹ(x, y)). (11)

We want to emphasize that an arbitrary lead configuration can 
be taken into account by utilizing this gauge transformation [48]
when the transport system and the leads are affected by the mag-
netic field.

The above case of a perpendicular, uniform and constant mag-
netic field is a common setup in quantum transport experiments 
(see, e.g., Refs. [25,49,50]). If the magnetic field is non-zero in the 
leads, we choose the vector potential according to the linear gauge 
for quantum devices with multiple leads arranged in an arbitrary 
fashion, as it has been shown in Ref. [48]. In the case of a tilted
magnetic field this is not possible as we cannot utilize the gauge 
transformation in Eq. (11). A typical numerical trick is to inves-
tigate a hybrid system composed of the original central region 
and the portion of the attached leads, where the magnetic field 
is present, or is changing, e.g., decaying eventually to zero. Then, 
we study the transport through the hybrid system coupled to the 
portion of the leads, where the magnetic field is absent. However, 
this approach requires the use of an eigenvalue solver for the cen-
tral region that can handle a tilted magnetic field, or a magnetic 
field varying in space. In principle, tinie’s software design allows 
this approach, although the present approach demonstrated below 
resorts to the use of the itp2d software [33], which is restricted to 
2D problems for perpendicular and homogeneous magnetic fields. 
As stated below, this approach covers the majority of, e.g., magne-
toconductance experiments.

3. Design of the program

As mentioned in the introduction, tinie is designed for per-
formance and interoperability, as well as for flexibility and ease-
of-use. These features are combined by employing the features of 
the Python programming language as well as optimized algorithms 
and simple data structures.

In tinie, the computation can be viewed a two-step process. 
First, in the system initialization phase, we determine the central 
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region, i.e., the quantum device, the leads attached to the device, 
and the coupling between the central region and the leads. This 
phase is described in Secs. 3.1 and 3.2. In the second step, the 
transport properties, such as the transmission or local density of 
states, are computed as described in Sec. 3.3. This division enables 
more flexibility alongside the modular structure to extend tinie in 
the future, e.g., additions of other coupling schemes or eigenvalue 
solvers. The implementation of tinie is discussed in Sec. 3.4–3.7.

3.1. Central region

3.1.1. Discretization of eigenfunctions, potentials and coupling
Due to the nature of numerical computations, we discretize all 

the eigenfunctions of the QD and reservoirs by evaluating them on 
a 2D grid, transforming ψ(x, y) into �:

� =

⎡
⎢⎢⎢⎣

ψ(x0, yN−1) ψ(x1, yN−1) · · · ψ(xM−1, yN−1)

ψ(x0, yN−2) ψ(x1, yN−2) · · · ψ(xM−1, yN−2)
...

...
. . .

...

ψ(x0, y0) ψ(x1, y0) · · · ψ(xM−1, y0)

⎤
⎥⎥⎥⎦ ,

where x0, x1, . . . , xM−1 are the values of x-axis, discretized over M
equally-spaced points and y0, y1, . . . , yM−1 are the values of y-
axis, discretized over N equally-spaced points. Below we denote 
discretized eigenfunctions of any region as �. This procedure pro-
vides us with a set of discretized QD eigenfunctions {�C } and a 
set of discretized reservoir eigenfunctions for each reservoir in the 
system {�Lα }.

In the same manner we discretize the potential V pot(x, y), so 
that it becomes Vpot:

Vpot=

⎡
⎢⎢⎢⎣

V pot(x0, yN−1) V pot(x1, yN−1) · · · V pot(xM−1, yN−1)

V pot(x0, yN−2) V pot(x1, yN−2) · · · V pot(xM−1, yN−2)
...

...
. . .

...

V pot(x0, y0) V pot(x1, y0) · · · V pot(xM−1, y0)

⎤
⎥⎥⎥⎦ .

Next, we discretize the calculation procedure for the coupling 
matrix. Here we use the following approximation of Eq. (15):

[Vα]i j ≈
∫
�

−1

2
�∗

Lα,i ◦
[
∇2�C, j + 1

2
iB y

∂

∂x
�C, j

]

+ �∗
Lα,i ◦

[
Vpot + 1

2
B2 y2

]
◦ �C, j dr,

(12)

where �Lα,i is the ith eigenfunction of the reservoir α, �C, j
is the jth eigenfunction of the central region, Vpot is the dis-
cretized potential energy function of the overlapping region, ◦ is 
the Hadamard element-wise matrix product operator, and � is the 
region of overlap between the central region and the reservoir. We 
use the finite-difference methods implemented in the Python pack-
age findiff [51] to numerically evaluate the Laplacian ∇2 and 
the partial derivative ∂

∂x . The numerical integration is performed 
with scipy’s Simpson’s rule integration routines [52].

3.1.2. Discretization of Hamiltonians
We select our eigenfunction sets in such a way that they form 

an orthonormal basis for their respective eigenspaces. Hence, the 
Hamiltonians for both the central region and the reservoir are di-
agonal. We then define our Hamiltonian operators in a matrix form 
for the central region:

HC = diag(EC
0 , EC

1 , . . . , EC
Nctr−1),

where HC ∈ RNctr×Nctr , Nctr is the total number of states in the 
central region, and {EC

j }Nctr−1
j=0 are the corresponding eigenenergies 

of the central region. Similarly for the reservoirs we have
5

HLα = diag(E Lα
0 , E Lα

1 , . . . , E Lα
Nres,α−1),

where HLα ∈ RNres,α×Nres,α , Nres,α is the total number of states in 
the reservoir α, and {E Lα

i }Nres,α−1
i=0 are the corresponding eigenen-

ergies of the reservoir α. This procedure provides us with a matrix 
form Hamiltonian of the QD and each of the reservoirs.

3.2. Coupling matrix

While the Hamiltonians and eigenfunctions of the QD and 
reservoirs are calculated in a straightforward fashion based on the 
definition of the system, the calculation of the coupling matrix – 
necessary for transport calculations described in Sec. 2.3 – requires 
additional elaboration. There are several ways to calculate the cou-
pling. Many transport codes resort to the tight-binding coupling 
model [53], which is an approximation to the analytical form of 
the coupling. The coupling matrix elements can be written in an 
exact form as

[Vα]i j = 〈ψLα,i|Ĥ|ψC, j〉, (13)

where ψLα,i is the ith eigenfunction of the reservoir that we cou-
ple to the central region and ψC, j is the jth eigenfunction of the 
central region. The Hamiltonian operator Ĥ for a particle of charge 
q in a magnetic field has a general form [54] of

Ĥ = 1

2
(p̂ − q Â)2 + V̂ pot, (14)

where p̂ = −i∇ is the momentum operator, Â is the vector poten-
tial operator, and V̂ pot is the potential operator.

