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Abstract—Model predictive control (MPC) lacks an integrating
element. Thus, parameter mismatches can deteriorate its steady-
state performance. To address this issue and enhance the robust-
ness of MPC, an alternative formulation of the prediction model is
discussed in this paper. This model introduces an integrator to the
optimization problem without increasing its size and consequently
its computational complexity. An in-depth analysis of the effect of
parameter mismatches on the control performance is performed
when both the conventional and the proposed prediction model
are used. Specifically, the aforementioned analysis is carried out
for a range of switching frequencies as well as prediction horizon
lengths, while a permanent magnet synchronous motor (PMSM)
drive is used as a case study.

Index Terms—model predictive control (MPC), permanent
magnet synchronous machine (PMSM), robustness, parameter
sensitivity

I. INTRODUCTION

With the advent of powerful microprocessors, model pre-
dictive control (MPC) has been gaining a lot of attention in
the field of power electronics in recent years, especially in its
version as direct controller, i.e., MPC without a modulator [1],
[2]. Among the most attractive characteristics of direct MPC
(also known as finite control set MPC—FCS MPC) is its ca-
pability to control nonlinear multi-input multi-output systems
and to fully exploit the available hardware. At the same time,
permanent magnet synchronous motors (PMSMs) are entering
new markets, such as traction and automotive applications,
electrical mobility, more electric aircrafts, renewable power
generation, and home appliances [3]. Their increasing success
is due to the highest torque density and efficiency among
other electrical machines. Because of this, both academy and
industry are investigating effective control schemes that can
exploit all PMSM characteristics and MPC seems to be a
compelling solution.

As its name implies, MPC is a model-based controller.
Hence, the accuracy of the system model—upon which the
prediction of the plant behavior depends—is of paramount im-
portance, since an inaccurate prediction model will adversely
affect the system performance. Such degradation is even more
pronounced when long-horizon MPC is employed. Note that

the latter is required to improve performance metrics, such as
the load current total harmonic distortion (THD) [4]. Since,
however, parameter mismatches are always present, e.g., due
to estimation errors, aging, temperature variations, and the
variability in the manufacturing process, an in-depth study of
how discrepancies between the prediction and actual system
model affect the closed-loop behavior of MPC needs to be
done.

MPC robustness against modeling uncertainties can be
addressed in two ways, namely, by modifying the control
scheme, or by improving the parameter estimation. Several
methods belong to the former category. For instance, [5]
proposed a new cost function with an integral term of the
current tracking error, while [6] added a weighted error to
the dq–predicted currents which was computed among the
predicted current and the measured one at the last switching
instant. An alternative was presented in [7] where the system
state was augmented to include an explicit integrator. It is
worth noting that most of the aforementioned techniques, rely
on the addition of an integrator to the optimization problem
since MPC is merely a proportional controller [8]. On the
other hand, detrimental parameter mismatch effects on the
control performance can be mitigated by tracking the motor
parameters during the normal motor operation, as, e.g., in
[9], [10]. Moreover, a gray box approach can be chosen [11]
where an equivalent motor model is implemented and its
parameters are estimated and updated in real time by means
of the measured motor quantities, i.e., currents, voltages and
speed.

A step preceding the development of a control technique,
or the implementation of an estimation method should be the
analysis of the influence of each parameter on the control
performance. The reason is that it is crucial to understand
which is the parameter that mainly affects the control per-
formance so that effort can be put into mitigating it. [12]
studied the influence of resistance and/or inductance mis-
matches in a generic voltage–source converter. It showed how
the parameter sensitivity changes as a function of the load
current and a comparison with a proportional–integral control



is reported. In [13] a PMSM was analyzed and an incremental
prediction dq–model was proposed which was insensitive to
the permanent magnet (PM) mismatches; this, however was
not experimentally showed. Moreover, both above-mentioned
works considered only a single–step horizon, while the `1–
norm—which has detrimental effect on MPC stability and
performance—was used [14].

