
Robustness Analysis of Long-Horizon Direct Model
Predictive Control: Induction Motor Drives

Ludovico Ortombina
Dep. of Industrial Engineering

University of Padova
Padova, Italy

ludovico.ortombina@unipd.it

Petros Karamanakos
Fac. of Informat. Techn. and Commun. Sciences

Tampere University
Tampere, Finland

p.karamanakos@ieee.org

Mauro Zigliotto
Dep. of Management and Engineering

University of Padova
Padova, Italy

mauro.zigliotto@unipd.it

Abstract—Model predictive control (MPC) requires an accu-
rate system model to achieve favorable performance. Thus, in
presence of disturbances, model uncertainties and mismatches,
MPC needs tools that provide high degree of robustness to
them. Since MPC is, essentially, a proportional control technique,
an effective method to deal with the aforementioned issues is
the addition of an integrating element to the control scheme.
This paper presents a prediction model that introduces an
integrator to the control strategy without increasing the size
of the optimization problem. To examine its effectiveness, the
sensitivity of the classical and the proposed MPC to parameter
deviations are discussed and analyzed, considering a wide range
of switching frequencies as well as prediction horizon lengths.
The robustness examination is performed based on an industrial
case study, namely a medium voltage induction motor drive.

Index Terms—model predictive control (MPC), induction mo-
tor (IM), robustness, parameter sensitivity

I. INTRODUCTION

Over the last decade, direct model predictive control (MPC),
also referred to as finite control set MPC (FCS-MPC), has
gained much popularity in the power electronic community,
not only in academia [1], but also in industry [2], [3]. Some
of its numerous advantages include its capability to consider
system constraints, to control nonlinear multi-input multi-
output, and to fully exploit the available hardware, to name
a few.

An inherent disadvantage of MPC is that its performance
strongly depends on the accuracy of the system model that
serves as the internal prediction model for the optimiza-
tion problem [4]. Although the power electronic models are
typically accurate—at least in comparison with other disci-
plines, e.g., process control—parameter mismatches are al-
ways present in a real-world setup. Hence, such a discrepancy
between the actual and the control model can potentially de-
teriorate the system performance. Moreover, longer horizons,
which are usually employed so that MPC can make more
educated decisions, and thus improve, e.g., its tracking ability
as quantified by the load current total harmonic distortion
(THD) [5], are expected to further aggravate the behavior of
the controller.

Due to the fact that MPC is a proportional controller
[6], i.e., it lacks an integrating element, several techniques
have been proposed to address this issue and to curb the

associated detrimental effects. Specifically, the proposed tech-
niques mainly adopt one of two different principles, i.e.,
either to add an integrator to the control strategy to make the
MPC structure similar to that of a proportional-integral (PI)
controller [7]–[11], or to include a disturbance observer [12]–
[14]. The techniques in the latter group consider all parameter
mismatches and unmodeled disturbances as exogenous ones.
For example, an active disturbance rejection method [12],
or a Luenberger observer [13], [14] can be implemented to
predict the evolution of the state and/or disturbances and use
this knowledge when minimizing the cost function. On the
other hand, the integrating element in the former group can be
included in different ways, e.g., [10] augments the system state
with an additional variable which represents the integrating
state. Alternatively, [7], [11] solves the MPC problem by
finding the optimal variation of the control action, while the
to-be-implemented control input is subsequently computed
by integrating the optimal solution. In doing so, the size
of the optimization problem remains the same, even though
an integrating element is introduced. Finally, in a different
direction, [8], [9] modifies the cost function to account for the
discrepancy between the reference and measured currents.

To further enhance the robustness of the control scheme
to parameter mismatches, the drive model can be adjusted
in real time by estimating and tracking the motor parameters
variations [15], [16]. Similarly, a gray box approach can be
implemented where the motor behavior is described by means
of an equivalent model that relies on the free and forced
response of motor currents and its coefficients are continuously
updated based on the acquired measurements [17].

