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Abstract—Contemporary low-power wide area network (LP-
WAN) technologies have been introduced as connectivity enablers
with low complexity, extended communication range, and excel-
lent signal penetration. On the other hand, they suffer from a
substantial delay and low packet-delivery guarantees. As a result,
numerous novel applications entering the Internet of things
(IoT) market suffer from insufficient performance. To mitigate
this issue, further optimization and adaptation of the LPWAN
technologies to the needs of these new applications requires an in-
depth understanding of the propagation environment dynamics.
Motivated by that, in this paper, we thoroughly investigate time-
dependent statistical characteristics of the reference signal receive
power (RSRP) dynamics of Narrowband IoT (NB-IoT) technol-
ogy. We demonstrate that even for a stationary user equipment,
RSRP is subject to drastic variations that are characterized
by exponentially decaying autocorrelation function. We then
demonstrate that first- and second-order statistical properties of
the RSRP dynamics can be closely captured using a doubly-
stochastic Markov model that retains the tractability of the
conventional Markov models. The reported model is expected
to serve as a building block for analytical and simulation-based
system-level studies and optimization of LPWAN technologies.

Index Terms—Propagation modeling; time-dependent propa-
gation characteristics; LPWAN; NB-IoT; Markov model

I. INTRODUCTION

The machine-type communication (MTC) can be divided
into two broad categories [1]. The first one aims at applications
having no strict delay and loss requirements, but which are
characterized by extreme densities of user equipments (UEs).
These applications are classified as massive MTC (mMTC)
and nowadays they are supported by low-power wide-area
networks (LPWANs), such as Narrowband IoT (NB-IoT),
LoRaWAN, and Sigfox. These LPWANs have been developed
having M.2412 service requirements in mind [2]. Based on
the above, at least 90 % of messages have to be delivered over
the radio interface in less than 10 s. Another service category,
named ultra-reliable low-latency communication (URLLC),
poses extreme latency requirements at the air interface, e.g.,
under 5 ms one-way delay [1]. The third generation partnership
project (3GPP) is currently standardizing the radio access
technologies (RATs) that are expected to support this service
as part of the New Radio (NR) interface [3].

At the same time, numerous emerging MTC applications
fall in-between these two extremes, e.g., presence monitoring,
industrial asset tracking, condition-based monitoring, patient
monitoring. These applications pose much stricter require-
ments on delay and loss performance compared to mMTC,

but they, however, remain much more relaxed than the ones
given by URLLC. They are also characterized by comparable
deployment densities to those supported by LPWANs [1].
Furthermore, the reliability and availability of these applica-
tions are becoming much more critical as opposed to power
consumption since constant power supply might be available.
As a result, the delay is becoming a deciding factor in selecting
URLLC vs. mMTC connectivity enablers [1].

There are two possible ways of addressing the needs of these
novel uncategorized applications within the MTC landscape.
The first approach suggests developing a specific RAT support-
ing these applications, e.g., DECT-2020 mMTC initiative [3].
On the other hand, one may adapt and extend the existing
LPWAN solutions to improve their performance, such that
more stringent key performance indicators are met. These
changes can be implemented at the UE side by utilizing sophis-
ticated transmission schemes, multi-RAT support, or handover
detection mechanisms [1], [4]–[6]. However, in most cases,
a successful implementation of such advanced mechanisms
requires the knowledge of the propagation channel that is
subject to variations even for the static UE locations. There-
fore, to facilitate the development of advanced transmission
mechanisms allowing to optimize the delay in the conventional
LPWANs, an in-depth understanding of the time-dependent
propagation environment is essential.

This paper aims to provide a comprehensive analysis and
develop robust models of the time-dependent propagation
characterization for the NB-IoT technology. To this end,
we conduct a long-term measurement campaign capturing
the received signal characteristics of the stationary UE in
rural and urban deployments including the reference signal
receive power (RSRP) and signal-to-noise ratio (SNR). Fur-
ther, we demonstrate that these characteristics are subject to
drastic changes that affect the transmission performance of
the UE. We then proceed with analyzing first- and second-
order properties of these radio channel parameters. To capture
them, we employ a doubly-stochastic Markov chain modeling
framework. The model developed in this paper can be utilized
as building block for analytical or simulation-based system-
level studies of advanced mechanisms targeted at improving
UE performance in LPWANs.

The main contributions of our study are the following.
• To support the performance optimization of existing LP-

WAN technologies, we conduct a long-term measurement



campaign by collecting the time-dependent statistical
characteristics of the received signal in two representative
deployments.