3.2.1. Overlap coupling
We may consider the coupling caused by the overlap of wave 

functions in the region between the reservoir and the central re-
gion. In this case, with the choice of gauge defined in Sec. 2.4, the 
coupling of Eq. (13) has the form

[Vα]i j =
∫
�

ψ∗
Lα,i(r)

[
−1

2
∇2 + 1

2
iB y

∂

∂x

+ 1

2
B2 y2 + V pot(r)

]
ψC, j(r)dr,

(15)

where � is the region where our descriptions of the reservoir α
and the central region overlap. In case the system contains more 
than one reservoir that is coupled to the central region, we need to 
calculate the coupling matrices for all the reservoirs in the system.

3.2.2. Tight-binding coupling
In some physical scenarios, it may also be plausible to look 

at the coupling caused by the tunneling of electrons from the 
reservoirs to the center region and the other way around. Such 
a coupling is incorporated into the tight-binding model [25,27] as 
follows [55]:

[Vα]i j =
∫

�Lα

∫
�C

ψ∗
Lα,i(r′)ψC, j(r)

‖r′ − r‖2
e−iθ dr dr′, (16)

where �C is the section of the central region that we couple to the 
section of the reservoir α, �Lα . The phase factor e−iθ comes from 
the Peierls substitution that accounts for the inclusion of the vector 
potential in the system (see, e.g., Refs. [56–58]). In our case, the 
magnetic field is constant and perpendicular to the plane, leading 
to a particularly simple form of the factor θ with the choice of 
gauge described in Sec. 2.4:
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θ = − B

2
(x′ − x)(y′ − y). (17)

3.3. Quantum transport calculation

3.3.1. Self-energy calculator
From Eq. (4) we deduce that in order to obtain the transmission 

and currents we need the rate operators of the leads (�̂α(ω)) and 
the retarded/advanced Green’s functions (Ĝ R/A(ω)). Equations (1)
and (3) suggest that we first need to compute the advanced and 
retarded self-energies. Using Eq. (2) we obtain

�
R/A
α (ω) = V†

α

[
(ω ± iη)1 − HLα

]−1 Vα, (18)

where 1 is an identity matrix. The probe energy ω is discretized 
according to the user-specified energy spacing dω. Because we 
represent the Hamiltonian operators in the eigenbasis, the matri-
ces (ω ± iη)1 − HLα are diagonal, making them computationally 
easy to invert. With �R/A

α (ω) known, we get the rate operators

�α(ω) = i
[
�R

α(ω) − �A
α(ω)

]
(19)

In the calculation of the self-energies, we have defined in 
Eq. (18) a positive η-parameter to incorporate the boundary con-
ditions, and thus to distinguish the advanced and retarded Green 
functions. Theoretically, the parameter should be infinitesimal and 
eventually we should go to limit where η vanishes. However, we 
require a finite η-value for numerical stability in order to pre-
vent a divergence in the neighborhood of the eigenenergies of the 
Hamiltonian. This causes the shifting and broadening of energy 
levels, which can lead to missing out some essential features of 
the model. On the other hand, setting the parameter to very small 
values can cause numerical problems near the eigenenergies. In 
practice, the effect of finite η should be regulated numerically.

The self-energies defined in Eq. (18) describe the effect of the 
lead onto the quantum device. Instead of using Eq. (18) directly, 
the self-energies can be calculated either with recursive methods 
[59–61] or by utilizing semianalytic formulae [62–67]. The recur-
sive methods suffer from a poor convergence rate in some trans-
port systems, for example if the lead Hamiltonians are relatively 
sparse. On the other hand, the semianalytical approaches over-
come the problem of the recursive methods by their construction. 
Nevertheless, major issues can arise when the coupling (hopping) 
matrices are singular or otherwise irregular. However, there is a 
robust semianalytical algorithm [68] overcoming the limitations 
which can be employed in conjunction with ab initio transport 
quantum transport calculations. In particular, this approach elim-
inates the need for a global finite η parameter, such as that in 
Eq. (18). Thanks to the flexible structure, these different methods 
can be employed with tinie.

We point out that tinie enables an optional user-defined cou-
pling, i.e., the user specifies either the self-energies or the rate 
operators for each lead. This allows the user to bypass the actual 
coupling element calculations, which can be computationally de-
manding. Here the user does not need to specify the η-parameter. 
The coupling parameters may be obtained from experimental data 
and numerical calculations such as the algorithm described in 
Ref. [68], or from analytic expressions, such as in the case of the 
wide-band limit approximation [27] or semi-infinite leads [25]. In 
principle, this option allows tinie to compute quantum transport 
properties of quantum devices for arbitrary geometries and termi-
nal configurations with irregularly shaped leads. Nonetheless, the 
self-energies or rate operators are, generally, not known, and thus
tinie provides the functionality to determine the necessary cou-
pling elements as described above.
6

3.3.2. Green’s functions calculator
With retarded self-energies calculated, we can now get the 

Green’s functions. However, according to Eq. (1) explicit numerical 
solution of the Green’s function might be computationally expen-
sive, as it requires an inversion of a dense matrix. A more efficient 
computational approach may be outlined as follows. First, we de-
fine the inverse retarded Green’s function operator

[GR(ω)]−1 = (ω + iη̃)1 − HC −
∑
α

�R
α(ω). (20)

We remind of the additional small term η̃, which is not present 
in Eq. (1). We include this possibility as an additional measure to 
possible ensure the numerical stability. Again, the effect of a finite 
value should be minimized by setting η̃ close to zero. In contrast, 
the η̃ in Eq. (20) can be significantly smaller than in the case of 
Eq. (18) due to the self-energy term. In fact, the parameter η̃ is 
set to be zero as default. The actual need for η̃ depends on the 
self-energy, and hence on the type of the coupling. If this option is 
used, the effect of finite η̃ should be also regulated numerically.

