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Abstract—Nowadays, the Bluetooth Low Energy (BLE) tech-
nology joined with the Received Signal Strength Indicator tech-
nique has became a popular approach in Indoor Positioning
System, thanks to the wide availability of BLE in anchors and
wearable devices and the straightforward implementation of
both. Consequently, methods based on geometric properties of
anchors, as lateration, are capable of enhancing the positioning
accuracy exploiting the growing availability of anchors and
their rich geometric distribution in indoor environments. On
the downside, an inappropriate selection of anchors decreases
the positioning accuracy estimation. Therefore, integrating an
effective beacon selection method can enhance the reliability and
accuracy of these methods. In this paper, we present a novel and
straightforward Lateration indoor positioning method based on
effective combinatorial BLE beacon selection. The combinatorial
BLE selection approach relies on a geometrical analysis (differ-
ence of triangle areas), of each beacon combination, considering
the reference beacons’ position with the estimated position using
lateration, and with a globally calculated virtual target position
as reference. The real-world experiment demonstrated that the
proposed method improves the traditional lateration with 5% to
16%, considering different evaluation metrics.

Index Terms—Indoor Positioning, BLE beacon selection, RSSI,
lateration, positioning estimation

I. INTRODUCTION

In recent years, the number of Indoor Positioning Systems
(IPSs) proposals relying on both Bluetooth Low Energy (BLE)
technology and the Received Signal Strength Indicator (RSSI)
technique have grown [1], [2]. This increase is principally
due to wide availability, in indoor environments, of fixed and
mobile devices with built-in, low-cost and energy efficient
BLE technology that act as reference beacons. Furthermore,
the straightforward working principle of the RSSI technique
is key for its adoption [3]. Consequently, indoor environments
now typically contain an increased amount of reference bea-
cons, with a varied geometric distribution, which may be
exploited to enhance the positioning accuracy of methods
based on geometric properties and RSSI. Lateration, as part of
Triangulation, is one of the most used methods to estimate the
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target position by computing the distance between the target
and multiples reference beacons [4]–[6].

However, IPS based on laterarion are prone to positioning
inaccuracy, despite the large number of available reference
beacons in the environments. Two main causes of positioning
inaccuracy have been identified. The first is related to the
presence of noise sources inherent to radio wave propagation
in indoor environments, which directly affect to the RSSI, and
the second to the ineffective selection of reference beacons for
a given localization [1], [7]. Furthermore, since the target to be
positioned is typically moving around, the RSSI measurements
and the environmental conditions are time-varying. Thus,
the IPS requires a dynamic selection of the optimal beacon
arrangement in order to provide the most accurate position at
each time instant [8].

The problem of reference beacon selection and its geometric
analysis to enhance systems’ position accuracy has been
extensively addressed in Global Navigation Satellite Systems
(GNSSs) [9]–[11]. Nevertheless, in indoor environments, it
is still an open issue. Some of the proposed approaches for
indoor environments rely on variations of Geometric Dilution
of Precision (GDOP) [11], [12], Cramér Rao Lower Bound
(CRLB) [13] and Mean Square Error (MSE) [14], which
are mainly applied to Ultra-wide band (UWB) and Wi-Fi.
However, such solutions have not been proposed for BLE yet.

In this paper, we propose a Lateration indoor positioning
method based on effective combinatorial BLE beacon selec-
tion considering a combinatorial positioning estimation and a
geometrical analysis approach of each combination.

The key contributions of this paper are:

• We present a novel and straightforward Lateration indoor
positioning method based on combinatorial BLE beacon
selection.

• Our proposed method, unlike IPS which rely on con-
ventional lateration methods, increases reliability and
correctness of the position estimation through an effective
BLE beacon selection based on a combinatorial positional
estimation and a geometrical analysis of them.

• We demonstrate experimentally, in a real indoor environ-
ment, the usefulness of BLE beacon selection to improve
the positioning accuracy.



II. RELATED WORK

The design of IPSs, in ideal conditions, relies on three
main elements: the access technologies, technique and method,
along with their adequate implementation [15]. Neverthe-
less, in practical scenarios, factors such as the environment,
technology availability, and implementation play a key role.
Therefore, given the sources of noise and strong Non-line-of-
sight (NLOS) conditions in indoor scenarios, it is crucial to
select the most appropriate subset of anchors for a particular
position estimation. In literature, some solutions from different
perspectives have been proposed, which we briefly detail
below.

