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ABSTRACT The Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog) is a neuropsy-
chological tool that has been designed to assess the severity of cognitive symptoms of dementia. Personalized
prediction of the changes in ADAS-Cog scores could help in timing therapeutic interventions in dementia
and at-risk populations. In the present work, we compared single and multitask learning approaches to
predict the changes in ADAS-Cog scores based on T1-weighted anatomical magnetic resonance imaging
(MRI). In contrast to most machine learning-based prediction methods ADAS-Cog changes, we stratified
the subjects based on their baseline diagnoses and evaluated the prediction performances in each group. Our
experiments indicated a positive relationship between the predicted and observed ADAS-Cog score changes
in each diagnostic group, suggesting that T1-weighted MRI has a predictive value for evaluating cognitive
decline in the entire AD continuum. We further studied whether correction of the differences in the magnetic
field strength of MRI would improve the ADAS-Cog score prediction. The partial least square-based domain
adaptation slightly improved the prediction performance, but the improvement was marginal. In summary,
this study demonstrated that ADAS-Cog change could be, to some extent, predicted based on anatomical
MRI. Based on this study, the recommended method for learning the predictive models is a single-task
regularized linear regression due to its simplicity and good performance. It appears important to combine
the training data across all subject groups for the most effective predictive models.

INDEX TERMS Alzheimer’s disease, prediction, MRI, ADAS, heterogeneity reduction, transfer learning,
domain adaptation, machine learning algorithms, biomedical imaging, engineering in medicine and biology.

I. INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative dis-
order and a major health burden, with 152 million people
expected to suffer from AD by 2050 [1]. Pathophysiological
changes in AD begin many years prior to clinical mani-
festations of disease, and the spectrum of AD spans from
clinically asymptomatic to severely impaired [2]. Because
of this, there is an appreciation that AD should not only be
viewed with discrete and defined clinical stages, but also
as a multifaceted process moving along a continuum. Mild
cognitive impairment (MCI) is an essential concept along this
continuum, representing a transitional stage between healthy
elderly individuals and AD [3]. Approximately 10% to 20%
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of MCI patients tend to progress to AD annually, whereas
others will continue with cognitive decline or even revert to
normal cognition (NC) [4]. Many treatment strategies have
been proposed to decelerate AD, with limited success [5];
one problem is that treatments are not administered within
the correct time window along the AD continuum. There-
fore, early prediction of disease progression is a crucial step
towards better therapies, unburdening the health care system,
and preventing adverse events caused by AD [6], [7].

“Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of the ADNI and/or provided data but
did not participate in the analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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Cognitive test batteries have been developed to assess
the cognitive decline of individuals. Two of the most
commonly used standards are the Mini-Mental State
Examination (MMSE) [8] and the Alzheimer’s Disease
Assessment Scale-cognition subscale (ADAS-Cog) [9],
which are important criteria for the clinical diagnosis of
AD. In the evaluation of cognitive decline due to dementia,
ADAS-Cog is considered to be more sensitive and reliable
than MMSE [10]. The ADAS-Cog is widely used to evaluate
the cognitive state of patients with mild to advanced AD.
The modified ADAS-Cog 13 contains 13 items for assessing
cognitive dysfunction, with a total score of 0-85, with higher
scores indicating greater dysfunction [11].

Due to the above-stated reasons machine learning (ML)
for predicting ADAS-Cog scores, as opposed to the diagnosis
(a recent review in [12]), has been gaining research interest.
For example, Utsumi et al. [13] found that the combination
of two variants of personalized Gaussian process models
can improve the accuracy of predicting future ADAS-Cogl13
scores using a limited set of subjects with multimodal
data, which included imaging biomarkers (MRI, diffu-
sion tensor imaging), cerebrospinal fluid (CSF) biomarkers,
demographics, genetics, and cognitive scores. Zhu et al. [14]
concluded that the canonical feature selection method had
a significant effect on improving the performance of sparse
multitask learning (MTL) to predict the clinical scores of
ADAS-Cog. Prakash et al. [15] utilized multivariate regres-
sion techniques and determined that longitudinal prediction
of AD progression is possible with multimodal data from the
baseline, which included MRI, positron emission tomogra-
phy (PET), CSF biomarkers, cognitive scores, and APOE.
Tsao et al. [16] found that leveraging hippocampal surface
features together with multimodal data, which included sex,
age, MRI, APOE, and baseline MMSE, might boost the
prediction of cognitive scores, such as MMSE and clinical
dementia rating (CDR). However, PET is far less commonly
used and more expensive than MRI [17], and obtaining CSF
is highly invasive.

Accordingly, an interesting approach to biomarkers is the
use of the only standard, T1-weighted MRI, to predict the
progression rate of dementia. MRI enables the study of
various noninvasive aspects of the human brain to detect
biomarkers associated with AD [18], and it is a widely
available imaging modality. Indeed, several studies have
investigated the association between cognitive scores and
MRI biomarkers, such as gray matter volume [19], [20] and
cortical and subcortical volumes [21], [22]. Lei et al. [23]
studied the relationship between MRI data and cogni-
tive scores by introducing a framework that includes
correntropy regularized joint learning and a deep poly-
nomial network for feature construction, as well as
ensemble learning based on support vector regression
for the prediction of cognitive scores. Bhagwat et al. [24]
proposed an artificial neural network model for predicting
cognitive scores from the cortical thickness and hippocampal
subfield volumes. Jiang et al. [25] proposed a novel MTL
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formulation that considers a correlation-aware sparse and
low-rank constrained regularization in order to explore the
relationship between the MRI features and cognitive scores.
Huang et al. [26] presented a random forest (RF) with sparse
regression and soft-split technique, which adopted probabilis-
tic paths during the testing stage in RF to predict cognitive
scores at multiple time points. Zhou et al. [27] proposed
two MTL formulations based on a temporal group Lasso
regularizer and the convex fused sparse group Lasso, which
utilize the common temporal patterns of MRI biomarkers to
predict disease progression measured by the cognitive scores.
To date, most existing progression models focus on predicting
cognitive scores derived from the entire AD continuum,
from healthy elderly to moderate AD, using a single model,
e.g., [28]-[31], with the exception of Duchesne et al. [32],
who studied the relationship between MRI and one-year
MMSE changes in the MCI population. However, there
is little evidence that this one-size-fits-all strategy would
be optimal. Moreover, individuals at different stages of
the continuum can be expected to regress differently (for
example, most cognitively normal individuals are likely to
be cognitively normal after three years, while most AD
patients are expected to have regressed during that time
period). Therefore, evaluating the prediction models using the
whole-continuum data leads to results that are perhaps hard
to interpret, and we argue that the prediction models should
be evaluated while stratifying the subject population based on
the baseline diagnosis.