Before implementing any of the aforementioned methods,
however, understanding of the effect of the parameter mis-
matches on the MPC performance is required. Alas, often
the relevant analysis is not conclusive. For example, [14]
assesses the control behavior in presence of mismatches in
a subset of the drive parameters, namely the rotor and stator
resistances and the mutual inductance, whereas the rotor and
stator leakage inductances are neglected. Similarly, [18] shows
that the controller robustness is susceptible to changes in the
load current and the system inductance. Regarding the latter,
the controller performance is mostly deteriorated with an over-
estimated inductance, whereas an underestimated inductance
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Fig. 1: Three-level NPC voltage source inverter with a in-
duction motor (IM). The inverter has a fixed neutral point
potential.

does not adversely affect the system behavior. Hence, for more
meaningful conclusions the robustness analysis needs to take
into account the combined effect of parameters mismatches.
This is more relevant when induction motor (IM) drives are
of concern since four state variables and five parameters are
required to fully describe their electrical behavior, meaning
that several sources of uncertainty could affect the MPC
performance.

Motivated by the above, this paper investigates the effect
of parameter mismatches on the performance of FCS–MPC
for medium voltage (MV) drives, namely a three-level neutral
point clamped (NPC) inverter driving an IM. Two different
modeling approaches, one with and one without integrator, are
discussed. Subsequently, these models are used by MPC and
its behavior is assessed when varying all the motor parameters,
i.e., the stator and rotor resistances as well as the leakage and
mutual reactances. In doing so, the benefits and limitations of
the different models are pinpointed and analyzed.

II. PHYSICAL MODEL OF THE SYSTEM

The studied system is an MV variable speed drive system
with an IM driven by a three-level NPC voltage source inverter
as shown in Fig. 1. For modeling and control simplicity, the
dc-link voltage Vdc of the inverter is assumed to be constant
and the neutral point potential vN zero.

The derivation of an adequate model of the drive system
to serve as prediction model for the MPC algorithm is of
fundamental importance. In this paper, the system modeling
and its control are done in the αβ stationary reference frame.
To this end, any variable in the three-phase (abc) system, i.e.,
ξabc = [ξa ξb ξc]

T , is transformed into a two-dimensional
variable ξαβ = [ξα ξβ ]T , by performing the operation ξαβ =
Kξabc, where K is the Clarke transformation matrix
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2

3
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]
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Moreover, all quantities are in per unit (p.u.).
First, the model of the inverter is derived. A three–level

inverter produces the phase voltages −Vdc/2, 0, Vdc/2, de-
pending on the switch position at the corresponding phase.
Let uabc = [ua ub uc]

T denote the three-phase switch po-
sition of the NPC inverter, where ux ∈ U , {−1, 0, 1},
with x ∈ {a, b, c} being the single-phase switch position.

Depending on uabc, the output voltage of a three-level NPC
inverter in the three-phase (abc) frame can be written as

vabc = [va vb vc]
T

=
Vdc

2
uabc (2)

A. Classical Prediction Model

The output voltage of the inverter vαβ = Kvabc is applied
to the stator of the IM, i.e., vαβ = vs,αβ , where vs,αβ is the
stator voltage. Assuming the stator current is,αβ and the rotor
flux ψr,αβ as state variables, i.e., x = [iTs,αβ ψ

T
r,αβ ]T , and

the stator current as the system output, i.e., y = is,αβ , the
continuous-time state-space model of the drive can be written
as

dx(t)

dt
= Fx(t) + Guabc(t)

y(t) = Cx(t) ,
(3)

where the matrices F and G can be found based on the voltage
and flux equations of an IM, namely

dis,αβ
dt

=− 1

τs
is,αβ+

[ 1
τr

ωm
−ωm 1

τr

]
Xm

D
ψr,αβ+

Xr

D
vs,αβ ,

dψr,αβ
dt

=
Xm

τr
is,αβ −

[ 1
τr

ωm
−ωm 1

τr

]
ψr,αβ

(4)
where τr = Xr/Rr, τs = XrD/(RsX

2
r + RrX

2
m), Xm,

Xr = Xlr+Xm, Xs = Xls+Xm, Xlr, Xls, Rs, and Rr stand
for the rotor and stator time constant, mutual reactance, rotor
and stator self reactance, rotor and stator leakage reactance,
and stator and rotor resistance, respectively. Moreover, the
determinant D is defined as D = XsXr−X2

m. Finally, due to
the fact that the mechanical dynamics are much slower than
the electrical dynamics, the motor speed ωm is assumed to be
constant within a control cycle.