Based on the above, in this paper, the robustness of FCS–
MPC to parameter mismatches using a PMSM drive as a
case study. At first, the classical MPC formulation is reported
and the effects of discrepancy of parameters, such as the
stator resistance, the inductance and the PM flux, on the
current tracking accuracy of MPC and current THD are
investigated. To this aim, different degrees of (both positive
and negative) parameter mismatch and prediction horizon
lengths are examined. Following, to attenuate the adverse
effects of parameter mismatches on the control performance,
an alternative prediction model is proposed which introduces
an integrator to the control strategy [15]–[17]. It is noteworthy
that in doing so, the size, and thus the complexity, of the
optimization problem remain constant. To obtain the optimal
control solution the proposed formulation computes the vari-
ation of the control action and integrates it starting from the
action applied last. The performance and the robustness of the
presented strategy are compared with those of the classical
FCS-MPC formulation in the most critical situation for each
motor parameter, namely with a significant mismatch and long
prediction horizon.

II. PHYSICAL MODEL OF THE SYSTEM

The system under consideration consists of a three-level
neutral point clamped (NPC) voltage source inverter and a
PMSM. The dc-link voltage of the inverter Vdc is assumed to
be constant and the neutral point potential vN is fixed to zero.

The modeling and the control formulation are done in the
orthogonal αβ–reference frame. To do so, three-phase (abc)
variables in the form ξabc = [ξa ξb ξc]

T are transformed into
two-dimensional variables ξαβ = [ξα ξβ ]T in the stationary
(αβ) reference frame via ξαβ = Kξabc, where K is the Clarke
transformation matrix
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Through the paper, the quantities are normalized and presented
in the per unit (p.u.) system.

First, the inverter model is derived. A three-level NPC
inverter can produce the phase voltages −Vdc/2, 0, and
Vdc/2, depending on the switch position on the corresponding
phase. The latter can be represented by the integer variables
ua, ub, uc ∈ U , {−1, 0, 1}, which can be aggregated to the
three-phase switch position uabc = [ua ub uc]

T ∈ U , U3.
In the next step, the state–space model of the controlled

PMSM is derived. The motor voltage equation in the stationary
reference frame is

vαβ = Riαβ+Xs
diαβ

dt
+ωmeΨmg[− sin(θme) cos(θme)]

T (2)
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Fig. 1: Three-level NPC voltage source inverter with a PMSM.
The inverter has a fixed neutral point potential.

where vαβ = [vα vβ ]T , and iαβ = [iα iβ ]T are the stator
voltage and current, respectively, Ψmg the PM flux linkage, R
and Xs the stator resistance and reactance, respectively, θme
the electromechanical position, and ωme the electromechanical
speed. For sake of simplicity, the mechanical dynamics are
neglected by adopting the infinite inertia hypothesis, leading
to a constant motor speed during a current control cycle.

Since MPC is discrete-time controller the discretization of
the continuous-time PMSM model is required. To this end,
forward Euler discretization is employed and applied to (2),
yielding the discrete–time PMSM model, i.e.,

iαβ(k + 1) =

(
1− TsR

Xs

)
iαβ(k) +

Vdc

2

Ts
Xs

Kuabc(k)

+
Tsωme(k)

Xs
Ψmg[− sin(θme(k)) cos(θme(k))]T

= Aiαβ(k) + Buabc(k) + d(k) (3)

where the matrices A, B and d definition can be devised by
the previous equation, Ts is the sampling interval and k ∈ N.
Finally, it is worth noting that matrices A and B are assumed
to be time invariant, while vector d(k) is time varying.

III. DIRECT MODEL PREDICTIVE CONTROL WITH
REFERENCE TRACKING

The direct MPC is a control paradigm which directly
chooses the position of the inverter switches, namely uabc,
while avoiding the use of a modulator. The controller predicts
for Np time steps the future evolution of the controlled
variables on the basis of the system model and the candidate
sequences of control actions, i.e., switching sequences. The
optimal control action corresponds to the switching sequence
that minimizes a predetermined performance index, referred
to as cost function. This quantifies the control requirements,
which, for the chosen case study, i.e., a PMSM drive system,
are twofold, namely, the regulation of the stator current along
its reference and the operation at as a low switching frequency
as possible for reduced power losses. These objectives can be
mapped into a scalar via the following cost function

J(k) =

k+Np−1∑
`=k

‖ierr,αβ(`+ 1)‖22 + λu ‖∆uabc(`)‖22 (4)

which considers the weighted sum of the current tracking
error defined as ierr,αβ(`) = iref,αβ(`) − iαβ(`). Moreover,



∆uabc(`)
∆
= uabc(`) − uabc(` − 1) takes into account the

switching transitions involved between two consecutive time
steps. The weighting factor λu > 0 decides on the trade-off
between the current tracking accuracy and the switching losses
(i.e., switching frequency).