The evaluation of the prediction models while stratifying
for the baseline diagnosis leads to a question of whether
the other diagnostic groups are still useful when training
the predictive models. This subsequently leads to the con-
sideration of MTL approaches to improve the generaliza-
tion performance by simultaneously solving multiple learn-
ing tasks while exploiting commonalities and differences
across tasks [33]. One of the critical issues in MTL is to
identify the essential relatedness between the tasks and to
build learning models in order to obtain this task-relatedness.
MTL approaches with sparsity-inducing regularization have
been studied to investigate the prediction of cognitive mea-
sures. For example, Tabarestani et al. [34] applied £;-norm
regularization to introduce sparsity among all features that
could select a small subset of features to predict MMSE at
six-time points. Zhou et al. [27] and Lei et al. [35] employed
joint sparsity regularization (£ 1-norm) in order to share a
common subset of features for all tasks simultaneously, where
each task refers to AD progression prediction at a single time
point. Wang et al. [36] formulated the progression of AD as
a weakly supervised temporal multitask matrix regression
framework that considers the prediction of cognitive scores
at each time point as a regression task. However, MTL has
not been studied in cases where different tasks correspond
to cognitive score prediction of different diagnostic groups
within the AD continuum. In addition, MTL has not been
studied for adapting predictive modeling for differences in
MRI acquisition.
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In this study, we explore whether MRI at the baseline
can potentially predict changes in ADAS-Cog scores while
stratifying the population based on the baseline diagnosis.
To our knowledge, no such analysis has been applied to
study the progression of different stages of the AD contin-
uum. We frame this as a single-task or multitask prediction
problem, where different tasks correspond to three diagnostic
groups of subjects at baseline. We will also address multitask
learning in the presence of differences in MRI acquisition; in
this case, MRIs have been acquired using two different mag-
netic field strengths (MFSs). We compare MTL to two het-
erogeneity reduction approaches, partial least squares (PLS)
domain adaptation [37] and ComBat [38].

Il. MATERIALS AND METHODS

A. ADNI DATASET

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu).! The ADNI was launched in
2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessments
can be combined to measure the progression of MCI and early
AD.

B. SUBJECTS AND MRI

The data in this study included baseline MRIs from 1376
ADNI subjects (430 NC, 662 MCI, 284 AD), aged 54 to
91 years old. Detailed characteristics of the subjects are
presented in Table 1. For these subjects, the baseline MRI
data were obtained with a T1-weighted MP-RAGE sequence
at 1.5 T (with a 256 x 256 x 170 acquisition matrix and
a voxel size of 1.25 x 1.25 x 1.2 mm?) and 3.0 T (with a
256 x 256 x 170 acquisition matrix and a voxel size of 1.0
x 1.0 x 1.2 mm?). Specifically, 808 subjects were from the
ADNI-1 cohort with the MRI acquired at 1.5 T, and 571 sub-
jects were from the ADNI-2 cohort with the MRI acquired
at 3.0 T. As seen in Table 1, the number of subjects with
ADAS-Cog-13 scores decreased during the follow-up due to
subject drop-out and missing data. The roster identification
numbers (RIDs) of the subjects employed in this study are
provided in the Supplementary Material.

C. IMAGE PREPROCESSING

The preprocessing of the T1-weighted images was performed
using the fully automated CAT 12 package [39] running under
MATLAB?. T1-weighted images were first denoised by using
adaptive nonlocal means filtering [40], then they were cor-
rected for bias field inhomogeneities and segmented into
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) [41]. After segmentation, partial volume estima-
tion (PVE) with a simplified mixed model with a maximum
of two tissue types was performed, resulting in maps of the
tissue type densities [42]. Furthermore, the segmented images

IFor up-to-date information, see https://www.adni-info.org.
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were spatially normalized by utilizing the high-dimensional
DARTEL normalization algorithm into the standard MNI
space [43]. This procedure resulted in spatially aligned maps
for tissue fractions of WM and GM. We only utilized the GM
images in this study. Finally, we averaged the gray matter
density values according to the brain regions defined by the
AAL atlas, resulting in 122 regional GM density values.

D. ADAS-COG SCORE

The ADAS-Cog was developed as an outcome measure to
assess the severity of cognitive dysfunction in AD. We con-
sider ADAS-Cog-13, which yields a measure of cognitive
performance by combining the original tasks of the ADAS-
Cog-11 [44] (subject-completed tests and observer-based
assessments) as well as a test of delayed word recall and a
number cancellation or maze task [9]. The ADAS-Cog-13,
later referred to as ADAS-Cog, scores are in the range of
0 to 85, with higher scores indicating more severe impair-
ment [45]. The ADAS-Cog scores used in this study were
acquired once a year as described in the ADNI General
Procedures Manuals.’

E. OVERVIEW OF THE METHODS

We aim to predict the change in the ADAS-Cog score
(A;ADAS;) for each subject i and each time point (t =
12, 24, 36 months) based on regional, MRI-derived gray mat-
ter density values at the baseline (+ = 0 months). The change
in the ADAS-Cog score is defined as A;ADAS; = ADAS;(t)—
ADAS;(0), where ADAS;(¢) is the ADAS score of subject i at
time t. We frame this as a single-task (Fig. 1(A)) or multitask
(Fig. 1(B)) prediction problem, where different tasks corre-
spond to the groups of different, but related, subjects (three
diagnostic groups and/or two magnetic field strengths used
to acquire the data). More formally, we build S prediction
models:

AADAS; = fa(xi), ey

where x; denotes the MRI (122 regional gray matter density
values) of subject i at baseline and f; is the prediction model
for subject group d. We consider the cases where § = 3,
where the groups are determined based on the baseline diag-
nosis (NC, MCI, and AD), and S = 6, where the groups are
determined based on the baseline diagnosis and MFS (NC at
1.5T,NCat3T,MClat1.5T,MClat3T,ADat 1.5 T and AD
at 3 T). multitask learning aimed at enhancing the precision of
learning algorithms by jointly learning independent variables
for multiple tasks. The learning approach works well, espe-
cially if these tasks have some commonalities, as we expect
fa to have.

We compare multitask learning to harmonize MRI
acquired with different field strengths. We do this by adopting
a recent domain adaptation technique [37] and using Com-
Bat data harmonization [46]. The algorithms compared in

2For more information, see http://www.neuro.uni-jena.de/cat.
3 http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_General
ProceduresManual.pdf
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TABLE 1. Demographic information of subjects at different time points. Under the ranges, the mean and standard deviation are provided.

Time point Baseline diagnosis No. of Subjects Age Male/Female ADAS-Cog
(15T,30T)
All 1376 Range: [54-91] 759/617 Range: [0-55]
(808, 568) 74.05(7.10) 17.34(9.59)
NC 430 Range: [56-90] 214/216 Range: [0-24]
. (227,203) 74.39(5.77) 9.38(4.27)
Baseline
MCI 662 Range: [54-91] 394/268 Range: [3-40]
(394, 268) 73.43(7.60) 17.19(6.67)
AD 284 Range: [55-91] 151/133 Range: [13-55]
(187,97) 74.95(7.59) 29.77(8.03)
All 1160 Range: [55-91] 647/513 Range: [0-73]
(711, 449) 74.24(7.04) 18.34(11.97)
NC 347 Range: [56-90] 177/170 Range: [0-23]
12-Months (206, 141) 74.89(5.61) 8.75(4.59)
MCI 594 Range: [55-91] 352/242 Range: [0-73]
(351, 243) 73.47(7.57) 18.17(8.89)
AD 219 Range: [56-91] 118/101 Range: [9-71]
(154, 65) 75.30(7.39) 33.99(11.02)
All 1011 Range: [55-91] 559/452 Range: [0-71]
(617, 394) 73.98(6.97) 18.55(13.16)
NC 367 Range: [56-90] 189/178 Range: [0-26]
24-Months (200, 167) 74.41(5.83) 9.06(4.86)
MCI 501 Range: [55-91] 2971204 Range: [0-71]
(296, 205) 73.30(7.46) 19.85(10.46)
AD 143 Range: [56-89] 73/70 Range: [12-68]
(121, 22) 75.25(7.63) 38.40(12.25)
All 629 Range: [55-90] 353/276 Range: [0-74]
(437, 192) 73.75(6.99) 17.09(11.96)
NC 208 Range: [56-90] 104/104 Range: [0-33]
36-Months (182, 26) 75.30(5.46) 9.32(5.24)
MCI 411 Range: [55-87] 245/166 Range: [0-74]
(245, 166) 72.86(7.52) 20.49(12.09)
AD 10 Range: [66-85] 4/6 Range: [22-73]
(10, 0) 77.95(5.51) 39.33(15.14)

this work are summarized in Table 2. Supplementary Fig-
ure 1 delineates the workflow of the applied methods for
predicting the change of ADAS-Cog scores.

