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ABSTRACT Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits
visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be
stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning
models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled
data, their generalization performance was limited along with high computational complexity and special
hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs)
are proposed for early detection of glaucoma in fundus images and their performance is compared against
the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA,
RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior
detection performance but can also significantly reduce the computational complexity making it a potentially
suitable network model for biomedical datasets especially when the data is scarce.

INDEX TERMS Convolutional neural networks: glaucoma detection, medical image processing, operational
neural networks, transfer learning.

I. INTRODUCTION
Glaucoma, also called ‘‘the silent thief of sight,’’ leads to
permanent vision disability by damaging the optic nerve.
According to the World Health Organization (WHO) data,
glaucoma is the leading cause of irreversible blindness
globally [1]. Because the optic nerve head damage caused
by glaucoma is irreversible, early diagnosis and treatment is
crucial. However, mild glaucoma does not show any symp-
toms such as pain or blurred vision, hence its detection can
be challenging especially for large-scale screening purposes.
Although the previous worldwide estimate of the number
of adults with glaucoma was 64.3 million in 2013, projec-
tions show that this figure will rise by 74% to 111.8 million
in 2040 [2]. The optic nerve head damage in glaucoma
can be diagnosed using various clinical tools including but
not limited to fundoscopy, visual field examination, optical
coherence tomography and digital fundus imaging. Recently,
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thanks to its non-invasive, cost-effective, and rapid nature,
digital fundus images have been proposed as an effective
means of exploiting signal processing and machine learning
techniques for the automated assessment of the optic nerve
head in a large-scale glaucoma screening setting, e.g., see
Figure 1.

Several methods for the automatic detection of glaucoma
have been proposed in the literature. Bock et al. [4] trans-
formed color fundus images to eigen images by principal
component analysis and classified using a support vector
machine (SVM) to obtain a Glaucoma Risk Index (GRI) with
competitive Glaucoma detection performance. Dua et al. [5]
suggested a glaucoma detection system using wavelet trans-
form features to extract energy signatures and applied
different feature ranking and feature selection strategies.
They classified these features by SVM and obtained
93% accuracy using a local dataset. Carillo et al. [6]
proposed a computational tool based on the optic disc (OD)
and cup segmentation algorithm for estimating the cup-
to-disc ratio (CDR) and thresholding it for automatic
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FIGURE 1. Optic nerves in glaucoma and normal eye [2].

glaucoma detection. They obtained 88.5% classification
accuracy over the set of fundus images gathered in the Center
of Prevention and Attention of Glaucoma in Bucaramanga.
In [7], Nayak et al. presented a glaucoma detection method
using digital image processing techniques. They applied
pre-processing, morphological operations and thresholding
for automatically detecting the OD, the blood vessels and
computing the features. These features are validated by clas-
sifying the normal and glaucoma fundus images collected at
the Kasturba Medical College, India using a neural network
classifier. Their system achieved a sensitivity of 100% and
a specificity of 80% over the test dataset. Singh et al. [8]
developed an algorithm for extracting blood vessels from a
fundus image and applied SVM to classify the wavelet fea-
tures of the segmented OD image, achieving 94.7% accuracy
for glaucoma detection from their local dataset. Recently,
the focus has particularly been drawn to deep learning for
glaucoma detection [9]. In [10], Ajitha and Judy pro-
posed a glaucoma detection system by applying a faster
region-based CNN (R-CNN) which can extract the regions
of interest from the fundus images. The pre-trained deep
models, ResNet50 and VGG16, are used to classify them. For
the DRISHTI dataset, they reported accuracy scores of 92.5%
and 92% for these models, respectively. For the ORIGA
dataset, they obtained approximately 90% accuracy using the
pre-trained models. In [11], Fu et al. evaluated two different
deep learning-based glaucoma assistive diagnosis methods:
the OD andOC segmentation-basedmulti-label segmentation
network (M-Net) and disc-aware ensemble network (DENet)
which can learn to predict glaucoma directly from the fundus
images. DENet and M-Net produced 84.29% and 81.57%
classification accuracy, respectively with the ORIGA dataset.
DENet resulted in a better performance when there is suf-
ficient training data with similar image distribution; other-
wise, the segmentation-basedM-Netmethod produced higher
performance. In, [12] Ahn et al. proposed a method to
detect glaucoma using deep CNNs. They trained and tested
their system using 1542 fundus images collected at Kim’s
Eye Hospital, Japan, and obtained overall 87.9% classifica-
tion accuracy. In [13], Sreng et al. proposed an automatic
two-stage glaucoma screening system based on two separate
ensembles of deep CNNs to first segment the OD and then
use as input to classify glaucoma disease from the REFUGE,
ACRIMA,ORIGA,RIM-ONE, andDRISTI-GS1 benchmark

