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Abstract: In situational awareness, the ability to make
predictions about the near future situation in the area
under surveillance is often as essential as being aware
of the current situation. We introduce a privacy-preser-
ving instance-based prediction method, where a path
library is collected by learning earlier paths of mobile
objects in the area of surveillance. The input to the pre-
diction is the most recent coordinates of the objects in the
scene. Based on similarity to short segments of currently
tracked paths, a relative weight is associated with each
path in the library. Future paths are predicted by computing
theweighted average of the library paths.We demonstrate the
operation of a situational awareness system where privacy-
preserving data are extracted from an inexpensive computer
vision which consists of a camera-equipped Raspberry PI-
based edge device. The system runs a deep neural network-
based object detection algorithm on the camera feed and
stores the coordinates, object class labels, and timestamps
of the detected objects.We used probabilistic reasoning based
on joint probabilistic data association, Hungarian algorithm,
and Kalman filter to infer which detections fromdifferent time
instances came from the same object.

Keywords: path prediction, people tracking, probabilistic
data association, instance-based learning, computer vision

1 Introduction

The current developments in camera technologies and deep-
learning-based signal processing have made computer
vision systems cost-effective and feasible options for var-
ious surveillance tasks. In many applications, the ability
to make predictions about the near future situation in
the area under surveillance is as essential as being
aware about current situation. For example, the security
of the working environment of mobile machinery could
be improved by a vision system that automatically detects
objects in the area, predicts locations of the mobile
objects, and determines how probably some parts of the
area will be occupied in the near future. The ability to
predict future locations allows, e.g., prediction of pos-
sible congestion in crowded areas or observation of aty-
pical movement behaviors. For the operator of mobile
machinery, the timely warnings provided with the help
of these kinds of predictions could allow extra time to
react when nearby mobile objects are about to enter to
area of safety risk by approaching too close.

In this article, we introduce an instance-based pre-
diction method, where a path library is collected by
learning earlier paths of mobile objects in the area of
surveillance, which preserves privacy of the tracked people.
Many existing computer vision systems for surveillance rely
on transmitting or storing video data to servers for further
analysis. This compromises personal privacy of the people
in the area. In our method, only position coordinates of the
detected moving objects and the detection timestamps need
to be extracted from the camera data. Any data that might
identify the individuals are not stored or saved to the server.

We demonstrate the operation of a situational aware-
ness system that uses only privacy-preserving data extracted
from the computer vision system to track paths, learn the
path library, and predict paths with the path library. Our
system uses the limited set of data to answer the following
questions: Are there people in the surveillance area? If there
are, where are they and what kind of paths are they taking?
Where will they be located, and which parts of the area will
probably be occupied in the near future?
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This article is organized as follows. Section 2 gives a
brief summary of the reported work related to the topic
and contents of this article. In Section 3, signal processing
and algorithmic methods are described: processing of the
camera-based observations to position coordinates, path
tracking from time tagged coordinate samples, construc-
tion of the path library from the tracked paths, and using
the recorded paths from the path library to predict the
future paths of the moving objects in the camera scene.
Section 4 describes the experimental setup to demonstrate
the path prediction method, and finally in Sections 5–7 the
results are reported and discussed and conclusions of the
work are given.

2 Related work

The extension of Kalman filter (KF) techniques to predic-
tion is a well-known approach [1]. Typically, the role of
the KF in prediction is to propagate the system’s state
estimate and its covariance in time using the system’s
dynamic model that is represented in the form suitable
for KF propagation equations. In some applications, the
initial data sequence from the system is processed with
the KF to obtain an accurate estimate of the initial state,
from which the prediction can be started. For example,
this approach is used in ref. [2] to predict the orbits of
navigation satellites for 4 days ahead. Similarly, in our
work we use the KF for initialization of both the library-
based prediction and the KF prediction. However, the
used models are different and in our work, other sup-
porting methods, such as object detection and data asso-
ciation (DA), were required.