• Due to the importance of time-dependent radio dynamics,
we offer free access to our measurement results from both
urban and rural environments1.

• Finally, to facilitate the development of advanced UE-side
optimization solutions, we contruct a doubly-stochastic
Markov model that captures both first- and second-order
statistical properties of the received signal.

The rest of the paper is organized as follows. In Section II,
we report on the measurement campaign and describe the setup
of our experiments. A detailed study of the collected time-
dependent statistics is provided in Section III. The developed
models reflecting the time-dependent characteristics are pre-
sented in Section IV. Finally, the conclusions are drawn in the
last section.

II. MEASUREMENT CAMPAIGN

As energy-limited sensors are expected to be in an op-
erational state for many years, they may experience drastic
differences in channel characteristics due to long-term changes
in the environment, seasonal variations, etc. In this section, we
describe our measurement campaign by introducing the con-
sidered scenarios, measurement equipment, and methodology.

TABLE I: Key parameters of LPWAN technologies [7]–[10].

LoRaWAN Sigfox NB-IoT
Coverage (MCL) 157 dB 162 dB 164 dB

Technology Proprietary (PHY),
Open (MAC)

Proprietary Open LTE

Spectrum Unlicensed Unlicensed Licensed

Frequency 433, 868,
915 MHz

868,
915 MHz

700-2100 MHz

Bandwidth 125, 250,
500 kHz

100, 600 Hz 200 kHz

Max. ERP 14 dBm2 14 dBm2 23 dBm
Downlink data rate 0.3-50 kbps 0.6 kbps 0.5-27.2 kbps1

Uplink data rate 0.3-50 kbps 0.1-0.6 kbps 0.3-62.5 kbps1

Max. message size UL 242 B 12 B 1600 B
Max. message size DL 242 B 8 B 1600 B
Battery life 10+ years 10+ years 10+ years
Module cost 6 $ 3 $ 12 $
Security AES-128 AES-128 LTE Security
1 The value is release-dependent (Rel. 13).
2 The value of max. ERP is relevant for the EU.

A. LPWAN Technology Selection

In this paper, we consider NB-IoT as a globally standard-
ized LPWAN enabler. Today, it is arguably the most mature
LPWAN technology publicly available worldwide [11].

As the NB-IoT operates over licensed spectrum, the network
infrastructure is managed by supranational telecommunication
companies, thus ensuring high availability and reliability.
LoRaWAN infrastructure, on the other hand, is usually op-
erated by local service providers. These companies may have
difficulties to satisfy a service-level-agreement (SLA); hence,
the LoRaWAN may not be used for critical infrastructure. The

1See https://github.com/martin146/globecom-2020

third well-known representative of LPWAN, Sigfox, provides
similar guarantees as NB-IoT since all Sigfox networks are
under the umbrella of the mother company. Therefore, Sigfox
can assure the application SLA, but its technical parameters
are not well-suited for data-intensive scenarios. Within the
European region, the message size is limited by 12 B with
10 minutes period. This makes Sigfox unusable for application
requiring more than 1728 B per day, see Table I for a more in-
depth comparison of LPWAN technologies in question. From
this perspective, NB-IoT represents the preferred candidate for
most of the emerging mMTC scenarios [7], [9], [10].

B. NB-IoT Technology

NB-IoT operates within the licensed LTE spectrum, which
significantly reduces the interference from other technologies.
On top of that, utilization of licensed bands does not impose
any duty-cycle restrictions, and the maximum radiated power
can be as high as 23 dBm. NB-IoT utilizes a reduced frequency
band of 180 kHz, thus allowing for the deployment in a
single LTE physical resource block (PRB). Further, it can
operate in stand-alone mode (one global system for mobile
communications (GSM) channel) or in the LTE guard band.

Uplink NB-IoT communication utilizes frequency division
duplex (FDD) and single carrier-frequency division multiple
access (SC-FDMA) with 15 or 3.75 kHz subcarrier spacing.
The single-tone transmission uses binary phase-shift keying
(π/2-BPSK) or quadrature phase-shift keying (π/4-QPSK)
modulation. The highest throughput is achievable with multi-
tone transmission relying on QPSK modulation with 15 kHz
subcarrier spacing. In this case, the theoretical data-rate can
be up to 62.5 kbps (in Rel. 14, up to 159 kbps) [7], [8].

