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Abstract—Non-orthogonal multiple access (NOMA) has drawn
significant attention due to its high spectral efficiency. Invoking
NOMA in heterogeneous networks (HetNets) can support ubiq-
uitous connectivity and satisfy the growing demand for mobile
data traffic. Existing studies on NOMA-enhanced HetNets mainly
focus on network’s quality of service (QoS) metrics such as
delay, throughput, coverage, etc. However, these parameters are
not sufficient for evaluating the quality of experience (QoE)
perceived by users. To that end, we propose a QoE-aware
resource allocation framework for NOMA-enhanced HetNets
under web browsing and video services. Specifically, a unified
QoE-aware joint subchannel and power allocation optimization
problem is formulated to maximize the sum mean opinion scores
(MOSs) of all users, while guaranteeing the QoE requirement of
each user. However, this problem is mixed-integer, non-convex,
and intractable. To solve it, a penalty-based iterative algorithm
is proposed. In particular, binary constraints on subchannel
assignment variables are equivalently transformed into equality
constraints via penalty method. Then, subchannel assignment and
power allocation are alternately optimized in each iteration by
leveraging block coordinate descent method and sequential para-
metric convex approximation techniques. Extensive numerical
results show that the proposed scheme could achieve competitive
QoE performance compared to existing NOMA and orthogonal
multiple access schemes.

Index Terms—QoE, NOMA, HetNets, resource allocation.

I. INTRODUCTION

THE widespread usage of smart devices and services has
resulted in huge surges of wireless data traffic. Statistical

report from Cisco predicts that the monthly global mobile
traffic in 2022 will increase by almost 7-fold compared to
2017, reaching 77 EB (1 EB = 1018 B) per month by 2022
[1]. To meet such extremely high data traffic in wireless
cellular networks, heterogeneous network (HetNet) [2], [3] is
considered one of the most appealing solutions for designing
future wireless networks. In HetNet, the macro base station
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(MBS) provides network coverage, and dense short-range and
lower-power small base stations (SBSs) are deployed within
the macro cell to enhance system capacity. Recently, non-
orthogonal multiple access (NOMA) [4]–[6], as a promising
enhanced technology to further boost spectral efficiency and
connectivity density, has been introduced into HetNets [7]–
[13]. The key characteristic of NOMA is to enable more
than one user to simultaneously access the same channel via
the multiplexing in power domain or code domain, which
is essentially different from conventional orthogonal multiple
access (OMA) strategies in which the time/frequency/code
resource unit is occupied by only one user. To be specific,
power domain NOMA (PD-NOMA) supports multi-user trans-
mission within the same time/frequency/code resource via
distinguishing them with different power levels, whereas code
domain NOMA (CD-NOMA) enables multiple transmissions
within the same time-frequency resource through allocating
different spreading sequences to different users [4]–[6], [14].
In this paper, we concentrate on the PD-NOMA in a downlink
HetNet, in which the macro cell users (MUEs) and small cell
users (SUEs) in each small cell can share the same radio
resource by adopting various power levels. Moreover, with the
aid of successive interference cancellation (SIC) technique at
each NOMA receiver, the multi-user signal can be detected
and thus the inter-user interference is managed.

On the other hand, a notable trend observed from Cisco
report is that video streaming will occupy 79 percent of global
traffic by 2022 [1]. With the rising popularity of Internet
of Things (IoT), video service has been developed in new
paradigms, such as high-definition video streaming, video-
embedded web browsing, etc. Motivated by the demands of
high-quality video applications, network operators have turned
their attention toward the user-oriented Quality of Experience
(QoE). ITU-T defines QoE as the overall acceptability of the
services subjectively by end-user [15]. In order to support
the users with interactive and real-time services in NOMA-
enhanced HetNets, it is essential for the network and service
providers to provide a high QoE for each service user. How-
ever, the new challenges in terms of co-channel interference
caused by frequency reuse between the macro cell and small
cells in NOMA HetNets may lead to negative effect on fluency
and quality of video streaming, and thus affect the users’
perceived quality. In addition, owing to the diversity of video
characteristics, the different level of QoE may be experienced
by the users even when those users have the same data rate,
which means that efficient QoE-aware resource allocation
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is critical to guarantee users with better experience in the
resource-limited wireless networks. By exploiting the potential
performance gain of NOMA scheme, this paper explores the
QoE-based cross-tier resource allocation design in NOMA-
enhanced HetNets.

A. Related Works

Recently, NOMA scheme has been applied to the HetNets
to improve the system performance from different perspectives
[7]–[13]. In [7], the authors investigated the fair energy effi-
cient resource allocation problem in downlink NOMA HetNets
with the consideration of the tradeoff among system sum rate,
fairness and energy efficiency (EE), and developed the mono-
tonic polyblock approach and a lower complexity successive
convex approximation method to derive a global optimal and
near-optimal solutions. In [8], the authors studied the impact
of non-ideal SIC receiver on the performance of downlink
NOMA HetNets. In [9], the authors investigated the EE max-
imization problem subject to the minimum rate requirement
and the cross-tier interference constraint in NOMA HetNets.
In [10], the authors proposed a joint subchannel and power
allocation optimization scheme aiming at maximizing the EE
of NOMA HetNet and sum rate of SUEs. Considering user
fairness among the users, the authors in [11] proposed a novel
time slotting (TS) technique in which time slot duration and
power allocation coefficients are jointly optimized to maximize
the throughput of weak users and the EE of their considered
system. By considering both backhaul and access communica-
tion in HetNets, the authors in [12] investigated a cooperative
transmission scheme to maximize the system achievable rate
and EE, respectively. Similar to [12], the authors in [13]
proposed a joint bandwidth and power allocation algorithm
aiming at maximizing EE subject to the minimum data rate
demands of the users and the maximum transmit power of the
BSs. Different from the previous work in [7]–[13] concerning
HetNet scenario, the authors in [16] considered a single-cell
full-duplex multi-carrier NOMA network, and formulated a
problem of joint subchannel allocation and power optimization
which maximizes weighted sum system throughput. For both
uplink and downlink single-cell NOMA scenario, the authors
in [17] proposed a joint user clustering and power allocation
scheme to maximize the sum-throughput. Considering a multi-
cell in-band full duplex enabled NOMA system, the authors
in [18] investigated the problem of user association, mode
selection and power allocation.