datasets with the accuracy of 97.37%, 90.00%, 86.84%, and
99.53%, respectively.

There are several drawbacks and limitations of applying
a deep CNN model to this problem. First of all, it is known
that the performance of deep CNNs suffers from data scarcity
which is common in several biomedical applications. To par-
tially remedy this drawback, several studies resort to dropout
and data augmentation. Additionally, such deep networks
have high computational complexity and require specialized
hardware, both of which prevent their usage in low-power
computing environments in real-time. Reducing the network
complexity would of course be an obvious solution for this;
at the expense of a performance drop. More important draw-
backs have been identified by recent studies [14]–[21] which
pointed out that CNNs are homogenous network models
that use a simplistic ‘‘linear’’ neuron model. The latter is
known to be an oversimplistic and crude model of the bio-
logical neuron. On the other hand, the mammalian neural
or visual systems, for instance, are highly heterogeneous
and composed of highly diverse neuron types with distinct
biochemical and electrophysiological properties [26]–[31].
This is why conventional homogenous networks such as
CNNs fail to learn the problems whenever the solution
space is highly nonlinear and complex [14]–[21] unless a
sufficiently high network depth and complexity (variants of
CNN) are accommodated.

To address these limitations, Operational Neural Networks
(ONNs) [21]–[24] have recently been proposed as a het-
erogeneous network model encapsulating distinct non-linear
neurons. ONNs are derived from the Generalized Operational
Perceptrons (GOPs) [14], [20] that can learn those prob-
lems where MLPs entirely fail. Following GOPs footsteps,
ONNs have outperformed CNNs significantly and succeeded
in some complex problems where CNNs entirely failed.
Recently, a new variant of ONNs, called Self-Organized
Operational Neural Networks (Self-ONNs1), have been
proposed. Unlike ONNs, Self-ONNs do not require any
prior operator search. Instead, during the training of the net-
work, to maximize the learning performance, each generative
neuron in a Self-ONN can customize the nodal operators, 9,
of each kernel connection. This yields a heterogeneity level
that is far beyond that of ONNs, and the traditional ‘‘weight
optimization’’ becomes an ‘‘operator generation’’ process as
the details can be found in [24]. The superior regression capa-
bility of Self ONNs over image segmentation, restoration, and
denoising was demonstrated in recent studies; however, they
have not been evaluated for a classification problem.

In this study, we propose compact Self-ONNs for
glaucoma detection in fundus images and evaluate their per-
formance extensively over the three benchmark datasets. This
is the first study where Self-ONNs are evaluated against deep
CNNs over a classification problem. Moreover, this is the
first time a novel and compact network model has ever been

1The optimized PyTorch implementation of Self-ONNs is publically
shared in http://selfonn.net/.

140032 VOLUME 9, 2021



O. C. Devecioglu et al.: Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs

proposed and evaluated against deep CNNs on a biomedical
dataset. Themainmotivation behind this is to demonstrate the
fact that SelfONNs, as highly heterogeneous networks with
the generative neuron model can achieve and even surpass
the diversity level of the deep CNNs even with a compact
configuration. Especially when the data is scarce, this will
not only yield a superior classification performance level, also
enables an elegant computational efficiency.