To find the optimal sequence of switch positions
over the prediction horizon Np, i.e., U∗(k) =
[u∗Tabc(k) u∗Tabc(k + 1) . . . u∗Tabc(k +Np − 1)]T , problem

U∗(k) = arg minimize
Uk

J(k) (5)

subject to iαβ(`+ 1) = Aiαβ(`) + Buabc(`) + d(`)

Uk ∈ U
‖∆uabc(l)‖∞ ≤ 1, ∀` = k, · · · , k +Np − 1

must be solved in real time. In (5), U(k) =
[uTabc(k) uTabc(k + 1) . . . uTabc(k +Np − 1)]T is the
optimization variable and U = U × . . . × U is the
Np–times Cartesian product of the set U and represents the
feasible input set.

To solve the integer optimization problem (5) in a com-
putationally efficient manner, i.e., to reduce the number of
candidate solutions that need to be evaluated in real time,
further manipulations are required. The aim is to employ smart
branch–and–bound algorithms, such as the sphere decoding
algorithm (SDA) [18]. To this end, the unconstrained solution
of (5) needs to be computed first. To do so, the algorithm
in [18] is slightly modified to account for the exogenous
disturbance d(k) in (3). For this, it is enough to note that
the vector d(k) is fully described by the electromechanical
position and speed. Thanks to the infinite inertia hypothesis,
d(k) can be easily predicted for Np steps by keeping the elec-
tromechanical speed constant and updating the rotor position
as θme(k + `) = θme(k) + ωme`Ts with ` = 0, . . . , Np − 1.
Hence, the unconstrained solution Uunc(k) can be computed
as

Uunc(k) = H−1ΘT (k) (6)

where

H = ΥTΥ + λuS
TS

Θ(k) = (Yref(k)− Γiαβ(k)−MD(k))
T

Υ

+ λu (Eu∗abc(k))
T

S .

(7)

In (7), Yref(k) is the reference current
over the prediction horizon Yref(k) =[
iTref,αβ(k + 1) iTref,αβ(k + 2) . . . iTref,αβ(k +Np)

]T
, while

all matrices are defined in the appendix.
With (6), the MPC problem (5) can be written as

U∗(k) = arg minimize
Uk

∥∥Ūunc −VU(k)
∥∥2

2

subject to Uk ∈ U (8)
‖∆uabc(l)‖∞ ≤ 1, ∀` = k, · · · , k +Np − 1

where it holds that VTV = H with V being a nonsingular
lower triangular matrix provided that λu > 0. Moreover,
Ūunc = VUunc.

Problem (8) describes the integer least-squares (ILS) prob-
lem solved in [18]. This can be interpreted as the minimiza-
tion of the hypersphere of radius ρ (i.e., the value of the
cost function) centered at Uunc(k). The SDA evaluates only
the candidate solutions inside the computed hypersphere and
the one that returns the smallest cost function value is the
optimal one. Specifically, the solution U∗(k) corresponds to
the n–dimensional lattice point with the smallest Euclidean
distance from the unconstrained solution Ūunc. Equivalently,
the solution is the unique lattice point included in the smallest
hypersphere centered at Ūunc of radius ρ. It is worth noting
that SDA still guarantees optimality with a highly computa-
tional efficiency, especially if compared with the brute–force
approach of the exhaustive enumeration.