One of the main benefits of NB-IoT is the prolonged battery
life reaching 10 years. It is achieved mainly via the utilization
of two power-saving mechanisms: (i) extended discontinuous
reception (eDRX) and (ii) power-saving mode (PSM). The first
mechanism allows the device to turn off its radio interface and
receive messages only in pre-defined periodic intervals. The
PSM provides even higher power savings by switching off the
radio part entirely for a longer duration of up to 9920 hours [7].

C. Scenarios of Interest

For our measurement campaign, we considered both urban
and rural communication use-cases. In the case of urban
deployment, the sensor was placed on the rooftop of a Brno
University of Technology (BUT) building. The sensor was
positioned within 0.5 km distance from the nearest base station
(BS). The rooftop placement significantly reduces the propa-
gation impairments from dynamically moving obstacles, such
as vehicles or pedestrians. Therefore, in these conditions, one
may expect limited signal fluctuations over time.

The rural scenario includes a communication sensor placed
in the cathodic protection test station located in South Bo-
hemia, Czech Republic. The distance to the nearest BS was
approximately 2 km. Due to that, we can expect reduced signal
strength as compared to the urban scenario. As the sensor is
placed only one meter above the ground, the signal quality can



be further degraded by the moving obstacles due to proximity
of a district road.

D. Measurement Equipment

For both urban and rural measurements, we utilized identical
types of sensors developed at BUT. The communication was
ensured by the uBlox SARA-N210 NB-IoT module, which
implements the technology according to LTE Rel. 13, i.e.,
Cat-NB1. It allows the module to utilize the maximum radiated
power of 23 dBm. In combination with the 0 dBi half-wave
dipole antenna, it offers the module the sensitivity of up
to -135 dBm. As this version of the communication unit is
primarily targeted for the European market, it supports only
the frequency band of 800 MHz.

The sensors were equipped with Li-SOCl2 cell to achieve
the expected multi-year lifespan. These non-rechargeable bat-
teries provide the highest specific capacity with self-discharge
rate of only 1 % per year, and withstand high current peaks
(around 300 mA) during the data transmissions [12].
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Fig. 1: Data flow in measurement scenarios.

From the perspective of the data flow, the communication
bears significant resemblance to the traditional LTE, as de-
picted in Fig. 1. Data from the measuring device are wirelessly
transmitted to the serving BS and routed through the evolved
packet core (EPC) to the application server. In this case, we
employed our application server at BUT premises. Since the
main concern is the battery life-time, we utilized user datagram
protocol (UDP), which adds only minimal overheads at the
expense of reliability degradation.

E. Experiments and Data Collection

To achieve the required multi-year lifespan of the LPWAN
sensors, only four messages were sent per day. This allowed
us to observe changes in the radio environment with a 6-
hour resolution. In the case of the rural area, the message
period was extended up to 12 hours as worse radio and
weather conditions were expected during the winter period.
Particularly, temperatures below the freezing point negatively
influence the battery performance.

To acquire a sufficient dataset displaying the time-dependent
characteristics of the RSRP and SNR, we conducted a one-
year-long measurement campaign. During this period, we
obtained more than 1230 and 670 samples from urban and
rural environments, respectively. Impressively, NB-IoT yields
the success rate of more than 99.5 % for both scenarios. Such
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Fig. 2: Time-dependent RSRP and SNR characteristics.

a high value can be explained by excellent average signal
strength. For the sensor in an urban environment, the average
value of RSRP does not fall below -56 dBm, see Fig. 2a.
In the case of the rural sensor, RSRP oscillates around -
90 dBm, and then slowly declines down to -100 dBm during
the second third of the measurement period. The decreased
signal levels, as compared to the urban deployment, were
expected due to lower cell density. According to the study
in [13], rural deployment is four-time sparser in contrast
to the urban infrastructure, which is also verified by our
measurements.

However, over the last third of the mesurement period,
RSRP radically increases by approaching the urban values.
A change in the network configuration, such as a new BS
with better coverage, might have caused this difference. As
a result, due to the required longevity of the LPWA sensors,
all these events have to be taken into account. Accordingly,
the prospective time-dependent model should also be able to
capture these transitions.

III. STATISTICAL DATA ANALYSIS

In this section, we characterize the time-dependent behavior
of the RSRP experienced by the UE in the two considered
propagation environments, urban and rural.