For pedestrian motion prediction from video stream,
Schöller et al. [3] compared the prediction accuracy of
simple constant velocity model without random pertur-
bations to several state-of-the-art neural networks, e.g.,
long short-term memories (LSTMs), LSTM with state refine-
ment (SR-LSTM), feed forward neural network, and social
generative adversarial network (S-GAN). The conclusion of
ref. [3] is that the simple model outperforms the neural
networks in this task. Our work aims to solve the same
problem, however, with different constraints (e.g., need
for DA and randomly varying observation sampling) and
targets to longer prediction lengths, and therefore we also
use different methods. While in ref. [3] the number of time
steps for initial observations and prediction lengths is 8 and
12, corresponding the time windows of 3.2 and 4.8 s, in our
tests the length of the initial observation is 5–7 s (and sam-
ples) and the prediction lengths are 4–6, 9–11, and 19–21 s

(and samples). We also enhance our prediction model by a
collection of past paths stored into path library. The path
library can be seen as an instance-based or memory-based
learning method, a nonparametric method that uses the
training instances themselves as a model [4].

Yrjanainen et al. [5] presented privacy-aware person
tracking and counting on Raspberry Pi edge device together
with the neural computing stick for smooth computa-
tion. They used object detection, person re-identification,
tracking, and counting on the edge device and collected
encrypted information over the network. However, while
ref. [5] used a set of abstract features to identify the
detected individuals, in this work, we did not use any
individual identifying data at all. We deploy an object
detection network on Raspberry Pi to collect only the
object locations and the detection timestamps.

3 Methods

The path prediction using path library consists of several
tasks. The tasks and the structure of their mutual con-
nections are depicted in Figure 1.

First, the typical paths need to be learned, i.e., the
path library needs to be collected. From camera images,
the objects need to be detected and their locations esti-
mated to obtain samples that include the coordinates of
the detected objects and the timestamps of the detections.
Without any data elements that identify the objects, it is
not obvious which detections come from which objects.
The missing link between the distinct samples is estimated
by solving the DA problem: a new detection needs either to
be associated with one of the existing tracked paths or to
be found not to be a part of any of them, in which case it is
treated as a start of a new path.

Once we know to which path the new detection is
associated, we can track the path, i.e., use the position
of the detection to update the path. We treat the path
tracking task as a state estimation problem, where the
motion model represents our assumptions on what kind
of movements and motion changes are possible, i.e.,
what is the inertia of the object. We store the information
on tracked paths to a database, which we call path
library. A stored path is a sequence of positions and their
estimated uncertainties.

To use the paths stored in the library for prediction,
we need information on which paths might be relevant
for the situation. To obtain that information, we need to
run the path tracking to get an initial idea of what is
happening in the camera scene. Once we have tracked
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a new path for a couple of time steps, this short path
segment can be compared with the contents of the path
library. The library paths most similar to the new segment
can be used to predict the future path. In the following
subsections, these tasks are described in detail.

3.1 Object detection

The first step is to find the bounding boxes associated
with the objects in the camera view. For object detection,
convolutional neural network (CNN)-based methods have
been proven to be effective with their state-of-the-art per-
formances on public benchmark datasets [6–9]. These
CNN-based object detection methods can be broadly divided
into two groups: one-stage and two-stage. One-stage detec-
tors are efficient and have straightforward architecture. In
contrast, two-stage detectors have complicated architecture
but perform better in terms of detection accuracy. Given an
input image, the one-stage method directly outputs the
object location and class without an intermediate proposal.
The two-stage method explicitly generates region proposals
followed by feature extraction, category classification, and
finetuning of the location proposals. Single-Shot MultiBox
Detector (SSD) [7], YOLO3 [6], and RetinaNet [8] are com-
monly used one-stage neural network solutions. Regional
CNNs (RCNNs) [10] such as faster RCNN [9] and mask
RCNN [11] are commonly used two-stage detectors.

For the detection, we use pretrained weights from the
network trained on MSCOCO [12] and the fine-training of
the network with our custom dataset, collected from our
test environment mentioned in Section 4.2. Our Rasp-
berry Pi system contains a single-stage object detection
network, SSD MobileNetV2, that predicts object locations
and a pre-defined class category for each detection. We

then save object locations and class labels together with
detection timestamps.

