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Abstract— In recent years, underground mining automation
(e.g., the heavy-duty robots carrying rock breaker tools for sec-
ondary breaking) has drawn substantial interest. This breaking
process is needed only when over-sized rocks threaten to jam
the mine material flow. In the worst case, a pile of overlapped
rocks can get stuck on top of a crusher’s grate plate. For a
human operator, it is relatively easy to make the decisions
about the rock locations in the pile and the order of rocks
to be crushed. In an autonomous operation, a robust and
fast visual perception system is needed for executing robot
motion commands. In this paper, we propose a pipeline for fast
detection and pose estimation of individual rocks in cluttered
scenes. We employ the state-of-art YOLOv3 as a 2D detector
to perform 3D reconstruction from point cloud for detected
rocks in 2D regions using our proposed novel method, and
finally estimating the rock centroid positions and normal-to-
surface vectors based on the predicted point cloud. The detected
centroids in the scene are ordered according to the depth
of rock surface to the camera, which provides the breaking
sequence of the rocks. During the system evaluation in the real
rock breaking experiments, we have collected a new dataset
with 4780 images having from 1 to 12 rocks on a grate plate.
The proposed pipeline achieves 90.91% precision on overall
detection with a real-time speed around 15Hz.

I. INTRODUCTION

Underground mining continues to progress to deeper levels
for tackling the mineral supply crisis in the 21st century
[1]. Human worker safety in mines deeper than a kilometer,
along with time-consuming human shift worker logistics, is a
massive mine operational cost challenge. This has increased
demand for the level of autonomous robotics in mining. In
deep mines, the extracted material is fed to crushers equipped
with grate plates for stopping over-sized rocks (i.e., ore) from
falling into the crusher jaws. The grate plate (e.g., a mesh
size of 0.5 m x 0.5 m) prevents crusher jamming, but only
if over-sized rocks remaining on the plate are immediately
broken down into smaller pieces to ensure continuous mine
mineral flow. Such rock breaking has been conventionally
done by a human operator-driven heavy-duty hydraulic four-
link anthropomorphic arm equipped with a hydraulic hammer
tool, as shown in Fig. 1.

Recently, robotic rock breaking [2] has attracted wider
attention owing to the controllable breaking procedure. Sen-
sory rock perception plays an important role in robotic rock
breaking as it provides the automatic over-sized rock detec-
tion and the motion target coordinates for the robotic rock
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Fig. 1 3D perception of rocks on a grate plate

breaker arm. Some rock breaking systems with increased au-
tomation levels have been developed, such as the telerobotic
rock breaker [3], vision-based mining automation controls
[4], and 3D perception for mining robotics [5]. Some studies
on rock breaking systems using force sensors [6] and stereo
vision [7] have adopted algorithms for computing normals
of rock surfaces. Nevertheless, none of the existing methods
are capable of understanding the whole rock breaking scene
in a complex environment.

For the automatic analysis of a scene, visual 3D perception
requires fast and reliable initial detection with accurate
object recognition and localization. However, this problem
remains challenging due to piled rock scenes having arbitrary
shapes, sizes, textures, and colours, as shown in Fig. 1.
Pose estimation for objects with prior knowledge of shape
was studied using 3D template matching technique in our
earlier work [8]. For objects with unpredictable shapes, we
have adopted a clustering algorithm for direct point cloud
segmentation [9]. This method is used on secondary breaking
in an unsupervised learning manner, but it suffers by missing
texture-free visual cues for segmenting two rocks close to
each other. A lack of contextual information in pure point
analyses encourages us to conduct foreground highlighting
in the RGB images to improve 3D rock detection. Moreover,
such a setting has its significance in the practice of collision
avoidance in robot on-line motions.

