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Abstract—This paper presents a novel system architecture
for digital predistortion (DPD) of power amplifiers, where the
training of the DPD model is done in a remote compute
infrastructure i.e. cloud or a distributed unit (DU). In beyond-
5G systems it is no longer feasible to perform computationally
intensive tasks such as DPD training locally in the low-power
radio unit front-end. Thus, we propose to split DPD system and
perform the compute-intensive DPD training in the DU where
more processing resources are available. To enable the distant
training, the observed PA output must be available, however,
sending the data intensive observation signal to the DU adds
additional cost to the system. A low-complexity compression
method is proposed to reduce the bit-resolution of the observation
signal by removing the known linear part in the observation
to use fewer bits to represent the remaining information. Our
numerical simulations show a reduction from 8 to 4 bits/sample
for the accurate training of the DPD model to compensate for
the distortions of a strongly driven power amplifier operated at
28 GHz with a 200 MHz wide OFDM signal.

Index Terms—5G, 6G, digital predistortion, nonlinear dis-
tortion, power-efficiency, power amplifier, cloud-based learning,
observation compression

I. INTRODUCTION

Beyond-5G radio architectures need to operate waveforms
with a high spectral efficiency to meet capacity targets. How-
ever, these waveforms have a high peak-to-average power ratio
(PAPR), that reduces the efficiency of the power amplifiers
(PA) used. In turn, highly optimized architectures are em-
ployed, and PAs are operated at the limits of their capabilities
[1]. These efficiency improvements are mostly at the expense
of the transmitter system’s linearity. Maintaining the linearity
of the transmitter is highly necessary since interference with
other transmit-channels or users due to spectral regrowth must
be generally avoided. Moreover, low in-band signal distortion
is a prerequisite for the higher-order symbol constellation map-
pings enabling the high data rates in beyond-5G systems. The
most capable and also widely adopted technique for preserving
the transmitter linearity is digital predistortion (DPD) [2].

The general principle of DPD is straightforward: Applying
the inverse characteristic of the PA prior to the PA should
result in a perfectly linear characteristic in total. However, the
required predistortion function is usually unknown and more-
over subject to change due to the PA’s operating conditions
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Fig. 1. System level view of the split DPD system where coefficient training
is performed in the DU / cloud

such as temperature variations, aging impact and changes in
the transmit signal [3]. Moreover, in multi antenna systems,
the nonlinear distortions are discovered beam-dependent [4].
Therefore, the DPD models are identified adaptively by ob-
serving the nonlinear distortions at the PA output as illustrated
in Fig. 1.

Beyond-5G systems will be deployed as split architectures,
where a highly integrated radio unit (RU) is located close
to the antenna array and needs to be lightweight which is
why the power budget is limited. Thus, it is not feasible to
perform computationally demanding tasks in the RU. Instead,
these tasks are shifted to a distant distributed unit (DU)
that has the necessary computational resources available. The
split of the low-power/low-complexity RU and a DU for
extensive processing and upper layer tasks is in line with the
specification defined by the O-RAN Alliance [5]. While DPD
clearly is a low-level task that must sit in the transmit front-
end close to the PA, the training of the DPD model coefficients
is a compute intensive task. Especially in view of a growing
number of model coefficients to compensate strong memory
distortion stimulated by wide-band signals, DPD coefficient
training must be performed on powerful compute hardware
[1]. The use of MIMO techniques further adds to the training
complexity as multiple PAs and antennas need to be linearized
in dependence to the beam [4]. To keep processing complexity
off the RU, we propose to shift the DPD coefficient training
to the DU or cloud as shown in the block diagram in Fig. 1.