Since the data were captured with a stationary mono-
cular camera, depth and – consequently – the distance of
detected objects from the camera are unknown. Therefore,
the three-dimensional locations of detected objects cannot
be acquired directly. To estimate their location on themap,
the objects are assumed to lie on a planar surface. A linear
transformation is fitted by minimizing the Euclidean dis-
tance between known map points and estimates based on
their respective positions in the image. Essentially, points
in the image plane are transformed to a plane representing
the ground surface and scaled to map coordinates. Objects
are then projected to the map by applying the transforma-
tion to the center point between the two bottom corners of
their bounding boxes, i.e., the part most likely to be con-
nected to the ground. The camera is calibrated before the
fitting procedure, and images are rectified before object
detection and transformations. Although the transformation
procedure is relatively simple, it works well in this study
because the area in question is relatively small and flat.

3.2 Path estimation

An overview of the tasks involved in the path estimation
and its data flow is shown in Figure 2. The basic tool in
the path estimation is KF, which is described in many
textbooks, e.g., in ref. [13,14]. The probabilistic reasoning
for the DA uses the KF predictions, and the results of the
DA are used in the KF state update. We presented the
position coordinates of the detections and path points
in local-level-system and its east-north-up (ENU) version
[1]. As we assumed the objects to be located in a hori-
zontal plane, we omitted the vertical coordinate. In the

Figure 1: Main functional blocks of the path prediction system.
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following, we denote the east and north coordinates as x
and y, respectively.

3.2.1 System model

In the KF, we use constant velocity model as motion
model to propagate the path estimates in time. The model
consists of four states: position coordinates and velocities in
two dimensions, written as [ ( ) ( ) ( ) ( )]= x k y k v k v kx , , ,k x y

T .
The state is driven by zero-mean, Gaussian acceleration

( )kw . The discrete-time representation of the model is
derived according to ref. [13]:

( ) ( ) ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − + − = …

=

k k k k
T

T

x x wF 1 1 , 1,

F
1 0 Δ 0
0 1 0 Δ
0 0 1 0
0 0 0 1

(1)

where the variance of the driving noise ( )kw is

[ ( ) ( ) ] ⎧
⎨⎩

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

=

≠

=

E k i i k
i k

T T

T T

T T

T T

σ

w w Q,
0, ,

Q

Δ
3

0 Δ
2

0

0 Δ
3

0 Δ
2

Δ
2

0 Δ 0

0 Δ
2

0 Δ

,

T

w

3 2

3 2

2

2

2
(2)

σw
2 is the variance of the driving noise, TΔ is the sampling

time, and k is the index of the sampling instance. This
model suits well for pedestrian motion, which forms the
majority of the motion observed in our test environment.
Other motion models that better describe the motion of

objects with larger inertia and higher dynamics can be
found, e.g., in publication [P1] of ref. [15].

The observation model is used for updating the
path estimate. It describes the relationship between
the true position of the object and the location of the
detected object in the camera image projected onto map
coordinates:

( ) ( ) ( )
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where the variance of the measurement noise ( )kv is
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=
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0, .

T (4)

In our system, we used the following parameter values:
=TΔ 1 s and =σ 0.354w

2 2. As we had chosen the map
coordinates so that the pointing angle of the camera
was roughly to the direction of the negative x axis, and
the projection of image coordinates to map coordinates is
less accurate in the depth than width direction, we used
higher variance for the x detection:

⎡
⎣

⎤
⎦

=R 4 0
0 1 .

The choice of the values of covariances Q and R was
based on our prior knowledge about the system, i.e., they
were not systematically optimized or fitted to the data.

3.2.2 DA and path update

As the data did not include elements that link the latest
detections to the earlier detections from the same object,
we formed the link computationally as a solution of DA
problem. For this task, we used joint probabilistic data

Figure 2: Subtasks of probabilistic reasoning for path estimation.
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association (JPDA), a well-known method in, e.g., radar-
based surveillance systems [16].

The first step of JPDA is the validation of the detec-
tions, where the task is to find which detected positions

( )kzj , ( )= …j n k1, , z are valid candidates to be associated
with the existing paths, represented by their time-propa-
gated estimates ( ∣ )− ℓk kx̂i , ( )= …i n k1, , x . Here ℓ is the
number of time steps the estimate is projected ahead after
its last observation-based update, ( )n kz and ( )n kx are the
numbers of detections and active paths at time index k,
respectively.

