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Abstract: Railway tracks need to be monitored to ensure safe operations and cost-effective maintenance. The monitoring is commonly
conducted using a track recording car that describes deviations from an ideal track geometry. Over time, the measurements provide time series
data that can be used to model the observed track geometry deterioration process. However, without simplification, the modeling results are
generally too complex to be utilized to their full extent in track asset management. Therefore, this study aimed to implement visualization
techniques for track geometry deterioration modeling results analysis which benefit track asset management. The best practices on track
geometry deterioration modeling were studied and applied to the track geometry history of a track section located in Finland. After testing the
establishing modeling principles, proposals were made regarding the use of the results in practice. This paper presents visualization tech-
niques that use the modeling results of individual cross-sections to generate information about longer sections of track and even whole rail
networks. These visualizations digest the massive amount of information from the modeling and present it in an informative way for practi-
tioners to utilize and benefit from. Thus, this study fills the gap between research and practice in railway track geometry deterioration
modeling. DOI: 10.1061/JTEPBS.0000626. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Multiple studies have demonstrated that track geometry deterioration
is not a random process, but one that can be idealized and modelled
[see Higgins and Liu (2018) and Soleimanmeigouni et al. (2018) for
literature reviews]. Fig. 1 presents the idealized track geometry
deterioration behavior of one cross section, which is always tamped
at the exact same longitudinal level (LL) deviation value, and tamp-
ing always corrects the geometry to the original level. The figure
demonstrates the theoretical diminishing effect of tamping due to
fouling of ballast (Shenton 1985; Dahlberg 2001; Lichtberger
2011). In Phase 1 of Fig. 1, initial settlements increase deviations
at an exponential pace. This is sometimes referred to as ballast
memory. Following the initial settlement, Phase 2 describes a linear
deterioration path that generally ends when a tamping intervention
limit is reached. This is followed by a theoretical failing phase (3),
which describes the track end-of-life, but in practice, this phase is
avoided either by conducting maintenance or ceasing traffic.

Neuhold et al. (2020) provided a foundation for modeling
track geometry deterioration based on actual track geometry car

measurements. This approach was based on modeling the behavior
of one cross section, thus providing results for a localized point on a
track section, as longer sections of track were out of scope in that
research. The current study extends the work of Neuhold et al.
(2020) and demonstrates how track geometry deterioration model-
ing of cross sections can be utilized for investigating the behavior
of not only cross sections, but also of longer sections of track and
even the whole rail network.

Modeling track geometry deterioration based on track geometry
car measurements provides highly practical information about the
development of the condition of railway tracks. However, the real-
world benefits of track geometry deterioration modeling can be
obtained only if the modeling results are made accessible and
understandable to practitioners in asset management. For this pur-
pose, the results need to be generalized into key figures and
representative visualizations that serve the heuristic nature of deci-
sion making in track asset management. Otherwise, the results
achieved in academia will not have an impact in practice. The, this
study also investigated indicators and visualizations created from
track geometry deterioration modeling that would be beneficial
to practical track asset management. The purpose was to ease
the interpretation of the modeling results by providing summarized
information for decision making, thus filling the gap between re-
search and practice on track geometry deterioration modeling.

Two research questions were formed based on these re-
search gaps:
1. How to use cross-section-based track geometry deterioration

modeling for longer sections of track and for the whole rail
network?

2. How to present track geometry deterioration modeling results in
a way that practitioners can easily interpret and benefit from?
The scope of this paper is limited to visualizing stochastic long-

term modeling of longitudinal deviations measured periodically
using a track geometry measurement car. The purpose of this paper
is to adapt the best current practices of track geometry deterioration
modeling and bring them closer to practical application using
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visualization techniques, not to create completely new modeling
techniques or to validate current models.

Track Geometry Deterioration Modeling

The best practices for preparing data for track geometry deteriora-
tion modeling were elaborated by Neuhold et al. (2020). This study
follows these established practices as closely as possible, but some
adjustments needed to be made to suit the data measured in
Finland. The purpose was not to advance the methods presented
by Neuhold et al. (2020), but rather to alter the methods for the
available data. Table 1 summarizes the slight differences between
the track geometry deterioration modeling described by Neuhold
et al. (2020) and the methods used in this study. The following sub-
sections further elaborate these differences.