For the training of the DPD model, the PA output signal
must be available in the DU. The PA output observed by the
feedback receiver needs to be fed back through the interface
separating the RU and the DU. Usually, the link between RU
and DU should be especially lightweight as the connecting
channel can be long and is therefore sensitive to cost. The
observation signal is however very data-intensive due to the
high oversampling ratios needed to also capture the out-of-
band distortions resulting in a high feedback sampling rate.
These sampling rate requirements will further increase in view
of very broadband signals expected in 5G and beyond systems.
Thus, passing the PA observation signal to the DU will become
a bottleneck in future systems and techniques will be needed
to reduce the data-rate and amount of data passed back to the
DU. Various works focus on reducing the observed bandwidth
to allow for a lower analog-to-digital conversion (ADC) rate
in the feedback receiver. Methods include undersampling of
the observation signal in combination with the direct learning
architecture [6], [7], the band-limited Volterra series which
allows for a reduced observation bandwidth [8], or spectral ex-
trapolation of a bandwidth constrained observation [9]. While
these methods effectively reduce the acquisition bandwidth
and thus the rate at which the observation is sampled, they
do not address that the individual samples are recorded with
a high bit-resolution.

Typically, the ADC in the observation path uses 14-bit to
sample the signal [10]. A DPD with reduced ADC dynamic
range and lower bit resolution is presented in [11]. Linear
cancellation is performed in the analog domain using the pre-
distorted signal, which is digitally filtered first to remove the
out-of-band parts in the signal. An additional digital-to-analog
converter (DAC) and further analog circuitry are needed for the
cancellation. The authors show that 8-bit sampling is sufficient
to achieve the full DPD performance. A related technique is
presented in [12], where the original transmit signal is used
for analog cancellation. With that, 1-bit sampling employing
sign-based Gauss-Newton learning is proposed. While this
approach is very capable, a second DAC stage is needed and a
custom ADC design based on comparators is required, which
takes considerable development effort. Moreover, the analog
signals need to be precisely aligned in amplitude and time
which may be a hurdle with higher sampling rates.

A different approach is followed in [13], where the ob-
servation is captured in a frequency-domain representation
directly from the analog signal. This is achieved by applying
a narrow-band filter to the analog signal, that sweeps across
the frequency range of interest. The ADC rate is decoupled
from the transmit signal bandwidth and fewer samples are
needed for the DPD coefficient training. However, custom
analog components such as a frequency-tuneable oscillator
and a linear integrator are needed for the frequency-domain
acquisition, which also makes this approach an expensive
solution in actual product development.

In contrast to the aforementioned techniques which mainly
aim to relax the ADC requirements, our approach is to mitigate
the interface load by applying digital compression to the high-

resolution observation signal. The lossy compression method
proposed takes advantage of the fact that the principal com-
ponent, namely the linear part of the transmit signal, is known
to both the DU and RU. With that, the resolution required to
represent the observation signal, and the total number of bits
to pass through the interface in effect, can be significantly
reduced.

The main contributions in this paper can be summarized as
follows. 1) We present a novel DPD architecture for cloud-
based DPD coefficient training that integrates with the split
architecture of beyond-5G systems and relies on commercially
available ADCs in the feedback receiver. 2) We propose a
low-complexity compression method to mitigate the data rate
of the observation signal passed back from the RU to the
DU. Our compression method is very lightweight and thus
the hardware overhead is low. 3) In numerical simulations we
evaluated the proposed solution and show that a significant
reduction of the bit-resolution is possible without degrading
the DPD linearization performance. The rest of the paper is
organized as follows. The proposed compression technique and
the DPD algorithm are explained in Section II. Subsequently,
numerical simulations and results are presented in Section III.
Results and limitations are discussed in Section IV. Finally,
Section V concludes this work.

II. PROPOSED COMPRESSION METHOD

For the DPD coefficient training, the PA output is down-
converted and digitized in the feedback receiver. Sampling
of the analog signal yields the observed PA output signal
y(k), which is an approximate version of the down-converted
PA output in terms of bandwidth and bit-resolution. The bit-
resolution of the observation signal must be large enough,
to ensure that the nonlinear distortions, which have much
lower energy than the signal itself, are not masked by the
quantization noise floor. Reduction of the bit-resolution causes
a degradation of the linearization performance. The noise
introduced by quantization has a variance σ2

n proportional to
the squared step-size b, as provided in (1). The step size, in
turn, is a function of the number of bits N and the dynamic
range ∆u of the quantization.