In this paper, we address the 3D visual perception of
rocks via a pipeline visualized in Fig. 2, which consists of
three stages: 2D rock detection, 2D-to-3D correspondence
of regions, centroid position, and normal-to-surface vector
estimation on object point cloud-based surfaces. At the first
stage, the rocks displayed in the left image of Fig. 2 are
detected as 2D regions (bounding boxes) by the state-of-
the-art detector [10] (see Sec. IV-B). For the study, a stereo



camera system is used to reconstruct the geometry of a 3D
scene based on stereo correspondences. Subsequently, the
depth map is generated in the form of a gray-scale image
describing its geometry. We utilize this property to recover
a 3D point cloud representation of a textured point cloud
of rocks in 2D regions (produced by the 2D detector) to
its corresponding point clouds in 3D regions. These are all
performed at the 2D-to-3D correspondence stage (see Sec.
IV-C), where scene background can be removed and we focus
on analyzing rocks in the foreground. At the last stage, based
on the predicted point sets for each rock, the centroid of the
surface is discovered and its corresponding normal vector is
estimated by searching for the best fit plane using the nearest
points provided by random sample consensus (RANSAC)
[11].
Contributions The novel contributions of this paper are
fourthfold. Firstly, we developed an efficient 3D visual
perception pipeline for the detection of visible rocks and
individual rock 6D pose estimations in cluttered scenes.
We achieved an average precision of 90.91% at a real-time
speed around 15Hz. Secondly, instead of a conventional
stereo-image rectification method, we proposed a plane-
sweeping depth estimation method for establishing the 2D
to 3D correspondence. Thirdly, on non-Euclidean structured
points, we designed a method for estimating the centroid
normal on detected rock surfaces. Finally, we collected and
annotated 4780 different images for the rock detection in a
real scale rock breaking robot set-up with the rocks weighing
several hundreds kilos each. This dataset is the according to
the authors’ best knowledge of the first dataset of blasted
overlapped rocks.

Experiment results on the new dataset verified the efficacy
of the proposed method, which works even if a part of the
object is occluded or truncated due to the presence of the
robot arm or rocks in a pile. The dataset used for the training
has been made available with this paper1.

This paper is organized as follows: Section II introduces
related research on object detection; Section III describes the
research problem; Section IV details the methodologies used
for the study; Section V explains the experiments that were
carried out; and Section VI concludes the paper.

II. RELATED WORK

Object detection is widely studied, and a number of
methods based on deep learning has been proposed [12]–
[17]. Most existing methods operate using 2D Euclidean con-
volution on images, which can be categorized into two main
groups. The first group is object proposals and image classi-
fication, such as region-based convolutional neural networks
(RCNN) [18], fast RCNN [19], and faster RCNN [15]. These
methods begin by generating thousands of region proposals
within the images, and then apply a convolutional classifier
to filter the proposals by classification score thresholds. This
two-stage setting increases networked training difficulties
due to independent training on each individual component in

1https://doi.org/10.5281/zenodo.2581287
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Fig. 2 Pipeline of the proposed visual perception system

the pipeline. The second group is single shot-based detection,
such as SSD [14] and YOLO. Recently, the YOLO detector
[10], [12], [13] has become a viable alternative to RCNN
variants by achieving superior detection efficacy. Not many
2D-driven 3D object detection studies [20], [21] have been
based on both RGB-D images and point clouds. Specifically,
utilizing a mature 2D object detector’s output to generate
3D object proposals, this reduces the search in entire 3D
dense point cloud. Even though light detection and ranging
(LiDAR) generated point clouds can be used for outdoor
applications, compared to RGB images, LiDAR point clouds
are unordered and too sparse for distinguishing the severe
inter-occlusion between the rocks. This makes the direct
application of these methods challenging in a rock breaking
scenario. In light of this, our method maps 2D pixels within
predicted bounding boxes into rock point cloud surfaces,
which generate a visible rock surface as 3D proposals.
Our proposed method works effectively in the robotic rock
breaking scenario, which is verified in Sec. V.

III. PROBLEM STATEMENT

As mentioned, automatic rock breaking requires fast and
reliable detection and localization of every rock in a given
scene. Oversized rocks on the grate plate can range from
one rock or few rocks scattered around to many rocks in
a complex pile overlapping each other. In our real-world
robotic rock breaking set-up, we utilize a top-mounted stereo
camera to provide video and images for automatic rock
recognition and analysis. Given live video or still stereo
images as input, the goal is to achieve real-time and sophis-
ticated rock detection in a reference camera (left camera)
coordinate, since individual 6D poses have to be shown to
the operator and sent to the robot controller.