In the aforementioned work, the QoS metrics (e.g., through-
put, latency, coverage, etc.) have been widely investigated to
optimize the network performance. Different from the QoS
criteria which are primarily based on technical performance
rather than perceived quality from the user perspective, QoE
criteria combine technical parameters with human-related pa-
rameters [19]–[21]. The latest researches reveal that although
the network-oriented QoS metrics are important, they are not
perfect to evaluate user QoE. Therefore, to assure better user
experience under limited wireless resources, some attempts
focusing on QoE optimization through proper resource al-
location have been carried out [22]–[29]. In [22], the au-

thors investigated QoE optimization problem for device-to-
device (D2D) communication in cognitive radio technology
based HetNets, and proposed a joint resource block assign-
ment, discrete power allocation and BS association design
to maximize the average QoE of the D2D users. In [23],
the authors considered QoE-aware joint beamforming and
power optimization problem which maximizes the sum mean
opinion scores (MOSs) of the users in a two-tier multiple-
input multiple-output (MIMO) HetNets. In [24], the authors
studied a cross-tier QoE design in a multiuser orthogonal
frequency-division multiple access (OFDMA) network, with
the consideration of subcarrier allocation and power optimiza-
tion to improve the level of QoE among users. Considering
a single-cell OMA system employing time-division multiple
access (TDMA) and OFDMA, the authors in [25] proposed a
joint resource block assignment and power allocation scheme
aiming at maximizing the minimum MOS of the users under
the minimum MOS constraint. Unlike the mentioned works
mainly focusing on traditional OMA system, the QoE-oriented
resource allocation optimization has also been considered in
NOMA-enabled cellular network recently. In [26], the authors
proposed a QoE-based power allocation scheme for wireless
video service in a single-cell single-carrier NOMA network.
By applying scalable video multicast transmission technique
to single-cell NOMA scenario, the authors in [27] proposed
a QoE-driven power allocation solution. Considering a multi-
cell multi-carrier NOMA system, the authors in [28] proposed
an optimal resource allocation scheme based on branch-and-
bound method and a low complexity solution based on match-
ing theory and successive convex approximation technique to
address their considered QoE optimization problem optimally
and sub-optimally. In [29], the authors investigated the com-
bination of joint transmission (JT) and multi-carrier NOMA
in a two-tier cognitive radio network consisting of one MBS
for primary tier and multiple SBSs for secondary tier, and
proposed a novel joint power control and scheduling scheme
based on Augmented Lagrangian method to maximize sum
MOSs of the secondary users. The summary of related works
is shown in Table I.

B. Motivation and Contributions

To the best of our knowledge, the QoE-driven joint power
and subchannel allocation for both macro cell users and small
cell users in NOMA-enhanced HetNets, where NOMA policy
is employed for both macro cell and small cell, has never been
well studied. In contrast to the QoE optimization for multi-
cell NOMA case [28], the NOMA-enhanced HetNet design
presents new challenges in terms of interference management,
because it brings additional cross-tier interference to the multi-
cell network. As such, whether the combination of NOMA
and HetNet is capable of enhancing the QoE of users still
remains unknown. Motivated by the aforementioned issues,
we investigate the QoE-aware joint power and subchannel
allocation for NOMA HetNet, while taking into account
the users’ QoE requirement and the cross-tier interference
mitigation. We consider that the NOMA HetNet provides
its serving users with web browsing or video application.
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TABLE I
COMPARISON BETWEEN OUR WORK AND THE EXISTING LITERATURE

Reference Network
Scenario

Multiple
Access
Scheme

Objective QoE
Constraints

Web
Browsing

Video
Streaming

[7] heterogeneous NOMA EE and Fairness × × ×
[8] heterogeneous NOMA Network Capacity × × ×
[9] heterogeneous NOMA EE × × ×
[10] heterogeneous NOMA EE and Network Capacity × × ×
[11] heterogeneous NOMA Throughput, EE, and Fairness × √ ×
[12] heterogeneous NOMA Sum-Rate × × ×
[13] heterogeneous NOMA EE × × ×
[16] single-cell NOMA Throughput × × ×
[17] single-cell NOMA Sum Throughput × × ×
[18] multi-cell NOMA Time-averaged uplink and downlink rate × × ×
[22] heterogeneous OFDMA Sum MOSs

√ √ √

[23] heterogeneous OMA Sum MOSs
√ √ √

[24] heterogeneous OFDMA Max-Min MOS
√ √ √

[25] single-cell OFDMA+TDMA Max-Min MOS
√ √ ×

[26] single-cell NOMA Wireless Video QoE × × ×
[27] single-cell NOMA Average QoE × × √

[28] multi-cell NOMA Sum MOSs × √ ×
[29] heterogeneous OFDMA+NOMA Sum MOSs

√ √ √

Our work heterogeneous NOMA Sum MOSs
√ √ √

Such applications have become dominant application services
in current wireless communication networks, and hence it
is necessary to provide superior QoE for users using these
services. It should be noted that there are main differences
between our work and the previous work in [29], which are
summarized as the following three aspects. Firstly, different
from [29], where the QoE optimization is considered for
the SUEs only, in this manuscript, we study the QoE-based
resource allocation for both MUEs and SUEs. Secondly, in
contrast to the considered scenario in [29], where OFDMA
policy is employed in the macro cell, in our proposed system
model, NOMA strategy is considered for both the macro cell
and small cells. Thirdly, different from [29], where multi-user
NOMA cluster is considered in small cells, in our system
model, we assume that at most two users can reuse each
subchannel of the BS (including MBS and SBSs) to reduce the
error propagation and the decoding complexity at the receiver
[30]1. To summarize, the primary contributions of our work
are as follows:

1) We propose a unified QoE-aware resource allocation
framework for NOMA-enhanced HetNet to maximize
the sum MOSs of users, which is considered the user-
oriented QoE criteria rather than conventional network-
oriented QoS criteria. Specifically, we formulate two
QoE-based joint subchannel and power allocation op-
timization problems corresponding to two different ser-
vices. Meanwhile, in order to ensure the minimum satis-
faction of each user, we also consider the QoE constraint
in the optimization problems, which is different from
previous NOMA work only concerning QoS threshold.
The considered optimization problems are presented as
mixed-integer programming and non-convex problems.