Hadzic et al. [13] proposed a reference node selection
scheme for cooperative localization based on a coalitional
game and utility function concept. The utility function (coali-
tion value) considers the energy for communication and CRLB
to evaluate the node geometry and channel conditions. The
utility value depends on the nodes forming coalition. The
utility value is evaluated to all possible coalitions sets and
the set with the largest coalition value is the optimal set. The
simulation results conclude that it presents a 39% improve-
ment compared with the traditional nearest nodes selection
approach, which has 5.8m error at the 90th percentile.

Oshiga et al. [12] proposed an anchor selection for lo-
calization in large indoor venues based on a weighted–
GDOP. The authors create multiple anchor sets considering
the median value of the strongest Received Signal Strength
(RSS) between the anchors and the target, which are used to
provide multiples target position estimations. The estimations
are computed using a weighted min-max algorithm. Then, the
weighted–GDOP is computed for each set and the set with the
minimum weighted–GDOP corresponds to the most accurate
target position. The method was evaluated through simulation
(16 anchors; 196 target points) and in a real-world experiment
using an indoor area of 60× 60m2 (12 Wi-Fi anchors; 2
targets). The authors concluded that the selected set with 4
anchors reduces the Root Mean Square Error (RMSE) with
43% with respect to the use of all anchors.

Huang et al. [14] proposed an indoor positioning based on
RSS-Trilateration with reference nodes selection in wireless
networks. In this approach, the authors consider the relation-
ship between the MSE performance and the three reference
nodes used in trilateration. The distance between the reference
points and the unknown node, and the distance between
reference points were considered to determine variance values.
The reference nodes set with the smallest variation represents
the most adequate set for the trilateration method. Addition-
ally, the variance values were weighted to enhance the MSE
performance of the positioning system.

Wang et al. [11] presented an optimized deployment of
anchors based on GDOP minimization for UWB, together
with a cone configuration approach. In this approach, the
UWB positioning method relies on the Two-way Ranging
(TWR) approach to determine the Time of Flight (ToF) signals
travelling between anchor and tags. The experimental phase

was conducted considering 4 UWB anchors and one tag, based
on which the authors conclude that the GDOP minimization
can be solved based on the cone configuration. Nevertheless,
there is no unique solution with the lowest GDOP.

To sum up, the aforementioned studies are mostly based
on variations of GDOP, CRLB and MSE to evaluate the
node selectivity and rely on UWB and Wi-Fi technologies
or simulations. To the best of our knowledge, this is the
first method for BLE-RSS based on combinatorial position
estimation and geometrical analysis.

III. INDOOR POSITIONING METHOD BASED ON EFFECTIVE
BLE BEACON SELECTION

Lateration BLE-RSSI based IPSs use the Received Signal
Strength Indicator (RSSI) to estimate the distance between
the BLE beacons deployed in the indoor environment and the
unknown target [16]. In addition to the RSSI-distance relation,
the Ground-Truth (GT) position of at least 3 BLE beacons are
considered as reference points to estimate the unknown target
position. In IPSs based on laterarion, the positioning accuracy
mainly depends on the appropriate geometric distribution and
position of selected BLE beacons, and on the correctness
of the distance estimation [1], [5], [7]. Although in ideal
conditions a greater number of BLE beacons can improve
the position estimation, in practice, not all of them contribute
positively to improving positioning accuracy [13] due to high
fluctuations in BLE radio wave propagation signals caused
by various noise sources, such as environment geometries,
unstable power transmission, NLOS [1]. For the same reason,
different BLE beacon set selections provide diverse position-
ing accuracy of the same target. Consequently, the position
estimation fluctuates, resulting in unreliable accuracy of the
final position estimations of the target. Therefore, integrating
an effective BLE beacon selection method, which can exploit
the availability and geometric distribution of BLE beacon, can
enhance the reliability and accuracy of IPS.

In this work, we propose an indoor positioning method
based on effective BLE beacon selection considering a ge-
ometrical analysis based on difference of triangle areas and
combinatorial position estimation approach. The Lateration
BLE-RSSI based IPS is used as baseline-system to implement
it. The following subsections detail both.