A. RSRP Time-Series

We proceed with statistical data analysis of the RSRP traces
by keeping in mind the ultimate goal – simple yet accurate
models. To preserve the trade-off between the mathematical



tractability and the accuracy of modeling, we search for an
appropriate model in the class of covariance stationary er-
godic stochastic processes. Recall that a stationary covariance
process is fully characterized by the distribution of its single
section and autocorrelation function (ACF) [14]. Therefore, to
decide upon the choice of a suitable time-dependent model,
we first need to assess the RSRP ergodic properties as well as
estimate and analyze the first- and second-order characteristics
of the RSRP process, i.e., the histogram of relative frequencies
and the ACF of empirical data.

RSRP and SNR traces for both urban and rural environments
are demonstrated in Fig. 2. There is a number of important
conclusions to be drawn by visual analysis. First, there are
indeed drastic variations in the propagation characteristics
caused by environmental changes in both considered deploy-
ments. Second, one can clearly observe that it is possible
to apply the notion of “hidden states” to the demonstrated
behavior. Indeed, both SNR and RSRP shift their behavior
between a set of so-called “levels” that are characterized by
a long duration of samples oscillating around the mean value.
Furthermore, the fluctuations within each level appear stochas-
tically similar to the external observer. All these observations
taken together support our primary hypothesis that the target
model should clearly differentiate between the states, which
have their unique stochastic properties.
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Fig. 3: Histograms of relative frequencies.

B. First- and Second-Order Characteristics

The first-order characteristics of the RSRP stochastic pro-
cess are represented by using the histograms of relative fre-
quencies for both considered environments in Fig. 3. Here,
one may notice that the histograms have multiple modes.
Comparing this behavior to the measurement traces illustrated
in Fig. 2, one may deduce that the observed peaks characterize
the mean values of different states. This finding implies that
our original hypothesis about state-based behavior is indeed
confirmed.

The (normalized) ACF behavior representing the second-
order properties of the propagation conditions is illustrated in
Fig. 4 for both urban and rural environments including the re-
spective confidence intervals. These boundaries are calculated

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag [-]

Au
to

co
rr

el
at

io
n

[-
]

Shift: 0 400 800

Confidence interval

(a) Urban

Shift:

0 50 100 150 200 250 300
-0.5

-0.25

0

0.25

0.5

0.75

1

Lag [-]
Au

to
co

rr
el

at
io

n
[-

]

0 150 300

Confidence interval

(b) Rural

Fig. 4: Autocorrelation functions of RSRP.

according to the rule of thumb [15] confirming the relation at
lag i, i.e.,

|ρi| ≥ 2/
√
n, (1)

where n is the lag and 2 represents an approximation of 1.96
in (1) corresponding to the confidence limit of α = 0.05.

We specifically note that the ACF of empirical data is often
prone to outliers and the initial point of the ACF estimation.
Therefore, the only qualitative conclusions that can be safely
made by observing the ACF are related to its structure, see,
e.g., discussion in [16]. One such crucial conclusion is that
the ACFs for both considered deployments are characterized
by exponentially decaying behavior. This implies that the
processes in question can be accurately modeled by using
stochastic models with short-term memory.

C. Ergodicity and Stationarity

To verify whether the considered properties are, in fact,
representative, we also need to test whether the considered
processes are ergodic in nature. Recall that a sufficient condi-
tion of ergodicity is K(n) → ∞, where K(n) is n-lag ACF
of the process. Observing Fig. 4, we may deduce that this
condition does hold for both urban and rural deployments,
thus implying that we may safely utilize the histogram, the
relative frequencies, and the ACFs of a single trace as repre-
sentative characteristics of the RSRP processes in the studied
environments.



IV. TIME-DEPENDENT RSRP MODELING

In this section, we develop a time-dependent model for the
statistical data reported in the previous section. Particularly,
we show that the doubly-stochastic Markov chain framework
is a convenient tool for characterizing the RSRP dynamics.

A. Doubly-Stochastic RSRP Modeling

Our analysis performed in the previous section suggests that
the histogram of the relative frequencies is characterized by a
generic shape, while the ACF has a distinct exponential decay.
These properties are specific for the doubly-stochastic Markov
chain models2 that have been heavily utilized in the past for
modeling traffic dynamics in packet networks, see, e.g., [18],
[19]. Note that this type of models retains its analytical
tractability and therefore can be used in both mathematical
and simulation-based studies of LPWAN technologies [20].

There is a number of generic fitting algorithms developed
for doubly-stochastic Markov models, such as those based on
the expectation-minimization (EM) technique [21] or adapta-
tion of maximum likelihood estimation [22]. However, these
techniques are useful only when the internal structure is
not clearly observable and/or the Markov modulating chain
has a large number of states. In our case, one may resort
to simpler techniques. To parameterize the doubly-stochastic
Markov model, we need to determine the number of states,
N , estimate the transition probabilities pij , i, j = 1, 2, . . . , N
as well as the conditional probability mass functions (PMFs)
associated with each state, fi(j), i = 1, 2, . . . , N , j ≥ 0.