Since MPC is designed in the discrete-time domain, (3)
needs to be discretized. To this aim, exact discretization is
employed, leading to

x(k + 1) = Ax(k) + Buabc(k)

y(k) = Cx(k) ,
(5)

where A = eFTs and B = −F−1(I − A)G, with e being
the matrix exponential, I the identity matrix, Ts the sampling
interval, and k ∈ N.

B. Velocity motor model

An alternative motor model can be derived by means of the
so-called velocity form of the system model [11], [19]. This
formulation returns the state and the output variations, i.e., the
velocity of these quantities, while the manipulated variable
is the control input increment instead of the entire control
action which corresponds to the three-phase switch position.
According to this, the state, input and output variations, i.e.,
∆x(k) = x(k)−x(k−1), ∆uabc(k) = uabc(k)−uabc(k−1)



and ∆y(k) = y(k) − y(k − 1), are defined. With these, the
drive model (5) can be rearranged in its velocity form as

∆x(k + 1) = x(k + 1)− x(k)

= A∆x(k) + B∆uabc(k) (6)
∆y(k) = C∆x(k).

It is worth mentioning that the system state x(k) in (5) de-
scribes the entire stator current and rotor flux vector, whereas
∆x(k + 1) traces only the state difference within the time
interval [k, k + 1]. Nevertheless, as can be observed, the
velocity formulation (6) resembles the classical formulation
(5). This characteristic is exploited in Section IV for adding
an integrator to the MPC strategy without increasing the
optimization problem size. In doing so, noteworthy rejection
capability to exogenous disturbances is achieved [20].

III. DIRECT MODEL PREDICTIVE CONTROL WITH
REFERENCE TRACKING

The aim of the MPC strategy is to find the sequence of
control inputs U(k) = [uTabc(k) uTabc(k + 1) . . . uTabc(k +
Np − 1)]T that best satisfies the control objectives within a
horizon of Np time steps. The control objectives are described
by a predetermined performance index, or cost function, and
the optimal sequence of switch positions, i.e., U∗(k) =
[u∗Tabc(k) u∗Tabc(k+1) . . . u∗Tabc(k+Np−1)]T , is that sequence
U(k) that minimizes it. Thus, its definition plays a crucial
rule on the overall control performance. Finally, the studied
MPC is called direct MPC since it directly chooses the switch
positions. This is in contrast to its indirect counterpart which
uses a voltage modulator [4].

For the chosen case study, i.e., an MV motor drive, the main
objective is the minimization of the stator current tracking
error is,err = is,ref−is, where is,ref is the desired stator current
value. This has to be achieved while operating the drive system
at low switching frequency. In doing so, the switching power
losses can be kept low for an increased converter efficiency.
Quantifying these control targets, the following cost function
is formulated

J(k) =

k+Np−1∑
`=k

‖is,err(`+ 1)‖22 + λu ‖∆uabc(`)‖22 , (7)

where ∆uabc(`)
∆
= uabc(`)−uabc(`−1) takes into account the

switching transitions involved between two consecutive time
steps. Hence, (7) penalizes the evolution of the current error
and switching effort over the Np-step prediction horizon. Note
that the scalar λu > 0 is a weighting factor that decides on
the trade-off between the current tracking accuracy and the
switching effort, i.e., the switching frequency.