The rest of the paper is organized as follows: Self-ONNs
are briefly reviewed in Section II. The proposed glaucoma
detection framework and the experimental results are dis-
cussed in Section III, where the performance of the proposed
technique is assessed against conventional state-of-the-art
CNN-based approaches. Finally, Section IV concludes the
paper and suggests topics for future research.

II. THE PROPOSED APPROACH
A. SELF-ORGANIZED OPERATIONAL NEURAL NETWORKS
In this section, we will briefly summarize Self-ONNs and
their main properties. Self-ONNs are formulated using a
nodal transformation, ψ , based on the Taylor-series function
approximation near the origin (a = 0),

ψ (x) =
∞∑
n=0

ψ (n) (0)
n!

xn (1)

TheQth order truncated approximation, formally known as
the Taylor polynomial, takes the form of the following finite
summation:

ψ (x)(Q) =
Q∑
n=0

ψ (n) (0)
n!

xn (2)

The above formulation can approximate any functionψ (x)
sufficiently well near 0. When the activation function bounds
the neuron’s input feature maps in the vicinity of 0 (e.g., tanh)

the formulation of (2) can be exploited to form a composite
nodal operator where the power coefficients, ψ

(n)(0)
n! can be

the learned parameters of the network during training. It was
shown in [23] that the nodal operator of the k th generative
neuron in the l th layer can take the following general form:

ψk
l

(
Yl−1,Wk

l ,Q
)
=

Q∑
q=1

Y ql−1 ⊗W
k(q)
l (3)

where Y ql−1 is the corresponding input and Wk
l ∈ RM̂×N̂×Q

is the three-dimensional weight matrix and W k(q)
l ∈ RM̂×N̂

is the qth slice of Wk
l . The 0th order term a, the DC bias, is

ignored as its additive effect can be compensated by the
learnable bias parameter of the neuron.

More detailed information about the theory and forward-
propagation formulations of Self-ONNs can be found in
the [23].

B. THE PROPOSED GLAUCOMA DIAGNOSIS FRAMEWORK
The general framework of the proposed automated glaucoma
detection scheme is shown in Figure 2. where Self-ONNs
analyze the normalized RGB digital fundus images of size
128 × 128. Each color channel (RGB) of the input image is
resampled to 128 × 128 and normalized by linear scaling to
the range of [−1. 1], as follows:

XN (i, j) = 2
X (i, j)− Xmin
Xmax − Xmin

− 1 (4)

where X (i, j) and XN (i, j) are the original and normalized
pixel values, Xmax and Xmin are the maximum and minimum
values of the input color channel, respectively. As illustrated
in the figure, the Self-ONN architecture has 32, 16, and
8 neurons in the three hidden layers, respectively, and through
self-organization of its nodal operators it can perform the
required non-linear transformations to extract optimal fea-
tures from the raw fundus images. There are 16 neurons in

FIGURE 2. The proposed glaucoma diagnosis framework.
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FIGURE 3. Sample glaucoma and healthy images from ESOGU, ACRIMA, and
RIM-ONE datasets.

the dense (MLP) layer for classification. The input layer size
is 3 corresponding to the three normalized raw input color
channels and the output layer size is 2 corresponding to the
number of classes. Through the BP training of Self-ONNs
as explained in the Appendix, the optimal non-linear oper-
ators can be learned to maximize the learning performance
and achieve a superior classification of Glaucoma disease.
The nonlinear activation function tanh is used in Self-ONNs.
The kernel sizes are set as 11 × 11, 9 × 9, and 3 × 3,
respectively. The sub-sampling factors for the pooling layers
are set as 4, 4, and 2, respectively. In the figure, Q is set
to 5 for all operational layers; however, to investigate the
effect of nonlinearity, Self-ONNs with 4 different Q values
in the range of [3], [9] are configured and tested. As stated
earlier, CNN is a special case of Self-ONN with Q = 1
assigned for all neurons. Therefore, the experimental setup
shown in Figure 2 can also conveniently be also used for
evaluating conventional CNNs. The experimental setup and
network parameters will be presented in the next section.