2) We propose a penalty-based iterative algorithm, namely
penalty block coordinate descent (abbreviated as P-

1The case of multi-user NOMA cluster for the considered system model is
set aside for our future work.

BCD), to address the challenging optimization prob-
lems by applying the penalty method, block coordinate
descent (BCD) method and sequential parametric con-
vex approximation (SPCA) techniques. Specifically, the
original non-convex problem is first converted into an
equivalent and tractable one. Then, the proposed P-BCD
based algorithm is developed to alternately optimize the
subchannel assignment and the power allocation. Finally,
we analyze the complexity of the proposed iterative
optimization algorithm.

3) We quantify the benefits of our proposed QoE-based re-
source allocation schemes for NOMA-enhanced HetNet.
Extensive numerical results demonstrate that proposed
schemes can achieve competitive QoE performance
compared to OMA scheme and two existing NOMA
schemes in [10] and [29]. Specifically, when the number
of MUEs is large, the proposed scheme can achieve
better MOS performance with slightly high complexity
than the reference scheme in [29].

C. Organization

The rest of the paper is organized as follows. The consid-
ered system model and the formulated optimization problem
are presented in Section II. The proposed joint optimization
framework is introduced in Section III. Solutions to the QoE
optimization problem for web browsing and video application
are provided in Section IV and Section V, respectively. Our
numerical results are presented in Section VI. The paper is
concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Model

We consider a downlink two-tier HetNet that consists of a
MBS and several SBSs as illustrated in Fig. 1. We assume
that there are " MUEs, denoted by M = {1, · · · , "}, and (
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TABLE II
TABLE OF NOTATIONS

Notations Definition
M Set of " MUEs, M = {1, · · · , " }
S Set of ( SBSs, S = {1, · · · , ( }
N Set of # SCs, N = {1, · · · , # }
*B Set of SUEs served by SBS B
U=B,D SC assignment indicator for SUE D in SBS B
V=< SC assignment indicator for MUE <
ℎ=B,D Channel gain from SBS B to SUE D over SC =

ℎ=
:,B,D

Channel gain from SBS : to SUE D in SBS B over SC =

ℎ
",(,=
B,D Channel gain from MBS to SUE D in SBS B over SC =

6=< Channel gain from MBS to MUE < over SC =

6
(,",=
B,< Channel gain from SBS B to MUE < over SC =

?=B,D Transmit power from SBS B to SUE D over SC =

?=< Transmit power from MBS to MUE < over SC =

G=B,D Transmit signal from SBS B to SUE D over SC =

G=< Transmit signal from MBS to MUE < over SC =

W=B,D , W
=
<

SINR of SUE D in SBS B and MUE < over SC =,
respectively

'B,D , '< Data rate of SUE D in SBS B and MUE <, respectively
PSNRB,D PSNR of SUE D in SBS B
PSNR< PSNR of MUE <
MOSB,D MOS of SUE D in SBS B
MOS< MOS of MUE <
MOSmin Minimum user satisfaction
%Bmax, %"max Maximum transmit power of SBS B and MBS, respectively
R�×1 Set of all � × 1 vectors with real entries
Z�×1 Set of all � × 1 vectors with integer entries

small cells, denoted by S = {1, · · · , (}, are deployed within
the macro cell area. We define*B (B ∈ S) as the set of SUEs in
the small cell B. The system bandwidth W is equally divided
into N subchannels (SCs), represented by N = {1, · · · , #},
and the bandwidth of each SC is Bn = ,/# (= ∈ N). Let
binary variable U=B,D be the subchannel assignment indicator
for SUE, i.e., if SC = is allocated to SUE D in the small cell
B, U=B,D = 1; otherwise, U=B,D = 0. Let binary variable V=< be
the subchannel assignment indicator for MUE, i.e., if SC =

is allocated to MUE < in the macro cell, V=< = 1; otherwise,
V=< = 0. By applying PD-NOMA in the HetNet, superposition
coding and SIC are performed at BSs and users, respectively.
Since SIC performed at the receiver may lead to a considerable
complexity, we consider a simple case in which at most two
users can reuse each subchannel of the BS [30]. In this way, the
error propagation and the decoding complexity at the receiver
are reduced to a tolerable level [31]. A block fading channel
is considered in this paper and channel gain does not vary on
one SC. We assume perfect channel state information (CSI) is
available at both MBS and SBSs [9], [30], [32]. Without loss
of generality, we assume the channel gains of SUEs served by
SBS B on SC = can be sorted as

��ℎ=B,1�� ≤ · · · ≤ ��ℎ=B,D �� ≤ · · · ≤ ��ℎ=B,*B ��, (1)

where ℎ=B,D denotes the channel gain of the SUE D served by
SBS B on SC =. According to the NOMA policy, the SUE D

can remove interference from the SUE E (for |ℎ=B,D | > |ℎ=B,E |)
by performing SIC technique. Then, the remaining received
signal at the SUE D served by SBS B on SC = can be expressed

SBSSBS

MBS

SBSSBS

SBSSBSSBS
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Fig. 1. A NOMA-enhanced HetNet model.

as:

H=B,D = ℎ
=
B,D

√
?=B,DG

=
B,D︸           ︷︷           ︸

desired signal

+
∑

;∈*B , |ℎ=B,; |> |ℎ
=
B,D |

ℎ=B,D

√
?=
B,;
G=B,;︸                                    ︷︷                                    ︸

intra-cell interference

+
∑

:∈S/B

∑
C ∈*:

ℎ=:,B,D

√
?=
:,C
G=:,C︸                                      ︷︷                                      ︸

inter-cell interference

+
∑

<∈M
ℎ",(,=B,D

√
?=<G

=
<︸                        ︷︷                        ︸

cross-tier interference

+ I=B,D︸︷︷︸
noise

, (2)

where G=B,D and G=< denote transmitted signals from SBS B to
its SUE D, i.e., (*�B,D , and from MBS to its MUE < on SC
=, respectively. ?=B,D , ?=< are transmitted power from SBS B

to (*�B,D and from MBS to MUE < on SC =, respectively.
ℎ=
:,B,D

, ℎ",(,=B,D are channel gains from SBS : to (*�B,D served
by SBS B, and that from MBS to (*�B,D served by SBS B over
SC =, respectively. I=B,D is noise term following the distribution
I=B,D ∼ CN (0, X2). Based on (2), the signal-to-interference-
plus-noise-ratio (SINR) at (*�B,D on SC = can be given by