As can be understood, the initial choice of the radius ρ plays
a crucial role in the SDA efficiency. The hypersphere must be
as small as possible to evaluate a small number of nodes, but
it should not be empty to ensure that a solution is found. The
initial radius can be set as proposed in [19], i.e.,

ρ = min {ρa, ρb} (9)

where

ρa =
∥∥Ūunc −VUbab(k)

∥∥
2

(10a)

ρb =
∥∥Ūunc −VUed(k)

∥∥
2
. (10b)

The radii in (10) are computed based on two different
possibilities, namely the so–called Babai estimate Ubab or the
educational guess Ued. The former solution corresponds to the
rounded unconstrained solution to the closest integer vector,
i.e., Ubab(k) = bUunc(k)e, while the latter is the previously
applied optimal solution U∗(k − 1) shifted by one time step.

Once U∗(k) is found, and in line with the receding horizon
policy, only its first element is applied by the converter
whereas the rest are discarded. The procedure continues at
the next time step over a one time-step shifted horizon and
based on new measurements/estimates.

IV. VELOCITY MODEL

MPC is, essentially, a proportional control method [8].
Hence, its steady-state performance is susceptible to model
mismatches, parameter uncertainties, and/or unmodeled dis-
turbances. To address this issue, some techniques have been
proposed that add an explicit integrator to the state vector [7],
[20]. This, however, increases the dimension of the model,
and makes the MPC problem more complex, especially when
a long horizon is adopted for improving system performance.

To address the aforementioned issue of the augmented state,
a different formulation of the MPC problem is adopted. It is
based on the velocity form of the model which returns the input
variation—or velocity of the control input—instead of the
entire control action itself. The control input is subsequently
obtained by integrating its velocity [15]–[17].

To derive the velocity model, the state, input and disturbance
variations, i.e., ∆iαβ(k) = iαβ(k)− iαβ(k− 1), ∆uabc(k) =
uabc(k) − uabc(k − 1), and ∆d(k) = d(k) − d(k − 1),



respectively, are required. With these, the drive model to serve
as an internal prediction model for FCS–MPC becomes

∆iαβ(k + 1) = iαβ(k + 1)− iαβ(k)

= A∆iαβ(k) + B∆uabc(k) + ∆d(k) (11)

which allows to compute the current variation with respect to
the measured one. The PMSM velocity form in (11) resembles
the classical formulation (3) and it can be used to minimize
the cost function (4). Moreover, it is worth highlighting that
(11) is well tailored to to the required form of (4) since the
input variation ∆uabc(k) in (11) is the control effort term in
(4). On the other hand, the predicted current trajectory is no
more directly available since (11) only returns its variation.

Let ∆Y(k+ 1) =
[
∆iαβ(k + 1)T . . . ∆iαβ(k +Np)

T
]T

,
∆U(k) =

[
∆uabc(k)T . . . ∆uabc(k +Np − 1)T

]T
, and

∆D(k) =
[
∆d(k)T . . . ∆d(k +Np − 1)T

]T
be the current,

the input and the disturbance variation vectors over the pre-
diction horizon, respectively. The output variation vector can
be rearranged as

∆Y(k + 1) = Γ∆iαβ(k) + Υ∆U + M∆D(k) (12)

and the entire predicted output current trajectory Y(k) =[
iαβ(k + 1)T . . . iαβ(k +Np)

T
]T

can be computed by in-
tegrating ∆Y(k + 1) starting from iαβ(k) as follows

Y(k) =

iαβ(k)
...

iαβ(k)

+


I 0 · · · 0
I I · · · 0
...

...
...

I I · · · I

∆Y(k + 1)

= Ȳ(k) + Si∆Y(k + 1). (13)

With this, function (4) can be rewritten as

J(k) = (Yref(k)−Y(k))T (Yref(k)−Y(k)) + λu∆UT∆U.
(14)

By relaxing the feasible set from U to R3Np , and by taking into
account the new cost function (14), the unconstrained solution
of (5) is

∆Uunc(k) = H−1
i ΘT

i (k) (15)

where

Hi = ΥTSTi SiΥ + λuI

Θi(k) =
(
Yref(k)− Ȳ(k)

− Si(Γ∆iαβ(k) + M∆D(k))T
)
SiΓ.

