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Two-photon interference is a fundamental quantum optics effect with numerous applications in quantum
information science. Here, we study two-photon interference in multiple transverse-spatial modes along a
single beam-path. Besides implementing the analog of the Hong-Ou-Mandel interference using a two-
dimensional spatial-mode splitter, we extend the scheme to observe coalescence and anticoalescence in
different three- and four-dimensional spatial-mode multiports. The operation within spatial modes, along a
single beam path, lifts the requirement for interferometric stability and opens up new pathways of
implementing linear optical networks for complex quantum information tasks.
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Two-photon interference at a beam splitter, i.e., Hong-
Ou-Mandel (HOM) interference [1], is one of the most
important effects in photonic quantum information science
[2]. Its applications range from quantum computing [3], to
cryptography [4] and from repeaters [5] to sensing [6], as
well as quantum foundations [7]. Because of its impor-
tance, it has been studied with photons from different
sources [8,9] and in different degrees of freedom (DOF)
[10–12]. Domains that can encode high-dimensional quan-
tum states, such as spatial, spectral, and temporal DOF,
have attracted a lot of attention as they can be used to
implement schemes with multiple input and output ports,
i.e., multiports. Such linear optical networks are of
importance for performing increasingly complex tasks in
photonic quantum computing that require multiphoton
interference [13–17].
Transverse-spatial modes, i.e., propagation invariant

photonic structures that discretize the transverse-spatial
domain, comprise a popular Hilbert space for encoding
high-dimensional quantum states [18]. One prominent
family of spatial modes is the Laguerre-Gaussian (LG)
family that is defined by two quantum numbers, l and p,
describing the photons’ azimuthal and radial structures,
respectively. The azimuthal DOF has gained significant
popularity as it is connected to the orbital angular momen-
tum (OAM) of photons [19]. Benefits of encoding quantum
states in photonic spatial structures include mature tech-
nologies for generating and detecting high-dimensional
states, as well as intrinsic phase stability of complex super-
position states, ensured by single beam-path operation.
In this Letter, we demonstrate two-photon interferences

in multiple transverse-spatial modes. We use the technique
of multiplane light conversion (MPLC) [20] to implement
various spatial-mode unitaries, leading to different inter-
ference effects between two structured photons. We first
observe bunching of photon pairs into the same spatial
mode by implementing the direct spatial-mode analog of

HOM interference using a two-dimensional “mode split-
ter.” Utilizing the same setup and benefiting from the
advantages spatial modes offer, we study various two-
photon interferences in high-dimensional state spaces along
with complex superposition states. The flexibility of our
high-dimensional spatial-mode multiport further allows
observing both coalescence and anticoalescence of photon
pairs with three and four input and output modes. Our
demonstration opens up paths to realize novel implemen-
tations and complement existing high-dimensional linear
optical networks for quantum information science.
In the conventional HOM interference, photon bunching

is obtained when two photons that are indistinguishable, i.e.,
perfectly overlapping in polarization, spatial structure, and
time, are sent into a balanced beam splitter from separate
inputs. While classically four different output situations are
possible, only the two possibilities in which both photons
exit through the same output port will remain after the
interference [see Fig. 1(a)], which can be attributed to the
bosonic nature of photons. A common way of assessing the
quality of the interference is evaluating the change in
coincident detections of the two exiting photons while
scanning the temporal delay between them. This quality
can be quantified with a visibility V ¼ ðRcl − RquÞ=Rcl ∈
½0; 1� [21] between the classically expected rate Rcl and the
rate Rqu observed due to quantum interference.
In our experiment, we replace the beam splitter acting on

the paths with a mode splitter acting on the transverse-
spatial modes of the photons. Hence, the photons bunch
into the transverse-spatial modes, which is in contrast to
previous quantum interference measurements, where spa-
tial-mode overlap served as a condition for observing two-
photon bunching into paths [26–30]. We note that in one
recent experiment single-path two-photon interference
between two spatially structured photons was observed,
however, using polarization structures which limit the
dimensionality to two [31].
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To study HOM interference between two spatial modes,
we prepare the photons in orthogonal OAM modes, i.e.,
one photon with l ¼ þ1 and the second having l ¼ −1.
Note that although our scheme would be able to transform
any combination of spatial modes [14], we are only
involving the OAM degree of freedom. Using the Fock-
state notation jnil, where n is the photon number and the
subscript labels the OAM value, we can write the input
state as j1i−1j1iþ1 ¼ j1; 1i. Analogous to the classic
HOM interference, a balanced mode splitter unitary Û2

transforms the two input modes into two equally weighted
superpositions which leads, via interference, to the state

jΨ2Di ¼
1ffiffiffi
2

p ðj0; 2i − j2; 0iÞ; ð1Þ

if the two photons are perfectly indistinguishable in polari-
zation, time, spectrum, as well as path [see Fig. 1(b)
and the Supplemental Material [25] for more details].
This state is distinct from earlier spatial-mode interference
experiments [26–30], as it is a so-called NOON state in a
single optical path, which is a desirable state for quantum
metrology tasks due to its increased phase sensitivity [32].
The single beam-path operation is similar to quantum
interference with polarization [10,33], however, with the
much larger state space that spatial modes offer. Thus,
enabling more complex unitary transformations and a path-
way to building single-path linear optical networks.
In the experiment [see sketch of the setup in Fig. 1(c) and