The detection j is considered to be a valid association
candidate to path i, if its observation likelihood with the
path exceeds threshold PG. As we assume that the errors
of the detection positions and the path estimation errors
are Gaussian, the validation region, i.e., the area where
the likelihood condition holds, is an ellipse (illustrated in
Figure 3). Its center is located in the position coordinates
of the predicted path, ( ∣ )− ℓk kx̂i , and its size and shape
are defined by the covariance matrix of the error between
the predicted observation ( ) ( ∣ )= − ℓk H k kz xˆ ˆi i and the
actual observation zj. Therefore, the innovation covariance

( ∣ ) ( ∣ )− ℓ = − ℓ +S k k HP k k H Ri i
T is computed for each path

i and innovation vector ( ) ( ) ( )= −k k kz z z˜ ˆi j j i, is computed
for all pairs of paths i and detections j.

For Gaussian vectors, the checking against a probability
threshold with probability ellipses can be transformed to
checking of Mahalanobis distances. The squared Mahalanobis
distance of innovation is ( ) ( ) ( ( ∣ )) ( )= − ℓ

−d k k S k k kz z˜ ˜i j i j
T

i i j,
2

,
1

, .
For a Gaussian 2D vector, the Mahalanobis distance follows

( )χ 22 distribution. Therefore, instead of checking whether a
point lies inside a probability ellipse, we can check that the
Mahalanobis distance between the point and the center of the

ellipse does not exceed the corresponding d2 threshold. This
threshold is obtained from ( )χ 22 inverse cumulative distribu-
tion function: ( )

( )
=

−d F PP χ G
2

2
1

G 2 . In our experiments, we used

=P 0.99G and the corresponding =d 9.21P
2
G .

Based on the computed Mahalanobis distances, all
detections

′
z j for which ( ) ≤

′ ′

d k di j P,
2 2

G
are considered valid

association candidates for paths
′

x̂i . However, these are
not necessarily correct associations, as there may be sev-
eral detections in validation region or there may be over-
lapping validation regions when two or several paths
share common candidates. It is also possible that more
than one path have the shortest Mahalanobis distance to
the same detection.

The next task is to find the association between the
detections that are valid association candidates and the
paths that have valid candidates in their validation regions.
When assigning the detections to the paths, we allow at
most one detection to be associated with at most one
path, i.e., for each path and each detection, there is either
one-to-one association or no association at all. We want to
find the matching pairs so that the overall cost, i.e., the sum
of the squared Mahalanobis distances between the asso-
ciated detections and paths, is minimized. This type of
linear assignment problem can be solved with Hungarian
algorithm [17,18]. We used Matlab function matchpairs to
solve the problem.

Once the association between the detections and
path estimates is made, we run the KF observation update
for the path estimates that have an associated detection.
Often there are also detections that are not associated with
a path, either because they were not valid candidates or
because there were more valid association candidates than
active path estimates. We treat these detections as initial
observations of new paths. After all the detections are used
to update either an existing or a new path, the path esti-
mates are propagated in time using the motion model
defined in (1) and (2), until new detections are available.

After the propagation steps, the uncertainties of the
path estimates are checked. The product of the eigenva-
lues of the position covariance is computed and if it
exceeds the uncertainty threshold, the path is removed
from the set of active path estimates.

3.3 Path library

In the training phase of the prediction model, the paths
removed from the set of active paths are stored into path
library. For each path, the sequence of path position esti-
mates and the corresponding covariance matrices were

Figure 3: Example of validation regions. The four latest detections
(the circles) and the elliptic validation regions of two paths. The
crosses denote the path estimates updated by their associated
detections and the predicted path positions based are shown with
squares.
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stored. To prevent too short-lived path sequences from
populating the library, we did not store sequences that
were shorter than the threshold Lpmin. The sequence length
was defined as the difference between the last and first
observation update of the path estimate. For the sampling
instances without observation update, the predicted esti-
mate was stored, otherwise the updated estimate.

As we used only one camera, it is possible that an
object may stay behind another object for several sam-
pling instances, and has moved far from the edges of the
camera view when it becomes visible for the camera for
the first time. Therefore, we accept that a path can start
everywhere in the camera view. Considering this condi-
tion, we added a grid representation into the path library
to allow faster search of similar library paths in path
prediction. We divided the area into ×1 m 1 m grid and
to each grid cell, we stored the indices of the paths and
the sequence indices of these paths that have coordinates
located in the cell.