(16)

Expression (15) returns the control input variation, thus it must
be integrated starting from the last applied switch position
uabc(k−1) to compute the entire input unconstrained solution
Uunc, i.e.,

Uunc = Ū(k) + Si∆Uunc(k) (17)

where Ū(k) =
[
uTabc(k − 1) . . . uTabc(k − 1)

]T
. Finally, to

solve the optimization problem underlying FCS–MPC in a
computationally efficient manner the SDA can be still applied,
as in Section III. It is worth remembering that the lattice
generator matrix V remains unchanged. Moreover, matrix H

TABLE I: System nameplate data.
Parameter Nameplate data p.u.

Rated current (IR) 10.9 A 1 p.u.
Rated speed (ωR) 4500 rpm 0.25 p.u.
Rated Torque (τR) 10.9 N m 0.9832 p.u.
Pole pairs (p) 4 4
Permanent magnet (Λmg) 0.1667 V s 0.9832 p.u.
Stator resistance (Rs) 240 mΩ 0.0082 p.u.
Stator inductance (Xs) 3.15 mH 0.2025 p.u.
Dc-link voltage (Vdc) 560 V 1.7146 p.u.

describes the real physical system, whereas Hi models the rate
of change of the plant.

The proposed formulation adds an integrator to the MPC
problem. The unconstrained solution is computed by integrat-
ing the variation of the control action, strongly differentiating
it from the classical formulation where it is the exact solution
of the (unconstrained) problem. Thanks to this, the control
scheme changes its behavior against parameter mismatches
by showing more robustness to them, as shown in Section V.
However, the velocity formulation is equivalent to the clas-
sical one without parameters discrepancy. Furthermore, the
computational complexity remains the same as that of the
original FCS–MPC problem since the Hessian matrices H
and Hi as well as the vectors Θ and Θi have the same
dimensions. This is an important benefit of the proposed
modeling, especially when considering that techniques which
include an integrator by augmenting the state considerably
increase the size of the optimization problem, especially if
a long horizon is implemented.

V. ROBUSTNESS ANALYSIS

The effect of model parameter mismatches on FCS–MPC
with conventional prediction model (3) and with the velocity
one (11) is presented hereafter. Specifically, it is studied how
the system performance is affected by variations in all motor
parameters, namely the stator resistance, the stator inductance
and the PM flux linkage value, and for different prediction
horizons. A mismatch was introduced by varying the value
of a parameter in the prediction model, while keeping the
same parameter constant in the simulated motor. In order to
understand the system robustness, several series of simulations
were performed. Table I lists the parameters of the PMSM-
based motor drive in both absolute and p.u. values. The
sampling interval was set to Ts = 25 µs. All the simulations
were carried out at rated speed and load, while id,ref = 0 p.u.
and iq,ref = 1 p.u. were assumed to work in maximum torque
per Ampere (MTPA) conditions. As mentioned in Section II,
the controller is designed in the αβ-plane. However, in the
sequel of this section, for demonstration purposes, and to
provide deeper insight, the tracking accuracy of MPC is
shown in the dq–plane. Finally, for further insight, the product
of current THD (ITHD) and switching frequency (fsw), i.e.,
cf = ITHD · fsw, serves as a meaningful performance metric
[4].



-40% -20% 0% 20% 40%

2 4 6 8 10

0.95

1

1.05

Np

i q
(p

.u
.)

(a) Mean q-current value

2 4 6 8 10

8

10

Np

c f
·1
0
3

(b) cf factor

Fig. 2: Current behavior and cf as a function of the prediction
horizon Np, when using FCS-MPC with (constant) λu = 0.01
and different degrees of resistance mismatch.

A. FCS–MPC Based on the Conventional Prediction Model

First, the robustness of FCS–MPC with the conventional
prediction model was tested. To this end, different degrees
of mismatch are applied to each of the three aforementioned
parameters, i.e., the resistance, inductance, and PM, separately
and the effect on the MPC performance is shown in Figs. 2, 3,
and 4, respectively. The nominal case, namely without any
parameter mismatches, is reported as well. Figs. 2a, 3a, and
4a depict the mean q–current value in steady–state condition,
while Figs. 2b, 3b, and 4b show the cf factor for different
prediction horizon lengths and λu = 0.01.