With the cost function (7), the optimal sequence of control
inputs U∗(k) is found by solving the following constrained

problem in real time

U∗(k) = arg minimize
Uk

J(k) (8)

subject to (5) or (6)
Uk ∈ U
‖∆uabc(l)‖∞ ≤ 1, ∀` = k, · · · , k +Np − 1

where U = U × · · · × U is the 3Np-times Cartesian product
of the set U and represents the feasible input set. It is
worth noting that the model of the drive system in (8) can
be either the classical (5), or the velocity one (6). In the
following, the optimal solution with both is reported and
discussed. According to the receding horizon policy, once
the optimal control sequence U∗(k) is found, only the first
element u∗abc(k) is applied to the converter at the current
time-step k, whereas all the remaining elements are discarded.
Following, the optimization is repeated at the next time step
over a shifted horizon and new measurements and/or estimates.

IV. INTEGER LEAST-SQUARES PROBLEM

The integer optimization problem (8) can be solved effi-
ciently with smart branch-and-bound algorithms, such as the
sphere decoding algorithm (SDA) [21], to keep its compu-
tational complexity at bay. SDA finds the solution U∗(k)
of (8) as the n-dimensional node, i.e., optimal sequence of
switch positions, that has the smallest Euclidean distance
from the unconstrained solution Uunc(k) in a n-dimensional
skewed lattice. Equivalently, the optimal solution can be found
as the unique sequence of switch positions that lies in the
tightest hypersphere of radius ρ centered at the unconstrained
solution. Thus, the SDA enables a considerable reduction of
the candidate solutions that must be evaluated in real time.

The unconstrained solution Uunc(k) can be found by re-
laxing the constraints in problem (8). Moreover, to derive a
closed-form expression of Uunc(k), (8) needs to be written
in vector form. To this end, the output reference sequence
over the prediction horizon Np is introduced, i.e., Yref(k) =[
yTref(k + 1) yTref(k + 2) . . . yTref(k +Np)

]T
. With these, the

unconstrained solution Uunc(k) of (8) for each one of the two
discussed prediction models can be found as shown in the
following sections.

A. Classical Formulation: Unconstrained Solution

The unconstrained solution of (8) with (5) was derived in
[21], i.e.,

Uunc(k) = H−1ΘT (k) (9)

where

H = ΥTΥ + λuS
TS

Θ(k) = (Yref(k)− Γxαβ(k))
T

Υ

+ λu (Eu∗abc(k − 1))
T

S

(10)

and all matrices are defined in the appendix.



B. Velocity Formulation: Unconstrained Solution

The velocity model (6) resembles the classical one (5) with
the difference that instead of the discrete-time instantaneous
values of the state and input are replaced by their time incre-
ments. Note that the control input ∆uabc of the velocity model
appears as a term in the cost function (7), whereas the velocity
model output, i.e., ∆y(k+1), must be integrated over the pre-
diction horizon to get the entire predicted output current trajec-
tory y(k+1) = y(k)+∆y(k+1). By defining the increment
of output and input sequences over the prediction horizon,
namely ∆Y(k + 1) =

[
∆y(k + 1)T . . . ∆y(k +Np)

T
]T

and ∆U(k) =
[
∆uabc(k)T . . . ∆uabc(k +Np − 1)T

]T
, it

follows that

∆Y(k + 1) = Γ∆xαβ(k) + Υ∆U(k) . (11)

With (11), the complete predicted output current trajectory
Y(k) in vector form can be computed by integrating ∆Y(k+
1) starting from y(k), i.e.,

Y(k) =

y(k)
...

y(k)

+


I 0 · · · 0
I I · · · 0
...

...
...

I I · · · I

∆Y(k + 1)

= Ỹ(k) + Si∆Y(k + 1) , (12)

which allows to write the cost function (7) in vector form as

J(k) = (Yref(k)−Y(k))T (Yref(k)−Y(k)) + λu∆UT∆U.
(13)

Following, by relaxing the feasible set from U to R3Np ,
the unconstrained solution of problem (8) with the new cost
function (13) is

∆Uunc(k) = H−1
i ΘT

i (k) (14)

where

Hi = ΥTSTi SiΥ + λuI

Θi(k) =
(
Yref(k)− Ỹ(k)− SiΓ∆iαβ(k)

)T
SiΓ.