Supplemental Material [25] ], we generate photon pairs
using spontaneous parametric down-conversion, ensure
their temporal overlap through a delay line in the path
of one photon, and couple both photons into single mode

fibers (SMF), thereby spatially filtering them to a Gaussian
mode. Using a fiber beam splitter, we obtain an initial
HOM visibility of 97.7%� 0.2% (see the Supplemental
Material [25]). Note that for all visibility values given
throughout the Letter, the errors denote a standard error
calculated from a fit to the data. For more information on
the specific function we fit to the data, see the Supplemental
Material [25], which is partially based on the derivation in
Ref. [34]. A few examples of these fits are shown in Fig. 2.
We then imprint the desired spatial modes onto the photons
using a spatial light modulator (SLM) and an amplitude and
phase modulation technique to guarantee the best mode
quality at the cost of loss (around 94%–99% loss per
photon) [22]. Lossless schemes exist [35] but we abstain
from using them due to their complexity. After imprinting
the modes, the two photons are overlapped probabilistically
with a balanced beam splitter. The input spatial modes are
chosen to be orthogonal to avoid any interference in the
combining beam splitter.
The photons are then input into the spatial-mode multi-

port, i.e., an MPLC setup, that we use to implement any
unitary operation on the biphoton state. The three phase
modulations in our MPLC setup, that define each unitary,
are generated using free-space wavefront matching (WFM),
which is described in more detail in the Supplemental
Material [25], and an example code can be found in
Ref. [36], and earlier works [14,37]. When generating
these transformations, the pixelization and limited number
of phase values (8 bit) of our SLMs are taken into account.
Our 2D mode splitter achieved a simulated efficiency above
99% for a bandwidth of roughly 5 nm around the target
wavelength. Importantly, out of the 1% loss, only a small
fraction (1%) remains in our operating state space, i.e.,

(a) (b)

(c)

FIG. 1. Conceptual sketch of two-photon interference and the experimental setup. (a) Conventional HOM interference in a regular
beam splitter between two paths. (b) Its spatial mode analog implemented with a mode splitter. (c) The setup used to demonstrate two-
photon interferences in different mode splitters. Photon pairs are produced in a periodically poled potassium titanyl phosphate (ppKTP)
crystal, adjusted in their temporal overlap using a delay line, and coupled into single mode fibers. Three spatial light modulators are used
for spatial mode generation [22] (SLM1), unitary transformation [14] (SLM2), and measurement [23,24] (SLM3). Single photon
detectors and a coincidence counter are used to detect the photon pairs. For more details, see the main text and Supplemental Material
[25]. The two-dimensional color map shown in (c) is used in all of the figures.

PHYSICAL REVIEW LETTERS 126, 123601 (2021)

123601-2



contributes to errors. Note that this particular transforma-
tion for OAM modes l ¼ �1 resembles two rotated
cylindrical lenses [38]. The simulated evolution of
the photon’s structure in the 2D transformation, with all
the other utilized phase modulations, are displayed in the
Supplemental Material [25].
After the two-photon state has been transformed through

the mode splitter, the photons are probabilistically split into
separate paths using another beam splitter. Their individual
spatial modes are then measured using another phase
modulation and SMF coupling followed by detection
[23,24]. The signals of the detectors are fed into a time
tagging unit, which registers coincident detections through
temporal correlations. If the two-photon interference in
spatial modes was successful, no coincidence counts
will be detected when the photons are projected on
orthogonal modes, i.e., using the projection operator
P̂þ1−1¼j1i−1j1iþ1h1j−1h1jþ1¼j1;1ih1;1j. Simultaneously
scanning the temporal delay between the photons results in
a dip in coincidence detections, identical to a classic
HOM dip.