3.4 Prediction

The library-based prediction principle is illustrated in
Figure 4. The input to library-based prediction is the
most recent position coordinates of the objects in the
scene. The paths are tracked from the detections with
the KF model and JPDA techniques described in Section
3.2.2. When the lengths of such paths increase above a
given threshold =δt n TΔmin ip , the obtained path seg-
ment, which we call initial path, is compared to the con-
tents of the path library.

Based on similarity with the initial path, a relativeweight
is associated with the paths of the library. However, to avoid
giving any weight to the library paths very far away from the
initial path and to save computational resources, we limit
similarity comparisons using the grid representation of the
library. We start scanning the library paths from the library
grid cell where the initial path starts and then continue to the
neighboring cells and further by increasing the distance to
the starting cell, until the weights of npmax library paths are
evaluated or all the cells within theManhattan distancedcmax
to the starting cell have been checked.

The similarity between the paths is evaluated using
the assumption of the Gaussian distribution of the path
point coordinates and the common interpretation that the
KF estimate and its covariance are the parameters of this dis-
tribution. In the following, an initial path and a library path are
defined by sequences { ( ) ( )}μ k kˆ , Σip ip and { ( ) ( )}μ k kˆ , Σlib lib ,

respectively, where = …k n1, , ip. Here μ̂ and Σ represent
the position parts of the estimate and its covariance, i.e.,

=μ xˆ ˆ1:2 and = PΣ 1:2,1:2. First the Mahalanobis distances

between the initial path and the library path are computed
for = …k n1, , ip:
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From this, the corresponding values of ( )χ 22 probability
distribution function are computed:

( ) ( ( ))( )=p k f d k .χ 2 ip,lib
22

The weight of the library path is obtained as

( ( ))∑=

=

w p kexp log .
k

n

ip,lib
1

ip

(5)

Using the weights (5), computed for all library paths that
were found from the grid cells close to the start of the
recently tracked initial path segment, the future path is
predicted by computing the weighted average of the
paths in the library and its uncertainty is expressed with
its weighted covariance matrix. Quite commonly, the pre-
diction is composed of several “branches,” meaning that
the distribution of predicted agent’s location is multi-
modal. In this case, an appropriate descriptor of the uncer-
tainty is the smoothed probability distribution produced
by the Gaussian mixture that represents the branches.

If library paths that match closely enough with the
initial path are not found, all the path weights are zeros
and we cannot compute the library-based prediction.
Then the algorithm has to revert to KF-based prediction
as a fallback method.

In our experiments, we used the following parameter
values: = =δt n 6min ip , =n 50pmax , =d 15cmax , and =Lpmin

+n nip pred, where npred is the number of time steps that
the prediction is computed for.

4 Experiments

For real data demonstration, we collected camera-based
object detections. We used part of the data to learn the
paths to path library and another part to assess the
quality of library-based prediction by comparing it to
the KF-based prediction. In the following, we describe
the hardware we used, the data we collected, and the
test procedure for the prediction.

4.1 Hardware

We use affordable, portable, and easily available edge-
device to collect experimental data and run the detec-

Prediction of future paths  1053



tion system. The system includes Raspberry Pi 3 Model
B+ equipped with 8 Mpix Raspberry camera module V2.
Cooling fan and heat sinks are attached to the Raspberry
to prevent overheating and unexpected shutdown during
continuous operation for days. The system shown in
Figure 5 is placed on the fifth floor of the Tampere Uni-
versity Hervanta Campus building facing toward the open
space next to the parking yard and capturing the view in
Figure 6.

4.2 Data

The system described in Section 4.1 was used to collect
full HD videos during daylight in summer 2018. About
800 frames were extracted from videos captured on dif-
ferent days and times. These image frames were fully
labeled in six class categories: bus, car, cyclist, person,
truck, and van, using the technique mentioned in ref.
[19]. One annotation means two coordinate points and
a classification, visualized as a box and a written class

label. The aim was to create a representative dataset
including various moving objects during daylight for
the object detection network training. We emphasize
that our system does not send any visual data to the
server. Once the detection system is online, it sends the
detected object’s location coordinates and associated
timestamps. However, we save some amount of visual
data for system debugging and visualization purposes.
Hence, the system preserves the privacy of the person
being in the camera view.