(15)

The unconstrained solution (14) differs from (9) since only
the optimal input variation is returned instead of the control
action itself. However, unconstrained solutions (9) and (14)
have the same complexity since the matrices have the same
dimensions. This implies that an integrator term can be added
to the MPC strategy without increasing the state vector as
opposed in, e.g., [10], [22]. In these works the dimension of the
model is increased, making the MPC problem more complex,
especially when a long horizon is adopted for improved system
performance.

To compute the entire unconstrained solution Uunc(k), (14)
must be integrated from the last applied switch position
uabc(k − 1), i.e.,

Uunc(k) = Ũ(k) + Si∆Uunc(k) (16)

where Ũ(k) =
[
uTabc(k − 1) . . . uTabc(k − 1)

]T
. In doing

so, an integrator is included into the control scheme, thus

differentiating the velocity formulation from the classical one.
It should be mentioned, however, that the velocity formulation
is equivalent to the classical one when no parameters discrep-
ancies exist.

With the unconstrained solution Uunc(k), the integer solu-
tion U∗(k) of problem (8) can be found by solving

U∗(k) = arg minimize
Uk

∥∥Ūunc −VU(k)
∥∥2

2

subject to Uk ∈ U (17)
‖∆uabc(l)‖∞ ≤ 1, ∀` = k, · · · , k +Np − 1 ,

where it holds that VTV = H with V—known as lattice
generator matrix—being a nonsingular lower triangular matrix
provided that λu > 0. Moreover, Ūunc = VUunc. Note that
regardless of the unconstrained solution Uunc used, i.e., either
in the form (9), or (16), matrix V is obtained using matrix
H in (10) since it describes the whole system, whereas Hi

models only its increment over time.
To find U∗(k) with SDA, as mentioned before, the n-

dimensional lattice point closest to Ūunc needs to be found,
i.e., the candidate solution that forms the smallest hypersphere
of radius ρ. Hence, to speed up the optimization phase, the
initial radius ρini, which defines the upper bound of the search
process, should be chosen carefully to have a sphere as small
as possible from the very beginning of the process. In doing
so, the majority of lattice points (i.e., candidate solutions) can
be excluded a priori. With this in mind, the initial radius can
be set as proposed in [23], namely

ρ = min {ρa, ρb} , , (18)

where

ρa =
∥∥Ūunc −VUbab(k)

∥∥
2

(19a)

ρb =
∥∥Ūunc −VUed(k)

∥∥
2
. (19b)

The radii in (19) are computed based on two different
possibilities, namely the so–called Babai estimate Ubab, or
the educational guess Ued. The former corresponds to the
rounded unconstrained solution to the closest integer vector,
i.e., Ubab(k) = bUunc(k)e, whereas the latter is the previous
optimal solution U∗(k − 1) shifted by one time step.

V. ROBUSTNESS ANALYSIS

The robustness of FCS-MPC to parameter mismatches was
examined throughout an extensive set of simulations and is
presented hereafter. Specifically, it was studied how the system
performance is affected by variations in all motor parameters,
namely the rotor and stator resistance as well as the rotor,
stator leakage and mutual reactance. To this aim, a mismatch
was introduced by varying the value of a parameter in the
prediction model, while keeping the same parameter constant
in the simulated motor. Moreover, the aforementioned analysis
was done for different prediction horizons to investigate the
effect of the latter on the system performance. Hence, a ±50%
parameter variation and two different prediction horizons,