σ2
n ∼ b2 =

(
∆u

2N

)2

(1)

As it is our goal to compress the observation signal i.e. reduce
N , it becomes evident from (1) that the dynamic range ∆u
must be lowered to mitigate the effects of using fewer bits
and thus quantization steps. However, the dynamic range is
given by peak values of the observation signal as a lower
dynamic range would introduce clipping distortion which adds
undesired distortion to the observed PA output.

Fortunately, the undistorted transmit symbols s are known
to both sides of the interface, as shown in Fig. 2. On the RU
side, these are translated into the time-domain transmit signal
using the inverse Fourier transformation (IFFT), typically with
additional crest factor reduction applied to limit peak powers
in the signal. Performing the same processing steps provides
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Fig. 2. Proposed architecture with compression applied to y in the feedback path by
linear cancellation and quantization

Fig. 3. Impact of scaling the cancellation reference signal with
factor c on the distribution of yr

the identical signal on the DU side. It is thus sufficient to
pass the information about the unknown nonlinear distortion
introduced by the PA. This can be achieved by subtracting a
delayed version xd of the original transmit signal x from the
observed PA output y.

yr(k) = y(k)− xd(k) (2)

Subtracting xd is identical to canceling the linear component
in the PA output signal which significantly deducts power
from the in-band part of the observation signal. The measured
PA output and transmit signals must be aligned in time and
amplitude, to avoid impact from the delay and linear gain
introduced by the transmission path and the feedback receiver.
Alignment in terms of signal mean power is assumed to
happen in the feedback receiver. Time alignment is achieved by
delaying the reference signals xd with regard to x in order to
bridge the delay introduced in the analog transmission path of
the front-end and while observing the PA output signal. Delay
and amplitude estimation in the digital domain are necessary
processing steps for the coefficient training in any way [2].
Some overhead arises in that the delay must be applied on
both the RU and DU side. Furthermore, the delay filter on
the DU side needs to cover the additional time needed for
compression and sending the observation signal from the RU
to the DU through the connecting channel.

While the above cancellation significantly reduces the dy-
namic range of the signal, it also affects the value distribution
of the signal. The proportional relationship of σ2

n to the square
of the step-size b2 given by (1) only holds true if the value
distribution of the quantized signal is flat with respect to
the step-size of the quantization [14]. Applying the proposed
cancellation in (2) can lead to an uneven value distribution of
yr. Particularly with strong non-linear distortion present in the
first iteration of the DPD training, the condition for (1) is no
longer fulfilled. The impact that the cancellation has on the
value distribution is illustrated in Figure 3. Large deviations
from the linear behavior usually occur at peak powers of the
signal, where the PA operates in its compression region. Thus,
the high PAPR of the OFDM signal x is further increased by

applying (2) and the resulting strongly non-uniform value dis-
tribution of yr prevents the desired reduction of the quantizer
bit-resolution. To resolve this issue, we propose to adapt the
cancellation in the first iteration to keep parts of the linear
component in the residual signal. This is achieved by applying
linear scaling to the reference signal with a scaling factor c as

yr(k) = y(k)− c · xd(k). (3)

The effect of scaling xd with c is thereby subject to the specific
PA non-linearity and saturation behavior, and a general optimal
value cannot be provided. Instead, c should be chosen specific
to the PA at hand to minimize the resulting dynamic range and,
secondly, the PAPR of the yr. In this work, the best choice
for c is done based on the numerical simulations described
in Section III-B. This consideration is only relevant for the
first of multiple training iterations. In all of the following
iterations, the PA nonlinearity is largely compensated by DPD
already and c is best chosen as c = 1. Subsequently to the
cancellation the bit-resolution of the signal is reduced yielding
the compressed signal yc by applying mid-thread quantization
to yr with a step-size b and sufficient dynamic range ∆u.
For the training on the DU side, the PA observation signal
yobs is recovered from the compressed signal yc by adding
the identical cancellation signal again.

yobs(k) = yc(k) + c · xd(k) (4)

III. NUMERICAL RESULTS

A. Simulation Conditions

In order to evaluate the compression method, we pursued
simulations using MATLAB. For the PA we used the measured
28 GHz mmWave PA models provided in [15]. The PA models
are provided as coefficients of a common memory polynomial
[16], as

fPA(x(k)) =

K∑
i=1

M∑
j=0

gi,j x(k − j) |x(k − j)|i−1 (5)