Initial Data

The data used for the demonstrations in this paper consists of a ten-
year semi-annual track geometry car measurement history from a
track section, Luumäki–Imatra, in Finland. The examined section is
a 53 km long mixed traffic single line track section with a maxi-
mum speed of 140 km=h for passenger trains. The yearly gross ton-
nage of freight traffic is around 12 megatons. The measurements
were preformed using an EM120 track recording car (Plasser &
Theurer, Linz, Austria), which uses chord measurements from three
bogies spaced 5 and 7 m apart. The data is recorded every 0.25 m.
No major renewals were reported during this time period; only rou-
tine maintenance. Neuhold et al. (2020) used similar data, but their
initial data was much more extensive, albeit measured more
sparsely. Nevertheless, these differences do not matter, as the pur-
pose of this study is to visualize the results, which does not require
such a vast initial data set that statistical analyses require.

Track Geometry Parameter and Index

For long-term track geometry deterioration modeling, the LL stan-
dard deviation (SD) is commonly the chosen parameter, as most of
the gradual displacements occur in the vertical direction (UIC 2008;
Vale and Calçada 2014). SD provides a smooth depiction of the
original deviation signal, and is defined as follows:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼i ðxi − x̄Þ2
N − 1

r
ð1Þ

where xi = the current value of a signal; x̄ = the mean value of a
signal; and N = the number of values in a sample (Eurocode
EN13848-6 2014). Neuhold et al. (2020) opted for a modified
SD, in which both the left and right rail were considered simulta-
neously, and the result was multiplied by 1.35 to make the result
comparable with a conventional SD. This approach could not be
adopted for this study, because reliable data repositories were avail-
able only for the left rail. This does not affect the end results of this
study, as the applied visualization techniques are applicable to ex-
amining each rail individually or simultaneously.

SD can be calculated in fixed (also referred to as segmented) or
rolling (also referred to as moving or continuous) windows, using
any distance. Fixed SD calculation windows tend to be easier to
communicate, but they misrepresent information when deviations
occur in the edges of windows or if there are only local irregu-
larities in the middle of otherwise stable track, as demonstrated
by Neuhold et al. (2020). The use of rolling windows was found
suitable for the data in Neuhold et al. (2020), as well as for this
study.

Adjusting the length of the rolling window influences the sharp-
ness with which the SD follows the original signal (Fig. 2). The
appropriate rolling SD calculation window length can be consid-
ered to be roughly between 10 and 200 m, based on the lengths
used in previous research (Andrade and Teixeira 2011; Tanaka et al.
2018; Neuhold et al. 2020; Audley and Andrews 2013). A shorter
window SD more sharply follows the original signal, but too short
a window might result in the same problems as those encountered
when using only the original signal, namely, instability in align-
ment and a fluctuating signal. Too long a window may cause sim-
ilar problems to those faced when using fixed windows, where
some irregularities may be hidden due to adjacent smooth track.

This study opted for a 200 m SD window, as there were some
alignment issues between sequential measurements, as presented in
Fig. 2. Neuhold et al. (2020) experienced similar problems and
opted for a 100 m SD window. Furthermore, this study preferred
the 200 m over the 100 m SD, because the 200 m SD is recognized
by the European Standard 13848-6 (2014), which gives a good ba-
sis for standardizing the modeling principles and results.

Core Modeling Methods for Track Geometry
Deterioration

Modeling the track geometry deterioration rate (TGDR) on a large
scale requires a general depiction of past behavior, for example,
when analyzing the decade-long behavior of a track section. There-
fore, tamping intervals are usually adopted as the minimum interval
length for a deterioration period. This leads to a simplification of
the TGDR by using some mathematical idealization. The core
mathematical approaches to LL SD deterioration modeling are
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Fig. 1. Theoretical behavior of track geometry.