III. EXPERIMENTAL RESULTS
In this section, we shall first outline the three benchmark
glaucoma datasets used in this study and present the exper-
imental setup used for testing and evaluation of the proposed
Self-ONNs based glaucoma detection. We shall then present
the overall results obtained from the glaucoma detection
experiments and perform comparative evaluations against
several competing techniques. Additionally, the computa-
tional complexity of the proposed method for both training
and classification will be evaluated in detail. The three bench-
mark datasets, ACRIMA, RIM-ONE, and ESOGU are used
for training and testing of the proposed.

A. GLAUCOMA DIAGNOSIS BENCHMARK DATASETS
In Table 1, the details of the three benchmark datasets
used to evaluate the performance of the proposed glaucoma

TABLE 1. Benchmark datasets.

assistive diagnosis system are presented. The ESOGU dataset
[37] consists of 4725 optic nerve photographs of normal
and glaucoma patients at the Ophthalmology Clinic, at the
Faculty of Medicine, Eskişehir Osmangazi University in
Turkey. This dataset was collected under the Declaration
of Helsinki and approved by the Eskişehir Osmangazi Uni-
versity’s Ethics Committee. All photographs were acquired
by the non-mydriatic fundus camera (Kowa nonmyd alpha-
DIII). All 20◦ posterior segment photographs in the image
archive were extracted after clearing the identity and gender
information. Qualities of the fundus images and qualities
were classified in terms of sharpness. The database is labeled
by three expert doctors according to the instructions in
[33]–[36]. The commonly used ACRIMA [2] and RIM-ONE
[32] datasets are composed of 705 and 455 fundus images,
respectively. Sample glaucoma and healthy images from each
of the ESOGU, ACRIMA, and RIM-ONE datasets are shown
in Figure 3.

B. EXPERIMENTAL SETUP
In this study, we propose compact Self-ONNs for glaucoma
detection and performed an extensive set of evalua-
tions over the three benchmark datasets. As the first
study where Self-ONNs are evaluated against deep CNNs
over a classification problem, we have performed both
fair (with equivalent configurations) and unfair (compact

140034 VOLUME 9, 2021



O. C. Devecioglu et al.: Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs

TABLE 2. Glaucoma classification performances on the ESOGU dataset. The best F1-score and F2-score are highlighted in bold.

TABLE 3. Glaucoma classification performances on the RIM-ONE dataset. The best F1-score and F2-score are highlighted in bold.

Self-ONNs vs deep CNNs) comparisons. For the latter,
we have even used deep CNN models pre-trained and then
applied transfer learning on the benchmark datasets. More-
over, to prevent a potential bias or boost from another
(3rd party) methodology, we keep the configuration and train-
ing of Self-ONNs as ‘‘default’’ as possible, i.e., no dropout,
data augmentation, residual blocks, parameter tuning, etc.
This is also true for the dense layers that are naturally attached
to the Self-ONNs for classification: conventional MLP hid-
den and output layers are used instead of their heterogeneous
alternative such as GOP’s operational layers. In this way,
the net contribution of Self-ONN’s operational layers with

the generative neuron model can be assessed. Additionally,
we used the compact Self-ONN illustrated in Figure 2 to
achieve high computational efficiency for training and par-
ticularly for real-time detection.