F. PENALIZED LINEAR REGRESSION

In the simplest cases, we assume that either 1) f; are inde-
pendent or 2) f; are equal and can proceed with single-
task learning. As a single-task learning algorithm, we use
least-squares linear regression with an elastic net penalty to
predict the ADAS-Cog changes. More formally, the AADAS
scores are predicted by solving the following linear regression
problems:

AADAS; = alix; + by + €, (2)
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where i refers to a subject, ag and b, are the model parameters
for the task d and ¢; is the error term. Adding the elastic
net penalty, the model is solved by minimizing the following
elastic net cost function:

Na
1
— Z(AtADASi — by —xTag)?
2Ny P

A = @llagll5/2 + allagllil,  (3)

where N, is the number of training samples, A is the complex-
ity parameter found by cross-validation, & € [0, 1] defines
the compromise between ridge ||a||% /2 and lasso penalties
[lall1, and ||.]|; denotes the L1-norm. Here, we selected o =
0.5 to give equal weights for the ridge and lasso penalties.
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FIGURE 1. The framework of two different learning models to predict the future change of ADAS-Cog scores. A) Single-task learning, B) Multitask

learning.

We modeled each time point (¢ 12, 24, 36 months)

separately.

G. MULTITASK LINEAR REGRESSION

Multitask regression incorporates the shared information
among different tasks (task relatedness) into the regression
model. To introduce the multitask regression approaches,
we need to introduce additional notation. Let X; be an Ny x M
matrix of the input MRI data at the baseline corresponding to
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task d, where N is the number of subjects in a group d, and
M is the dimensionality of the feature space. We formulate the
multitask learning as minimization of the penalized empirical
loss:

m“i,n LW)+EW), “4)

where W € RM*4 is the weight matrix, which is estimated
from the feature matrices X; and A ADAS-Cog scores in the
training set, £(W) is the empirical loss on the training set, and
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TABLE 2. Summary of the compared algorithms. £(W) and E(W) represent the empirical loss and the regularization term, respectively.

Purpose Method

Algorithm

ComBat [38]

ComBat 4 ge

ComBatgeg , .
MFS harmonization g

PLS [37]

PLSAge

Dirty Modelg—7qsks

ComBat harmonization.

ComBat harmonization;

Age as a covariate.

Eliminate age as a confound from

harmonized image data.

PLS based domain adaptation; MFSs as the response variable.
PLS based domain adaptation; MFSs along with age

as the response variable.

6-task Dirty learning model

SEP-EN

ALL-EN

Least Lasso [47]
Learning models

JES [48]

Dirty Model [49]

LRA [50]

Elastic-net penalized linear regression; Training the model
separately for each group.

Elastic-net penalized linear regression; Training the model
using all groups

Multitask learning; £(W) = Least Squares;

E(W) = p1||[W]|1 + pr2.

Multitask learning; £(W) = Least Squares;

EW) = A||[W||1,2.

Multitask learning; £(W) = Least Squares;

E(W) = p1||R|[1,00 + p2[|S]]1, W = R+S.

Multitask learning; £(W) = Least Squares;

E(W) = \|[|W||+«.

E(W) is the regularization term that encodes the relatedness
of different tasks. Moreover, we use wy to denote the weights
related to the group d,i.e., W = [wy, ..., ws]”. We then use
the least squares loss as the empirical loss function for the
regression tasks:

LWy= )

de{AD,MCI,NC}

W5 Xa +bail —yail?, (5

where y; ; is a shorthand of the A;ADAS scores of Ny subjects
in group d at the time point ¢ (12, 24, or 36 months), b, ; are
the bias terms, and 1 is an M-element vector of ones. Dif-
ferent regularization terms were used to determine different
assumptions on task relatedness [51]—[54]. The regularization
terms are described as in the following, where we drop the
subindex ¢ as we separately consider the prediction at three
time points.

1) MULTITASK LASSO

Multitask Lasso is a simple generalization of the elastic net
penalty [47] to multitask regression. The regularization term
is defined as:

EW) = p1IWll1 + pral W17, (©6)

where pj is a regularization parameter for controlling the
sparsity among all tasks and py, is an optional regularization
parameter that controls the £2-norm penalty.
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2) JOINT FEATURE SELECTION
Joint feature selection is used to constrain all models to share
a common set of features [48], [51]. This goal is achieved
by setting E(W) and minimizing the following ¢2,1-norm
regularized learning [55], [56]:

EW) = pillWll21 + pral W[, )

where ||[Wl12 = Y 5_, [|Wpll2, with Wp € RY¥P, is the
group sparse penalty, p; is a regularization parameter for
controlling the sparsity among all tasks and py 7 is an optional
regularization parameter that controls the £2-norm penalty.

3) DIRTY MODEL FOR MULTITASK LEARNING

The Dirty model estimates a superposition of two sets of
parameters and regularizes them differently [49]. In more
detail, each wy; is written as a sum wy = sg + rg, where
the corresponding matrices S and R are encouraged to have
elementwise sparsity and block-structured row sparsity. This
leads to the minimization problem:

: T 2
X byl —
r?,lI? Ed 1(sq +ra) Xa 4+ bal — ya:ll

+011IR|11,00 + 021ISIl1,  (8)

where ||R|[1,00 = Zj maxg |rg;|. The final output is W =
S+ i?, where § , R are the minimizers of (8).
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4) LOW RANK ASSUMPTION

The task commonalities can be utilized to constrain the
prediction models from different tasks to share a low-
dimensional subspace, i.e., constrain W to be of low
rank [50]. Since rank optimization is, in general, NP-hard,
the rank function [57] is replaced by the trace norm [52],
[53], which is given by the sum of the singular values of W:
[IW|l« =Y, 0a(W), and the regularization term is

EW) = pil[W]l, ®

where the regularization parameter p; controls the rank of W.

H. MAGNETIC FIELD STRENGTH HARMONIZATION

To correct for differences in features caused by imaging at two
MEFSs in ADNI1 and ADNI2, we studied three different tech-
niques: 1) PLS-based domain adaptation introduced in [37],
2) ComBat harmonization originating from genetics [38],
which has become widely used in brain imaging [46], [58],
and 3) multitask learning.