W=B,D =

��ℎ=B,D ��2?=B,D
�=
B,D,8=CA0

+ �=
B,D,8=C4A

+ �=B,D,2A>BB + X2 , (3)

where �=
B,D,8=CA0

=
∑
;∈*B , |ℎ=B,; |> |ℎ

=
B,D |

��ℎ=B,D ��2?=B,; ,
�=
B,D,8=C4A

=
∑
:∈S/B

∑
C ∈*:

��ℎ=
:,B,D

��2?=
:,C

, and �=B,D,2A>BB =∑
<∈M

��ℎ",(,=B,D

��2?=<. Note that for the SUE D with the best
channel quality over SC = in SBS B, it could remove the intra-
cell interference of the user with weak channel quality by
applying SIC, namely �=

B,D,8=CA0
= 0 [33]. Thus, the data rate of

(*�B,D on SC = is expressed as '=B,D = �=U
=
B,D log2

(
1 + W=B,D

)
.

Then, the data rate of (*�B,D can be given by

'B,D =
∑
=∈N

'=B,D =
∑
=∈N

�=U
=
B,D log2

(
1 + W=B,D

)
. (4)
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In the macro cell, we assume the channel gains of MUEs
on SC = are sorted as��6=1 �� ≤ · · · ≤ ��6=<�� ≤ · · · ≤ ��6=" ��, (5)

where 6=< denotes the channel gain of MUE < on SC =. After
applying the SIC technique at MUEs, the received signal at
MUE < on SC = is expressed as

H=< = 6
=
<

√
?=<G

=
<︸       ︷︷       ︸

desired signal

+
∑

;∈M, |6=
;
|> |6=< |

6=<

√
?=
;
G=;︸                             ︷︷                             ︸

intra-cell interference

+
∑

B∈S

∑
D∈*B

6(,",=B,<

√
?=B,DG

=
B,D︸                                     ︷︷                                     ︸

cross-tier interference

+ I=<︸︷︷︸
noise

, (6)

where 6=< and 6(,",=B,< are channel gains from MBS to MUE
<, and that from SBS B to MUE < over SC =, respectively.
I=< is noise term following the distribution I=< ∼ CN (0, X2).
According to (6), the SINR at MUE < on SC = can be
expressed as

W=< =

��6=<��2?=<
�=
<,8=CA0

+ �=<,2A>BB + X2 , (7)

where �=
<,8=CA0

=
∑
;∈M, |6=

;
|> |6=< |

��6=<��2?=
;
, �=<,2A>BB =∑

B∈S
∑
D∈*B

��6(,",=B,<

��2?=B,D . Note that for the MUE < with the
best channel quality over SC =, it would not perceive intra-
cell interference after performing SIC, namely �=

<,8=CA0
= 0

[33]. Thus, the data rate of MUE < on SC = is given by
'=< = �=V

=
< log2

(
1 + W=<

)
. Then, the data rate of MUE < can

be computed as

'< =
∑
=∈N

'=< =
∑
=∈N

�=V
=
< log2

(
1 + W=<

)
. (8)

B. Necessary Conditions to Perform SIC

With the sorted channel gains
��ℎ=B,E �� < ��ℎ=B,D ��, ∀B ∈ S, = ∈

N , (D, E) ∈ *B , SUE D can successfully decode and remove
interference from the superposition signal of SUE E by SIC,
if SUE D’s received SINR for SUE E’s signal is larger than or
equal to the received SINR of SUE E for its own signal [31]–
[33]. Thus, we have the following SIC decoding conditions:��ℎ=B,D ��2?=B,E∑

;∈*B , |ℎ=B,; |> |ℎ
=
B,E |

��ℎ=B,D ��2?=B,; + �=B,D,8=C4A + �=B,D,2A>BB + X2

≥
��ℎ=B,E ��2?=B,E

�=
B,E,8=CA0

+ �=
B,E,8=C4A

+ �=B,E,2A>BB + X2 , (9)

where �=
B,D,8=C4A

=
∑
:∈S/B

∑
C ∈*:

��ℎ=
:,B,D

��2?=
:,C

, �=B,D,2A>BB =∑
<∈M

��ℎ",(,=B,D

��2?=<, �=
B,E,8=CA0

=
∑
;∈*B , |ℎ=B,; |> |ℎ

=
B,E |

��ℎ=B,E ��2?=B,; ,
�=
B,E,8=C4A

=
∑
:∈S/B

∑
C ∈*:

��ℎ=
:,B,E

��2?=
:,C

, and �=B,E,2A>BB =∑
<∈M

��ℎ",(,=B,E

��2?=<.
Furthermore, the inequality in (9) can be equivalently rewrit-

ten as��ℎ=B,D ��2 (
�=B,E,8=C4A + �=B,E,2A>BB + X2

)
−

��ℎ=B,E ��2 (
�=B,D,8=C4A + �=B,D,2A>BB + X2

)
≥ 0. (10)

Similarly, with the sorted channel gains
��6=I �� < ��6=<��, ∀= ∈

N , (<, I) ∈ M, MUE < can correctly decode the signal from
MUE I when the following inequality holds [31]–[33]:��6=<��2?=I∑
;∈M, |6=

;
|> |6=I |

��6=<��2?=
;
+ �=<,2A>BB + X2

≥
��6=I ��2?=I

�=
I,8=CA0

+ �=I,2A>BB + X2 ,

(11)

where �=<,2A>BB =
∑
B∈S

∑
D∈*B

��6(,",=B,<

��2?=B,D , �=
I,8=CA0

=∑
;∈M, |6=

;
|> |6=I |

��6=I ��2?=; , �=I,2A>BB =
∑
B∈S

∑
D∈*B

��6(,",=B,I

��2?=B,D .
Furthermore, the inequality in (11) can be equivalently

expressed as��6=<��2 (
�=I,2A>BB + X2

)
−

��6=I ��2 (
�<<,2A>BB + X2

)
≥ 0. (12)

C. MOS-Based QoE Evaluation Model

To evaluate user perceived quality for real-time and in-
teractive services, the QoE model is needed to measure the
users’ experience. To this end, we adopt the application-
oriented MOS, which is widely applied to transform objective
technical parameters into the subjective user perceived quality.
Different MOS models can be modelled for different services.
As the two most popular applications in wireless networks
[34], in this paper, we focus on web browsing as well as video
streaming service.