Table 1. Differences in track geometry deterioration modeling between Neuhold et al. (2020) and this study

Modeling principles Neuhold et al. (2020) This study

Initial data 16-year track geometry car history from 4,400 km in
5 m increments

10-year track geometry car history from 60 km in
0.25 m increments

Geometry index LL 100 m continuous modified SD LL 200 m continuous SD
Alignment correction None None
Modeling method Linear regression Robust linear regression
Outlier handling Outlier detection algorithm MAD Robust linear regression
Tamping activity identification Tamping records and negative TGDR Negative TGDR and tamping area identification

algorithm
Prognosis accuracy measure Prediction and real end quality comparison Prediction interval
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linear and exponential modeling. Linear modeling of track geom-
etry deterioration is the most popular modeling approach, based on
the literature (Caetano and Teixeira 2015; Khajehei et al. 2019; Lee
et al. 2018; Li et al. 2019; Neuhold et al. 2020; Nielsen et al. 2020;
Soleimanmeigouni et al. 2020). In addition, it provides the best fit
for the available data in Finland. However, it has been argued that
exponential models suit some data sets better than linear models
(Quiroga and Schnieder 2012; Famurewa et al. 2016). The use
of exponential models can be justified by their ability to take
the initial settlement into account. Generally, these models are
suited better for track sections with high traffic volume and frequent
(e.g., daily) track geometry measurements (Tanaka et al. 2018).

Real world measurements often provide outliers that need to be
accounted for in modeling. Neuhold et al. (2020) used the mean
absolute deviation (MAD) to identify and erase outliers. In this
study, outliers could not be removed as in Finnish conditions they
might indicate frost heave or other abrupt occurrences, which
should be presented to asset managers. Therefore, outlier handling
was considered when choosing the linear modeling method, not as
a separate operation.

The linear regression modeling of geometry deterioration can be
conducted using either simple or robust techniques. Simple tech-
niques include algorithms such as least squares. These algorithms
provide fast calculation times but tend to be influenced by outliers.
However, outlier detection and removal algorithms can be run be-
fore using simple algorithms to improve the results. Robust algo-
rithms, such as linear programming, generally produce numerous
possible estimations and choose the best-fitting one. A plot of the
differences between the algorithms (Fig. 3) depicts how in the sec-
ond tamping interval (measurements between 2011 and 2017) the

robust algorithm better describes the long-term behavior than least
squares, when the initial settlement is not regarded.

The major critique of all linear models is that they fail to capture
the initial settlement behavior after tamping. The initial settlement
lasts only days on a track section with heavy traffic, whereas the
track geometry measurements are conducted every 2–6 months.
Therefore, the probability of capturing the initial settlement caused
by tamping in a track geometry measurement is low. This is not to
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Fig. 2. Original measurement signal alignment and different indices.
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Fig. 3. Difference between a simple and robust linear optimization.
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say that it does not exist, but the recorded cases are few, and the
effect of initial settlement on increasing deterioration is negligible
when modeling on a large scale.

Fig. 3 presents a noticeable initial settlement captured by the
track geometry measurements in 2011. However, the effects of
the initial settlement on the linear regression can be eliminated
by using a robust linear programming algorithm instead of simple
techniques. Removing the effect of the initial settlement on linear
regression modeling can be justified by arguing that capturing the
long-term trend of the track geometry deterioration is more valu-
able than portraying the initial settlement. Furthermore, the initial
settlement does not provide useful information about the deterio-
ration, as the realized effect of tamping is the level of deviation after
the initial settlement, as depicted in Fig. 1. Robust linear modeling
ignores the initial settlement in the model, as is intended, but unlike
outlier removal techniques, the outlier is left visible in the data,
which is important, as these outliers can provide useful information
to asset managers about the successfulness of tamping.

Tamping Identification

There are two main causes for a decreasing TGDR, namely, meas-
urement inaccuracy and tamping (with or without other mainte-
nance actions). The measurement inaccuracy usually accounts
for only the slightest deterioration decreases, which are most likely
to occur when the TGDR is close to zero. In these cases, the fluc-
tuation in the measurement results is mostly attributed to the meas-
urement technique rather than an improvement of the physical track
geometry. These deterioration rates should be considered as zero in
deterioration modeling. The decreasing deterioration due to tamp-
ing is usually clearly noticeable, especially in cases where the
TGDR is not close to zero. However, modeling the tamping,
i.e., the decreasing deterioration rate due to tamping, is very diffi-
cult due to multiple and generally unknown variables related to the
timing and reason for tamping.