1) Resistance Analysis: The stator resistance value is
mainly affected by the motor temperature and its value can
considerably change during the normal motor operation [21].
To account for this it as well as for the estimation error of
the nominal value, mismatches in the range of ±40% of the
nominal value were simulated. As can be observed in Fig. 2,
the stator resistance has a negligible detrimental effect on the
MPC performance regardless of the prediction horizon length.
Since at full speed the resistance voltage drop is very small,
the prediction error due to a resistance mismatch has a minimal
effect on the overall system performance. Moreover, as shown
in Fig. 2b, the cf factor is almost always the same, regardless
of the degree of mismatch or length of the horizon.

2) Inductance Analysis: PMSMs are usually characterized
by a large equivalent air–gap, thus they saturate poorly.
However, due to the usually small inductance value, even a
very small absolute estimation error can lead to a significant
percent error. To consider this potential mismatch in the motor
model, simulations were carried out with several mismatches
in the range of ±40% of the nominal value. The mean q–
current value and the cf factor are reported in Fig. 3. As can
be seen in Fig. 3a, the induced error on the steady–state q–
current is small except for the one–step horizon (Np = 1)
case, where it almost reaches 5% with a positive mismatch,
i.e., with an overestimated inductance value in the prediction
model. On the other hand, a long prediction horizon reduces
the error on the generated q–current. Moreover, both the
steady–state error and the cf factor are almost insensitive
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Fig. 3: Current behaviour and cf as a function of the prediction
horizon Np, when using FCS-MPC with (constant) λu = 0.01
and different degrees of inductance mismatch.

to the length of the implemented prediction horizon. The
steady–state error is almost symmetric with respect to the
nominal case, i.e., the steady–state current decreases as the
inductance mismatch increases, and vice–versa. Nevertheless,
the performance factor cf shows an asymmetric behavior
since an overestimated inductance results in a more significant
performance deterioration than an equivalent underestimated
one, as also reported in [12].

Based on the above, it can be concluded that the steady–state
error and the cf factor are partially influenced by an inductance
mismatch. Despite this, it is preferable to underestimate the
inductance value since better control performance can be
achieved. Finally, it is worth remembering that the motor
inductance decreases as the motor saturates, thus the control
condition move towards the most critical situation, namely an
inductance value overestimation.

3) Permanent Magnet Analysis: The PM plays a crucial
role in a PMSM, in generating both the electromagnetic torque
and the back electromotive force (BEMF). In particular, the
BEMF constitutes almost all of the voltage to be applied
to the motor, thus a PM mismatch will lead a considerable
performance degradation. A PM flux linkage error in the model
could be due to an initial estimation discrepancy, or to a motor
temperature variation. To take into account this variability, the
PM error was tested in the range of±30% of the nominal value
and the results are reported in Fig. 4. With an unitary horizon,
the current error magnitude is symmetric with respect to the
nominal case, i.e., the mean q–current increases as the PM
mismatch increases, and vice–versa. As can be observed, the
tracking accuracy of MPC considerably deteriorates with both
an increasing PM mismatch and prediction horizon length,
see Fig. 4a. On the other hand, an underestimated PM value
leads to a steady–state current error which is not affected
by the prediction horizon. This behavior discrepancy is better
observed when the factor cf is examined, see Fig. 4b. Indeed
a smaller PM value in the prediction model results in a smaller
MPC performance degradation. As can be seen, cf increases
as both the PM mismatch and the horizon length increase,
indicating an unfavorable ratio between current distortions and
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Fig. 4: Current behaviour and cf as a function of the prediction
horizon Np, when using FCS-MPC with (constant) λu = 0.01
and different degrees of PM mismatch.

switching frequency, and thus an inferior system performance.
The presented results indicate that the PM is the motor

parameter that primarily and deeply affects the FCS–MPC per-
formance. As with the motor inductance, an underestimation of
the PM is preferable since the control performance degradation
is limited. Finally, it is worth noting that an increase in motor
temperature reduces the PM flux linkage, thus the prediction
model assumes an overestimated PM value. As a result, the
controller moves towards the most critical condition.