The inverse advanced Green’s function operator is defined simi-
larly as [GA(ω)]−1 = ([GR(ω)]−1)†. Then, we observe that in Eq. (4)
we never explicitly need the Green’s functions to compute the 
transmission, but rather we are only required to know their prod-
ucts with the rate operators. Hence, we use scipy.linalg’s
solve routine to solve the linear equation [GR/A(ω)]−1X = �α(ω)

for X efficiently. This gives us everything we need to calculate 
transmission and currents in the transport system.

3.3.3. Transport properties calculator
As the final step, we evaluate the transmission from reservoir 

α to reservoir β by calculating GR(ω)�β(ω) and GA(ω)�α(ω) as 
described in Sec. 3.3.2 and then using Eq. (4). The calculation of 
Tαβ(ω) for all possible reservoir pairs gives us the transmission 
matrix T evaluated at the probe energy ω.

To compute the total current Iα running through each reservoir, 
we first compute the matrix of partial currents i. At this point, we 
extract the chemical potential μ, transport system temperature T , 
and reservoir bias voltages Vα provided by the user to calculate 
the partial current matrix elements iαβ according to Eq. (6). We 
use the scipy’s Simpson’s rule routine for the integration. The 
integration boundaries are determined according to the chemical 
potential, reservoir bias voltages, and the broadening of the Fermi-
Dirac distribution due to non-zero temperatures.

Additionally, after computing the transmission matrix we are 
able to evaluate the conductance matrix G using the result of 
Eq. (7). The transmission and the thermal broadening function are 
computed by using numpy’s routines.

3.3.4. Density of states calculator
In addition to the transport properties discussed in Sec. 2.3, 

it is often beneficial to study how the energy states within the 
transport system are distributed. To that end, there are two quanti-
ties that provide us with crucial information: density of states g(ω)

(DOS) and local density of states ρ(r, ω) (LDOS). We may evaluate 
DOS directly from the retarded Green’s function Ĝ R (ω) [25]:

g(ω) = − 1

π
Tr
[

Im
(

Ĝ R(ω)
)]

. (21)

To compute the LDOS, we must first project the retarded 
Green’s function of Eq. (1) into real space as

Ĝ R(r, r,ω) =
∑
i, j

ψ∗
C,i(r)Ĝ R(ω)ψC, j(r), (22)

where ψC,i is the ith eigenfunction of the central region. The LDOS 
is then computed as [25]:
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ρ(r,ω) = − 1

π
Im
[

Ĝ R(r, r,ω)
]
. (23)

We conclude the description of tinie’s numerical routines with 
description of its procedure of DOS and LDOS computation. Unlike 
Sec. 3.3.2, from Eq. (21) we observe that in case of DOS/LDOS com-
putations we need to know the value of the Green’s function. As 
such, this time we can’t go around computationally expensive in-
version of a dense [GR(ω)]−1 matrix. Upon inverting the inverse 
of the retarded Green’s function, we get retarded Green’s function 
GR(ω). We may then use Eq. (21) to obtain DOS g(ω):

g(ω) = − 1

π
Tr
[

Im
(

GR(ω)
)]

. (24)

To compute LDOS ρ(r, ω), we project GR(ω) into the real space 
numerically as follows:

GR
r (ω) =

∑
i, j

[
GR(ω)

]
i j

(
�∗

C,i ◦ �C, j
)
, (25)

then we use Eq. (23):

ρ(r,ω) = − 1

π
Im
[

GR
r (ω)

]
. (26)

3.4. Program structure

tinie has been written in Python 3.6, but the optimized numer-
ical routines used in numpy and scipy have been inherited from 
C and C++. Thus, we have combined the readability of a high-level 
language such as Python with the high-performance computing 
features of a lower-level language such as C++. tinie is written 
in an object-oriented programming fashion, so all of the essential 
components of the code have been separated into different classes 
that interact with each other throughout the simulation process. 
The relations between the classes are summarized in Fig. 3.

The object types are listed in the following.

• Center object: represents the central region in the transport 
system. It is responsible for computing/retrieving the central 
region Hamiltonian HC and the set of eigenfunctions of the 
central region {�C }. These eigenfunctions are represented by
numpy 2D arrays.

• Lead object: represents a lead region in the transport sys-
tem. It is responsible for computing/retrieving the lead region 
Hamiltonian diagonal matrix HLα , as well as its set of eigen-
functions {�Lα }.

• Coupling object: represents a coupling region between a 
lead and the central region. It is responsible for computing/re-
trieving the coupling Vα between the central region and lead 
α, which is represented by a numpy matrix array.

• System object: an interface that records the Hamiltonians 
and the coupling matrices in an HDF5 file via h5py module 
[69]. As Hamiltonians and the coupling matrices do not change 
with the transport system parameters (such as the chemical 
potential or temperature), these files may then be reused for 
multiple transport calculations. Thus, System object also han-
dles the retrieval of that data from an already existing file.

• SelfEnergy object: an interface that computes the self-
energies �

R/A
α and the rate operators �α for the transport 

system for varying values of the probe energy ω.
• GreenFunction object: an interface that computes the 

Green’s functions GR/A for the transport system for varying 
the values of the probe energy ω.

• Calculator object: an interface that performs the main 
transport calculation of partial currents iαβ , total currents Iα , 
transmission Tαβ , and conductance Gαβ .
7

Fig. 3. tinie object relation scheme.

All of the above-mentioned objects are abstract, meaning that 
we can implement our own types of the central/lead/coupling re-
gion, specific to the transport system. This can be done by intro-
ducing a new class that inherits from one of those base classes and 
defining the respective methods for computation or retrieval of the 
system features.

Now we can outline the essential steps of the code execution:

Step 1: System initialization step. Initializes the Center object 
and the Lead objects.

Step 2: Coupling step. Coupling objects are initialized and the 
coupling matrices between the regions are computed and 
stored in those objects.

Step 3: System finalization step. Center, Lead and Coupling
objects are passed into the System interface to store the 
transport system data. This completes the setup of the 
transport system, preparing it for the subsequent transport 
calculations.

Step 4: Transport initialization step. System object is passed into 
the Calculator object to retrieve the transport system 
data.

Step 5: Calculator initialization step. Within the Calculator,
SelfEnergy object is initialized. It is then passed into 
the GreenFunction object for its initialization.

Step 6: Transport calculation step. The system transmission, con-
ductance, and currents are evaluated at the user-defined 
values for chemical potential, temperature, and lead biases 
using the self-energies, rate operators, and Green’s func-
tions.