A. Lateration BLE-RSSI based Indoor Positioning System
Lateration is one of the most used methods for position-

ing, computing the distance between the target and M BLE
reference beacons [4]–[6]. Since the RSS value decreases as
the distance between the transmitting and measuring device
increases, a relation between RSS and distance is obtained.
The Logarithm Distance Path Loss model (LDPL) is fre-
quently used to express this RSS–distance relation, described
by Eq. (4) [5].

RSSI(d) = RSSI(d0)− 10 ∗ η ∗ log
(
d

d0

)
(1)

Where RSSI(d) is the RSSI at a distance d between transmit-
ter and receiver; RSSI(d0) is the RSSI at a reference distance



d0 (i.e. 1m); and η is the path-loss attenuation factor. The
RSSI and distances are expressed in dBm and m respectively.

Having previously estimated the distance between the target
and the M BLE reference beacons, it is possible to estimate
the target position considering it as an optimal problem, which
can be solve using a least squares method [6], [17]. In our
case, we use the Levenberg-Marquardt algorithm for nonlinear
least squares.The Mathematically, lateration is expressed by
Eq. (2) which minimizes the sum of squared errors between
the measured distances (dm) and hypothetical ones (gm(x

¯
)),

based on the unknown target position, gm(x
¯
), which is denoted

by Eq. (3) [18].

min
x
¯

M∑
m=1

(gm(x
¯
)− dm)

2 (2)

gm(x
¯
) =

√
(x− bxm)

2 − (y − bym)
2 (3)

Where, m = {1, 2...M} are the number of BLE reference
beacons; {x, y} are the target unknown coordinates; and
{bxm, bym} the GT coordinates of BLE reference beacons.

B. Proposed lateration based on effective combinatorial BLE
beacons selection

The BLE beacons selection method aims to improve the
accuracy and overall reliability of the target position estima-
tion in the IPS, using the combination of different position
estimates based on different combinations of surrounding
BLE beacons and the geometric analysis of each of them.
Methodologically, the approach can be summarized in four
phases, which we implemented in nine practical steps. We
first explain the methodological approach and afterwards its
practical realization.

In the first methodological phase, all detectable beacons
are gathered and their RSS values summarized. To this aim,
the surrounding BLE beacons detected by the target device,
during a 1 minute time window, are categorized by their minor
and major values, which uniquely identify each beacon. This
results in a set of RSS values per beacon. Then, for each
beacon, their RSS outliers are removed based on three scaled
Median Absolute Deviation (MAD) from the median, and the
remaining RSS values are averaged. Finally we obtain an
initial BLE beacon set, which contains a unique RSS value for
every beacon detected by the target. We restrict this initial BLE
beacon set in two ways: 1/ we only consider those beacons
with averaged RSS value equal or greater than −83 dBm, as a
threshold value to consider beacons near (necessary for reliable
lateration); 2/ we only consider a maximum of 9 beacons,
i.e. those reporting the strongest RSSI value, for reasons of
computational feasibility.

In the second phase, the detected beacons are combinatori-
ally grouped and a position estimate for each is calculated. In
this article, we focused our analysis on subsets of 5 beacons,
as it balances the number of beacons involved in the lateration,
with the number of combinations to be explored (a total
of 126 according to Eq. (4)). Considering a lower number

would be within the lower bounds for 2d and 3d lateration,
whereas larger values increase the probability of including
information from beacons with strong NLOS components.
Next, for each combination of 5 beacons, the lateration method
is applied to obtain a single position estimate (p̂). The number
of combinations is given by:(

n

k

)
=

n!

k! (n− k)!
, for 0 ≤ k ≤ n (4)

Where n corresponds to the number of beacons in the reduced
subsets and k is the total number in the pool of available BLE
beacons. As above mentioned, k = 9 and n = 5 in this paper.