For the 2D mode splitter, we obtain a HOM-interference
dip with a visibility 88.0%� 3.8%, that is well above the
classical limit of 50% [39]. When the two photons are
projected onto the same state, i.e., P̂þ1þ1 ¼ j0; 2ih0; 2j, we
observe an increase in coincidences due to bunching, i.e., a
HOM bump, with a visibility 90.9%� 4.5%. This change
in the projection only requires changing one hologram on
SLM3. Both results are shown in Fig. 2(a).
We then take advantage of a particular benefit of spatial

modes and study the interference when generating and
detecting superposition states, a task that is usually difficult
to implement in other degrees of freedom. At first, we keep
the photons in the same input state, but project them onto
orthogonal states of the two other mutually unbiased
bases (MUB), which we define as jΨD=Ai ¼ 1=

ffiffiffi
2

p ðj1; 0i�
ij0; 1iÞ and jΨH=Vi ¼ 1=

ffiffiffi
2

p ðj1; 0i � j0; 1iÞ. When projec-
ting the photons onto the orthogonal states of the
(D/A)-MUB, we again find an interference dip with a
visibility of 85.6%� 6.2%. However, when projecting
both photons onto the (H/V)-MUB, no bunching is
observed as both photons are transformed through the
mode splitter into the eigenstates of this basis [see
Fig. 2(b)].
To show that it is irrelevant whether we prepare or

project onto superpositions, we then generate photons in
the superposition states jΨAi and jΨDi but perform the
projection measurements P̂þ1−1 and P̂þ1þ1. The results are
similar to the ones using no superposition states, with
visibilities 84.0%� 4.1% and 93.8%� 9.5%, for the dip
and the bump, respectively [see Fig. 2(c)]. Note that,
although the interference remains the same, the relative
phase changes in the output state, allowing tuning of the
obtained state.
To verify generation of the entangled state described in

Eq. (1), we perform an entanglement witness test on the
two postselected photons, which verifies nonseparability if
the sum of the visibilities measured in at least two MUBs is
larger than 1 [40–42]. From our measurements in all three
MUBs, we obtain a witness value of w ¼ 2.2� 0.1, which
is more than 11 standard deviations above the classical limit
(see Supplemental Material [25] for details).
We then scale our state space to larger dimensions, i.e.,

study two-photon interferences in high-dimensional mode
splitters. At first, we choose a balanced three-dimensional
mode splitter Û3 operating on the state space spanned by
LG modes with l ¼ −1; 0;þ1. With this unitary, that splits
the photons into an even superposition of all three spatial
modes, different interference effects can be observed. For
example, if we again send in the same input state, now
written as jΨi ¼ j1i−1j0i0j1iþ1 ¼ j1; 0; 1i, we will not
observe a perfect bunching. By measuring correlations
using any of the projectors P̂þ1−1, P̂þ10, or P̂0−1, a HOM
dip with a maximum visibility of 0.5 can be observed
(see Supplemental Material [25]). Experimentally we
measure visibilities of 39.7%� 2.9%, 49.3%� 3.1%,

(a)

(b)

(a)

(b) (c)

FIG. 2. Measurement of two-photon bunching in a two-
dimensional mode splitter. (a) HOM-like interference visualized
in Fig. 1(b). Insets show the input modes of both photons (lower
left) and legends depict the mode pair they were projected on
(upper right). (b) Interference data with the same input two-
photon state projected onto two different MUBs. (c) Flipped
scenario of (b), i.e., the input states are in a different MUB and
projected onto the OAM basis. The mode splitter unitary Û2 was
the same in all three scenarios. The error bars are standard errors
calculated from multiple consecutive measurements and the
curves are fits. In (b) and (c) the error bars were omitted for
clarity and can be found in the Supplemental Material [25]. The
change in the overall coincidence rates, especially visible in (b), is
a result of decoupling over time.
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and 38.3%� 2.8%. Similarly to the two-dimensional case,
projecting both photons onto the same mode with P̂þ1þ1,
P̂00, or P̂−1−1, results in a twofold increase in coincidences.
The corresponding measurements lead to visibilities
84.3%� 5.6%, 77.2%� 4.8%, and 94.7%� 7.2%,
respectively (see Fig. 3). For the high-dimensional inter-
ference curves, we display ideal curves instead of fits, to
keep the figure simple and compare the data to theoretically
expected results. The imperfect visibilities are likely due to
small misalignments and imperfections in the unitary
implemented with only three phase modulations for these
increasingly complex transformation. For completeness,
we also confirmed that this three-dimensional unitary
works with superposition states, which is shown in the
Supplemental Material [25].
Naturally, scaling these effects into higher-dimensional

state spaces, i.e., realizing linear optical networks, is
important for quantum information applications [13–17].
However, this scaling also provides some fundamentally
interesting effects that cannot be observed in a classical
HOM setting, i.e., a two-dimensional system. One such
effect is anticoalescence, where two-photon interference
causes an increase in coincidences when projecting the
biphoton state onto two orthogonal spatial modes, while
still having a separable state as an input. In three dimen-
sions, this phenomena can be observed if either the input
states or the unitary is prepared in an unbalanced super-
position basis. An example of the latter has been