In essence, Steps 1-3 prepare the transport system for the cal-
culation (tinie_prepare stage), while the transport calculation itself 
is performed during Steps 4-6 (tinie stage). These two stages are 
thus completely independent from each other, as once the system 
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is prepared and the system data stored in an HDF5 file, transport 
calculations with that file can be performed at will with varying 
chemical potential values, temperatures, or lead biases.

3.5. Data files

As described above, tinie_prepare and tinie stages perform two 
independent parts of the transport calculation. Both of them pro-
duce their own data files so that the data can be processed at 
any time. We have chosen HDF5 (Hierarchical Data Format) for the 
data storage purposes. All the data of the simulations is saved in 
the HDF5 files. As the code has been written in Python, we have 
used the h5py package [69] for the read/write HDF5 routines. 
Each HDF5 file produced by tinie stage has a ‘type’ attribute with 
the value TINIEfile and each HDF5 file produced by tinie_pre-

pare stage has a ‘type’ attribute with the value PREPTINIEfile.
PREPTINIEfile HDF5 files store information such as the eigen-
functions, eigenenergies and the potentials of a prepared transport 
system. TINIEfile HDF5 files store information obtained from a 
transport calculation of the system, such as the transmission matri-
ces, conductance, currents, and the calculation parameters, such as 
bias voltages, energy spacing, etc. More detailed information about 
the contents and the structure of the HDF5 files that tinie pro-
duces can be found on the tinie’s Gitlab project page.

3.6. Parallelization

The coupling matrix elements can be computed independently 
of each other. This applies also to the transmission evaluated at the 
probe energy ω. Hence, tinie’s routines have been parallelized by 
utilizing mpi4py [70,71] – Message Passing Interface for Python 
based on OpenMPI. When profiling the code, these two processes 
were also the ones that were the most time-consuming. The speed 
increase due to parallelization is roughly linearly proportional to 
the number of processors used for the computation.

3.7. Comparison with other transport software

Quantum transport is addressed by several software packages 
in different domains. For example, there are quite a few packages, 
including commercial ones, for computing transport in molec-
ular junctions. Examples include transiesta [30], smeagol [31],
openmx [32] and nanodcal along with nanodsim [72]. These pack-
ages combine density-functional theory with the non-equilibrium 
Green’s function technique. Another category of transport codes is 
mainly geared towards the simulation of transistors on the nano-
and mesoscale. This class contains packages such as nemo5 [73],
nextnano [29], nanotcad vides [74], and tbsim [75]. An extension 
of these packages outside the scope of their specific class is of-
ten impossible or requires a lot of work. In addition to all these 
specialized packages, kwant [28] offers a generic platform for a 
tight-binding quantum transport problem without being limited to 
a certain class of systems. All these packages go beyond the scope 
of tinie by considering more complicated physical effects such as 
involving phonon effects or self-consistent electrostatic potential 
calculations.

Similarly to the principles of kwant, tinie emphasizes gener-
ality in order to compute the transport properties in various ex-
perimentally relevant two-dimensional nanostructures. With tinie, 
it is easy, for example, to study quantum dots with soft confining 
boundaries, which can be a difficult regime for quantum transport 
packages based on the tight-binding approach. In particular, tinie

is designed for flexibility and ease-of-use as highlighted above. The 
modular design of the code enables for an easy expansion to in-
clude additional physical effects. Another advantage of tinie is the 
compatibility with external 2D software such as itp2d [33]. The 
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Fig. 4. Schematic representation of a one-level transport system.

open-source policy can drive the evolution of tinie further towards 
a more versatile quantum transport package.

The current version of tinie allows us to investigate systems in 
homogeneous magnetic fields perpendicular to the transport setup. 
However, we acknowledge that some of the named quantum trans-
port packages do allow to investigate systems in magnetic fields, 
even inhomogeneous ones. For example, the generic transport soft-
ware kwant relies on the tight-binding formulation and Peierl’s 
substitution. Although this is a valid description in some nanos-
tructures such as a molecular junction, tinie can go further by 
providing a more realistic scheme for a quantum device modeled 
by a smooth potential, e.g., a semiconductor quantum dot, in a 
(possibly very strong) magnetic field (see Ref. [33]). Similarly to 
transport software such as kwant, tinie can also carry out quan-
tum transport calculations even in the presence of a magnetic field 
in the leads. As discussed above, tinie can, in principle, handle 
tilted or inhomogeneous magnetic fields either by providing the 
necessary inputs, i.e., the Hamiltonians and the self-energies or 
equivalently rate operators, or by changing the eigenvalue solver 
to one that supports such functionality.

4. Numerical testing

4.1. Automated testing framework

We have implemented an automated testing framework for
tinie. It probes all the basic functionalities of the package, makes 
sure that the functions of all the system classes behave as in-
tended, and checks whether the asymptotic behavior of the nu-
merical algorithms is correct. Most importantly, the framework 
compares the results of some simple transport calculations to their 
analytical solutions and checks the crucial symmetry properties of 
the transmission and partial current matrices.

4.2. Test cases

4.2.1. One- and two-level systems
We start with one of the simplest possible transport systems: a 

single energy level connected to two leads. Fig. 4 shows the struc-
ture of such a system. We utilize the wide band limit approximation
(WBLA) [27] to infer the transport properties. In a system that 
obeys WBLA, the rate operators are independent of the probe en-
ergy ω. This allows us to bypass the computation of the coupling 
matrices. Instead, the coupling strength between the leads is then 
specified by the rate operators, which are constant with respect 
to ω. tinie supports WBLA as it allows the user to specify custom 
rate operators when needed.

Overall, we need to know the following quantities to describe 
such a transport system: the energy of the center region ε0, rate 
operators �α and �β for the leads α and β , respectively, bias volt-
ages in the leads Vα, Vβ , chemical potential μ and temperature T
of the system. It can be shown that in the case of zero temper-
ature and a small potential difference between the leads, we get 
the following analytical expressions for the transmission and cur-
rent [26]:
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Table 1
Comparison of the transmission values running through a zero-temperature one-
state system computed using tinie against the analytical results of Eq. (27). Relative 
error tolerances are near zero due to limitations of finite-precision arithmetic.