IV. METHODOLOGY

For obtaining required rock poses for the controller, the
rock centroid positions [x, y, z] and orientations (i.e. normal-
to-surface vectors at their centroids), we conduct three phases



in our visual perception system. The first phase is detection,
where we employ a 2D object detector [10] for rock detection
(see Sec. IV-B). The second phase is 2D to 3D correspon-
dence, where 3D rock surfaces in a point cloud are generated
via projection from 2D regions (see Sec. IV-C). In the final
pose estimation phase, estimation methods for the centroid
position and normal-to-surface vectors are applied. Fig. 2
illustrates the whole pipeline of the proposed system.

A. A NEW DATASET FOR ROCK BREAKING

The procedure of data collection and annotation for the
new dataset generation in the rock breaking application
was organized as follows. The videos were recorded with
various amounts of rocks on a grate plate under different
outdoor illumination conditions by using a top-mounted
stereo camera. However, due to the complex image gathering
process in an outdoor environment, the position of camera
was not entirely fixed. Therefore, slight camera movements
during the video recordings can occur, which leads to back-
ground subtraction process failure. In view of this, object
detection is considered the best possible approach to cope
with the diverse background. In the gathered dataset, 4780
videos were recorded using a pre-calibrated stereo camera
compressed in a lossless format in 720p at 15fps. They were
further processed offline to extract selected frames into left
and right images, which were used to generate depth maps as
well as point clouds with color information (in ply format).

The Yolo Mark tool2 was used for left image annotation.
To alleviate manual labelling, an automatic labelling tool
was implemented. This required the manual labelling of
1000 images, which then were used to train a coarse 2D
detector to label the remaining 3780 images. After automatic
labelling, the labelled images were still checked one by one.
The quality of automatic labelling is known to be highly
dependent on the quality of previously labelled data as well
as the coverage of the data set. Therefore, a random data
selection mechanism was implemented for this purpose.

B. OBJECT DETECTION

As aforementioned, YOLO [10] was adopted for rock
detection in 2D, making it an essential step for further
processing. This kind of 2D detector formulates object detec-
tion into a regression problem, which addresses localization
and recognition in a unified framework via simultaneous
prediction of bounding box confidence and class probabil-
ities. To this end, the whole image is divided into regular
grids before the network predicts the object’s centroids from
the given set of candidates for various bounding boxes
and object classes. Owing to its efficient detection, we are
utilizing the latest network structure [10]. More specifically,
the detection network (a variant of darknet-53) consists of
106 convolutional layers, where the prediction is performed
at three different scales by predicting 10 times the numbers
of boxes, producing more accurate results when detecting
small objects.

2https://github.com/AlexeyAB/Yolo_mark

C. 2D-3D CORRESPONDENCE

The estimation of scene geometry from a stereo camera
setup is usually called a depth-from-stereo problem. Con-
ventional stereo-matching methods based on stereo-image
rectification [22] might underperform due to the introduction
of artificial camera transforms and excessive image interpo-
lation steps. In addition, a deviation from a geometrically
parallel camera configuration is possible, thus introducing
substantial image deformation in rectification-based methods
[22].

A plane-sweeping depth estimation method allows for
direct processing of captured imagery [23] by means of
calibrated camera parameters. Fig. 3 illustrates the plane-
sweeping principle of the depth-estimation method. The
method assumes that the entire scene can be divided into
a number of front-to-parallel planes where stereo correspon-
dences could be found. The depth hypotheses can be selected
according to the possible depth range (zmin ≤ z ≤ zmax)
and a finite number of layers, to achieve a balance between
fidelity and computational complexity.

Another advance of this method is its suitablity for parallel
computing, and therefore, a dense 3D reconstruction of a
complex scene can be realized in real time through GPU
acceleration.
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Fig. 3 An illustration of the plane-sweeping principle of
the depth-from-stereo estimation methods

For every hypothetical depth zj , one can project a pixel
(u1, v1) from a reference camera to a 3D space, using pre-
calibrated camera matrix C1:

Xj = C−1
1 (u1 · zj , v1 · zj , zj , 1)T = C−1

1 ẋ1, (1)

where ẋ1 = (u1 · zj , v1 · zj , zj , 1)T is the homogeneous
projective coordinate of a current pixel, Xj is the resulting
point coordinate in a 3D space, and j = 1, .., N where N is
the selected number of layers.