1) Web Browsing Service: For web browsing service, its
MOS model can be expressed as [24]

MOSF41 = −� ln (3 (')) +  , (13)

where MOSF41 value reflects the user QoE from a scale of
1 (bad) to 5 (excellent). ' [18C/B] represents the data rate.
The constants � and  are determined via analyzing the
experimental results of the web browsing service and are set
to 1.1120 and 4.6746, respectively [24]. 3 (') represents the
delay between the request for a web page and the reception of
overall contents. 3 (') is related to the parameters including
the round trip time, the web page size, and the employed
protocols like Transfer Control Protocol (TCP) and Hypertext
Transfer Protocol (HTTP). We apply these two protocols in
our considered system. Thus, function 3 (') can be given by
[34]

3 (') = 3')) + �(
'
+ !

(
"((

'
+ '))

)
−

2"((
(
2! − 1

)
'

,

(14)

where the parameters ')) [B] , "(( [18C] and �( [18C]
represent the round trip time, the maximum segment size
and the web page size, respectively. ! = min [!1, !2] is the
parameter for the packet-switching cycle from user to server
in the process of downloading web pages [34]), where the
parameters !1 and !2 are given by

!1 = log2

(
' · '))
"((

+ 1
)
− 1, !2 = log2

(
�(

2"((
+ 1

)
− 1.

(15)
Note that the MOS function corresponding to web browsing

service shows a strong sensitivity with the data rate as well
as �(, while the impact of ')) on MOS is less important
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especially for the case of short range of ')) [24]. Moreover,
as mentioned in the 3GPP technical specification of the LTE
release 8, the ')) which is lower than 10 ms is expected to
be achieved in the future wireless communication networks
[35]. Therefore, we consider ')) ≈ 0 ms [24] in this
work. According to this assumption, the function in (14) is
reformulated as 3 ('F41) = (�(/'F41). For the web user
(*�B,D in small cell B, its MOS model can be denoted by

MOSF41B,D = � ln('B,D) + "B,D , (16)

where "B,D =  − � ln
(
�(B,D

)
is a constant. Similarily, the

MOS model of web user MUE < can be given by

MOSF41< = � ln('<) + "<, (17)

where "< =  − � ln (�(<) is a constant.
2) Video Service: In this paper, we also apply the video

streaming application with H.264/MPEG-4 Encoded Video.
Furthermore, the MOS model of the video service can be
expressed as [36]

MOSE834> = dlog (PSNR) + i, (18)

where the parameters d and i are set such that the MOS value
in (18) remains the range from 1 to 4.5 [36]. For video service,
the MOS value mainly depends on the peak SNR (PSNR),
which can be written by

PSNR = 5 + 6
√
'

ℎ

(
1 − ℎ

'

)
, (19)

where 5 , 6, and ℎ is generally determined by a specific video
sequence. In this work, we obtain these three parameters by
using three MOS-Rate pairs. For the video user (*�B,D served
by SBS B, its MOS model is expressed as

MOSE834>B,D = dlog
(
PSNRB,D

)
+ i, (20)

where PSNRB,D = 5 + 6
√
'B,D
ℎ

(
1 − ℎ

'B,D

)
. Analogously, the

MOS of MUE < can be given by

MOSE834>< = dlog (PSNR<) + i, (21)

where PSNR< = 5 + 6
√
'<
ℎ

(
1 − ℎ

'<

)
.

D. Problem Formulation

This paper aims to optimize the users’ QoE in NOMA
HetNet, by jointly designing subchannel assignment and power
allocation. We consider two optimization problems corre-
sponding to two types of applications used in the considered
network. The objectives of these two problems are to maximize
the sum MOSs of all users under the maximum transmitted
power constraints of the BSs, and the subchannel assignment
constraints. Additionally, in order to ensure the minimum
satisfaction and fairness among NOMA users, we add the QoE

constraints to the optimization problem. Therefore, a unified
QoE optimization problem can be formulated as:

max
",#,P

∑
B∈S

∑
D∈*B

MOSB,D +
∑
<∈M

MOS< (22a)

s.t. MOSB,D ≥ MOSmin,∀B, D; MOS< ≥ MOSmin,∀<,
(22b)∑

D∈*B

∑
=∈N

?=B,D ≤ %Bmax,∀B;
∑
<∈M

∑
=∈N

?=< ≤ %"max, (22c)

?=B,D ≥ 0,∀B, D,∀=; ?=< ≥ 0,∀<,∀=, (22d)∑
D∈*B

U=B,D ≤ 2,∀B,∀=;
∑
<∈M

V=< ≤ 2,∀=, (22e)

U=B,D ∈ {0, 1} ,∀B, D,∀=; V=< ∈ {0, 1} ,∀<,∀=, (22f)
(10), (12), (22g)

where " ∈ Z#(*B×1 and # ∈ Z#"×1 are the collections of
subchannel assignment variables U=B,D and V=<, respectively,
and P ∈ R(#"+#(*B)×1 is the collections of power allocation
variables ?=B,D and ?=<. (22b) indicates that the minimum sat-
isfaction of each user should be guaranteed, which is different
from previous studies considering only QoS thresholds. (22c)
restricts the transmitted power of BSs; (22d) demonstrates the
transmitted power of each BS should be positive; (22e) and
(22f) characterize the constraints on each subchannel, namely,
at most two users can be multiplexed on each subchannel of
the BS [30] to limit the decoding complexity at user receiver;
(22g) guarantees successful SIC at user receiver. Note that
(22) is a mixed-integer programming and non-convex problem
due to the following three main reasons. First, the subchannel
assignment variables (i.e., " and #) are binary and thus (22b),
(22e) and (22f) involve integer constraints. Second, objective
function in (22a) is not jointly concave with respect to (w.r.t.)
", # and P. Third, both MOSB,D and MOS< in constraint
(22b) are not jointly concave w.r.t. ", # and P, and thus
the constraint (22b) constitutes non-convex feasible set. For
solving such non-convex optimization problems, the exist-
ing methods such as polyblock outer approximation method
[37] or branch-reduce-and-bound method [38] may derive the
global optimal solutions. However, both methods have a worst-
case complexity that could exponentially increase with the
number of BSs and UEs. In the next section, we introduce
a low-complexity and efficient iterative algorithm to address
the formulated QoE-aware resource allocation optimization
problem.