� Analytical Tαβ(μ) tinie Tαβ(μ) Relative error

0.2 6.3999959 × 10−7 6.3999959 × 10−7 � 10−15

0.4 2.5599934 × 10−6 2.5599934 × 10−6 � 10−15

0.6 5.7599668 × 10−6 5.7599668 × 10−6 � 10−15

0.8 1.0239895 × 10−5 1.0239895 × 10−5 � 10−15

1.0 1.5999744 × 10−5 1.5999744 × 10−5 � 10−15

Table 2
Comparison of the current values for a zero-temperature one-state system com-
puted using tinie against the analytical values of Eq. (27). The energy spacing for 
the numerical integration of Eq. (6) is set to dω = 10−7.

� Analytical Iα tinie Iα Relative error

0.2 2.0371819 × 10−12 2.0371819 × 10−12 1.910 × 10−8

0.4 8.1487122 × 10−12 8.1487120 × 10−12 1.910 × 10−8

0.6 1.8334543 × 10−11 1.8334543 × 10−11 1.910 × 10−8

0.8 3.2594598 × 10−11 3.2594597 × 10−11 1.910 × 10−8

1.0 5.0928766 × 10−11 5.0928765 × 10−11 1.910 × 10−8

Tαβ = 2π

2
[
Vβ − Vα

] Iα and Iα = �α�β

(μ − ε0)2 + 1
4 (�α + �β)2

.

(27)

We benchmark the numerical precision of tinie in computing the 
current and transmission for different values of the lead rate op-
erators, and compare the results to the analytical results at zero 
temperature. To test the performance of tinie at non-zero temper-
atures we thus compare the obtained results against exact (analyt-
ical) benchmark values.

We set ε0 = 500, μ = 250. Additionally, we set the bias po-
tentials of the two leads to be Vα = 0 and Vβ = 10−5. As the 
potential difference between the two leads is small, we compare 
our numerical results with the analytical result of Eq. (27). We set 
the lead rate operators �α = �β = � and compute the transmis-
sion and current in the system evaluated at various values of �. 
We start with the zero temperature case. Tables 1 and 2 show the 
results with the relative error estimates.

The values obtained numerically match the analytical values, 
especially in case of transmission. The relative error estimates are 
close to zero and limited by finite-precision arithmetics. For the 
current, the relative errors are very small as well. The minor devia-
tions arise from the numerical integration over transmission values 
in the region 

[
Vα, Vβ

]
.

We note that both the transmission and the current increase 
with �. In the wide-band approximation regime, the value of �
corresponds to the strength of the coupling of the lead to the 
central region. Hence, our results are plausible: the stronger the 
coupling, the higher the transmission.

We have also investigated a non-zero temperature system with 
T = 100. We have changed bias potentials to Vα = 0 and Vβ =
100. The other system parameters are the same as above, and once 
again we let � vary. For such a system, there is no closed-form re-
sult that we can use for comparison. Instead, we have compares 
the results of tinie against numerically accurate benchmark results. 
We expect the current values to be higher in the non-zero temper-
ature transport system due to the broader probe energy range and 
the thermal broadening of the Fermi-Dirac energy distribution. The 
results of the calculations are summarized below in Table 3. We 
observe that the current values are much higher in this case of 
non-zero temperature, which supports our hypothesis.

We now move on to a more realistic two-level molecular junc-
tion connected to two leads. Fig. 5 shows the structure of such a 
system. We consider a center region that can be interpreted as a 
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Table 3
Comparison of the current values running through a non-zero temperature one-
state system computed using tinie against the values computed numerically. The 
energy spacing for the numerical integration of the current over the probe energies 
has been set to dω = 10−2.

� Analytical Iα tinie Iα Relative error

0.2 2.1314269 × 10−2 2.1314269 × 10−2 2.824 × 10−9

0.4 4.2630084 × 10−2 4.2630084 × 10−2 5.749 × 10−9

0.6 6.3947360 × 10−2 6.3947360 × 10−2 8.702 × 10−9

0.8 8.5266014 × 10−2 8.5266013 × 10−2 1.160 × 10−8

1.0 1.0658596 × 10−1 1.0658596 × 10−1 1.484 × 10−8

Fig. 5. Schematic representation of a two-level transport system.

Fig. 6. Transmission in a two-level transport system with varying strengths for the 
rate operators. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

molecule, e.g., benzene, where the lower energy state is the high-
est occupied molecular orbital (HOMO), while the higher state is 
the lowest unoccupied molecular orbital (LUMO) [76]. We con-
struct the central region Hamiltonian of the form

HC =
[

ε0 + � 0
0 ε0 − �

]
,

where ε0 is the Fermi energy and � is the parameter that we use 
to tune the energy spacing. Once again, we utilize WBLA, and the 
rate operators of the leads are presented as fixed matrices of the 
form [31]

�α = �β =
[

� 0
0 �

]
,

where � is the coupling strength parameter to be adjusted. To 
demonstrate how tinie handles such a two-level system, we com-
pute its transmission, setting ε0 = 0, � = 1, μ = 0. Additionally, 
we set the lead bias voltages to Vα = −2, Vβ = 2. We consider 
this system in a zero-temperature environment. We then inves-
tigate the behavior of the system as we vary �. We expect to 
observe peaks in transmission at the eigenenergies of the center 
(ε0 +� = 1 and ε0 −� = −1), and we are interested in how those 
peaks vary with changing �. Fig. 6 contains the results of the sim-
ulations.
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Fig. 7. Schematic representation of the barrier potential in x-direction (top) and a 
two-dimensional potential barrier system (bottom).

As expected, we find peaks in the transmission at the eigenen-
ergies of the central system. When � = 0, the transmission is con-
stantly zero, as in that case the leads are not coupled to the center 
at all. We can see that with increasing � the peaks get broader and 
higher, and tend to merge together as � goes to one. This result 
is plausible in view of the physical interpretation of � consid-
ered above. By increasing �, we increase the energy bandwidth of 
the electrons that may pass through the central region, leading to 
the widening of the transmission peaks around the eigenenergies. 
Hence, tinie correctly captures the essential physical characteris-
tics of the two-level system.

4.2.2. Potential barrier
Next we consider a conventional potential barrier system, 

which can be used to investigate electron tunneling properties 
across a nanostructure. The potential of the central region can be 
written as

V pot(x, y) =

⎧⎪⎨
⎪⎩

EB x ∈ [− W
2 , W

2 ] ∧ y ∈ [− L
2 , L

2 ]
0 x ∈ [− W

2 , W
2 ]C ∧ y ∈ [− L

2 , L
2 ]

∞ elsewhere.