1) PARTIAL LEAST SQUARES DOMAIN ADAPTATION

We next briefly explain the PLS-based domain adaptation
method introduced in [37] for correcting the site dependency
of cortical thickness measurements in predicting the severity
of autism spectrum disorder. PLS is a linear feature transfor-
mation method for modeling relations between two sets of
observed variables. The idea of PLS-based domain adaptation
is to project the input features into a new (lower-dimensional)
space, which is a product of two orthogonal subspaces: a
subspace that is dependent on MFSs and its (orthogonal)
complement. This can be achieved by applying a PLS algo-
rithm that ensures the orthogonality of the resulting latent
features so that the response variable is a codification of
the scanner MFS and the predictor variables are the original
features. However, as demonstrated in [37], this works the
best, and different brain regions are separately corrected.
Therefore, [37] suggested a two-stage strategy where in the
first stage a PLS-based domain adaptation is performed for
each brain region separately, then for each brain region the
prediction task is performed. These predictions are then com-
bined in the stacking framework. We applied an AAL-atlas to
decompose the gray matter density values into 122 distinct
regions. For the prediction AADAS for each brain region,
we utilized support vector regression (with a radial basis
function kernel), as suggested in [37]. Finally, the per-region
predictions were combined using the elastic-net penalized
linear regression described in Section II-F.

2) ComBat HARMONIZATION

We applied ComBat harmonization to reduce any potential
biases induced by different MFSs. This method was initially
proposed to correct for the site effects in genomics [38]. Later,
ComBat was applied to correct for site effects in imaging
applications, including diffusion tensor imaging data [46],
cortical thickness [58], positron emission tomography [59]
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and functional connectivity [60]. In this study, ComBat uti-
lizes a multivariate linear mixed-effects regression to model
MFS-adapted feature measurements. Let x;; denote a regional
gray matter density value for subject j with MRI acquired at
MFES i € {1, 2} (where 1 refers to 1.57 and 2 refers to 37).
Then, x;; can be written as:

xij = a + CyB + i + di€jj, (10)

where « is the overall GM density, Cj; is a design matrix for
the covariates of interest (age), and S is the regression coeffi-
cient corresponding to the covariate C. The terms y; represent
the location parameter effect of MFS i, §; describes the multi-
plicative effect of MFS i, and €;; is an error term from a normal
distribution with a zero mean [46]. The ComBat-harmonized
GM densities (MFSs-adjusted) are then defined as:

.._A_ ”A_ *
Combar _ i — & — Cij — ¥;

ij S
]

X +a+CB, (1)

in which @ and B\are estimators of parameters « and §, and
¥/ and 8 are the empirical Bayes estimators of y; and §;.
To correct the difference among MFSs, we considered two
strategies: 1) using ComBat without adjusting any biological
covariates (i.e., setting C = 0) and 2) using ComBat while
adjusting the age as a biological covariate.

I. IMPLEMENTATION AND EVALUATION

To tune the parameters and evaluate the performance of the
models, we utilized repeated, nested 10-fold cross-validation
(CV). The number of repeats was 10. In nested CV, we have
a double loop where an inner CV loop is performed inside
the outer CV loop [61]. The whole data set is divided into
10-folds (outer loop), and one at a time, it is used to test the
model trained with the remaining folds. To select the optimal
parameters for each of the outer ten folds, a 10-fold CV is
applied to each of the 10 training sets. For each outer fold,
these are then used to train the model with the (outer loop)
training sets. We used two evaluation metrics: (1) R is the
correlation coefficient between the predicted and observed A
ADAS-Cog scores, averaged over ten repeats of the CV; and
(2) MAE is the mean absolute error between the observed
and predicted A ADAS-Cog values, averaged over the sub-
jects and ten CV repeats. We then used ten repeats of the
10-fold CV and averaged the metrics to reduce the random
variation due to the sampling of subjects to different folds.
We computed 95% confidence intervals for cross-validated,
averaged correlations R and MAEs using a bootstrap method
[62], [63]. Confidence intervals represent an approximation
of the overall performance of the prediction model, and the
specific bootstrap method used is adapted to be used in
repeated CV (see [63] for details).

The values of the hyperparameters were selected in the
inner CV loop, and predictions of the A ADAS-Cog scores
were evaluated in the outer CV loop to avoid the prob-
lem of training on the testing data. The distribution of the
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ADAS-Cog score changes in each of the CV folds was similar
since we used stratified cross-validation folds* [64].

The implementation of the elastic-net penalized lin-
ear regression model was performed by using the glmnet
library> [65]. The optimal value of the regularization param-
eter (1) was selected in the 10-fold inner CV loop by mini-
mizing the mean squared error (MSE). The implementation
of multitask learning techniques was performed using the
MALSAR package running in MATLAB [54]. The func-
tions implemented in MALSAR have many parameters to
tune. Since fine-tuning all parameters with a grid search
was impractical, we only considered p; (the regularization
parameter for controlling the sparsity among all tasks) and
p2 (an optional regularization parameter that controls the
£2-norm penalty) as the most crucial parameters for the grid
search. The p; parameter was selected among the candidate
set {1073,10723,...,10%,2 - 10%,2.5 - 10%,...,5 - 10%)},
where the parameter p, was chosen among the candidate set
{1073, 10725, ...,10%,2 - 102,25 - 102,...,10 - 10%)} by
minimizing the root-mean-square error (rmse). For the tuning
parameters, default values were used for the optional opti-
mization parameters (starting points, termination criterion,
endurance, and a maximum number of repetitions).

The implementation of ComBat was performed using a
publicly available MATLAB package.® PLS was performed
by the PLSREGRESS function in MATLAB with a constant
number of components for all groups of diagnoses at each
time point. The number of components for PLS was selected
at each time point by initial experiments between the candi-
date set {5, 10, 15, 17, 20, 25}.

The PLS-based domain adaption was performed as
instructed in [37]. The implementation of SVR, required
by the PLS domain adaptation, was performed using
LIBSVM [66]. The SVR model parameters were set to their
default values (C = 1, v = 0.5, A = 1/K, where K refers to
the dimensionality of the feature space). The implementation
of elastic-net penalized linear regression, required by the PLS
domain adaptation, was performed as described above.

IIl. RESULTS
A. PREDICTION PERFORMANCE OF SINGLE- AND
MULTITASK LEARNING
We evaluated the performance of single- and multitask learn-
ing approaches by predicting the future change in ADAS-Cog
scores using baseline MRI features. The experimental results
presented in this subsection ignore the variation in the mag-
netic field strengths to acquire the MRIs.

Table 3 indicates the comparison results between different
multitask learning methods based on the least-squares loss

4The stratified cross-validation code is available
at https://github.com/jussitohka/general_matlab.

5The glmnet library is available at
https://web.stanford.edu/~hastie/glmnet_matlab.

6The ComBat  harmonization package is
https://github.com/Jfortin1/ComBatHarmonization.