(a) Peak powers of yr (b) PAPR of yr (c) Performance after 1st DPD iteration, N = 3 bit

Fig. 4. Impact of different values of the scaling factor c on properties of yr and the NMSE DPD performance

with weights g = [g1,1, ... , g1,M , g2,1, ... , gK,M ] where the
polynomial order is K = 11 and the maximum memory
history is M = 2. For the predistorter nonlinear function fDPD

a memory polynomial similar to the one in (5) is used, but with
coefficients a = [a1,1, ... , a1,M , a2,1, ... , aK,M ], a nonlinear
order K = 7, and a maximum memory depth of M = 4.

The DPD model is trained in multiple iterations using the
indirect learning scheme. In each iteration, a post-distorter
is estimated from yobs and xDPD, by modeling the known
PA input signal xDPD as a function fDPD of the observed
PA output yobs. The identified model coefficients of the post-
distorter are then copied and used as the identical predistorter
function. Thus, for the DPD training, the latest predistortion
function is applied to xd on the DU side to generate a time-
aligned version of the PA input signal xDPD. Then, the method
of least squares is applied to solve

a = arg min
â

(xDPD(k)− fDPD(yobs(k) | â)), (6)

yielding
a = (UHU)−1UHxDPD, (7)

where (·)H denotes the Hermitian (complex) transpose,

xDPD = [xDPD(1), xDPD(2), ..., xDPD(n)]T

and

U =


Φ1,0(1) · · · Φ1,M (1) · · · ΦK,M (1)
Φ1,0(2) · · · Φ1,M (2) · · · ΦK,M (2)
...

...
. . .

...
Φ1,0(n) · · · Φ1,M (n) · · · ΦK,M (n)


with

Φi,j(k) = yobs(k − j) |yobs(k − j)|i−1
.

n is the number of samples used for training.
In each training iteration, the model coefficients are fully

retrained. The signals used for training and evaluation are
OFDM signals with a 200 MHz bandwidth, including a 10 %
guard band on both sides, and sampled with five times
oversampling. The sub-carrier modulation is 64 QAM, while
the sub-carrier spacing is 60 kHz. Windowed overlap and add
(WOLA) is used for spectral shaping, and additional crest

factor reduction using peak windowing is employed to limit
the PAPR of the transmit signal to 7 dB [17]. We use different
signals for the training iterations and the evaluation of the
DPD performance. The length of each training sequence is
2k samples. For the performance evaluation we use a much
longer signal with seven consecutive OFDM symbols.

B. Determining the scaling factor c

The optimum value for the scaling factor c is essential for
proper coefficient training and can be derived numerically.
Fig. 4 shows properties of the residual signal yr after can-
cellation and the DPD performance after the first iteration for
different values of c in the complex plane. Fig. 4a shows that
with the simulated PA, the minimal peak values are found at
a scaling factor c < 1 and slightly rotated in the complex
plane. An important observation, shown in Fig. 4b, is the
impact that the scaling factor c has on the PAPR of the yr.
With the evaluated PA, a scaling c = 1 results in a high
PAPR of approximately 12 dB. Instead, choosing a lower and
complex rotated scaling factor c gives a significantly lower
PAPR of 6 dB or better. The absolute value for c is related to
the curvature of the PA’s amplitude characteristic, while the
phase of c is specific to phase characteristic of the PA. When
applying the proposed compression with a low resolution to
represent yr, such as 3 bits, the resulting DPD performance
is subject to both the dynamic range and PAPR of yr. The
simulated performance shown in Fig. 4c visibly coincides with
the dynamic range yr. However, a high PAPR of yr impairs
the compression and causes a weak NMSE performance. The
impact of different scaling factors c on the simulated DPD
performance in terms of EVM and ACLR largely coincides
with the NMSE behavior.