Every obtained 3D point Xj can be further projected onto
the sensor plate of a second camera using a similar equation:

ẋ2 = C2Xj = (u2 · zj , v2 · zj , zj , 1)T , (2)

where ẋ2 is a projective pixel position in a second cam-
era image plane, and the actual pixel coordinates can be



recovered as:

u2 =
ẋ2.x
ẋ2.z

, v2 =
ẋ2.y
ẋ2.z

.

We can construct a 3D cost volume in which pixel
dissimilarities are calculated between the original pixel in the
reference camera and the corresponding pixel in the second
one:

C(u, v, j) = ‖I1(u2, v2)− I2(u1, v1)‖, (3)

where I1 and I2 denote the first (reference) and second
images, respectively.

Through appropriate cost aggregation [23], the depth map
can be recovered as such:

Z1(u, v) = zĵ , ĵ = argmin
j
C̃(u, v, j), (4)

where C̃(·) denotes the aggregated cost volume. The coor-
dinates of the point cloud in the reference camera can now
be reconstructed using equation (1), replacing zĵ with the
estimated value.

D. POSE ESTIMATION
1) Position: The position of a rock is characterized in

camera coordinates, indicating it is the geometric center of
the bounding box in x−y plane, as it is projected from image
coordinates. This position estimation approach is sufficient,
as those oversized rocks are with a dimension of at least 500
mm x 500 mm in x−y plane, which allows some millimeter-
level deviation.

2) Orientation, Normal-to-surface vectors: Given the lo-
cation of the centroid of each rock, we estimate its normal
vector for the best fitting plane of a nearby point cloud
surface. For this goal, the principle of a RANSAC algorithm
[11] searches for the best plane among a 3D point cloud
surface.

A general plane equation is given as:

ax+ by + cz + d = nT x̂ = 0, (5)

where n = [a, b, c]T is the normal vector of plane parameters
to estimate and x̂ = [x, y, z, 1]T is the homogeneous point
coordinate of the cloud.

The algorithm starts by randomly selecting three points
from the cloud, fitting the plane parameters, and detecting all
points of the point cloud that belong to the same plane by a
given threshold. The process is repeated multiple times, until
the plane equation containing the largest number of inliers is
determined, the plane is considered as the best fitting plane.

As the point cloud estimated with the stereo-camera setup
usually does not capture highly slanted or parallel-to-the-
optical axis planes, inliers can be selected using a predefined
threshold value θ, as points whose distance to plane is lower
than a threshold

(x, y, z) ∈ Z3 : 0 ≤ |axi + byi − zi + c| ≤ θ. (6)

The threshold θ can also control the expected proximity
of an object surface to a plane model. For object surfaces
containing many bumps or cavities, larger values of θ can
be beneficial.

V. EXPERIMENTS

A. Settings

The whole data for rock detection was split into training,
validation, and testing sets for fair comparison. Specifically,
70% of the images (in 1280 x 720 resolution) were selected
for training, 20% for validation, and the remaining 10% for
testing. During parameter tuning, we used training data to
fit network parameters by evaluating the performance on the
validation set.

(a) Left image of stereo camera taken at the secondary
breaking site

(b) An example of point cloud generated from left and depth
image

Fig. 4 Input images for visual perception

B. Implementation Details

We set our visual perception system on Ubuntu with the
following environment settings:

• OpenCV 3.4.0
• PCL 1.7.1
• CUDA 10.0
• CuDNN 7.4

We implemented all schemes in C++ with OpenCV library
and Point Cloud Library (PCL).

From each video frame, we extracted a left image (an
example is shown in Fig. 4a) together with a right image,
computing its depth map (by means of the proposed plane
sweeping method) to generate a point cloud (an example is
shown in Fig. 4b). In parallel, the left images with labelled
bounding boxes were provided to train the rock detector.