7https://Www.csie.ntu.edu.tw/~cjlin/libsvml.

available at
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function, including multitask Lasso (least lasso), joint feature
selection (JFS), dirty model (least dirty), and trace-norm reg-
ularization (least trace), with two single-task learning strate-
gies (SEP-EN and ALL-EN) based on elastic-net penalized
linear regression (EN). Note that the low number of subjects
in the AD group at 36 months (only ten subjects) cannot
provide a reliable validation of predictive models; however,
the results for this group and time point are shown in Table 3.
As shown in Table 3, the average correlation coefficients
between the predicted and actual A ADAS-Cog scores were
positive for all baseline diagnoses and time points. This
demonstrates that MRI-based predictive models were able
to predict the disease progression. A comparison of two
single-task learning strategies, SEP-EN and ALL-EN, indi-
cated that ALL-EN, which utilized all diagnostic groups for
training, performed better in the NC and MCI groups. For
instance, R of the NC subjects increased from 0.09 to 0.12 at
12 months, from 0.09 to 0.17 at 24 months, and from 0.04 to
0.19 at 36 months. Moreover, the ALL-EN prediction model
achieved the best performance among all methods in terms
of a correlation score for NC and MCI groups (e.g., R for
MCI group at 12, 24, and 36 months were 0.22, 0.41, and
0.39). However, R of the other methods were typically within
the 95% confidence intervals of R of ALL-EN, indicating
that the improvement was not large. All multitask learning
algorithms performed highly similarly to ALL-EN. However,
especially in the predictions concerning the AD group, these
performed slightly better than ALL-EN: For instance, R of the
AD subjects increased from 0.22 to 0.27 at 12 months and
from 0.26 to 0.27 at 24 months when comparing the Dirty
Model and ALL-EN. SEP-EN was clearly the method of
choice for predicting 24-month changes in the ADAS-Cog in
AD patients, with a R value of 0.40 compared to the maximum
of 0.31 of others. Supplementary Figures 2-3 provide scatter
plots of the observed vs. predicted change in ADAS scores
in the CV run with the median correlation (R). These scatter
plots imply that the A ADAS-Cog scores with very high val-
ues for all time points were the most difficult to predict, since
the number of individuals with observed ADAS-Cog score
changes over 20 was small (e.g., the numbers of MCI subjects
at 12, 24, and 36 months were 2, 8, and 19, respectively).
In summary, these results support the notion that auxiliary
data were useful in predicting the ADAS-Cog change in the
NC and MCI groups, but in the AD group. Complex multitask
learning algorithms did not demonstrate benefits over simpler
single-task learning methods.

Interestingly, in the majority of methods, R scores typically
increased with the length of the follow-up (e.g., R in A
ADAS-24 was higher than R of A ADAS-12). The potential
reason for this higher correlation is that as the changes in
ADAS-Cog become more prominent, they are easier to pre-
dict based on MRI.

Table 3 the ALL column lists the evaluation results
while agglomerating all subject groups in the validation. For
all methods, the R values were higher when all the sub-
jects were combined than stratified based on the baseline
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TABLE 3. Comparison of single and multitask learning on predicting the change in ADAS-Cog. The methods are given in Table 2. SEP-EN refers to the
single-task method trained for each diagnostic group separately. ALL-EN refers to the single-task method trained with the data from all diagnostic groups.
R is the cross-validated correlation between the actual and predicted A ADAS-Cog scores averaged over 10 CV runs and MAE is the mean absolute error
averaged over 10 CV runs. Values in parentheses give the bootstrapped 95% confidence intervals. The asterisk (*) implies that the validation result is not
trustworthy due to the low number of samples.

SEP-EN

A ADAS-12

A ADAS-24

A ADAS-36

ALL-EN

A ADAS-12

A ADAS-24

A ADAS-36

Least Lasso

A ADAS-12

A ADAS-24

A ADAS-36

JFS

A ADAS-12

A ADAS-24

A ADAS-36

Dirty Model

A ADAS-12

A ADAS-24

A ADAS-36

LRA

A ADAS-12

A ADAS-24

A ADAS-36

R

0.09
(0.00 £0 0.19)
0.09
(0.00 £0 0.19)
0.04
(-0.02 t0 0.11)

0.12
(0.03 t0 0.23)
0.17
(0.07 t0 0.28)
0.19
(0.09 to 0.30)

0.10
(0.01 £0 0.21)
0.09
(0.02 0 0.22)
0.15
(0.07 t0 0.30)

0.11
(0.01 t0 0.21)
0.10
(0.02 t0 0.22)
0.09
(0.01 to 0.21)

0.09
(0.01 t0 0.18)
0.08
(-0.01 t0 0.16)
0.18
(0.05 £0 0.30)

0.09
(-0.01 0 0.20)
0.13
(0.03 £0 0.23)
0.01
(-0.08 t0 0.10)

MAE

3.07
(279 t03.32)
3.16
(2.93 to3.41)
3.25
(2.90 to 3.69)

3.23
(2.96 to 3.49)
3.59
(3.36 to 3.89)
3.86
(347 to4.27)

3.07
(2.81t03.33)
3.15
(292 t03.42)
3.24
(2.88 to 3.65)

3.07
(2.81 to3.34)
3.17
(2.93 to 3.39)
3.25
(2.98 to 3.68)

3.09
(2.81t03.35)
3.18
(2.96 to 3.46)
3.27
(2.92 t0 3.70)

3.08
(2.79 to 3.36)
3.16
(2,94 t0 341)
3.48
(3.13 t0 3.94)

R

0.19
(0.11 0 0.27)
0.36
(0.29 to 0.44)
0.37
(0.29 to 0.45)

0.22
(0.15 0 0.30)
0.41
(0.34 to 0.48)
0.39
(0.32 to 0.46)

0.17
(0.10 to 0.26)
0.37
(0.29 to 0.45)
0.37
(0.30 to 0.46)

0.20
(0.13 t0 0.29)
0.37
(0.29 to 0.45)
0.38
(0.30 to 0.46)

0.21
(0.13 t0 0.28)
0.37
(0.29 to 0.45)
0.39
(0.31 to 0.45)

0.21
(0.13 t0 0.29)
0.39
(0.31 o 0.46)
0.34
(0.27 to 0.43)

MAE

3.84
(3.58 to 4.17)
4.74
(4.37t05.13)
5.95

(5.43 to 6.50)

3.84
(3.56 to 4.12)
4.65
(4.28 £0 5.05)
5.83
(5.28 to 6.39)

3.87
(3.56 to 4.21)
5.10
(4.69 to 5.46)
6.46
(5.72 t0 6.95)

3.86
(3.56 to 4.14)
5.03
(4.63 to 5.47)
6.33
(5.76 to 6.91)

3.84
(3.55t0 4.15)
5.06
(4.63 to 5.48)
6.29
(5.71 to 6.94)

3.84
(3.54 t0 4.16)
5.00
(4.64 t05.42)
6.62
(6.00 to 7.19)

R

0.24
(0.12 t0 0.35)
0.40
(0.23 t0 0.52)
—0.28*
(-0.67 to0 0.33)

0.22
(0.06 to 0.34)
0.26
(0.11 to 0.40)
0.71*
(-0.07 to 0.90)

0.26
(0.15 £0 0.37)
0.29
(0.11 0 0.43)
—0.17*
(-0.53 t0 0.14)

0.25
(0.13 t0 0.37)
0.30
(0.14 t0 0.42)
0.38*
(-0.13 t0 0.79)

0.27
(0.15 £0 0.38)
0.27
(0.12 t0 0.41)
0.38*
(-0.30 t0 0.76)

0.25
(0.12 0 0.37)
0.31
(0.16 to 0.45)
0.28*
(-0.44 t0 0.82)

MAE

4.86
(4.33 to 5.49)
6.46
(5.74 t0 7.37)
7.06*
(3.81 to 10.35)

4.74
(4.10 to 5.39)
6.55
(5.46 to 7.66)
5.07*
(2.19 to 8.58)

5.01
(4.35 to 5.60)
7.36
(6.30 to 8.59)
8.16*
(3.85 to 13.47)

4.99
(4.31t05.59)
7.24
(6.23 to 8.35)
6.77*
(3.62 to 10.35)

4.96
(4.28t0 5.61)
7.18
(620 to 8.53)
5.87*
(3320 8.55)