The third phase is dedicated to determining the accuracy
deviation of the estimated target position using a triangulation
approach. To do so, for all the subsets with 5 beacons, the
following steps are performed:

• Triangulation: two types of triangles are considered (see
Figure 1 for an example): 1/ Area–estimated triangles:
consisting of two reference points as vertices, combined
with the calculated estimated target position (p̂) from
phase 2 as vertex (green triangles in Figure 1); 2/ Area–
Target triangles: consisting of two reference points as
vertices, combined with the (virtual) target position (p) as
a vertex (blue triangles in Figure 1). The (virtual) target
position is hereby estimated by conducting a lateration
considering the k beacons used to create the combina-
tions, in our case k = 9. Figure 1 shows an example
of the both types of triangles (4 each) for a concrete
combination of 5 BLE reference points (b1, b2, b3, b4, b5).

• Calculate pair-wise accuracy deviation: once these trian-
gles have been calculated, a pair-wise difference (based
on shared BLE reference point vertices) is performed
between the areas of the area-target (blue - A) and the
area–estimated (green - Â) triangles, in order to obtain an
individual accuracy deviation of the estimated position.
To do so, we use the Heron’s formula to calculate the
triangle areas, see Eq. (5) and Eq. (6), and Eq. (7) to
calculate the difference between triangles. Hereby, we
rely on the fact that the difference should be near zero as
the estimated position gets closer to the actual position
(p̂ ≈ p).

• Calculate overall accuracy deviation: finally, the overall
accuracy deviation is calculated as the sum of every pair-
wise individual degree of error from the previous step.

Am =
1

4

√
4a2ma

2
m+1 −

(
a2m + a2m+1 − c2m

)2
(5)

Âm =
1

4

√
4â2mâ

2
m+1 −

(
â2m + â2m+1 − c2m

)2
(6)

Accuracydev(Set) =

M−1∑
m=1

| Am − Âm | (7)

where M is the number of BLE reference beacons contained
in the Set under evaluation.

Finally, in the fourth phase, the combination of 5 BLE
reference beacons offering the best accuracy is selected. This
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Fig. 1: Example of triangle areas used in the pair-wise accu-
racy deviation calculation to evaluate the accuracy of estimated
target position (p̂), estimated considering the BLE reference
beacons set ({b1, b2, b3, b4, b5})

is done by sorting in ascending order the accuracy deviation
results obtained in phase 3 and selecting the combination with
the lowest accuracy deviation. The combination of 5 BLE
beacons with the lowest accuracy deviation is considered to
provide the best individual accuracy and its estimated position
is provided as the final estimated position by our method.

Algorithm 1 shows the pseudo-code for the proposed
methodological approach, whose workflow is summarized as
follows:

• 1st step: Collect the RSS from BLE advertisements for
a period of 60 s discarding those not belonging to the
reference beacon set (input data for Algorithm 1);

• 2nd step: Group the RSS readings by beacon removing
outlier values. We consider those values falling out of
3 times the scaled MAD from the median (lines 1–2 in
Algorithm 1) as outliers;

• 3rd step: Apply the average to the RSS values of each
reference beacon, getting one averaged RSSI value per
reference beacon (line 3 in Algorithm 1);

• 4rd step: Select the reference BLE beacons with aver-
aged RSS equal or greater than −83 dBm (lines 4–8 in
Algorithm 1), and in case of more than 9 beacons, only
consider the 9 strongest ones (lines 9-11 in Algorithm 1);

• 5th step: Estimate the relative distances of selected refer-
ence BLE beacons to the target position, using the LDPL
model, which is expressed by eq.(1), and their RSS values
(line 12 in Algorithm 1). We considered the path-loss
attenuation factor (η) of 2.1 and the RSS(d0) equal to
−63.78 dBm (input values in Algorithm 1);

• 6th step: For the set of the 9 selected reference beacons
selected in the previous steps, create

(
5
9

)
= 126 combi-

nations (without repetitions) of 5 reference beacons (line
13 in Algorithm 1);

• 7th step: Estimate the target position for each com-
bination created, using the Levenberg-Marquardt Least
Squares (L-MLS) Lateration method to fit the Euclidean

Distance model. We get one estimated target position per
combination (line 15 in Algorithm 1). The input data
to fit the model are the distances estimated in the fifth
step, and the weights and the GT of the BLE beacons
corresponding to each subset. The weight value for every
BLE beacon is computed as the inverse of its distance
square with respect to the target;

• 8th step: We evaluate the appropriateness of the estimated
target position of each of the 126 combinations using the
difference of triangles approach defined by Eq. (7) and
supported by the triangle areas provided in Eq. (5) and
Eq. (6) (line 16 in Algorithm 1);

• 9th step: The combination reporting the lowest difference
of the triangle approach is selected and its estimated
position is set as the final estimated position (line 18 in
Algorithm 1).