III. PROPOSED JOINT OPTIMIZATION
FRAMEWORK

A. The P-BCD Optimization Framework
In this subsection, we give a brief introduction of the

proposed P-BCD method, which can be employed to tackle
non-convex optimization problem with coupling constraints.
Consider the following problem:

(Q) min
z
� (z)

s.t. 8(z) ≤ 0,
-(z) = 0,
z ∈ `, (23)
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where � (z) represents a scalar function with continuity and
differentiability; -(z) ∈ R: denotes a vector consists of k
functions with continuity and differentiability; 8(z) ∈ RB
denotes a vector consists of s functions with differentiability;
` ⊆ R= is a closed convex set.

To handle complicated equality constraints in problem Q,
we resort to leveraging penalty method [39]. Therefore, we
can formulate the following penalty problem:

(Qg) min
z
�g (z) , � (z) +

g

2
‖-(z)‖2

s.t. 8(z) ≤ 0,
z ∈ `, (24)

where g > 0 acts as a scalar penalty parameter. Particularly, the
solution of problem Qg is identical to that of problem Q when
g → ∞ [39]. However, problem Qg is still hard to be solved
when � (z), -(z) and 8(z) are non-convex w.r.t. the variables
z. To address Qg , we propose P-BCD method summarized
in Algorithm 1. At each iteration, Qg can be approximately
solved by adopting BCD [40] and SPCA techniques [41].
The basic idea behind BCD method integrated with SPCA
for solving problem Qg is to successively minimize a locally
tight upper of the objective of Qg , until a stationary point
is obtained. The convergence analysis of P-BCD method is
similar to that of [42].

Algorithm 1 P-BCD Algorithm for solving Qg
1: Initialize the maximum iterations 41, maximum tolerance
YE , iteration index E, and parameter 2 > 1 for penalty.

2: repeat
3: Solve penalty problem QgE with given 3E by

the proposed BCD based method, denote zE+1 =

��� (QgE , zE ) as obtained feasible solutions.
4: Update the penalty parameter 3E by 3E+1 = 23E .
5: Set E = E + 1 and compute �g (zE+1).
6: until

���g (zE+1)−�g (zE )�����g (zE )�� ≤ YE or meet the maximum iteration

number E = 41.

As observed from Algorithm 1, the problem Qg can be
decoupled into inner layer (step 3 in Algorithm 1) and outer
layer. For a given penalty parameter gE in QgE , the inner-
layer problem can be solved approximately via BCD method
in combination with SPCA techniques. Then, according to
Step 4 of Algorithm 1, the penalty parameter gE is updated
iteratively at outer layer. The above steps are repeated until
some termination criteria are satisfied.

The overview of the proposed P-BCD optimization frame-
work is illustrated in Fig. 2, which is presented at the top of the
next page. A unified QoE-aware joint subchannel and power
optimization problem is formulated in (22). Furthermore, two
problems corresponding to two adopted services are formu-
lated in (25) and (40), respectively. To handle the complex
binary constraints on subchannel allocation, the original prob-
lem is first reformulated into an equivalent penalty problem.
Then, for a given penalty value, penalty problem can be solved
via BCD method. Specifically, the variables of subchannel
allocation and transmitted power are alternately optimized

in the inner layer. When subchannel assignment subproblem
or power allocation subproblem is non-convex, a series of
transformations can be adopted to convert the non-convex
problem into a convex form, which can be efficiently addressed
by SPCA technique. The proposed method for solving the
two QoE optimization problems will be discussed in detail
in Section IV and V, respectively.

IV. WEB BROWSING SERVICE CASE

In this section, we sought to maximize aggregated MOSs of
web users by carefully allocating the power and subchannel
resource. Meanwhile, QoE constraint on each web user is con-
sidered in this QoE optimization problem to further guarantee
minimum satisfaction for each web user. Since the considered
QoE-based joint subchannel and power allocation optimization
problem is complex to solve, we first transform this problem
into an equivalent but more tractable one by invoking a series
of auxiliary variables. Then, we apply the proposed P-BCD
method to tackle the converted problem. Finally, we give
complexity analysis of the proposed optimization method.

A. Problem Transformation
By integrating the MOS models of web browsing service

(i.e., (16) and (17)) into (22), we can formulate the following
joint subchannel and power allocation optimization problem

max
",#,P

∑
B∈S

∑
D∈*B

� ln(
∑
=∈N

�=U
=
B,D log2

(
1 + W=B,D

)
)

+
∑
<∈M

� ln(
∑
=∈N

�=V
=
< log2

(
1 + W=<

)
) + o (25a)

s.t. (221) − (226). (25b)

where o =
∑
B∈S

∑
D∈*B "B,D +

∑
<∈M "<. Problem (25) is

challenging to solve because the objective function in (25a) is
non-concave w.r.t. ", # and P, and (22b) in the problem (25)
is a non-convex constraint w.r.t. ", # and P. Meanwhile, the
optimization variables " and # are integer forms. Thus, we
need to transform the problem (25) into a more tractable one.
First, let us tackle the non-convex objective function (25a).
Introducing auxiliary variables (s =

{
[B,D

}
∈ R(*B×1 and

(m = {[<} ∈ R"×1, the problem (25) can be rewritten as

max
",#,P
(s ,(m

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) + o (26a)

s.t.
∑
=∈N

�=U
=
B,D log2

(
1 + W=B,D

)
≥ [B,D ,∀B, D;∑

=∈N
�=V

=
< log2

(
1 + W=<

)
≥ [<,∀<, (26b)

(221) − (226). (26c)

Now, the objective function (26a) is a concave function
w.r.t. (s and (m. Subsequently, by introducing the auxiliary
variables "̃ =

{
Ũ=B,D

}
∈ Z#(*B×1 and #̃ =

{
Ṽ=<

}
∈ Z#"×1, the

integer constraint (22f) in the problem (26) can be equivalently
transformed into the following forms [43]

U=B,D (1 − Ũ=B,D) = 0,∀B, D,∀=; U=B,D = Ũ=B,D ,∀B, D,∀=, (27)
V=< (1 − Ṽ=<) = 0,∀<,∀=; V=< = Ṽ=<,∀<,∀=. (28)
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Fig. 2. The proposed P-BCD optimization framework for solving the sum MOSs maximization problem (22).