4.96
(4.34 t0 5.66)
7.11
(6.11 t0 8.32)
6.66*
(3.82109.12)

R

0.38
(0.32 £0 0.43)
0.55
(0.49 to 0.60)
0.43
(0.37 to 0.50)

0.32
(0.27 t0 0.38)
0.48
(0.44 t0 0.53)
0.42
(0.35 t0 0.48)

0.33
(0.26 to 0.40)
0.47
(0.40 t0 0.52)
0.38
(0.31 o 0.45)

0.34
(0.28 to 0.40)
0.48
(0.42 £0 0.53)
0.40
(0.32 to 0.46)

0.34
(0.28 £o 0.40)
0.47
(0.41 £0 0.53)
0.41
(0.33 0 0.48)

0.33
(0.27 to 0.40)
0.49
(0.43 £0 0.55)
0.35
(0.28 t0 0.43)

MAE

3.81
(3.60 to 4.01)
4.43
(4.18 t0 4.65)
5.07
(4.73t05.52)

3.83
(3.63 t0 4.04)
4.54
(4.29 t04.82)
5.17
(4.81 t0 5.56)

3.85
(3.63 t0 4.07)
4.70
(441 t04.97)
5.34
(4.92 to 5.80)

3.84
(3.62 t0 4.05)
4.67
(4.40 t0 4.96)
5.33
(4.91 to 5.80)

3.82
(3.62 t0 4.06)
4.70
(4.43 t0 4.99)
5.27
(4.90 to 5.76)

3.82
(3.61 to 4.04)
4.65
(4.38 0 4.94)
5.56
(5.16 to 6.03)
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FIGURE 2. t-scores of voxel-wise differences in the gray matter density in cognitively normal subjects due to differences in magnetic field strength. The
t-score values have a threshold at |¢| > 2, corresponding to uncorrected p < 0.05. Panel (A) before using the ComBat harmonization and (B) after using
the ComBat harmonization approach. The differences in the gray matter density were strong in panel (A), but ComBat harmonization was successful in
removing the contribution of MFS at the group level.

diagnosis. Since the prediction models were the same in both
cases, this inflation in the prediction performance can be
seen as artificial and one to avoid. It is likely a product of
the interaction between the heterogeneity of subject groups
and the particular evaluation measure (correlation) that scales
according to this heterogeneity.

B. PREDICTION PERFORMANCE WHILE ACCOUNTING
FOR DIFFERENCES IN MFS

This subsection focuses on the situation associated with
heterogeneity reduction between data from two MFSs and
explores the prediction models by including MFS correc-
tion approaches to reduce unwanted variance across features.
In addition, based on the results of the previous subsection,
we selected ALL-EN as a single-task learning method and
a Dirty model as a multitask learning method for further
analysis.

To demonstrate the differences between GM density val-
ues of images acquired at 1.5 T and 3.0 T, we applied
a standard voxel-based morphometry approach to compare
GM densities of NC subjects acquired at 1.5 T and 3.0 T.
Voxelwise t-statistics in Fig. 2(A) demonstrate considerable
differences in the GM density values between 1.5 Tand 3.0 T.
We repeated the analysis after using the ComBat harmoniza-
tion method. Fig. 2(B) delineates that, at the group level,
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the ComBat harmonization performed exceptionally well in
removing nuisance variability associated with two different
MFSs.

We adopted two strategies to harmonize the MRI data
for MFS differences and studied whether harmonization can
improve the performance of ADAS-Cog prediction. First,
we performed the ComBat approach on 122 regional GM
density measurements and then used ALL-EN to predict
A ADAS-Cog scores. Second, we applied the PLS-based
domain adaptation method, as described in Section 2.8.1.
Table 4 presents the R and MAE scores. Combined with
ALL-EN, PLS-based domain adaptation methods performed
slightly better than the ComBat method in terms of the aver-
age correlation. For example, in the PLS approach, R for the
NC, MCI, and AD groups at 24 months were 0.16, 0.40,
and 0.28, respectively. In the ComBat approach, R for NC,
MCI, and AD groups at 24 months were 0.11, 0.38, and 0.24,
respectively.

Table 4 delineates that the performance of the Dirty
model was similar to or worse than the performance of
ALL-EN after the correction for the MFS differences. For
example, the prediction performance of the PLS method for
the AD group at 12 months, when the Dirty model sub-
stituted the ALL-EN, the average R score dropped from
0.30 to 0.24. Table 4 also shows the results of 6-task
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TABLE 4. Comparison of the predictive model performance with and without MFS harmonization. ALL-EN refers to the baseline method without any
harmonization. ComBaty;; gy (PLSpL;—gn) tefers to Combat (PLS) harmonization followed by ALL-EN. ComBatp;rynodel ( PLSpirtymodel) refers to
Combat (PLS) harmonization followed by Dirty Model.DirtyModelg_ 14515 (LRAg_14sks) refers to the 6-task learning with Dirty Model (LRA). The asterisk (*)
implies that the validation result is not trustworthy due to the low number of samples.

NC MCI AD ALL
R MAE R MAE R MAE R MAE
ALL-EN
A ADAS-12 0.12 3.23 0.22 3.84 0.22 4.74 0.32 3.83
(0.03t00.23)  (296t03.49) (0.15t00.30) (3.56t04.12) (0.06 to 0.34) (4.10t0 5.39) (027t00.38)  (3.63 to4.04)
A ADAS-24 0.17 3.59 0.41 4.65 0.26 6.55 0.48 4.54
(0.07t00.28)  (3.36t03.89) (0.34t00.48) (4.28to5.05) (0.11 to 0.40) (5.46 to 7.66) (0.44t00.53)  (4.29 to4.82)
A ADAS-36 0.19 3.86 0.39 5.83 0.71 5.07 0.42 5.17

(0.09t00.30) (347to427) (0.32t00.46) (528t06.39) (-0.07t00.90) (2.19t08.58)  (0.35t00.48) (4.81 to 5.56)

ComBatarr,_gnN

A ADAS-12 0.10 3.23 0.21 3.86 0.20 4.75 0.31 3.84
(-0.01 t0 0.19) (298to3.51) (0.13t00.29) (3.57to4.17) (0.05 to 0.34) (4.06 to 5.40) (0.26 to 0.36) (3.63 to 4.06)

A ADAS-24 0.11 3.67 0.38 4.76 0.27 6.64 0.45 4.64
0.02t0021) (341t0395) (0290045) (440£05.16) (0.12£0042)  (5.69t07.78)  (0.40t0049) (439 to4.91)

A ADAS-36 0.18 3.85 0.37 5.94 0.70 4.99 0.41 5.22
(0.06 to 0.30) (342to04.23) (029 to00.44) (540 to 6.49) (0.03 to 0.91) (2.60 to 7.87) (0.34 t0 0.47) (4.85to5.61)

PLSaALL-EN

A ADAS-12 0.11 3.27 0.23 3.83 0.30 4.67 0.34 3.83
001t0021) (300t03.56) (0.16¢0032) (3.56t04.12) (0.6 t0043)  (4.05t0527) (027 t00.39)  (3.62 to4.05)

A ADAS-24 0.16 3.85 0.40 4.82 0.28 6.58 0.48 4.70
(0.06 to 0.25) (3.53 to 4.09) (034to047) (448t05.21) (0.13 to 0.43) (5.55to 7.59) (0.43 t0 0.52) (4.45 to 4.95)