Algorithm 1 Estimation of Target Position

Input: Deployed beacons information
Input: RSS values
Input: LDPL: η = 2.1 and RSSat1m = −63.7816 dBm
Input: threshold = −83 dBm
Output: estimated position

1: Group the RSS values by beacon
2: Remove RSS outliers of each group
3: Average RSS values of each group: RSSI(i)
4: for i← 1 to number of RSSI(i) do
5: if (RSSI(i) ≥ treshold) then
6: Include i-th beacon to reference beacons set

(refBLEset)
7: end if
8: end for
9: if (length(refBLEset) ≥ 9) then

10: Sort refBLEset according to the corresponding RSSI
values in descending order and remove those beacons
above the 9th position (e.g., 10th, 11th, . . .)

11: end if
12: Estimate the relative distance between beacons of

refBLEset and the target position using eq.(1), with values
η and RSSat1m

13: Create
(
5
9

)
= 126 combinations without repetition. Where

9 represent the beacons in refBLEset and 5 the number
of reference beacons per combination

14: for j ← 1 to 126 do
15: Estimate the target position with the combination (j)

using the Levenberg-Marquardt Least Squares (L-MLS)
Lateration method

16: Evaluate the target position estimated considering the
beacons used in combination (j) and using the differ-
ence of triangle approach defined by Eq. (7).

17: end for
18: Select the estimated position considering the combination

with lowest difference of triangle approach value.



IV. EXPERIMENTS AND RESULTS

A. Objectives and Experimental setup

The main objective of the empirical experiments is to
demonstrate that the proposed BLE beacon selection is rel-
evant and reduces the positioning error. Specifically, for each
evaluation point, its position is estimated with a traditional
nearest node lateration strategy – common in Indoor Posi-
tioning Systems (IPSs) – and with our proposed method. By
comparing both, we aim to validate the accuracy of our method
with respect to a well-known baseline.

We conducted the experiments considering our offices as the
evaluation area (Office scenario) This area has an approximate
area of 10.8× 16.7m2 and contains 20 reference BLE beacons
and 13 evaluation points distributed around the office. The
targeted evaluation points distribution provides Line-of-sight
(LOS) and NLOS conditions with respect to the deployed
BLE beacons due to the bookcases and office furniture. Figure
2 shows the Office scenario, the deployed reference BLE
beacons (red circles), and the target points (blue circles) where
the data was collected. Whereas, Table I summarizes their
location and configuration.

16.71 m

10.76 m

1

x

y

3

2

4

5

6

7

8

9

10

11

12
104

17

18

20

1

16

2

3

9

11

12

13

15

14

BLE beacons Target point

13

5

7

6

8
19

8

Fig. 2: Distribution of the BLE beacons and target positions

TABLE I: Location of Reference beacons and testing points

Reference BLE beacons Smartphone

No. x (m) y (m) TX Power (dB) TX Period (ms) x (m) y (m)

1 0 0 -4 250 5.95 6.1
2 0 2.61 -4 250 3.85 9.6
3 0 7.66 -4 250 1.15 6.1
4 0 10.68 -4 250 3.85 1.9
5 3.88 3.54 -4 250 6.85 1.3
6 3.78 6.51 -4 250 7.75 3.7
7 3.87 8.64 -4 250 9.25 9.6
8 6.45 2.13 -4 250 10.75 5.5
9 6.66 8.58 -4 250 11.65 1.3
10 6.68 10.64 -4 250 14.05 2.5
11 9.2 3.7 -4 250 15.85 6.1
12 9.08 5.95 -4 250 14.05 10
13 9.18 8.71 -4 250 12.55 6.1
14 11.4 3.6 -4 250 – –
15 11.54 7.18 -4 250 – –
16 11.54 10.65 -4 250 – –
17 13.95 4.34 -4 250 – –
18 14.2 6.05 -4 250 – –
19 15.65 1.71 -4 250 – –
20 16.65 10.65 -4 250 – –