As a result, the integer constraint (22f) in the problem (26) is
equivalently converted into corresponding equality constraints,
i.e., (27)-(28). Then, (25) is equivalently reformulated as

max
",#,"̃,#̃
(s ,(m ,P

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) + o (29a)

s.t. (221) − (224), (226), (261), (27) − (28). (29b)

B. The P-BCD for Solving (29)

In this subsection, we apply the P-BCD method described in
Section III-A to address problem (29). To handle the converted
equality constraints in (27)-(28), we first absorb the penalty
terms into the objective function and formulate a penalized
problem corresponding to problem (29). Then, for a given
penalty parameter, we develop a BCD based inner-loop itera-
tive algorithm to deal with the resultant optimization problem.
Specifically, the subchannel allocation and transmitted power
will be alternately optimized in the inner loop. Finally, we
summarize the proposed P-BCD based algorithm for tackling
the resultant resource allocation problem.

1) The Penalized Problem
The problem (29) is further complicated significantly due

to the presence of equality constraints in (27)-(28). According
to P-BCD method shown in Subsection III-A, we can get the
following penalized problem

max
",#,"̃,#̃
(s ,(m ,P

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) − gΓ(", "̃, #, #̃) + o

(30a)
s.t. (221) − (224), (226), (261), (30b)

where Γ(", "̃, #, #̃) = ∑
B∈S

∑
D∈*B

∑
=∈N (

��U=B,D − Ũ=B,D ��2 +��U=B,D (1− Ũ=B,D)��2) +∑<∈M
∑
=∈N (

��V=< − Ṽ=<��2 + ��V=< (1− Ṽ=<)��2).
One can see that when g → ∞, the solution to (30) is an
approximate solution to (29) [39]. The problem (30) is still
complex, since constraint (22b) in the problem (30) is a non-
convex constraint w.r.t. ", # and P. Next, we need to address
problem (30) with given penalty parameter g.

2) The BCD Algorithm for Solving (30)
After constructing the penalty problem (30), we employ

BCD method and SPCA technique to address the non-convex
optimization problem (30) with given g. According to BCD
method [40], the optimization variables in inner-layer problem
can be divided into three blocks for auxiliary variables

{
"̃, #̃

}
,

subchannel assignment {", #}, and power allocation {P}.
Then, we optimize these three blocks alternately. However,
even with given solutions of auxiliary variables

{
"̃, #̃

}
and

subchannel assignment {", #}, the resultant power allocation
subproblem is still hard to handle due to its non-convexity.
Thus, a series of transformations are further adopted via
SPCA such that original inner-layer optimization problem is
converted to a solvable and tractable one.

Step1: we optimize variables
{
"̃, #̃

}
for any given subchan-

nel allocation policy {", #}. One can know that
{
"̃, #̃

}
only

lies in the objective function (30a). Similar to [43], we can
obtain a closed-form solution for

{
"̃, #̃

}
, which can be written

by

Ũ=B,D =
U=B,D + (U=B,D)2

1 + (U=B,D)2
,∀B, D,∀=; Ṽ=< =

V=< + (V=<)2

1 + (V=<)2
,∀<,∀=.

(31)
Step2: we optimize variables {", #} for any given auxiliary

variables and power allocation policy
{
"̃, #̃,P

}
. Then sub-

channel assignment subproblem corresponding to (30) is given
by

max
",#,(s ,(m

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) − gΓ(", "̃, #, #̃) + o

(32a)

s.t.
∑
=∈N

�=U
=
B,D log2

(
1 + W=B,D

)
≥ [B,D ,∀B, D;∑

=∈N
�=V

=
< log2

(
1 + W=<

)
≥ [<,∀<, (32b)

(221), (224). (32c)

The objective function in (32a) is a concave function w.r.t.
", #, (s and (m. (22b) and (22e) in the problem (32) are
convex constraints w.r.t. " and #. In addition, (32b) is a
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convex constraint w.r.t. ", #, (s and (m. Therefore, the convex
problem (32) can be effectively addressed by employing
advanced convex solvers, e.g., CVX [44].

Step3: we optimize variables {P} for any given auxiliary
variables and subchannel assignment solution

{
"̃, #̃,", #

}
.

Then power allocation subproblem corresponding to (30) can
be given by

max
P,(s ,(m

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) − gΓ(", "̃, #, #̃) + o

(33a)

s.t.
∑
=∈N

�=U
=
B,D log2

(
1 + W=B,D

)
≥ [B,D ,∀B, D;∑

=∈N
�=V

=
< log2

(
1 + W=<

)
≥ [<,∀<, (33b)

(221) − (223), (226). (33c)

Since (22b) in the problem (33) is a non-convex constraint
w.r.t. P, and (33b) is also a non-convex constraint w.r.t P, (s
and (m, the problem (33) is a non-convex optimization prob-
lem. By introducing slack variables ts =

{
C=B,D

}
∈ R#(*B×1 and

tm =
{
C=<

}
∈ R#"×1, the problem (33) can be reformulated

as

max
P,(s ,(m
ts ,tm

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) − gΓ(", "̃, #, #̃) + o

(34a)

s.t.
∑
=∈N

�=U
=
B,D log2

(
C=B,D

)
≥ [B,D ,∀B, D;∑

=∈N
�=V

=
< log2

(
C=<

)
≥ [<,∀<, (34b)∑

=∈N
�=U

=
B,D log2

(
C=B,D

)
≥ sB,D ,∀B, D;∑

=∈N
�=V

=
< log2

(
C=<

)
≥ s<,∀<, (34c)