Solving the problem of what constitutes as tamping instead of
measurement noise in the track geometry data is important, as
tamping intervals form the basis for track geometry deterioration
modeling. This problem can be overcome by systematically record-
ing tamping data, but when the records are be incomplete or

missing altogether, such as is the case in Finland, the solution must
be applied in track geometry deterioration modeling.

The simplest solution for revealing tamping in track geometry
measurement data is to set a threshold for the decrease in the track
geometry that will be considered tamping, as proposed by Neuhold
et al. (2020). The threshold can be a fixed value or be dependent on
time or deterioration level. A threshold value is adequate for
detecting tamping that has had a significant effect on the irregularity
level, which is suitable especially for segmented track geometry in-
dices. However, when the LL SD is low before the tamping or the
tamping has little effect on the LL SD, a threshold value will not
consider these cases as tamping. This modeling case is common
when modeling track geometry using a rolling SD. This issue is best
demonstrated when the effect of tamping has roughly the same value
as the limit for detecting tamping (Fig. 4). In these cases, on some of
the cross sections in the tamped area a tamping is noticed, but on
others, it is not. This leads to undesirable results, which are apparent
when the sum of tamping times per cross section and the cross sec-
tion LL SD histories are plotted (Fig. 4). These results will not be
altered even with the use of a threshold dependent on the time or the
irregularity level. All fixed thresholds for determining tamping will
fail to separate tamping from measurement fluctuation in the cases of
low irregularity levels, as the tamping effect on the irregularity is
about the same amount as the measurement fluctuation. For that rea-
son, an algorithm is required to determine these cases.

The algorithm created in this study searches the data for small
individual areas with corrections in track geometry and disregards
them as tamping if they are not associated with an adjacent tamped
area. The generic form of the code is displayed in Fig. 5. The algo-
rithm does not consider areas to be tamped if the area is less than a
minimum length, which was set at 20 m in this study. Shorter areas
with negative TGDRs were considered to have been caused by
measurement inaccuracy. The accuracy of the algorithm could
not be numerically verified, as there are no systematic historical
tamping records in Finland. Verifying and improving the tamping
detection algorithm is a source of further research.

Tamping Effect Quantification

The decrease in the level of irregularity calculated from track geom-
etry car measurements before and after tamping indicates whether
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the tamping has successfully provided a stable ballast layer for the
trains to pass, or whether the initial settlement cancelled much of
the smoothness provided in the tamping. For example, in Fig. 6,
tamping has had a meaningful effect on the level of irregularities,
but in Fig. 3, irregularity has returned to the original state after one
measurement in the second tamping interval, albeit the irregular-
ities have stayed at a low level throughout the history.

The effects of tamping, without considering the initial settle-
ment after tamping, can be calculated using the information ob-
tained from a robust linear regression model. A robust model is
not prone to outliers, which means that if the initial settlement
is captured in the first measurement after tamping, it will not be
regarded in the results. Thus, the tamping effect describes the effect
the tamping has had when regarding the long-term behavior.

The effect is calculated by extrapolating the regression lines be-
fore and after tamping to the time of tamping and calculating the
difference in their irregularity level (Fig. 7). By doing so, the effect
of tamping on the level of deterioration σt is

σt ¼ σtb − σta ð2Þ
where σtb denotes the level of deterioration calculated from the line
equation before tamping at the time of tamping Δσn−1ðttÞ; and σta
denotes the level of deterioration calculated from the line equation
after tamping at the time of tamping ΔσnðttÞ. If the exact time of
tamping tt is not known, it can be assumed that reasonable results
can be obtained by

tt ¼ ttb þ ðtta − ttbÞ=2 ð3Þ

where ta denotes the time of the first measurement after tamping;
and tb denotes the time of the last measurement before tamping.

The TGDR after tamping is another important measure for de-
termining the effectiveness of tamping. Tamping effectiveness can
be determined by examining the deterioration rates before and after
tamping. Higher deterioration rates after tamping indicate that
problems continue after tamping, and thus, other maintenance ac-
tions together with tamping might be required in the future. Ap-
proximately equal deterioration rates before and after tamping
indicate that tamping has reset the deterioration trend to a lower
level, but the deterioration continues to develop as before. Deterio-
ration rates that are lower after tamping than before tamping indi-
cate that the tamping has had a remedial effect on the track
structure.