(28)

Here EB is the barrier height, L is the length of the central re-
gion in the y-direction and W is the width of the barrier in the 
x-direction. Fig. 7 illustrates V pot with its key parameters. The 
eigenfunctions of the central region in this potential are solved us-
ing itp2d [47]. The central region is then connected to the system 
using the Itp2dCenter interface.

Two leads are connected to the central region. The electrons 
are confined in the y-direction and propagating in the x-direction. 
We use a harmonic oscillator potential in the y-direction and a 
standard particle-in-a-box potential in the x-direction. The eigen-
functions for the leads can be solved analytically, leading to [25]

ψ L
k,l(x, y) = N cos(k(x − xL

max) + π

2
)e− 1

2 y2
Hl(y), (29)

where Hl(x) is the lth order Hermite polynomial and N is the 
normalization factor for the wave function. The indices l and k
are the quantum numbers describing the system in x and y di-
rections, respectively. The leads have been implemented in tinie

as FiniteHarmonicLead object.
The system has the following spatial confinements for the lead 

region and the center region:

• Center region: x, y ∈ [−6, 6];
• Lead α: x ∈ [−100, 0] and y ∈ [−5, 5];
• Overlap α: x ∈ [−6, 0] and y ∈ [−5, 5];
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• Lead β: x ∈ [0, 100] and y ∈ [−5, 5];
• Overlap β: x ∈ [0, 6] and y ∈ [−5, 5].

We set the width of the potential barrier to be 10, that is, y ∈
[−5, 5]. We consider the behavior of conductance G from lead α
to lead β , as we vary the barrier energy EB. Furthermore, we in-
vestigate the temperature effects on the conductance. Fig. 8 shows 
the results of the simulations.

In these numerical studies, we have considered the probe en-
ergy range ω ∈ [0, 15]. In this energy range, each lead is found to 
contain 225 000 eigenstates. As for the central region, solving its 
Schrödinger equation with itp2d yields approximately 250 eigen-
states in the same energy range. Consequently, this transport sys-
tem is vastly more complex than the systems considered above in 
Sec. 4.2.1.

We note that in Fig. 8(a), the conductance only starts to grow 
and fluctuate when the energy of the probe electron surpasses that 
of the potential barrier. We observe similar behavior in Figs. 8(b) 
and 8(c). However, the picture is slightly more complex as demon-
strated by the presence of minor conductance peaks below the 
barrier energy. They arise from the resonances in the system, as 
some of the eigenstates in the central region have energies below 
the potential barrier. The resonances occur when an eigenenergy of 
the lead closely matches one of the central region eigenenergies.

When the temperature of the system is close to zero, or small 
relative to the Fermi energy, every resonance results in a Dirac 
delta function-like peak in the conductance. As the temperature 
is increased to the scales comparable with the Fermi energy, the 
peaks become broader and smaller due to the effects of the ther-
mal broadening on the conductance [Eq. (7)]. Thus, a single out-
lying conductance peak will get completely removed at high tem-
peratures, while the peaks in the areas dense with conductance 
resonances will become more pronounced. This effect of temper-
ature on conductance is observed in Fig. 8, further reassuring us 
that tinie is capable of handling transport systems of high orders 
of complexity as well.

4.2.3. Two-dimensional potential well in a magnetic field
The third case we consider is a 2D quantum dot system with 

a harmonic confining potential and strongly coupled leads. The 
system is exposed to a constant and uniform magnetic field per-
pendicular to the quantum dot plane. The Hamiltonian is written 
in a form

Ĥ = Ĥ0 + 1

2
ω2(x2 + y2) +

∑
α

Vα(x, y), (30)

where Ĥ0 is the canonical Hamiltonian with magnetic field and Vα

is the potential induced by the presence of the lead α in the sys-
tem. In non-zero uniform magnetic fields this Hamiltonian corre-
sponds to the well-known Fock-Darwin system, up to the inclusion 
of the potential terms associated with the leads. We consider three 
systems in zero temperature with varying magnetic field strengths 
B and two-lead configurations:

• System I: B = 0, Leads 0 and 1 connecting to the quantum dot 
from left and right, respectively.

• System II: B = 1, Leads 0 and 1 connecting to the quantum dot 
from left and right, respectively.

• System III: B = 1, Leads 0 and 1 connecting to the quantum 
dot from left and top, respectively.

We fix the bias energies of Leads 0 and 1 to be V 0 = 10 and 
V 1 = 15. The single-electron Schrödinger equation for the central 
region is solved numerically with itp2d. Fig. 9 demonstrates some 
of the eigenstates. We note that below V 0 we do not observe any 
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Fig. 8. Conductance in the potential barrier system at varying system temperatures with μ = 0.0, η = 0.02, Vα = 0.0, Vβ = 15.0. The vertical red dotted line denotes the 
barrier energy EB, which has been set to 2, 6, and 10 in Figures a), b) and c) respectively. The conductance at zero temperature is scaled by a factor of 50 for visibility.
Fig. 9. Examples of numerically solved eigenstates of systems I (left column), II 
(middle column), and III (right column). Eigenstates are selected in such a way, that 
their eigenenergies in the top, middle, and bottom rows are below V 0, between V 0

and V 1, and above V 1 respectively. The potential is superimposed on the eigenstate 
figures in grayscale to show the locations of the leads.

probability density “leaking” into the leads. As the eigenenergies 
surpass V 0, we start to observe probability density in Lead 0, until 
11
finally with eigenenergies higher than V 1 we see probability den-
sity in both Lead 0 and Lead 1. This is plausible behavior.

Next we utilize tinie to compute transmission, ω-dependent 
current Iω and total current running through each of systems I, 
II, and III specified above. Additionally, we computed the LDOS at 
a few probe energy values for each system: one corresponding to 
transmission peak below V 0, one corresponding to ω-dependent 
current peak between V 0 and V 1, and one corresponding to trans-
mission peak above V 1. Fig. 10 shows the results of the calcula-
tions.

We observe a complex structure of Dirac delta function-like 
peaks in both transmission and current profiles. The discrete na-
ture of those peaks arises from the fact that our transport system 
has discrete energy levels both in the central region, as well as the 
leads. We can see that the number of peaks in transmission starts 
to increase drastically when ω > V 1. At this point the electrons 
that are emitted from the lead regions have a sufficient amount of 
energy to propagate from one lead to another without getting con-
fined in the central region. The LDOS in Figs. 10(Ic), (IIc) and (IIIc) 
support this explanation. As we can see that there is state density 
present in both Lead 0 and Lead 1 regions.