« -
A ADAS-36 0.22 3.99 0.36 5.96 0.77 5.15 0.40 5.26

(0.10t00.34)  (3.56t04.35) (030t00.44) (540t0649) (034t0091)  (247t0797) (0.34t00.46) (4.92t05.65)

ComBatpirtyModel

A ADAS-12 0.05 3.11 0.19 3.86 0.27 4.92 0.33 3.84
(-0.04 to 0.14) (2.83t03.36) (0.11t00.27) (3.59t04.19) (0.13 t0 0.38) (4.30 to 5.58) (0.27 to 0.38) (3.63 to 4.07)
A ADAS.24 0.01 3.24 0.34 5.12 0.27 7.72 0.42 481
(0.08t00.07) (3.02£03.52) (0.26t0042) (471t0552) (0.12£0040)  (656t0891)  (0.36t0048) (4.52t05.13)
A ADAS-36 0.16 3.30 0.38 6.33 0.58 5.63 0.40 5.31
(0.02 to 0.26) (293 to 3.71) (0.30t00.45) (5.72t0 6.94) (0.01 to 0.89) (3.45to 7.25) (0.33t0 0.47) (4.88 to 5.74)
PLSpirtyModel
A ADAS-12 0.09 3.11 0.18 3.91 0.24 5.20 0.30 3.93
(001 £00.20) (286 t03.40) (0.12¢0026) (3.64t0426) (0.13£0035)  (4.60t0594)  (0.24£00.36) (3.70 to 4.15)
A ADAS-24 0.15 3.20 0.39 4.99 0.27 7.11 0.48 4.62
(0.02 to 0.23) (2.95 to 3.44) (0.31to047) (4.59 to5.45) (0.10 to 0.43) (5.97 to 8.30) (0.43 to 0.54) (4.35t0 4.93)
A ADAS-36 0.08 3.34 0.38 6.41 0.62 7.23 0.39 5.40

(-0.04t00.18)  (297t03.73) (0.31t00.46) (5.79t07.05) (-042t00.90) (3.97t010.52) (0.32t00.46) (4.98 to 5.88)

DirtyModelg—Tasks

A ADAS-12 0.09 3.11 0.19 3.91 0.14 4.98 0.34 3.88
(0.00 to 0.18) (2.87t03.40) (0.12t00.25) (3.66 to 4.23) (0.02 to 0.26) (4.40 0 5.62) (029t00.39) (3.68 to 4.09)
A ADAS-24 —0.005 3.76 0.35 4.93 0.35 6.59 0.50 4.74
(-0.09t00.08) (3.50t04.06) (0.27t00.43) (4.56t05.28) (0.20t0 0.48) (5.73 to 7.45) (0.44t00.55) (4491t05.02)
* * E
A ADAS-36 0.14 3.36 0.37 6.00 0.41 5.34 0.44 5.12
(0.00t0025) (298t03.78) (0.29t00.45) (55110655 (-0.08t00.78) (243t0872)  (0.38t00.50) (4.76 to 5.52)
LRAG*Tasks
A ADAS-12 0.02 3.15 0.18 3.92 0.16 5.02 0.33 3.90
(-0.06t00.11)  (2.88t03.43) (0.11t00.25) (3.66 to 4.23) (0.04 t0 0.28) (444 t05.64) (0.27t00.38) (3.70to 4.12)
< 5 5 5
A ADAS-24 0.02 3.60 0.35 4.82 0.25 6.77 0.49 4.65
(-0.06t00.10) (3.32t03.87) (027t0042) (446t0523) (0.10t0041)  (5.83t07.69)  (0.44t00.54)  (4.40 to 4.94)
A ADAS-36 0.03 3.43 0.40 5.98 —0.40 6.90 0.44 5.15

(-0.07t00.14)  (3.02t03.83) (0.31t00.48) (5.50t06.53) (-0.74t0-0.03) (3.57t010.78) (0.37t00.52) (4.77 to 5.54)
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FIGURE 3. Comparison of single and multitask learning with MFS correction (ComBat and PLS), without MFS correction (ALL-EN), and
6-task Dirty model. Combat and PLS panels give the results with both the ALL-EN and 3-task Dirty model.

learning approaches for MFS adaptation. These methods
were performed on par with other correction approaches, but
failed to consistently improve the prediction of the base-
line model (ALL-EN). Fig. 3 illustrates the performance
comparison between single and multitask learning strategies
before and after utilizing correction approaches. The perfor-
mance comparison shows that ComBat did not improve the

154286

prediction performance at the individual level, although it
worked well at the group level, as demonstrated in Fig. 2.
Fig. 3 indicates that the PLS domain adaptation based on the
single-task learning model performed consistently better than
the other methods. Moreover, combining multitask learn-
ing with ComBat slightly improved the performance in the
AD group.
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TABLE 5. Comparison of ComBat, PLS with Age as a covariate. In ComBat,g. Age was used as a covariate to preserve its effect while removing the
variability associated with MFS. In ComBatge, Age’ 38 Was regressed out from MRI after the MFS correction with ComBat,ge. In PLSage, Age and MFS

were used as response variables. The asterisk (*) implies that the validation result is not trustworthy due to the low number of samples.

NC MCI AD ALL
R MAE R R MAE R MAE
ComBat age
0.10 3.23 0.20 0.19 4.75 0.31 3.87
A ADAS-12
(0.01 to 0.21) (2.97 to 3.50) (0.13 t0 0.28) (3.60 to 4.18) (0.05 to 0.34) (4.08 to 5.39) (0.26 to 0.37) (3.66 to 4.07)
0.08 3.79 0.36 0.24 6.77 0.44 4.73
A ADAS-24
(-0.01 t0 0.17) (3.54 to 4.08) (0.29 to 0.44) (4.48 to 5.20) (0.09 to 0.38) (5.66 to 7.90) (0.39 to 0.48) (4.47 to 5.01)
0.22 3.81 0.36 0.65* 5.43* 0.41 5.25
A ADAS-36
(0.10 to 0.33) (3.44 to 4.24) (0.29 to 0.44) (5.52t0 6.51) (-0.12 to 0.90) (2.45 to 8.75) (0.35 t0 0.47) (4.89 to 5.66)
ComBatRegAge
0.11 3.18 0.19 0.24 4.75 0.31 3.85
A ADAS-12
(0.02 t0 0.21) (294 to 3.47) (0.11 t0 0.27) (3.61 to 4.20) (0.07 to 0.39) (4.12t0 5.42) (0.26 to 0.37) (3.63 to 4.07)
0.11 3.73 0.39 0.37 6.54 0.47 4.75
A ADAS-24
(0.02 to 0.20) (3.51 to0 4.02) (0.30 to 0.45) (4.63 to 5.34) (0.21 to 0.52) (5.50 to 7.55) (0.42 t0 0.52) (4.49 to 5.01)
0.16 3.80 0.38 0.34* 5.57* 0.40 5.32
A ADAS-36
(0.08 to 0.33) (3.47 to 4.27) (0.31 to 0.46) (5.40 to 6.42) (0.15 t0 0.83) (2.26 to 8.56) (0.35 t0 0.47) (4.81 to0 5.63)
PLSAge
0.12 3.27 0.25 0.31 4.66 0.35 3.80
A ADAS-12
(0.03 t0 0.22) (3.02 to 3.54) (0.18 to 0.34) (3.52to4.11) (0.20 to 0.42) (4.08 to 5.23) (0.29 to 0.41) (3.60 to 4.03)
0.16 3.80 0.44 0.34 6.41 0.51 4.84
A ADAS-24
(0.06 to 0.26) (3.48 to 4.06) (0.38 to0 0.50) (4.44 t0 5.10) (0.19 to 0.49) (5.41t07.38) (0.46 to 0.54) (4.39 to 4.88)
0.22 3.92 0.38 0.75" 5.16" 0.41 5.27
A ADAS-36
(0.08 to 0.33) (3.60 to 4.36) (0.31 to 0.45) (5.38 to 6.48) (0.17 to 0.92) (2.88 to 8.39) (0.35 t0 0.47) (491 to 5.63)