The change in the TGDR (Δσt) can be assessed by comparing
the slopes of the linear track geometry deterioration models before
and after tamping. There are three approaches to comparing the
deterioration rates:

Absolute comparison

ΔσtAbsolute ¼ Δσn−1 −Δσn ð4Þ

Relative comparison

ΔσtRelative ¼ Δσn−1=Δσn ð5Þ

Normalized absolute comparison

ΔσtNormalized ¼ ðΔσn−1 −ΔσnÞ=Δσn−1 ð6Þ

whereΔσn denotes the deterioration rate of tamping interval n; and
Δσn−1 denotes the deterioration in the previous tamping interval.
Because deterioration rates before and after tamping can be close to
zero, relative or normalized absolute comparisons can result in very
large or small values, due to the divisor or the dividend being close
to zero, respectively. As an alternative, the absolute comparison
does not suffer from this mathematical nuisance. However, because
the absolute comparison does not normalize the deterioration
rate of the previous tamping interval, the results should always
be presented with knowledge of the level of the deterioration rate.
Otherwise, the tamping effect might seem optimistic, if the deterio-
ration rate before tamping has been very high. If information about
the level of deterioration is incorporated, the absolute comparison is
the most practical comparison to use. Otherwise, relative or normal-
ized absolute comparison yields more informative results.

Fig. 5. Generic algorithm for detecting tamped areas.
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Evaluating past tamping effectiveness requires examining
several figures simultaneously: the values of LL SD and TGDR
after tamping, and the change in LL SD and TGDR due to tamping.
Because simultaneous examination of four figures is not practical,
an ensemble parameter representing their possible combinations is
required. The ensemble parameter, named maintenance success in-
dicator (MSI), can be assigned to represent four different outcomes
of a tamping (Fig. 8): (1) beneficial, (2) delaying, (3) not meaning-
ful, or (4) negative.

The logic behind MSI is presented in Fig. 8. The evaluation be-
gins by assessing the effect of tamping on the TGDR (Δσt). If the
effect on the TGDR (Δσt) is high, it means that the deterioration
rate has slowed down, and vice versa. Next, the tamping effect on
the deterioration level (σt) is evaluated. A high effect is the desir-
able outcome. Finally, the tamping interval after tamping is evalu-
ated by assessing either the level of deterioration after tamping (σn)
or the TGDR after tamping (Δσn), where low values are the desir-
able outcome. The limit values separating high and lowΔσt, σt, σn,
and Δσn can be assessed using the allowable LL SD and limit val-
ues for TGDR. However, defining the limit values for these is out of
scope and a source of future research, as the initial data for assess-
ing the limit values should be much larger than the one available for
this study.

A desirable outcome for the MSI is to have as much Class 1
(beneficial effects) tamping and as little of other classes. Areas with
Class 3 or 4 effects should be closely investigated. The MSI Class 1
denotes that tamping has slowed down the TGDR and significantly
reduced the LL SD, thus making the track behavior better than be-
fore tamping. MSI Class 1 can also be achieved, if the effect of
tamping to TGDR or LL SD has been only slight if the TGDR
and LL SD after tamping have been low. This implies that these
values were low before tamping, therefore, they could not have
been improved any further by tamping. Class 2 MSI implies that
while the tamping has restored the LL SD, the TGDR is still high,
meaning the tamping has been successful, but the remediation will
not last. MSI Class 2 highlights areas where tamping is successful,
but other maintenance actions are also required to obtain a lasting
remediation. MSI Class 3 denotes that tamping has not made a sig-
nificant difference, and perhaps the planned tamping areas should
be revised, if possible. MSI Class 4 suggests that errors have been
made in the tamping or that the track has suffered damage after
tamping, and the area should be further investigated. Special cases,
where a section is tamped before and after a measurement, must be
considered separately as not applicable areas (n/a), as a TGDR can-
not be calculated from a single track geometry measurement. The
practical use of the MSI is presented in a later section, Visualizing
Track Geometry Deterioration Modeling Results.

Prognosis and Prognosis Accuracy Measures

Predicting future LL SD values using linear regression models is
simple. Extrapolating the linear regression model of the newest
available tamping interval usually provides reasonably good re-
sults. However, if an area has been recently tamped, the insufficient
number of measurements after tamping may not accommodate lin-
ear regression. In these cases, the linear regression model can be
based on the previous tamping interval.