TABLE I: System nameplate data.
Parameter Nameplate data p.u. value

Rated current (IR) 356 A
Rated voltage (VR) 3300 V
Angular stator frequency (ωsR) 2π50 rad/s
Rated speed (ωR) 596 rpm
Rated Torque (τR) 26.2 kN m
Pole pairs (p) 5
Stator resistance (Rs) 57.61 mΩ 0.0108 p.u.
Rotor resistance (Rr) 48.89 mΩ 0.0091 p.u.
Stator leakage reactance (Xls) 799 mΩ 0.1493 p.u.
Rotor leakage reactance (Xlr) 591 mΩ 0.1104 p.u.
Mutual reactance (Xm) 12.57 Ω 2.348 p.u.
Dc-link voltage (Vdc) 5.2 kV 1.9299 p.u.

namely a one- (Np = 1) and a nine-step (Np = 9) horizon
were studied. Moreover, the conventional and the velocity
model were compared. Table I lists the parameters of the
IM-based motor drive in both absolute and p.u. values. The
sampling interval was Ts = 25 µs and operation at rated speed
and torque was assumed for all simulations. For each of the
presented case studies, 300 simulations were carried out with
several values of λu, i.e., λu ∈ [10−3.3, 10−0.5], to achieve
operation at a wide range of switching frequencies. Finally, to
provide further insight, the product of current THD ITHD and
switching frequency fsw, i.e., cf = ITHD · fsw, was employed
as a meaningful performance metric [5].

A. Resistance Mismatches

The resistance value can considerably change during the
drive operation as a function of the motor temperature. Fig. 2
reports the MPC performance when a stator or a rotor resis-
tance mismatch occurs. Furthermore, for comparison purposes,
the nominal motor operation, i.e., without mismatches, is also
reported. As can be observed, the stator and rotor resistances
have a marginal effect on MPC performance, regardless of
the degree of mismatch, or the length prediction horizon. It
can be observed that better MPC performance, i.e., a smaller
cf factor, can be achieved with a longer prediction horizon,
as also shown in [5]. Both prediction models, i.e., the classic
(5) and the velocity one (6), show comparable results. The
depicted behavior can be explained from the fact that at full
speed and rated motor current, the resistance voltage drop
is very small. Hence, any discrepancies in the value of the
resistance produce a negligible prediction voltage error that
does not affect the overall control performance.

B. Reactance Mismatches

IM can experience magnetic saturation and the values of
the machine reactances can vary as the magnetic load changes
considerably depending on the operating point. Given that a
machine can be assumed as a load with predominantly induc-
tive behavior, and by considering that the MPC performance,
as assessed by the metric cf , depends on the current THD,
a simplified motor model is employed to model the impact
of harmonics. It consists of the stator resistance, while the
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Fig. 2: Performance metric cf as a function of the switching
frequency fsw when using either the classical, or the velocity
model with FCS-MPC and one- (Np = 1) or nine-step (Np =
9) horizon. A ±50% variation in wither the stator Rs or rotor
Rr resistance is considered. Metric cf obtained with nominal
system parameters (i.e., no mismatches) is also shown.

motor reactances are modeled by the total leakage reactance
Xσ = D/Xr = 0.255 p.u. Thus, for analyzing the effect of
machine reactances mismatches on the system performance,
the leakage reactance is varied. To do so, first it is examined
how variations in the mutual reactance Xm as well as the
stator Xls and rotor Xlr self reactances affect Xσ . As can be
seen in Fig. 3, a ±50% change in Xls, Xlr, or both, causes
the biggest variations in Xσ . On the other hand, a mismatch in
Xm results in a negligible variation in the leakage reactance,
regardless of the degree of mismatch. Hence, a worst control
performance, i.e., a bigger cf , is expected when a discrepancy
occurs in the stator or rotor reactance instead of the mutual
one. Finally, it is worth noting the asymmetric behavior
that characterizes the total leakage reactance sensitivity. For
example, a 50% overestimation on Xls and Xlr produces
a smaller Xσ variation that an underestimation of the same
magnitude.