In the dataset, “person” was the only category with
plenty of instances spread over the scene. Therefore, we
used only this category in the prediction tests. These
detections appear in bursts and the intervals between
the detection bursts vary randomly, the most common
interval lengths being 2 or 3 s.

To create the path library, we used stored location
and timestamp data collected on day 1 during 13 h. The
data from the next day were used to compare the predic-
tions produced by the path library and the traditional KF.
The path tracking and prediction were implemented with
Matlab.

Figure 4: The predicted path is the weighted sum of the most similar library paths.

Figure 5: Hardware for the data collection and running detection network.
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4.3 Test procedure

In the prediction tests, we wanted to compare the predic-
tions to the detections and to examine the performance
of the method in different prediction lengths. We defined
three interesting prediction lengths =t n TΔpred pred : for
short-, middle- and long-term predictions, tpred was ±5 1,

±10 1, and ±20 1, respectively.
The random variation of the sampling interval posed

challenges to the testing, as to be able to assess a predic-
tion made for a time instance, there should be detections
available at the time. To tackle this problem, we used the
timing shown in Figure 7. The value =δt 6 smin was
chosen to make sure that most often at least three detec-
tion instances will be included in the initial path. To allow
comparison against detections, the predictions were
computed and saved for three time instances around
the targeted prediction lengths. Due to the variation in
the detection sample intervals, the actual tracking interval
δt varies as the tracking ends when the first detections are
obtained such that ( ) ≥δt m δtmin. For the same reason, the
age of the prediction that is compared with the actual
detections also varies.

In the test, we stopped the path tracking and cleared
the memory of the initial path after it was used to com-
putepredictions. The futuredetections, possibly originating

from the same actual paths were then used to start and
track a new initial path, i.e., the detections from the same
actual path were used to start predictions several times at
different phases of the path build-up.

We compared the predictions produced by the path
library to the predictions of KF. With KF wemean here the
same KF combined with JPDA that produced the initial
path for library-based method, but instead of using the
initial path, the KF used its last estimated state and the
motion model (1) to make prediction for the next npred
time steps.

5 Results

To assess the capability of the library-based path predic-
tion, it was compared to KF predictions. The criterion for
the comparison was how probable the prediction method
had considered the detection of objects in the location
where they actually appeared. Looking at a location
where an object became detected, the higher its predicted
probability to be occupied was, the more successful we
considered the prediction.

A captured moment of a tracking and prediction
situation is shown in Figure 8. For illustration purposes,
the build-up history of paths is shown even though for
prediction, the path history was cleared after the predic-
tions were computed. Some phenomena are marked with
labels in the figure: (1) two adjacent paths; (2) a long, static
sequence of detections; (3) a long path; (4) a short, static
sequence of detections; (5) predictions indicate probable
detections but the series of detections has ended; and (6)
pink shade on the map denote areas where library paths
have plenty of position occurrences. The expanding yellow
circles represent the KF predictions and their uncertainty
that increases with time. The blue circles represent the
uncertainties of the library-based predictions, which do

Figure 6: Camera view from the test setup running real time object
detection on a Raspberry Pi platform.

Figure 7: Timing diagram of the prediction test exemplifying the effect of the random variation of detection times.
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not expand to as large area as the uncertainties of the KF
predictions but sometimes divide into different branches.

To get more focused comparisons, we computed the
short-, middle-, and long-term predictions as described

Figure 8: Real data example: path tracking and predictions with KF and path library.

Figure 9: Real data examples: comparing area occupancy predictions by KF (top) and path library (bottom). The red markers give the
locations of objects at the end of prediction: at t 24= s in Example (a) and at t 48= s in Example (b). The gray clouds indicate the predicted
probability of the location being occupied by the agent. The predictions were made using observations obtained 6 s (left), 11 s (middle), and
19 s (right) earlier, respectively. (a) Predictions for t 24 s= . (b) Predictions for t 48 s= .
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in Section 4.3. The occupancy predictions plotted on the
maps together with the detections are shown in Figure 9,
where predictions for two time instances are given as
examples. In the occupancy map, the darker the color
of a pixel, the more probable it is to detect an object in
the pixel. It can be seen that with the both prediction
methods, the accuracy of the prediction gets “diluted”
as the prediction time increases. However, the dilution
appears in different ways with the two methods. While
the predicted occupancy areas of the KF get lighter and
spread over large areas, the library-based predictions
get an increasing number of smaller, more condensed
occupancy patches. The examples of occupancy area pre-
dictions show that the path library gives much more
accurate, but multimodal predictions. The differences
become larger with increasing prediction times and they
are clearly visible already with prediction length 11 s.