However, while the predictions of future LL SD values based on
linear regression are simple to make, the predicted values them-
selves are not informative enough. The reliability of the predictions
must be described as linear estimations have varying degrees of
uncertainty. Neuhold et al. (2020) assessed prognosis accuracy
by comparing the predicted and real end quality. However, this
study could not adopt such a method, as the prognosis accuracy
needs to be expressed for a future prediction.

The best way to describe the reliability of future predictions is
by using the prediction interval (PI). The PI offers a simple way to
describe where future observations (LL SD values) produced by the
model will occur, with a specified confidence. The PI can be de-
scribed in a generic form as

PI ¼ μ̂� tα=2;n−ps
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x 0

0ðXtXÞ−1x0

q
ð7Þ

where μ̂ denotes the predicted timing of reaching a LL SD limit
value; t is the quantile of t-distribution having df ¼ n–p; α is
the specified confidence level (for example 90%); s is the square
root of the residual sum of squares; ðXtXÞ−1 is the covariance ma-
trix of parameters; and xo is a column vector of the particular values
of interest (LL SD limit value), at which the prediction is calculated
(Agresti 2015).

The PI does not provide a probability for a future observation
but instead describes the level of confidence of the model predic-
tions. For example, a 90% PI provides the range where approxi-
mately 90% of future observations produced by the model
should occur. The PI can be communicated easily by plotting
the range until a maintenance limit value is met. For example,
in Fig. 9, the 90% PI indicates that the set maintenance limit of
1 mm LL SD is met between 2020 and 2022, and the most likely
timing for reaching the limit is in 2021.

Visualizing Track Geometry Deterioration Modeling
Results

Asset management requires simple-to-use information that pro-
vides a good overall representation of the track conditions. The
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Fig. 8. Maintenance success indicator (MSI) logic.
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information from track geometry deterioration modeling should be
reported for asset management in three categories: past deteriora-
tion exploration, past maintenance effectiveness evaluation, and fu-
ture tamping need predictions. The scope of observation for each
category should consider at least three levels:
1. Cross section level
2. Track section level,
3. Network level.

The following sections elaborate what the different scopes and
categories are used for and what novel information they produce.

Cross Section Level

The cross section level scope provides the necessary tools for ex-
amining the track geometry deterioration of localized areas on a
track section. The cross section here represents the 200 m LL
SD values around that area. The analyses provide specific informa-
tion about short problematic areas, for example, transition zones,
which are more typical than long sections of poor condition track.
The behavior of cross sections can be visualized in a time–LL SD
perspective (Fig. 10). From these illustrations, the deterioration his-
tory can be observed, which includes the past changes in the TGDR
and the past tamping times and their effects, and also, the timing of
the next tamping can be predicted.

With these illustrations and results, the asset manager can an-
swer, for instance, the following questions:
• Is the cross section problematic (high TGDR)?
• When had the problematic behavior begun?
• Are there seasonal differences in the TGDR?
• Has tamping been effective in maintaining good track

geometry?
• When will the area around the cross section require further

maintenance?
By examining the past track deterioration behavior, mainte-

nance effectiveness, and the predicted next maintenance interven-
tion timing, the asset manager can guide maintenance by choosing
the correct approach for remediation and time the remediation. In
practice, the illustrations show whether the location has been
tamped multiple times with no lasting improvement to the track
geometry. In these cases, the asset manager can assign further in-
vestigations to determine appropriate spot repair to remedy the
problem instead of tamping the area once again with futile effects.
Furthermore, the asset manager can investigate the origins and

development of problematic behavior, like seasonal differences
or sudden increases in the deterioration rates caused by track work
or extreme weather conditions. The asset manager also attains in-
formation on when the next maintenance action should be taken at
that location.

Track Section Level

The track section-level scope of observation provides information
on how the deterioration behavior differs within a longer section of
track. The longer section of track is commonly between 1 and
10 km long, because even longer sections become difficult to
assimilate. The goal is to detect problematic zones, so that the
analysis can focus on those areas. The heatmaps of LL SDs
[Figs. 11(a and c)], and tamping effects [Fig. 11(b and d)] can pro-
vide useful ways for analyzing the history of longer sections of
track. The tamping effects here refer to the decrease in the LL
200 m SD.