We collected the BLE RSSI data from the reference beacons
for 10 minutes in each evaluation point. We used a Samsung
A5 smartphone with GetSensorData [19]. Nevertheless, in
the lateration methods (traditional and proposed), 10 non-
overlapping intervals of 1 minute in every evaluation points are
used. The Lateration method used relies on the LDPL model
to determine the relative distances based on the RSSI. The
parameters are set to 2.1 for the path-loss attenuation factor
(η), and the RSS at 1 m equal to −63.7816 dBm, which were
defined experimentally for our scenario.

B. Results

Table II introduces the main positioning results for the
traditional nearest node lateration model (Trad.), our proposed
approach (Prop.) and an ensemble approach that combines
the estimates provided by the traditional and our proposed
model (Trad. + Prop). We also show the relative difference (in
percentage) of our proposed (Prop.) and the ensemble (Trad.
+ Prop.) approach with respect the traditional one (Trad.).

TABLE II: Main results metrics provided by the traditional
lateration, our proposed approach and an ensemble model.

Trad. Prop. Trad. + Prop.

Eval. metric Error (m) Error (m) Diff. Error (m) Diff.

RMSE 3.07 2.74 ↓10.75% 2.68 ↓12.70%
Average 2.71 2.34 ↓13.65% 2.33 ↓14.02%
Median 2.71 2.57 ↓ 5.16% 2.46 ↓ 9.23%

75th percentile 3.46 3.18 ↓ 8.09% 3.01 ↓13.01%
90th percentile 4.46 3.74 ↓16.14% 3.54 ↓20.63%

According to the results reported in the Table II, our
proposed approach performs better than the traditional later-
ation, with between 5% (median) and 16% (90 percentile).
However, analysing the errors one by one using the Empirical
Cumulative Distribution Function (see Figure 3), we observe
that in a few cases our approach provided slightly worse results
than the traditional lateration.
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Figure 4 provides an overview of the individual positioning
errors of both the proposed and traditional approaches. As
can be deduced, the proposed approach provides better results
than the traditional method in the majority of the cases (points
above the red diagonal) – being much better in some of them –
whereas the traditional approach is only slightly better than the
proposed model in a few cases (points under the red diagonal).
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Fig. 4: Comparison of individual errors provide by the tradi-
tional lateration and the proposed method.

As a way to minimise this effect, we decided to combine the
estimated positions provided by the traditional lateration and
our proposed method with a simple point average. As a result,
the ensemble model (combining the traditional and proposed
approaches) provided even slightly better results compared to
the proposed approach (see Table II), and is the best overall
model, generally beating any of the individual models.

V. CONCLUSIONS

This paper presented a lateration method based on a combi-
natorial BLE beacon selection approach to enhance the indoor
position estimation. The combinatorial BLE selection relies on
a geometrical analysis (difference of triangle areas) of each
possible combination of k beacons, considering the reference
beacons’ position, their estimated position using lateration, and
a globally calculated virtual target position used as reference.
The BLE beacon combination with the lowest difference of
triangle areas is selected to provide the final estimated position.

We evaluated the proposed method 10 times, considering
13 target reference points distributed in a real indoor scenario
and compared it with a traditional nearest node lateration strat-
egy. The results demonstrate that the proposed combinatiorial
beacon selection of our method provides a more accurate
position estimation than the traditional lateration. Specifically,
our approach decreases the 90th percentile, average, and
RMSE positioning error metric respectively with 16.14%,
13.65%, and 10.75%, with respect to the lateration baseline.
Additionally, we proposed an ensemble approach, combining
the traditional nearest node lateration model with our proposed
model, which provides better positioning accuracy than any of
the individual models independently.

As future work, we plan to integrate a Fuzzy-logic method
to estimate the distance between target and beacons instead
of using the LDPL model, in order to reduce the computa-
tional complexity of our approach. This may also allow to
exhaustively compute position estimates using any subset of
beacons (e.g., including combinations other than 5 beacons).
Also, we will work on integrating this model in a collaborative
system, where ground truth values of non-stationary beacons
(i.e. collaborating users) are not available.
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