C. Performance Evaluation

The NMSE performance in relation to different quantizer
resolutions N is presented in Fig. 5. Although the previously
discussed scaling with c applies to the first training iteration
only, it also affects the performance of following iterations.
In Fig. 5a, the performance after the first training iteration is
depicted for the different cases, with and without cancellation,
showing a clear improvement for low bit-resolutions N < 8
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Fig. 5. DPD performance measured as NMSE as a function of the quantization
bit-resolution N for samples in yc

if compression is applied. Also, the impact of a specifically
chosen scaling factor c is visible for small bit resolutions.
The NMSE performance further improves after three training
iterations, by ≈ 3 dB equally for all bit-resolutions as shown
in Fig. 5b. However, the initial benefit of using a specific
scaling factor c remains visible after three training iteration.
The compression achieved by the proposed method can be
quantified as a reduction from 8 bits to 4 bits for a comparable
NMSE performance.

The power spectral density (PSD) plots of the distorted and
linearized PA output signal with and without compression are
provided in Fig. 6. Using a 4-bit represented observation signal
without compression, the derived DPD model is unable to
compensate any of out-of-band distortions in the PA output.
With additional compression applied and c = 1, DPD is still
unable to compensate for the spectral leakage. However, when
choosing c appropriately, a 4-bit approximate representation of
the residual signal is sufficient to also compensate for the out-
of-band distortions. After three training iterations and properly
chosen c in the first iteration, the out-of-band distortions are
completely removed from the PA output.
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IV. DISCUSSION

While the proposed compression method shows good results
in our simulations, we expect our method to perform similarly
with different PA models. It is however noted that the achieved
compression is related to the amount of distortion introduced
by the PA. Stronger nonlinear distortion inevitably leads to a
larger dynamic range of the cancelled signal and thus requires
more bits to represent. Also, the choice of the scaling factor c
in the first training iteration is specific to the PA gain and phase
characteristic. Frequent re-estimation of the coefficients will
make the impact of a specifically chosen scaling factor c for
the first training iteration vanish. However, as multiple training
iterations imply a greater computational effort, training is
repeated only until the linearity targets are reached. With
indirect learning, this can be the case after few iterations
already so that the benefit from a specifically chosen scaling
factor c is notable.

Our proposed compression adds only little processing and
hardware overhead. Since the compression is applied in the
digital domain, no custom analog hardware is needed. Instead,
the proposed architecture relies on commercially available
ADCs in the feedback receiver. To apply the original transmit
signal for cancellation, the transmit signal must be delayed
to be time-aligned with the observed PA output. Hence, an
additional delay filter is needed in the RU, in addition to the
scaling, addition and quantization. The proposed compression
only targets the bit-resolution of the feedback signal. However,
combination of the proposed method with the mentioned
sampling rate reduction techniques in [6]–[9] is imaginable.

Some processing overhead is introduced by the DPD archi-
tecture split. In addition to sending the observation signal from
the RU to the DU, the time-domain PA input signal must be
regenerated on the DU side. For that, identical processing steps
that happen prior to the PA in the RU must be repeated in the
DU to retrieve an identical signal for the coefficient estimation.



The available transmit symbols need to be transformed into the
time-domain signal and the current predistortion function must
be reapplied to enable indirect learning. However, in contrast
to the processing complexity to compute the DPD coefficients,
the additional overhead is secondary.

V. CONCLUSIONS

In this paper, a novel DPD architecture for cloud-based
learning was considered. The proposed architecture integrates
with the distributed radio architecture expected in 5G and
beyond-5G systems. Due to the limited power-budget of the
RU front-end, compute intensive tasks such as DPD training
are no longer feasible in the RU. Instead, a split DPD archi-
tecture was presented, where DPD model training is pursued
in a remote DU. Sending the observed PA output from the
RU to the DU was identified as the major bottleneck of the
proposed DPD architecture. A low-complexity compression
method was proposed to reduce the bit-rate of observation
signal sent back to the DU. The proposed method exploits
the fact that the linear component of the observation signal
is already known on the DU side. Thus, it is sufficient to
only feed back the information about the nonlinear distortions.
Numerical simulations show that the DPD model can be
accurately trained on the DU side, using a bit-resolution of
4 bits/sample to represent the compressed observation signal,
compared to the 8-bit quantized uncompressed observation
signal.
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