C. AGE AS A COVARIATE

In the MRI-based predictive modeling of AD, age plays
an essential role; for example, regressing age out of MRI
has been shown to improve MCI-to-AD conversion pre-
diction [67]. Therefore, we studied whether removing or
preserving age as a biological variable can improve the
ADAS-Cog prediction, focusing on the ALL-EN model.
We considered different data harmonization methods: (1) we
applied ComBat by considering age as a covariate to pre-
serve its effect while removing the variability associated
with MFS (ComBatag,.) and (2) additionally regressed age
out of the MRI data before estimating the predictive model
(ComBatReg,,,)- (3) We applied PLS-based domain adapta-
tion using age and MFS as response variables in PLS, effec-
tively removing the effects of both MFS and age (PLSag.).
The prediction performances are listed in Table 5. The com-
parison between ComBat and ComBatg, (see Tables 4 and 5)
shows that the retaining age as a covariate did not improve R
or MAE. For instance, R at 24 months dropped from 0.11 to
0.08 for NC, 0.38 to 0.36 for MCI, and 0.27 to 0.24 for AD.
However, ComBatgeg,,, slightly improved the prediction per-
formance for the AD group at 12 and 24 months: R for the AD
group at 12 and 24 months increased from 0.19 to 0.24 and
from 0.24 to 0.37, respectively. PLSsq. slightly improved
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the performance for each diagnosis group at the time points
of 12 and 24 months compared to PLS without age as a
covariate (see Table 4). For example, R increased from 0.40 to
0.44 for MCI and 0.28 to 0.34 for AD at 24 months. PLS4g.
featured slightly increased R values for all diagnosis groups at
all time points compared to Combat-based approaches, e.g.,
R improved from 0.08 to 0.16 for NC, from 0.36 to 0.44 for
MCI, and from 0.24 to 0.34 for AD at 24 months. The scatter
plots are provided in Supplementary Figure 4. In addition,
we illustrate the cross-validated accuracy of ComBat and PLS
with and without considering age as a covariate in Fig. 4.

IV. DISCUSSION

We predicted the changes in the ADAS-Cog scores
(A ADAS-Cog) in three distinct subject groups (NC, MCI,
and AD) based on MRI for up to 36 months. We explored
this problem by comparing various formulations of single-
and multitask learning algorithms and scrutinizing whether
multitask learning can help to cope with differences in the
MRI data caused by different MFSs. MTL models aim to
enhance generalization performance by utilizing relatedness
among various tasks; here, predicting A ADAS-Cog in dif-
ferent subject groups. We predicted A ADAS-Cog scores
from regional GM density values by single-task learning via
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The figure provides the median MAE and R among 10 CV runs along with the 95% confidence intervals obtained by the bootstrap method.

elastic net penalized linear regression as a baseline learn-
ing method. The single-task learning was applied based on
two distinct strategies: 1) training the model by pooling
together the data (ALL-EN) across the diagnostic groups,
and 2) training a separate model for each diagnostic group
(SEP-EN). We compared single-task models to multitask
learning approaches, where we treated the prediction of
cognitive scores in different baseline diagnoses as separate
tasks.

The experiments revealed a positive correlation between
observed and predicted A ADAS-Cog scores in all diagnos-
tic groups at all time points. This indicates that MRI has
predictive value for changes in ADAS-Cog scores across all
subject groups. As shown in Table 3), the SEP-EN and MTL
methods performed similarly; however, the ALL-EN method
performed slightly better than the other methods regarding
the average correlation score. In addition, a comparison of
average correlation scores obtained from two single-task
learning strategies (SEP-EN vs. ALL-EN) showed that simul-
taneous prediction in all diagnostic groups was beneficial for
predicting disease progression in the NC and MCI groups.
More complex multitask learning approaches were unable to
provide benefits over single-task learning in our experiments.

Considering different MFS used in ADNI1 and ADNI2
cohorts, we studied 1) whether correcting for this difference
affects the ADAS-Cog prediction and 2) whether multitask
learning would be useful for such a correction. We used
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two heterogeneity reduction approaches, typically applied for
correcting for the site differences: PLS-based domain adap-
tation [37] and ComBat [38]. Correcting the MRI with the
help of PLS-based domain adaptation marginally improved
the ADAS-Cog change prediction, but the improvement was
typically not statistically significant, as seen by comparing
the confidence intervals in Table 4. Multitask learning with
six tasks corresponding to the three baseline diagnoses and
two MFSs of MRI did not bring any improvements over
single-task learning.

We investigated the role of age as a covariate in the predic-
tion models. The evaluation demonstrated that the accuracy
of predicted A ADAS-Cog scores improved by regressing out
the age from the MRI data. This agrees with previous studies,
indicating that age has a significant effect on the accuracy of
cognitive score prediction [28], [45].

Several studies have analyzed the role of ADAS-Cog
scores in the evaluation of AD, as well as the relation-
ship between ADAS-Cog and MRI ( [25]-[30], [68], [69]).
For instance, Wang et al. [68] proposed a multitask exclu-
sive relationship learning model to automatically capture the
intrinsic relationship among tasks at different time points for
estimating clinical measures based on longitudinal imaging
data. Yan et al. [30] proposed a new group-sparse multitask
regression model for predicting ADAS, MMSE, and RAVLT
cognitive scores at the baseline using cortical thickness mea-
surements. Duchesne et al. [32] applied a linear regression
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model to predict one-year MMSE changes using baseline
MRI features and revealed that the baseline MRI features
moderately predict one-year MMSE changes in the general
MCI population. However, to the best of our knowledge, this
work is the first to stratify the estimation of the prediction
performance between diagnostic groups and utilize the relat-
edness between the diagnostic groups to boost the prediction
performance. In addition, we demonstrated the necessity of
stratifying subjects based on a baseline diagnosis to evaluate
the predictive modeling of the change in ADAS-Cog.

V. CONCLUSION

We explored single and multitask learning to predict the
changes in ADAS-Cog scores based on T1-weighted anatom-
ical MRI. We stratified the subjects based on their baseline
diagnoses and evaluated the prediction performances in each
group. Our results indicated a positive relationship between
the predicted and observed ADAS-Cog score changes in each
diagnostic group, suggesting that standard T1-weighted MRI
has a predictive value for evaluating the cognitive decline
in the AD continuum. We further studied whether correc-
tion of the differences in MFS of MRI would improve the
ADAS-Cog score prediction. The PLS-based domain adap-
tation slightly improved the prediction performance, but the
improvement was marginal. In summary, this study demon-
strated that ADAS-Cog changes could be, to some extent,
predicted based on anatomical MRI. Based on this study, the
recommended method for learning the predictive models is
ALL-EN, due to its simplicity and good performance.
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