These figures should be examined together, as examining them
separately does not provide sufficient information for reliable
analysis. For example, in Fig. 11, the LL SD in the area around
265þ 0300 and 265þ 0500 remained at a rather high level until
tamping in 2016, after which the LL SD has been moderately high,
but tamping has not been required. This would lead to the conclu-
sion that this area poses no concerns currently. Conversely, even
though the LL SD in the area around 265þ 0600 and 265þ
0800 is moderate, the frequent tamping suggests that some prob-
lems do exist, but the tamping interval is so short that the track
geometry measurements do not capture the actual behavior. This
area should be closely monitored in future measurements.

In addition to assessing past deterioration behavior, predictions
of the future tamping areas and their timing should be kept updated
for asset management. The predicted tamping areas can be plotted
with the principle presented in Fig. 12. The x-axis indicates the
location, whereas the y-axis indicates the timing. The plot is
color-coded to represent the PI of the predicted timing of the next
tamping; a darker color indicates a more likely timing of the next
tamping.

In track maintenance, the tamping timing prediction illustra-
tions, like the one shown Fig. 12, can be utilized to plan future
tamping areas. The graph also provides a general idea about the
reliability of the predictions. For example, in Fig. 12, the LL
SD in the area between 254þ 0450 and 254þ 0650 reaches a
maintenance limit value at around 2022, and the PI is quite narrow.
This would be a good indicator to plan tamping at that area for that
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year. As an example of another type of case, the area around 254þ
0000 and 254þ 0100 has a very wide PI, and it is predicted that
tamping will be required around the year 2030. This area should not
require tamping in the near future, but because the predictions are
still ambiguous, the area should be focused on when new track
geometry measurements are performed, and the predictions are
updated.

With the information provided from the track section level
analysis, the asset manager can answer the following questions:
• Where are the problematic areas located on a track section, and

how severe are they?
• For how long has the problematic behavior been observed, and

is it seasonal?
• How has past maintenance affected the track geometry deterio-

ration on the track section?
• When will different parts of the track section require tamping or

other maintenance?
The information obtained from illustrations following the prin-

ciples shown in Figs. 11 and 12 can be used to guide maintenance
by assessing the systemization of past maintenance, drafting tamp-
ing plans, and conducting the same analyses as for the cross section
level, only now for a longer segment of track (e.g., 1–10 km). Past
maintenance performance can be evaluated by visualizing the past
tamping areas. Tamping areas disconnected from each other and
frequently tamped areas indicate that tamping planning should
be revised. Future tamping plans can be drafted using the illustra-
tions by connecting areas with similar timing estimations for the
next tamping. In addition, all the analyses mentioned for cross sec-
tion level are valid for the track section level as well.

Network Level

Network-level track geometry deterioration assessment needs to re-
present complete track sections in generalizing figures and illustra-
tions. The network-level analysis is intended to apply to tens or
even hundreds of kilometers of track. For this purpose, the analysis
turns to the statistics of the selected network. The past track geom-
etry deterioration behavior of a network can be evaluated using a
histogram displaying the number of track meters where a certain
mean TGDR has been observed (Fig. 13).

The histograms of the TGDRs observed on the track sections
can be compared by plotting them in the same figure and then
examining them. In addition to the visual examination of the

histograms, key figures from the histograms can be produced to
enhance the evaluation. The suggested approach is to report the
median (50%) and 90% quantile of the distribution. The metrics
on skewness should also be reported, as the histograms are often
skewed to the right due to problematic areas exhibiting significantly
larger deterioration rates compared to the median.

As an example of an analysis, Fig. 13 demonstrates two TGDR
histograms from the same 60 km section of track: one containing
the modeling of the complete 10 years’ measurements, and the
other containing the modeling of the last three years’ measure-
ments. At first glance, the last three years seem to be more to
the left than the complete history, indicating that the conditions
have improved on this section of track. This is supported by the
lower median (50% quantile) and 90% quantile of the last three
years compared with the complete history. However, the higher
skewness on the history of the last three years suggests that the
parts of the track enduring very poorly continue to be a problem.