B. FCS–MPC Based on the Velocity–Form Prediction Model

A second set of simulations was carried out to assess the
effectiveness of the velocity form–based prediction model
to the robustness of FCS–MPC. As seen in Section V-A,
the most critical condition for the classical MPC scheme
happens with a long prediction horizon and significant positive
mismatches in all parameters of concern. In light of this, the
velocity formulation was evaluated with a ten-step (Np = 10)
prediction horizon and the biggest (both positive and negative)
mismatches examined in Section V-A for each individual mo-
tor parameter. For comparison purposes, the MPC performance
without parameter discrepancy is reported as reference. It is
worth noting that, despite the additional integrator, the velocity
model is equivalent to the classical one when no parameter
mismatches exist, thus nominal results are reported without
indicating the used implementation. The simulations were
carried out with several values of λu to achieve a wide range
of switching frequencies. Specifically, 200 simulations were
carried out with a logarithmic spaced weighting factor in the
range λu ∈ [10−5 10−1.6].

1) Resistance Analysis: As shown in Section V-A1, a
discrepancy between the value of the stator resistance used
in the prediction model and the actual one has a marginal
influence on MPC performance. Fig. 5 presents the MPC
performance based on both models and confirms the above-
mentioned analysis. The velocity model shows a current
reference tracking close to the nominal case and the current
distortion is comparable to the classical formulation, as seen in
Fig. 5b. Hence, it can be claimed that a mismatch in the stator
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Fig. 5: Steady-state current and current THD ITHD obtained
with FCS–MPC when using either the classical, or the velocity
model. A ten-step horizon (Np = 10) is considered and
a ±40% resistance mismatch. For comparison purposes, the
controller performance with nominal system parameters (i.e.,
no mismatches) is shown.

resistance does not negatively affect the system performance,
regardless of the prediction model employed.

2) Inductance Analysis: Fig. 6 compares the MPC perfor-
mance with both prediction models and a ±40% inductance
mismatch. The FCS–MPC performance with the classical
model is slightly worse than the nominal case. The q–current
tracking is satisfactory, especially with an overestimated in-
ductance and it is close to the reference case. Despite this, the
achievable switching frequency range with the classical model
and an inductance mismatch is very different with respect to
the nominal case. Indeed a smaller inductance value limits
the obtainable switching frequencies to lower frequencies,
whereas a bigger one moves the achievable range up.

The velocity model takes this to extremes. A negative
inductance mismatch concentrates the obtainable switching
frequencies around 900 Hz and an overestimated one shifts the
achievable frequency range up by about 1000 Hz compared
to the classic MPC model. Furthermore, with a positive
inductance mismatch the current distortion increases a lot
despite a noticeable increase in switching frequencies. As can
be observed in Fig. 6, FCS–MPC with the velocity model
performs worse than the classic MPC formulation in terms
of current distortions when an inductance mismatch exists,
despite the intrinsic integrator. Furthermore, Fig. 7 shows the
three-phase stator current and switch position obtained with a
weighting factor λu = 0.01 in the previous working condition,
for FCS–MPC with either the classical or the velocity model.
For a sake of completeness, Table II reports the corresponding
switching frequencies and current distortions.

Based on the presented results, it can be deduced that a
mismatch in the inductance of the PMSM has a strong negative
effect on the performance of FCS–MPC with the velocity
form perdiction model. The motor inductance together with
the stator resistance define the PMSM electrical time constant
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Fig. 6: Steady-state current and current THD ITHD obtained
with FCS-MPC when using either the classical or the velocity
model. A ten-step horizon (Np = 10) is considered and a
±40% inductance mismatch. For comparison purposes, the
controller performance with nominal system parameters (i.e.,
no mismatches) is shown.

TABLE II: MPC performance comparison with λu = 0.01.
Sw. Freq. fsw (Hz) ITHD (%)

Class. model ∆L = −40% 1.595 kHz 5.36 (%)
Vel. model ∆L = −40% 1.083 kHz 9.64 (%)
Class. model ∆L = 40% 1.396 kHz 6.43 (%)
Vel. model ∆L = 40% 2.094 kHz 5.60 (%)

which characterizes the dynamic system behavior. Hence, a
mismatch between the value used in the prediction model
and the actual one compromises the closed-loop stability and
performance. The poor performance shown by the velocity
model (see Fig. 6b) can be attributed to a limited closed–loop
stability. Recalling the classical control theory, an integrator
reduces the phase margin, leading the system towards the
instability [22]. A similar behavior occurs with MPC based on
the velocity form prediction model, which is more sensitive to
mismatches appearing in the dynamic matrix A. Nevertheless,
an increased system robustness can be achieved by increasing
the weighting factor λu [23].