6 Discussion

The main contribution of this article consists of predic-
tion of the future paths of mobile objects while preserving
the privacy of the tracked objects. To improve the predic-
tions, we proposed a method based on the library of paths
tracked and recorded in the past. We demonstrated the
operation of the library-based prediction using privacy
preserving data obtained with an inexpensive computer
vision system. With the same data, we compared the
library-based predictions with KF-based predictions.

The requirement of privacy preservation in the data
processing poses challenges to the path prediction by
bringing on the need to solve the DA problem. This
applies to both the initial state estimation and the collec-
tion of the path samples into the library. Despite the pro-
mising results of the library-based prediction, DA errors
in the tracking are possible. They may happen when the
paths of two (or more) objects coincide closely, which is
possible, e.g., when the paths cross each other, or the
paths coincide in a turn, or the paths evolve closely in
the same direction with the same speed. In general, we do
not consider the DA errors as serious flaws for the pro-
posed method as the method aims to answer the question
“will there be anybody in certain location” rather than
the question about who will be there. However, DA errors
could produce inaccurate initial state estimation or cause
somewrong transitions between path segments to be learned
to the library. We assume the statistical weighting in the
usage of the library will mitigate the effect of these errors.

Although the model parameters σw
2 and R (defined in

Section 3.2.1) were chosen using a general knowledge

about what could be possible for a pedestrian rather
than by optimization and fitting to the data, the library-
based prediction performed surprisingly well in the demon-
stration with real data. This suggests the good robustness of
the model.

Using low-cost, consumer grade equipment contri-
butes to the inaccuracy and uncertainty of the initial state
estimates for the predictions and the library paths and
the need for the extra complexity of the timing scheme
presented in Figure 7 for the performance evaluation of
the prediction method. Although the proposed prediction
method does not require the use of inexpensive equip-
ment, the good performance with such in the demonstra-
tion suggests the robustness of the method. However,
upgrading the equipment to a more expensive, higher
quality vision system would allowmore accurate tracking
and to some extent, decrease the probability of DA errors.

For the applicability of the library-based prediction
in changing environments, such as construction sites, the
path library may require a forgetting mechanism to give
smaller weight in the prediction to older paths that do not
have recent examples. To improve the scalability of the
path library, i.e., to reduce its resource requirements
regarding memory and search times as the number of
paths in the library grow large, the instance-based struc-
ture of the library could be replaced with a model-based
structure that improves the compression of the stored
path information. For instance, path segments with similar
speed profiles and located close together could be com-
bined to one, and long paths could be split to shorter “path
primitives,” e.g., links that connect nodes where the paths
typically branch off or join together.

7 Conclusions

In this article, we propose a path library-based method to
predict future paths of mobile objects. The predictions are
based on the library of the observed past paths in the area
and a short initial path segment estimated from the coor-
dinates of the most recent object detections from an inex-
pensive, privacy-preserving vision system. We compared
the library-based predictions to the predictions based on
the KF combined with joint probabilistic DA. The per-
formed tests show that the path library gives much
more accurate but multimodal predictions. The difference
increases with longer prediction lengths, and in the pre-
sented examples, it was significant already with predic-
tion lengths of 11 s. However, despite its weaker predic-
tion capability, the KF is needed in the library-based
prediction as a fallback method in situations when
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prediction is needed to areas that are not covered by
examples in the path library and as a preprocessing stage
to track the initial path needed for the computation of the
library-based prediction. The directions of future develop-
ment of the prediction method could include improving
the positioning accuracy of the vision system by a wide-
baseline stereo camera and depth estimation capability.
An obvious target for further research is also the optimiza-
tion of the model parameters.
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