The network-level modeling result analysis should also review
the past maintenance effectiveness by presenting the amount of ef-
fective tamping on the network. For this purpose, the MSI of tamp-
ing should be summarized by calculating the total amount and
percentages of different MSIs on the network. Fig. 14 demonstrates
how the tamping history of the MSI assessment is used for
network-level analysis. The time–location view shows when and
where tamping has occurred, and the color represents the MSI
of the tamping. The pie chart shows a summary of the proportion
of different MSIs on the observed section. If the MSI Categories
3 or 4 are overrepresented in the network summary pie chart, the
asset manager can examine the areas where tamping has not been
effective and further investigate those areas. This principle can be
used for the network level, but for readability, the example contains
only a two-kilometer long section of track. The information from
the histograms and MSI summaries can be used to guide asset man-
agement in deciding when the next major renewal should be carried
out, instead of performing routine maintenance. If the TGDR histo-
gram shows a major part of the track section having a high TGDR,
and MSI summaries imply that routine maintenance has had little
effect on retaining sufficient track geometry, the asset manager
should start preparing for track renewals.

The network-level analysis also requires assessments of future
tamping needs. These are best presented by a bar chart depicting the
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number of meters of track to be tamped in future years (Fig. 15).
From illustrations like the one presented by Fig. 15, the asset man-
ager can assess the need for maintenance funding and resources for
the years to come. For example, if maintenance contracts are to be
tendered, the asset manager can inform bidders about the expected
amount of tamping required so that the amount of maintenance
work and the number of tamping machines can be estimated. Fur-
thermore, if the asset manager wants to represent the uncertainty in
the estimations of future tamping needs, uncertainty can be calcu-
lated using, for example, a Monte Carlo simulation, as the linear
models and PIs contain the necessary input data for simulating fu-
ture observations; however the practical application for this is left
for future research.

By combining the network level illustrations, the asset manager
can answer the following questions:

• What are the mean and extreme TGDR values on the network?
• How has the TGDR evolved on a network level, and how do

different networks compare?
• Has tamping been effective on the network?
• What is the expected amount of tamping on the network for the

years to come?

Conclusion

This paper presented visualization techniques that help bring track
geometry deterioration modeling from research into practice. In
everyday asset management, the problem has been that track geom-
etry deterioration modeling results are generally too complex and
difficult to handle in daily operations. Therefore, this paper provided
suitable visualization techniques, with which track geometry deterio-
ration modeling results can be utilized by practitioners in asset man-
agement. This paper also demonstrated howmodeling based on cross
section data can be used for examining the track geometry behavior
of longer sections of track and even for the whole rail network.

This study adapted the principles of track geometry deteriora-
tion modeling from the work of Neuhold et al. (2020), by slightly
altering some aspects to better suit the data measured in Finland.
The modeling approach was a robust linear model of a rolling
200 m LL SD. Future observation prediction accuracy was esti-
mated using the PI, and past maintenance success was measured
using the MSI. The proposed modeling methods are best suited
for the LL SD, as it is generally observed to exhibit linear deterio-
ration behavior. Other indices could work just as well, providing
they follow linear deterioration behavior.

The main innovation of this study, i.e., how to connect suitable
track geometry deterioration visualization techniques to different
practical situations in asset management, is summarized in Fig. 16.
The visualizations provide the following benefits:
• The cross-section level analysis helps to analyze isolated de-

fects, their history and future development.
• The track section-level analysis provides a way to analyze lon-

ger sections of track to identify problematic areas and explore
maintenance history, along with future maintenance timing.
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• The network level analysis summarizes the condition, past
maintenance effectiveness, and future maintenance needs of
complete track sections or even rail networks, into simple illus-
trations that help to make strategic decisions and allocate
resources.
Lastly, several needs for future research were identified:

• A reliable method for detecting tamping areas in the track geom-
etry history without the use of tamping records should be estab-
lished to enhance the accuracy of linear regression modeling.

• The initial settlements after tamping should be further investi-
gated to determine their duration in different circumstances and
effect on relative and absolute track geometry.

• Region-specific research on TGDRs and suitable limit values
for them should be conducted to provide comparable TGDRs
from different environments.

• Uncertainty measures for the estimated amount of required fu-
ture tamping should be defined.
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Fig. 16. Visualizations generated from track geometry deterioration modeling for asset management.
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