demonstrated using paths and an imperfect tritter [43],
which could also be modeled as a lossy asymmetric beam
splitter [44]. We demonstrate anticoalescence by exploiting
the flexibility of our multiport, and compare the interfer-
ence obtained with the balanced mode splitter Û3 to an
unbalanced unitary ÛRotþ3, while keeping the same two-
photon state j1; 0; 1i as input and output. As already shown
in Fig. 3, for the balanced mode splitter Û3 we observe
coalescence. However, when using the unbalanced mode
splitter ÛRotþ3 we find an increase in coincidences with a
visibility of 77.4%� 6.4% caused by anticoalescence [see
Fig. 4(a)]. Because of the imperfections outlined earlier,
our measured visibilities are slightly lower than the
theoretically expected 100%. Because of the bosonic nature
of photons, bunching is still the driving force of these
interferences, which manifests as HOM dips when projec-
ting on the two other orthogonal mode pairs (see
Supplemental Material [25]). We further verified the same
anticoalescence using the balanced unitary Û3 and
unbalanced superposition states, which can be found in
the Supplemental Material [25].
When going beyond three dimensions, tuning the

observed interference becomes easier since the mode
splitter unitary can be kept balanced while changing its
internal phases [43]. We demonstrate this tunability using a
balanced four-dimensional mode splitter

Û4 ¼
1

2

2
66664

1 1 1 1

1 eiφ −1 −eiφ

1 −1 1 −1
1 −eiφ −1 eiφ

3
77775
; ð2Þ

for which we adjust the internal phase values φ to 0, π=2,
or, π, corresponding to an anticoalescence, no interference,
and coalescence, respectively. The chosen four-dimen-
sional state space is spanned by the OAM modes with
l ¼ �2;�1. Although any two-mode combination of the
mode set could have been used, we kept the same input
state jΨi ¼ j0i−2j1i−1j1iþ1j0iþ2 ¼ j0; 1; 1; 0i and pro-
jected on the same output state, i.e., P̂−1þ1, as before to
show that the change in interference only stems from the
different unitary operation. In our measurements [shown in
Fig. 4(b)] we obtained a visibility of 75.0%� 6.1% for
φ ¼ 0, no significant interference for φ ¼ π=2 and a
visibility of 63.2%� 6.4% for φ ¼ π. While not being
perfect, the obtained visibilities are above the classical
limit, with at least 95% confidence. We again attribute the
discrepancy between theory and experiment to the limi-
tations of our small MPLC system performing more
complex transformations. Already in simulations, the
limited number of phase screens leads to an increase in
mode-independent loss, around 27%–37%, and a slightly
unbalanced mode splitter. Although MPLC setups
have been implemented using a larger number of phase

FIG. 3. Two-photon interference in a three-dimensional mode
splitter. The two-photon input state, shown in the inset on the
lower left, was sent into a balanced unitary Û3. The resulting
interference was measured when projecting the photon pair onto
every combination of our initial basis states. The ideal curves
were calculated from the theoretically expected visibilities and
the two-photon properties measured at the source. The omitted
error bars and more experimental details can be found in the
Supplemental Material [25].
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modulations on a single SLM [14,37], we refrained from
doing so here due to the additional losses induced by every
SLM reflection.
The multiphoton interference effects shown here, dem-

onstrate that a reconfigurable spatial-mode multiport,
implemented through MPLC, can be used in the quantum
domain, opening up multiple new research avenues and
quantum technological applications harnessing the benefits
of spatial modes. The current limitation of our experimental
scheme is the lossy method of generating the spatial modes
[22] and the limited efficiency of our SLMs (75% effi-
ciency per reflection), that limits the number of phase
modulation planes. However, these limitations are only of a
technical nature and can be tackled in the future with more
expensive devices, e.g., high-quality deformable mirrors,
and novel methods, e.g., lossless generation and detection
of structured photons [35]. Because our scheme is intrinsi-
cally stable and can be fully automized [14], scaling to
large mode numbers, i.e., the realization of large linear
optical networks along a single path, seems feasible.
Additionally, other input states, such as entangled states
or multipartite states, could be used to investigate more
complex multiphoton interferences. The well-controlled
two-photon interference can further be applied in

generating custom-tailored NOON states of spatial modes,
studying complex quantum walks within the spatial-mode
set [45], simplifying fundamental research endeavours
such a high-dimensional multipartite entanglement [46],
or applying spatial modes in complex quantum informa-
tion tasks like photonic quantum processors [13,47],
high-dimensional quantum teleportation [48], or Boson
sampling [49].
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