To determine the number of states, N , in the modulating
Markov chain, we apply kernel density estimation (KDE)
to cluster the data [23], [24]. This process comprises two
steps: (i) estimation of probability density function (PDF) and
(ii) data clusterization based on the local maxima. The PDF
of the samples is calculated as follows

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (2)

where n is the sample size, h stands for the bandwidth, x is the
actual value, and xi represents the input samples. As a kernel
smoothing function K, we used the PDF having a normal
distribution. The bandwidth of the kernel smoothing function
heavily impacts the resulting tightness of the approximation.
In line with that, to obtain the optimally smoothed KDE, we
calculate the bandwidth according to

h = σ

(
4

3N

)1/5

, (3)

where σ is the standard deviation and N is the sample size.
In the last step, the states of the Markov chain are derived

from the local maxima of the resulting KDE. Each local
maximum represents a single boundary of the Markov chain
state. The two remaining edges are derived from the minimum
and the maximum RSRP values of the input data set.

2These models are also known as hidden Markov chains [17].
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Fig. 5: Comparison of RSRP traces.

Once the number of states N is established, we proceed to
determine the transition probabilities pij , i, j = 1, 2, . . . , N
and PMFs associated with each state, fi(j), i = 1, 2, . . . , N ,
j ≥ 0 by using the conventional statistical methodologies. We
first define the state boundaries between the states and then
calculate the number of state changes for the particular values
of i and j between the previous and the current value in the
trace and divide it by the number of samples in the trace size.

B. Numerical Assessment

We further proceeded by analyzing the results of the
proposed doubly-stochastic Markov chain modeling for both
urban and rural scenarios. To this aim, Fig. 5 demonstrates
a visual comparison of empirical and generated RSRP traces.
As one may observe, the main “state-based” nature of the
empirical traces is adequately captured by our model. It must
be noted that the developed model is based on a Markov chain,
which is, by nature, memoryless. Therefore, it is not possible
to precisely follow the input data sequence. The decision as to
which state to depart from is not determined by the previous
state but only by the current one. The future state, therefore,
relies solely on the probabilities of the transition matrix for a
particular state.

A comparison of histograms of the relative frequencies is
provided in Fig. 6. Here, on top of the visual comparison,
we also performed χ2 statistical test for the heterogeneity of
the samples. With the level of significance α = 0.05, the test



shows that both samples belong to the same distribution for
both considered environments.
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Fig. 6: Histograms of relative frequencies forour model.

A comparison of ACFs is provided in Fig. 7. As expected,
there is no perfect match for the ACFs, as they are heav-
ily impacted by the initial estimation point. Nevertheless,
our doubly-stochastic Markov model adequately captures the
short-memory of the process. To confirm this visual observa-
tion, we have also performed a Box-Ljung statistical test for
the correlation of the first M lags [25]. The test shows that for
the empirical and the generated traces in both environments,
there is a statistically confirmed correlation up to the lag
n = 10.
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Fig. 7: Comparison of autocorrelation functions.

V. CONCLUSIONS

The research reported in this paper is mainly motivated by
the ongoing attempts to optimize modern LPWAN technolo-
gies and adapt them to the needs of novel IoT applications
and services that are more sensitive to delays and losses.
Accordingly, we first report the results of our long-term
NB-IoT measurement campaign of RSRP dynamics in two
representative propagation environments, rural and urban. Our
statistical analysis illustrates that in both considered environ-
ments, the RSRP perceived by a stationary UE is subject to
drastic fluctuations at small and large scales, thus leading to
a complex structure of the RSRP stochastic process.

We further study the distributional and correlational proper-
ties of the RSRP process. Then, we demonstrate that these
properties may be tightly captured by utilizing a doubly-
stochastic Markov chain framework. Parameters of the partic-
ular models for the considered environments are also reported
and can be used as reference cases. The reported models retain
analytical tractability, thus allowing for further studies and
optimization of modern LPWAN technologies. They can be
used for generating sufficiently long traces in case the input
data set is not extensive enough. Their potential applicability
falls within the reinforcement learning area, where a relatively
long input data sequence (tens of thousands of samples) is
needed to generate a sufficiently accurate model. Using the
introduced method, it is possible to extend a shorter input
sequence (e.g., less than 700 values) as required.
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