We perform fair comparisons against CNN models with
equivalent configuration as well as unfair ones against some
of the state-of-the-art deep networks such as ResNet-101
[38] and VGG-19 [39]. In the latter, we used pre-trained
deep CNN models and then applied transfer learning on the
benchmark datasets. Moreover, to assess the performance
of the proposed Self-ONNs, we avoid using dropout, data
augmentation, residual blocks, and parameter tuning. For the
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TABLE 4. Glaucoma classification performances on the ACRIMA dataset. The best F1-score and F2-score are highlighted in bold.

dense layers following the Self-ONN layers, conventional
MLP hidden and output layers are used instead of their
heterogeneous alternative such as GOP layers. In this way,
the net contribution of Self-ONNs layers with the generative
neuron model can be assessed.

For all experiments, we employ a shallow training scheme
with a maximum of 50 BP iterations. The other stopping
criterion is the minimum train classification error level,
which is set to 3% to prevent over-fitting. We initially set
the learning rate, ε, as 10-4 and used the Adam optimizer.
The mean-squared error (MSE) is used as the loss func-
tion. A 10-fold cross-validation technique is applied over the
three benchmark datasets separately to prevent overfitting
and better estimate the generalization performance of the
classifier. For each fold, 5 BP runs are performed and the best
classification performance is reported.

C. PERFORMANCE EVALUATIONS
The following commonly used performance metrics are used:
Accuracy, Balanced Accuracy, Precision or Positive Predic-
tivity (Ppr), Recall, or Sensitivity (Sen), Specificity, F1-score
(F1), F2-score (F2). These metrics are distinctive for each
class and they assess the capability of the proposed clas-
sifier to distinguish specific events from non-events. The
formulations for these performance metrics in terms of false
negatives (FN), false positives (FP), true negatives (TN), and
true positives (TP) can be expressed as follows:,

Acc =
TP+ TN

TP+ FP+ TN + FN

Balanced Acc =
R+ Spe

2
,

R =
TP

TP+ FN
, Spe =

TN
TN + FP

P =
TP

TP+ FP
, F1 =

2PR
P+ R

F2 = (1+ 22)
PR

22P+ R
(5)

Table 2, Table 3 and Table 4 report the classification results
of the proposed Self-ONN-based framework for the ESOGU,
ACRIMA, and RIM datasets, respectively. As mentioned
earlier, the performance of four different Self-ONN models
with Q values set as 3, 5, 7 and 9 are compared against the
equivalent CNN models and ResNet-101 and VGG-19 deep
networks. The ResNet-101 and VGG-19 networks were pre-
trained, and they were fine-tuned over each dataset using
transfer learning. All digital fundus images were resized
to 128 × 128, normalized and linearly scaled prior to
classification.

There are several important observations worth mention-
ing over the results. For the ESOGU dataset, Self-ONN
with Q = 3 achieves the best (100%) F1-score, outper-
forming an equivalent CNN by 8%. The same Self-ONN
also outperforms the deep CNN models, ResNet-101 and
VGG. The superior performance of Self-ONN with an even
higher gain is observed for the RIM-ONE dataset, where
Self-ONN with Q= 5 achieved the highest F1-score of 74%,
which is 12% higher than CNN with the same configuration.
VGG-19 model, which was trained using transfer learning
achieves the second-best result with a 73% F1-score in an
unfair comparison with Self-ONNs. Finally, F1-score in an
unfair comparison with Self-ONNs. Finally, for the ACRIMA
dataset, Self-ONN with Q = 5 again achieves the highest
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FIGURE 4. Sample set of CNN and Self-ONN classification results.

F1-score of 94%, which outperforms the equivalent CNN
with a large 10% gap. For all datasets, VGG-19 achieved the
second-best F1 score while the ResNet-101 and equivalent
CNN shared the worst F1 performances. As for visual evalu-
ation, a sample set of classification results on the RIM dataset
are shown in Figure 4 with three pairs of normal (healthy) and
glaucoma images.