We also find peaks below V 0 similarly to the potential barrier 
case in Sec. 4.2.2. The peaks correspond to the electrons hitting 
the resonant energies. The LDOS gives us an insight into the na-
ture of some of those resonant peaks. For instance, the LDOS in 
Figs. 10(IIa) and (IIIa) resemble the eigenstates of the unperturbed 
system. Similarly, in the range between V 0 and V 1, we observe 
resonant peaks. In Figs. 10(Ib) and (IIb) we once again see LDOS’s 
that resemble the eigenstates of the unperturbed system, further 
providing evidence that some of the peaks are caused by the res-
onance of the states of the transport system with the eigenstates 



R. Duda, J. Keski-Rahkonen, J. Solanpää et al. Computer Physics Communications 270 (2022) 108141

Fig. 10. Transmissions (top row), ω-dependent current profiles (middle row) and local density of states evaluated at a few select values of ω (bottom row) for systems I (left 
column), II (middle column), and III (right column). Only transmission from Lead 0 to Lead 1 has been included in the figure, as transmission from Lead 1 to Lead 0 had 
an identical shape. Similarly, as current profiles from Lead 0 to Lead 1 and from Lead 1 to Lead 0 are identical up to sign in case of a two-lead system, only the positive 
profile is shown. Vertical dashed lines in transmission figures mark the interval between V 0 and V 1. Current profiles are displayed in the range between V 0 and V 1, as in 
zero temperature case there is current values outside of that range are zero. The figures showing the LDOS are normalized by their respective maximum values, and as such 
do not all share the same scale.
of the unperturbed system. However, not all the peaks can be ex-
plained in this manner. For example, the LDOS in Figs. 10(Ia) and 
(IIb) do not resemble any unperturbed eigenstate; instead, they 
demonstrate complex nodal behavior. We point out that transmis-
sion from Lead 0 to Lead 1 is identical to that from Lead 1 to Lead 
0, as it should be due to the conservation of the probability cur-
rent.

The current profile is found to be non-zero only in the probe 
energy region between V 0 and V 1. This is to be expected in a 
zero-temperature case, as the difference between the Fermi-Dirac 
distributions of Eq. (6) simplifies to a rectangular window. More-
over, we observe that the peaks in the current profile have the 
same locations as the peaks in the transmission within the consid-
ered energy range. This is due to Eq. (6), which can be interpreted 
as the convolution over a rectangular window of the transmission. 
It preserves the peak locations in the window range, while remov-
ing those outside of it. The total current in Lead 0 is found to be 
the opposite of that for Lead 1, which makes sense due to the law 
of the current conservation.

4.2.4. Multi-terminal two-dimensional perturbed potential well in a 
magnetic field

As the final test case, we consider an extension of the previous 
example system by including soft boundaries and disorder. In par-
ticular, we study a 2D quantum dot modeled as a harmonic poten-
tial perturbed by local impurities under the influence of a perpen-
dicular homogeneous magnetic field. The system has direct exper-
imental relevance as a model for semiconductor quantum dots in 
the two-dimensional electron gas [49,50]. Both theoretical and ex-
perimental studies have validated the harmonic approximation for 
modeling the external confinement of electrons in a quantum dot, 
even in the quantum Hall regime of high magnetic fields [77,78]. 
In addition, actual quantum devices such as quantum dots are af-
fected by different types of impurities and imperfections (such as 
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atoms or ions migrated into the system) that leave a signal in the 
measured magnetoconductance [79–82]. Furthermore, intentional 
perturbation of this kind can be generated in a controlled man-
ner through a nanotip [83–85]. It was recently discovered that 
disordered quantum wells display a new class of quantum scar-
ring arising as a combined result of underlying near-degeneracies 
and localized perturbations [86–89]. The counterintuitive nature of 
perturbation-induced scarring highlights the subtle role which dis-
order can play in quantum devices.

For testing purposes, we include additional complexity into the 
system by assuming that the modeled quantum dot is coupled to 
three leads, which are not at 90 degree angles with respect to each 
other (see labels α, β , and γ in the central panel of Fig. 11). The 
Hamiltonian is given by

Ĥ = Ĥ0 + V ext + V imp, (31)

where Ĥ0 = 1
2 (−i∇ + A)2 is the canonical Hamiltonian of a free 

electron. The perpendicular magnetic field B is taken into ac-
count employing the linear gauge for the vector potential, i.e., 
A = (−B y, 0, 0). The external confining potential is given by

V ext(r) = min

{
1

2
‖r‖2, Vα(r), Vβ(r), Vγ (r)

}
, (32)

which contains a harmonic confinement in the central region as 
well as the lead potentials Vα, Vβ, Vγ penetrating the system.

The disorder is described as a sum of randomly distributed 
Gaussian bumps, i.e.,

V imp(r) = M
∑

i

exp

[
−‖r − ri‖2

2σ 2

]
, (33)

where the sum goes over all randomized bump locations, and the 
individual bumps are defined by the amplitude M = 4 and the 
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Fig. 11. Examples of numerically solved eigenstates of the perturbed multi-lead 2D 
quantum dot. Each column provides a selection of three states within energy in-
tervals specified on top. The confining potential is superimposed on the eigenstate 
figures to show the location of the leads. The locations of the Gaussian perturba-
tions are marked with red dots.

width σ = 0.1. We focus on the case where the bumps are ran-
domly positioned with a uniform density of 0.1 bumps per unit 
square. Thus there are many bumps inside the quantum device like 
shown in Fig. 11. The system is also exposed to a perpendicular 
magnetic field of B = 0.7.

The spatial confinement of the lead regions and the center re-
gion are defined as follows:

• Center region: x, y ∈ [−12, 12];
• Lead α: x ∈ [−100, −3] and y ∈ [−5, 5];
• Lead β: x ∈ [3, 100] and y ∈ [1, 11];
• Lead γ : x ∈ [3, 100] and y ∈ [−11, −1].

The bias energies are set to Vα = 10, Vβ = 15, and Vγ = 15. 
We solve the single-electron Schrödinger equation numerically 
with itp2d. A selection of the eigenstates is presented in Fig. 11. 
The probability density is confined entirely to the quantum dot 
at eigenenergies below Vα , and starts leaking to Lead α as 
the eigenenergy surpasses the Vα threshold. Finally, when the 
eigenenergy surpasses the Vβ and Vγ , electron density is injected
through the center to Leads β and γ as expected.