To verify the total leakage reactance approach for estimat-
ing the control performance degradation, Figs. 4, 5, and 6
report the performance metric cf when Xm, Xlr, and Xls,
respectively, are badly estimated. From the total leakage reac-
tance analysis, it is anticipated for mismatches in the mutual
reactance to have marginal detrimental effects on the MPC
performance. Such an expectation is confirmed by Fig. 5,
where, as can be seen, cf is almost insensitive to a mutual
reactance mismatch, with the velocity model (6) outperforming
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0
10%
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50%

Xm

XlsXlr

Fig. 3: Change (in %, shown as circles) in the total leakage
reactance Xσ for a ±50% variation of Xm, Xls, Xlr, or a
combination of two. For example, a circle on the positive half
of the Xls axis indicates the change in Xσ due to a 50%
variation of Xls; a circle between the Xls and Xlr axes shows
the effect on Xσ when both Xls and Xlr are varied, etc.

the classical one (5). Note that the latter leads to a slightly
worse performance when Xm is underestimated and a 9-step
horizon is implemented.

According to Fig. 3, variations in the rotor and stator leak-
age reactances affect considerably the total leakage reactance.
Indeed a ±50% change in Xls or Xlr results in a ±30% or
±20% deviation of Xσ from its nominal value, respectively.
Figs. 5a and 6a show the performance of a FCS-MPC based
on the classical model (5). As can be observed, the aforemen-
tioned mismatches adversely affect the system performance
compared to a mutual reactance mismatch, confirming the
analysis of Fig. 3. The performance degradation is more
pronounced for small values of λu, i.e., when the converter
switches at high frequencies. This is in line with [24], where
it is mentioned that an increased system robustness can be
achieved by increasing the weighting factor. On the other
hand, a clear trend is not recognized at very low switching
frequencies. As for the effect of the horizon length, the MPC
performance undergoes an even stronger degradation when
Np = 9, as indicated by the increasing cf . Finally, it can be
observed that an underestimation of the reactance leads to a
worse current THD than an overestimation.

The velocity-model-based MPC performance is depicted in
Figs. 5b and 6b with an Xlr and Xls mismatch, respectively.
Comparing the velocity and the classical prediction models for
very low switching frequencies (fsw ≤ 300 Hz), and regardless
of the length of the horizon, MPC with the velocity model
achieves (slightly) smaller values of cf , especially for negative
mismatches in Xlr or Xls (and thus Xσ). Both models,
however, give results very close to those of the nominal case
(i.e., model without mismatches), which can be attributed to
the receding horizon policy of MPC. Nevertheless, as the
horizon increases, the parameter mismatches have a negative
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(a) Classic model.
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(b) Velocity model.

Fig. 4: Performance metric cf as a function of the switching
frequency fsw when using either the classical, or the velocity
model with FCS-MPC and one- (Np = 1) or nine-step (Np =
9) horizon. A ±50% variation in the mutual reactance Xm is
considered, i.e., a ±1% variation in the total leakage reactance
Xσ . Metric cf obtained with nominal system parameters (i.e.,
no mismatches) is also shown.

impact on the system performance, with the velocity-model-
based FCS-MPC underperforming compared to that with the
classical one. As can be seen, the former shows a considerable
performance degradation, both in terms of the metric cf and
the range of obtained switching frequencies, which increases
a lot. The reason for this is that model (6) introduces an
integrator that can cause stability issues when λu is very
small (i.e., at high switching frequencies), as discussed in
Section V-C. Such a behavior is in line with the classical
control theory, according to which an integrator reduces the
phase margin, thus leading the system towards instability. It is
worth noting that the most critical condition arises when the
reactances are overestimated, as happens with FCS-MPC for
permanent magnet synchronous motor (PMSM) drives [20].