C. Evaluation of Rock Detection

We adopted the off-the-shelf YOLO detector using a
variant of darknet-53 [24] in view of its solid detection
performance as well as its efficiency during inference. We
trained the darknet using our data by setting a learning rate
of 0.001, which converges at an average loss of 0.12. We
achieved good detection results during testing. Threshold
was 0.25, true positive (TP) was 7262, false positive (FP)
was only 16, false negative (FN) was 23, and the average
intersection-over-union (IoU) was 89.69%. Moreover, an



average precision of 90.91% was reached. We validated the
stability of the model using images at different scales and
rotations to retain result robustness. Fig. 5 illustrates the de-
tection result from an offline video, and the detected objects
provided by YOLOv3 are highlighted with 2D bounding box.

Fig. 5 Detection and Localization of Rocks at approx. 15Hz

In addition, this single shot-based rock detector can ef-
ficiently localize all rocks at a video frame rate around 15
Hz. In Fig. 5, it can be seen that the rock 3 has a sharp
edge in the middle, which is hard to segment properly using
unsupervised learning methods [9], while rock 9 is occluded
and truncated by rocks 1 and 8, which is harder to recognize
using the aforementioned method.

D. Evaluation on Pose Estimation
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Fig. 6 Examples of the point cloud for rock 3 and rock 9
segmented by the projected 3D bounding boxes

Here we conduct experiments to evaluate the results of
estimating the position and orientation of individual rocks
within 3D regions. For each detected 2D region, every pixel
within has its 3D corresponding point in 3D point cloud
with X,Y,Z and RGBA color. After 2D to 3D correspondence
mapping, we obtained their 3D regions in a point cloud.
Fig. 6 indicates rocks 3 and 9 in point clouds, through which
6D pose estimation can be performed.

Fig. 7 illustrates detected 3D regions overall, along with
estimated centroids and normal vectors for each region.
Estimated centroids for each rock are drawn as red spots
(as shown in Fig. 7a where they geometrically reside at the
center of each rock, even for all occluded rocks).

The estimation of normal vectors was performed using kd-
tree to search for the neighbors around each centroid point,
and applying the RANSAC method for finding the best fitting
plane. As no ground-truth normal vectors were available, we
visualized the normal vectors together with the rocks for

(a) Detected Centroid positions in 3D

(b) Estimated Normal Vectors in 3D

Fig. 7 Estimation of Centroids’ Positions and Normal
Vectors for each 3D region

quality evaluation. Fig. 7b presents the result of estimating
the normal vectors shown with red arrows for each rock.
As a result, those normal vectors were perpendicular to the
estimated main surface plane of each rock. More qualitative
results are shown in Fig. 8.

VI. CONCLUSIONS

We have proposed a novel fast method for 3D object
detection and target pose estimation for complex scenes
containing irregularly shaped and sized blasted rocks that
can be in an overlapping pile. Even though object detection
using bounding boxes has been widely studied, its extension
to 3D in such complicated scenes remains a challenge,
especially in a real outdoors environment. On one hand,
in real-world outdoor applications, the 3D bounding boxes
detector with LiDARs is not an efficient method for solving
complex scenes with many sharp changes in the depth
and overlying edges that are only visible on the images.
On the other hand, 3D detection methods operating solely
on dense point clouds can be computationally expensive,
rendering the required real-time operation hardly feasible.
This paper has presented an efficient online method by
taking advantage of fast 2D object detection combined with
the 2D to 3D plane-sweeping stereo matching method for
3D object detection. Given secondary rock breaking as an
application, the proposed robotic visual perception method
can meet the requirements for autonomous breaking required
for the mining industry with its reliable object detection,
real-time performance, and substantial accuracy on object
pose estimation. The experiment results veried the efficiency
of the proposed method with 90.91% detection accuracy at



Fig. 8 More visualization results of detection (top), position (middle), and normal estimation (bottom)

15Hz in real outdoors worksite conditions. Our next research
objective is to experimentally verify the success rate of real
rock breaking with the machine vision estimated rock surface
position as “a sweet spot” for the productive robotized
operation.
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