Next we compute the transmission and current profiles in the 
probe energy range ω ∈ [0, 20], as well as LDOS of a selection of 
states that yield high values of transmission. Specifically, for each 
of the leads we have selected three energy states that have high 
values of transmission: one below Vα , one between Vα and Vβ , 
and one above Vβ . Fig. 12 summarizes the results of the cal-
culations. Similarly to the test systems in Sec. 4.2.3, we observe 
patterns of peaks that have a relatively low density below Vα , but 
they become abundant at [Vα, Vβ ] and especially so above Vβ . In 
the LDOS we see the formation of the electronic states within the 
system that at first are localized within the quantum dot region. 
With increasing probe energies, LDOS starts to occupy Lead α, and 
then finally Leads β and γ as well. The transmission profiles of 
the leads at the probe energy range ω ∈ [15, 20] show that trans-
mission favors electron flow between leads α and β , as well as 
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Table 4
tinie’s test case performance benchmark. For one- and two-level systems, the num-
ber of states is computed as the number of non-zero elements in the rate operator 
matrix � due to the use of WBLA in the computation. For the potential-barrier and 
Fock-Darwin systems, the number of states is computed as the sum of the numbers 
of elements in each of the coupling matrices in the system.

System Number of States Core time

One-level (T = 0) 1 0.4 core – sec
One-level (T = 100) 1 5 core – min
Two-level 2 6 core – min
Potential barrier 1.125 × 108 7 core – days
Fock-Darwin 6.4 × 108 1 core – month
Perturbed 2D QD 1.1883 × 108 1.5 core – days

between leads α and γ . The transmission coefficients are lower 
between leads β and γ as expected in view of the geometry of 
the system.

Unlike the systems described in the preceding Subsections, 
some of the previously existing symmetries are broken because of 
the three-lead geometry and the applied magnetic field. For ex-
ample, current profiles are not symmetric. Nonetheless, there are 
important principles that should be satisfied. First of all, the cur-
rent through the quantum device has to be conserved, and indeed 
the total currents of the leads sum up to zero. This property is not 
explicitly enforced in tinie, but it arises as a consequence of the 
numerical scheme. Secondly, we have confirmed that the transmis-
sion functions obey the sum rules [25]. Finally, if we reverse the 
magnetic field and reverse the currents and voltage terminals, the 
conductance, or resistance, should be conserved. This reciprocity 
relation holds for a three-terminal conductance, which can be de-
rived from the Landauer-Büttiker formalism (see, e.g., Ref. [25]), 
although the reciprocity property was originally derived for macro-
scopic conductors based on thermodynamical arguments. However, 
the Landauer-Büttiker formalism provides a terminal description in 
terms of measurable currents and voltages completely bypassing 
the details regarding the spatial variation of the potential inside a 
quantum device. We have confirmed that the reciprocity relations 
hold in our three-terminal perturbed quantum device. This further 
demonstrates that the computational framework is in solid agree-
ment with the underlying theory of quantum transport.

4.3. Performance testing

Here we present tinie’s performance benchmark results, which 
are based on timing the execution of tinie in the test cases of 
Sec. 4.2. The simulations have been performed in a HP Apollo 
6000 XL230a Gen 9 supercluster with each node having two In-
tel Haswell E5-2690 v3 processors, i.e., 24 cores in a computing 
node. The results are summarized in Table 4.

Each test system has been evaluated at multiple values of the 
transport parameters, i.e., varying � for one- and two-level systems 
and T for the potential barrier system. A single tinie execution 
computes the transport properties of the system with one fixed set 
of transport parameters. In Table 4, the times have been averaged 
over the total number of tinie executions performed during the 
test case computation.

Additionally, the potential barrier system has been evaluated 
using 64 computing cores, leading to a wall time of 12 hours, fur-
ther demonstrating the efficiency of the employed parallelization 
routines. Similarly, for the Fock-Darwin system, 32 computational 
cores have been used for tinie_prepare stage, and 16 cores have 
been used for tinie stage of the computation. This results in over-
all wall time of 41 hours. Faster execution time of the final test 
system comes from utilizing a reduced resolution of the eigenfunc-
tion spatial grid during the tinie_prepare stage, which proved to 
still be sufficiently accurate. These results confirm that tinie can
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Fig. 12. Transmissions (top row), ω-dependent absolute current profiles (middle row) and local density of states (LDOS) evaluated at a few selected values of ω (bottom 
row) for the perturbed multi-lead 2D quantum dot. The columns separate transmission and absolute current profiles of Leads α, β , and γ respectively. Vertical dashed lines 
in transmission mark the interval between Vα and Vβ = Vγ . The current profiles are displayed in the range between Vα and Vβ = Vγ . The figures showing the LDOS are 
normalized by their respective maximum values, and as such do not all share the same scale.
indeed perform ab initio transport calculations within a reasonable 
time frame.

5. Summary

We have presented tinie – a computational simulation frame-
work for quantum transport in two-dimensional systems of arbi-
trary geometry. tinie Python package provides a comprehensive 
toolset for quantum transport phenomena in nanoscale systems.
tinie performs its transport calculations from the first principles, 
that is, employing the Landauer-Büttiker approach, without any 
approximations besides those related to the wave function dis-
cretization and numerical differentiation/integration. One of tinie’s 
core strengths is its capability to perform calculations in a reason-
able time without the need to resort to approximate the theoreti-
cal transport formalism. However, tinie is also capable of utilizing 
some of the approximation regimes, such as the wide band limit 
approximation. The modular structure of tinie allows for easy ex-
pansion and compatibility with external software, such as itp2d

Schrödinger equation solver. This enables to use the optimized al-
gorithms geared for specific problems, and an expansion to easily 
implement different kinds of coupling schemes.

In this paper, we have demonstrated tinie’s versatility has been 
demonstrated in various test cases. We have investigated simple 
one- and two-state systems, a potential barrier system, and a re-
alistic two-dimensional quantum dot system in a magnetic field 
without and with random Gaussian impurities. Each test case pro-
duces reasonable results of high numerical accuracy. Hence, the 
examples demonstrate tinie’s suitability and flexibility for study-
ing transport phenomena in two dimensions. In general, tinie can 
be used to gain specific information about the effects of a magnetic 
field and disorder in quantum devices. One near-future application 
for tinie is to study the effect of perturbation-induced scars on 
quantum transport in disordered nanostructures [86–89].
14
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