C. Stability Analysis

A parameter mismatch can have detrimental effects not
only on the system performance, but also on the closed-loop
stability. To understand this, some considerations about FCS-
MPC are made in the following. FCS-MPC directly applies
the three-phase switch position which is chosen among a finite
number of candidates, while the applied voltage is limited by
the dc-link voltage. This feature, along with the control effort
penalization in (7) and the receding horizon policy provide
some degree of robustness to model mismatches, thus allowing
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Fig. 5: The performance metric cf as a function of the
switching frequency fsw when using either the classical, or the
velocity model with FCS-MPC and one- (Np = 1) or nine-
step (Np = 9) horizon. A ±50% variation in the rotor leakage
reactance Xlr is considered, i.e., a ±20% variation of the total
leakage reactance Xσ . Metric cf obtained with nominal system
parameters (i.e., no mismatches) is also shown.

for good reference tracking performance [5]. Despite this,
some parameter mismatches deteriorate the tracking quality,
as shown in Fig. 5, Fig. 6, and [20].

The stability issue arising with a parameter mismatch can
be analyzed with the help of indirect MPC, i.e., MPC with
an explicit modulator, which computes the modulating signal
which is the same as the unconstrained solution Uunc for
operation in the linear modulation range. Fig. 7 shows the
a-component of Uunc, i.e., ua, and the α-component of is,αβ ,
i.e., is,α within an interval t = 1 ms with the classical and the
velocity model. Rated speed and current are assumed along
with a nine-step prediction horizon and a small weighting
factor λu = 10−5. Furthermore, a ±70% mismatch in Xls

is considered. As can be seen, the classical model (5) shows a
stable behavior with both a positive and a negative mismatch.
On the other hand, the velocity model is stable when the
stator leakage reactance is underestimated whereas a positive
mismatch causes stability issues, as also indicated in Fig. 6.
Based on the above, it can be concluded that direct-MPC,
i.e., FCS-MPC—if properly designed [5]—can tackle potential
stability issues better than its indirect counterpart due to the
limited number of switch positions that can be implemented.
This, however, comes at a cost of a higher switching frequency,
and, thus, power losses.
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Fig. 6: The performance metric cf as a function of the
switching frequency fsw when using either the classical, or the
velocity model with FCS-MPC and one- (Np = 1) or nine-
step (Np = 9) horizon. A ±50% variation in the stator leakage
reactance Xls is considered, i.e., a ±30% variation of the total
leakage reactance Xσ . Metric cf obtained with nominal system
parameters (i.e., no mismatches) is also shown.

VI. CONCLUSION

In this paper the robustness of FCS-MPC to parameter
variations of MV IM drive systems was presented. Both
positive and negative parameter mismatches were evaluated
for all the motor parameters and different prediction horizons.
A stator or rotor resistance mismatch has a marginal effect
on the MPC performance. The reactance mismatches were
studied by using the total leakage reactance of the motor. As
shown, the latter is almost insensible to a mutual reactance
mismatch, as opposed to mismatches in the stator and rotor
leakage reactances. Despite this, the overall MPC performance
is slightly affected by the aforementioned mismatches, al-
though a reactance underestimation leads to a slightly higher
switching frequency than an overestimated reactance.

In an attempt to enhance the FCS-MPC robustness an
alternative prediction model was adopted which relies on the
variation of the system state and input. This so-called velocity
model includes an integrator into an MPC scheme with-
out augmenting the system state. The subsequent robustness
analysis showed that for the meaningful range of switching
frequencies for MV drives, i.e., fsw ≤ 300 Hz, the velocity
model provides a better degree of robustness to significant
model mismatches. For higher switching frequencies, however,
a significant increase in the switching frequency was observed
when leakage reactance was overestimated. This was also



70% class. model −70% class. model Iref

70% vel. model −70% vel. model

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1
u
a

(p
.u

.)

(a) Unconstained solution.

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

time (ms)

i α
(p

.u
.)

(b) iα current.

Fig. 7: Unconstrained solution Uunc and α-component of the
stator current when using either the classical, or the velocity
model with FCS-MPC, a nine-step horizon and λu = 10−5. A
±70% stator leakage reactance Xls is considered. The current
reference is also shown.

verified by the presented stability analysis, according to which
FCS-MPC is a robust scheme thanks to its direct control nature
and the receding horizon.

APPENDIX

Γ =


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...
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−I I · · · 0
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