A high visual similarity can be observed between the
two images in each column with different classes. Such an
inter-class similarity may be the main reason for the classi-
fication errors of CNN and the significant performance gap
reported on each dataset. Obviously, over such a challeng-
ing pattern recognition task, conventional CNNs with the
aforementioned limitations cannot perform well unless deep,
complex, and pre-trained networks are used. Self-ONNs can,
on the other hand, outperform even deep CNNs thanks to
generative neurons.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
To analyze computational complexity, we compute the total
number of multiply-accumulate operations (MACs) and the
total number of parameters (PARs) for each network config-
uration. The detailed formulations of the PARs and MACs
calculations for Self-ONNs can be found in [23] and [24]. All
the experiments were carried out on a 5.0 GHz Intel Core i7
with 8 GB of RAM and NVIDIA GeForce RTX 2060 graphic
card. For implementation of the Self-ONNs, Python with
Pytorch library is used. Both the training and testing phases
of the classifier were processed using the GPU. Along with

TABLE 5. Computational complexity levels of the networks.

the average time complexity, we provide the overall PARs and
MACs for all networks in Table 5.

In the ACRIMA dataset, the best performing Self-ONN
(Q = 5) requires 64.8% less MACs as compared to ResNet
and 86.4% less MACs than VGG-19. This trend is consistent
for other datasets too, as can be seen fromTable 2 and Table 3.

For the single-CPU implementation on an ordinary com-
puter, the total time for the classification (FP) of a normalized
input image is about 0.07 msec for a Self-ONN classifier with
Q = 5. Such a computation speed naturally allows real-time
operation even over mobile devices with low-power CPUs.
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IV. CONCLUSION
In this study, Self-ONNs are proposed to detect glaucoma
disease from the acquired fundus images as an alternative
to the commonly applied deep CNNs with high computa-
tional complexity and special hardware requirements. The
proposed classifier achieved a significant performance gap
of 8-12% F1 score over equivalent CNN and even deep CNN
models for the three benchmark glaucoma datasets. Deep
CNNs with a large number of neurons and higher depths
were outperformed by the proposed Self-ONNs despite the
fact that they were pre-trained and tuned for the classification
problem at hand via transfer learning. Self-ONNs achieved
the state-of-the-art performance levels in glaucoma detection
with a reduced complexity compared to deep CNN models,
and can hence be integrated into a decision support system
for real-time glaucoma detection. Future work will focus on
further improving Self-ONN’s classification performance by
properly combining a segmentation network. The optimized
PyTorch implementation of Self-ONNs is publicly shared
in [41].
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SUPPLEMENTARY MATERIAL
A. Self-ONNs
In this section, we will briefly introduce the concept of ONNs
and summarize the theory and forward-propagation formula-
tions on Self-ONNs whilst the detailed derivations and Back-
Propagation (BP) formulations were left to [24] and [25].

In a convolutional neuron, from each previous layer output,
yjl−1, the input map of the kth convolutional neuron in layer l,

xkl is calculated as:

xkl (i, j) =
Sl−1∑
j=1

m−1∑
u=0

n−1∑
v=0

wk
l (u, v) y

j
l−1(i− u, j− v) (6)

where yjl−1 ∈ RM×N, Sl−1 is the number of neurons at
layer l-1 and the weight kernel wk

l ∈ Rm×n. For the sake of
brevity, unit stride and dilation are assumed, and the input
is padded with zeros before the convolution operation to
preserve the spatial dimensions. An alternate formulation of
the operation of (6) is now presented. Firstly, y is reshuffled
such that values inside each m × n sliding block of yl−1
are vectorized and concatenated as rows to form a matrix
Yl−1 ∈ RM̂×N̂ where M̂ = MN and N̂ = mn. This
operation is commonly referred to as ‘‘im2col’’ and is critical
in conventional GEMM-based convolution implementations
[23], [40]. Secondly, we construct a matrix Wk

l ∈ RM̂×N̂

whose rows are repeated copies of
−→
wkl = vec

(
Wk

l

)
∈ Rmn,

where vec (�) is the vectorization operator. Each element of

Wk
l is given by the following equation:

Wk
l (i, j) =

−→

wkl (i) (7)

The convolution operation in (6) can then be represented
as follows:

xkl= vec−1M×N

∑
j

(
Yl−1⊗Wk

l

) (8)

where ⊗ represents the Hadamard product,
∑

j is the sum-
mation across jth dimension. In (8), vec−1M×N is the inverse
vectorization operation that reshapes back to M× N. The
formulation given in (8) can now be generically reformulated
to represent the forward-propagation through an operational
neuron:

xkl= vec−1M×N

(
φkl

(
ψk
l

(
Yl−1,Wk

l

)))
(9)

where ψ (�) : RM×N
→ RM×N and φ(�) : RM̂×N̂

→RM̂ are
termed as nodal and pool functions [21]–[23], respectively.
Finally, after applying the activation function fkl , we get the
output of the neuron:

ykl = fkl
(
vec−1M×N

(
φkl

(
ψk
l

(
Yl−1,Wk

l

))))
(10)

Given an operator set; a triplet of
(
ψk
l , φ

k
l , f

k
l

)
, an opera-

tional neuron implements the formulation given in (10). It can
be noticed here that the convolutional neuron is a special case
of an operational neuronwith nodal functionψ (α, β) = α∗β
and pooling function φ(�) =

∑
i.

In a heterogenous ONN configuration, every neuron has
uniquely assigned ψ and P operators. Owing to this, an ONN
network enjoys the flexibility of incorporating any non-
linear transformation, which is suitable for the given learning
problem at hand. However, hand-crafting a suitable library
of possible operators and searching for an optimal one for
each neuron in a network introduces a significant overhead,
which rises exponentially with increasing network complex-
ity. Moreover, it is also possible that the right operator for
the given learning problem cannot be expressed in terms of
well-known functions. Self-ONN has the potential to achieve
a superior operational diversity and flexibility that permits the
formation of any nodal operator function without the need of
any operator set library or any prior search process to find the
optimal nodal operator.

To formulate a nodal transformation, ψ which does not
require a pre-selection and manual assignment of operators,
we use the Taylor-series based function approximation near
the origin (a = 0), as,

ψ (x) =
∞∑
n=0

ψ (n) (0)
n!

xn (11)

The Qth order truncated approximation, formally known
as the Taylor polynomial, takes the form of the following
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finite summation:

ψ (x)(Q) =
Q∑

n=0

ψ (n) (0)
n!

xn (12)

The above formulation can approximate any functionψ (x)
sufficiently well near 0. When the activation function bounds
the neuron’s input feature maps in the vicinity of 0 (e.g., tanh)
the formulation of (2) can be exploited to form a composite
nodal operator where the power coefficients, ψ

(n)(0)
n! can be

the learned parameters of the network during training. It was
shown in [25] that the nodal operator of the kth generative
neuron in the lth layer can take the following general form:

ψk
l

(
Yl−1,Wk

l ,Q
)
=

Q∑
q=1

Yq
l−1 ⊗Wk(q)

l (13)

whereWk
l ∈ RM̂×N̂×Q is the three-dimensional weightmatrix

and Wk(q)
l ∈ RM̂×N̂ is the qth slice of Wk

l . The 0th order
term a, the DC bias, is ignored as its additive effect can be
compensated by the learnable bias parameter of the neuron.
Back-propagation (BP) through this nodal operator is now
trivial to accomplish. Equations (14) and (6) provide the
derivatives with respect to the input Yl−1 and the qth slice
weights, Wk(q)

l , respectively:

dψk
l

dYl−1
=

Q∑
q=1

qYq−1
l−1 ⊗Wk(q)

l (14)

dψk
l

dWk(q)
l

= Yq
l−1 (15)

The detailed formulations of the BP training in
raw-vectorized form can be referred to [25], [23].
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