3) Permanent Magnet Analysis: The PM is the motor
parameter which mostly affects the MPC control performance
based on the classical motor model, as analyzed in Sec-
tion V-A3. Fig. 8 compares the MPC performance with the
classical (3) and velocity (11) model for a ten–step horizon
(Np = 10) MPC and a ±30% PM mismatch. The classical
MPC with a mismatch introduces a significant steady–state
current tracking error, while the current harmonic distortions
increase with both a positive and negative mismatch. The
weighting factor λu has no influence on the current tracking
accuracy which is almost constant over the whole range of
achievable switching frequencies, thus it is only affected by the
mismatch magnitude. On the other hand, the velocity model
achieves comparable results with the nominal case, adding a
high degree of robustness to the FCS–MPC scheme. The only
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Fig. 7: Four simulations of Fig. 6 are reported in time
domain. Steady-state currents and switch positions obtained
with the classical and the velocity MPC formulation. A ten–
step horizon (Np = 10) is considered and a ±40% inductance
mismatch. The weighting factor was set λu = 0.01.

difference is that it cannot reach as low switching frequencies
as those in the nominal case.

Interpreting the presented results, and by considering the
motor model (3), it can be seen that PM acts as an external
disturbance. It does not affect the closed loop stability, as is
the case of the motor inductance. Hence, by exploiting the
integrator included in the velocity model, the controller can
effectively reject the unmodeled disturbance represented by the
share of the counter-electromotive force due to the parameter
mismatch.

VI. CONCLUSION

This paper discussed the effects of parameters mismatches
on the performance of FCS–MPC for PMSM drive systems.
To facilitate this, both positive and negative mismatches were
introduced into the prediction model for all motor param-
eters and the subsequent (adverse) effect on the controller
performance was analyzed for different prediction horizons.
As shown, due to the absence of an integrating action from
the MPC, considerable parameter mismatches can lead to sig-
nificant performance deterioration. Specifically, at full speed
and rated load, the most critical parameter is the PM which
can lead to significant performance deterioration, in terms
of both current tracking accuracy and current distortions.
However, MPC achieves better performance when parameters
are underestimated, i.e., the parameter values in the prediction
model are smaller than the actual ones.



No mismatch Class. model with -30% PM mis.
Vel. model with -30% PM mis. Class. model with 30% PM mis.
Vel. model with 30% PM mis. Reference

1,000 1,500 2,000 2,500

1

1.2

fsw (Hz)

i q
(p

.u
.)

(a) Mean q-current value

1,000 1,500 2,000 2,500
4

6

8

10

fsw (Hz)
I T

H
D
(%

)

(b) ITHD

Fig. 8: Steady-state current and current THD ITHD obtained
with FCS-MPC when using either the classical or the velocity
model. A ten-step horizon (Np = 10) is considered and a
±30% PM mismatch. For comparison purposes, the controller
performance with nominal system parameters (i.e., no mis-
matches) is shown.

In a second step, and to tackle the performance deteriora-
tion due to the parameter mismatches, an alternative system
modeling was proposed that adds a high degree of robustness
to modeling errors. As shown, the presented modeling adds
an integrator to the control problem without augmenting
the state. The related robustness analysis indicated that the
addition of the integrator improves the system robustness to
parameter variations and mismatches, especially with respect
to a potential PM discrepancy. Notwithstanding the above,
an integrator amplifies a probable inductance mismatch, thus
making the controller more sensitive to such deviations. As a
result, stability issues may arise.

APPENDIX

Γ =


A
A
...

ANp

, M =


I · · · 0 0
A · · · 0 0
...

...
...

ANp−1 · · · A I

,

Υ = M


B
B
...
B

, D(k) =

 d(k)
...

d(k +NP − 1)

,

E =


I
0
0
...
0

 , S =


I 0 · · · 0
−I I · · · 0
0 −I · · · 0
...

...
...

0 0 · · · I

.
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