W=B,D ≥ C=B,D − 1,∀B, D,∀=; W=< ≥ C=< − 1,∀<,∀=, (34d)
C=B,D ≥ 0,∀B, D,∀=; C=< ≥ 0,∀<,∀=, (34e)
(222) − (223), (226). (34f)

where sB,D = exp(MOSmin−"B,D
�

), s< = exp(MOSmin−"<
�

). Note
that (34d) is a non-convex constraint w.r.t. P, tm and ts. By
introducing the slack variables ss =

{
B=B,D

}
∈ R#(*B×1 and

sm =
{
B=<

}
∈ R#"×1, (34d) can be transformed into the

following form∑
;∈*B , |ℎ=B,; |> |ℎ

=
B,D |

��ℎ=B,D ��2?=B,; + ∑
:∈S/B

∑
C ∈*:

��ℎ=:,B,D ��2?=:,C
+

∑
<∈M

��ℎ",(,=B,D

��2?=< + X2
I ≤ B=B,D ,∀B, D,∀= (35)∑

;∈M, |6=
;
|> |6=< |

��6=<��2?=; +∑
B∈S

∑
D∈*B

��6(,",=B,<

��2?=B,D + X2 ≤ B=<,∀<,∀=

(36)��ℎ=B,D ��2?=B,D ≥ B=B,D (
C=B,D − 1

)
,∀B, D,∀=;��6=<��2?=< ≥ B=< (

C=< − 1
)
,∀<,∀=. (37)

Note that the introduced constraints in (37) are non-convex,
since B=B,DC

=
B,D and B=<C

=
< in (37) are quasi-concave functions.

Hence, we need to transform these two functions into convex
forms. Utilizing SPCA techniques [41], B=B,DC

=
B,D and B=<C

=
< can

be converted into the following convex upper bounds

_=B,D

2
(
C=B,D

)2 + 1
2_=B,D

(
B=B,D

)2 ≥ C=B,DB=B,D ,∀B, D,∀=;

_=<

2
(
C=<

)2 + 1
2_=<

(
B=<

)2 ≥ C=<B=<,∀<,∀=, (38)

where ,s =
{
_=B,D

}
∈ R#(*B×1 and ,m =

{
_=<

}
∈ R#"×1.

The equalities in (38) are satisfied by _=B,D = B=B,D/C=B,D and
_=< = B

=
</C=<. After a series of transformations based on (34)-

(38), the problem (33) can be reformulated as

max
P,(s ,(m

ts ,tm ,ss ,sm

∑
B∈S

∑
D∈*B

� ln([B,D) +
∑
<∈M

� ln([<) − gΓ(", "̃, #, #̃) + o

(39a)

s.t.
��ℎ=B,D ��2?=B,D ≥ _=B,D2

(
C=B,D

)2 + 1
2_=B,D

(
B=B,D

)2 − B=B,D ,∀B, D,∀=,

(39b)��6=<��2?=< ≥ _=<2 (
C=<

)2 + 1
2_=<

(
B=<

)2 − B=<,∀<,∀=, (39c)

(341) − (342), (344) − (34 5 ), (35) − (36). (39d)

Finally, the convex optimization problem (39) can be solved
efficiently by using CVX [44].

Algorithm 2 BCD algorithm for solving (30)
1: Initialize the maximum iterations 42, maximum tolerance
Y; , iteration index ;, feasible solution

{
"0, #0,P0

}
, auxil-

iary parameter ,s > 0 and ,m > 0.
2: repeat
3: For given

{
"; , #;

}
, obtain optimal solution

{
"̃;+1, #̃;+1

}
according to (31).

4: For given
{
"̃;+1, #̃;+1,"; , #; ,P;

}
, obtain optimal solu-

tion
{
";+1, #;+1

}
by solving (32).

5: For given
{
"̃;+1, #̃;+1,";+1, #;+1,P;

}
, obtain optimal

solution P;+1 by solving (39).
6: Update ,s ,;+1 and ,m ,;+1, respectively, by using

_=
B,D,;+1 =

B=
<,D,;

C=
B,D,;

and _=
<,;+1 =

B=
<,;

C=
<,;

.
7: Update the iteration number: ; = ; + 1.

8: until
��ΨgE (;+1)−ΨgE (;)����ΨgE (;)�� ≤ Y; or meet the maximum iteration

number ; = 42.

The BCD algorithm is summarized in Algorithm 2. This
algorithm can be exploited to solve (30) in the inner-layer it-
eration of the P-BCD framework (i.e., Step 3 in Algorithm 1).
Specifically, the design variables in (30) are divided into
three blocks, i.e.,

{
"̃, #̃

}
, {", #} and {P}. Then, the auxiliary

variables
{
"̃, #̃

}
, subchannel assignment {", #}, and power

allocation {P} are alternately optimized by solving subproblem
(31), (32), and (39), respectively, while the other two blocks
are fixed. At each iteration of Algorithm 2, the objective value
of (30) is non-decreasing and bounded. The convergence of the
BCD algorithm is proved in Appendix A.

After Algorithm 2 converges, the penalty parameter gE is
further updated by following Step 4 in Algorithm 1, i.e.,
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gE+1 = 2gE . The above steps are iteratively repeated until
Algorithm 1 converges. The convergence analysis of the P-
BCD algorithm is similar to that of [42].

C. Complexity Analysis

In the following, we probe into the complexity of the
proposed P-BCD algorithm for solving the problem (29).
Table III also summarizes the complexity.

i) Outer Layer: Suppose the iteration times of outer layer
(Penalty approach) is 41.

ii) Inner Layer: Let 42 be iteration times of inner layer
(BCD approach). At each iteration of inner loop, there are
three subproblems, namely, (31), (32) and (39). Since the
optimal solutions of (31) can be obtained by a closed-form
solution, the complexity for (31) can be neglected. Therefore,
solving the subchannel assignment subproblem (32) and the
power allocation subproblem (39) dominate the overall com-
plexity of the BCD algorithm. When CVX toolbox is adopted
to solve these two convex optimization subproblems, i.e., (32)
and (39), it exploits GP with the interior-point method (IPM).
The complexity of subchannel assignment subproblem (32) is
O(log (�1/bl)/log (k)) [45], where �1 = 2((* +") + (# +#
is the total number of constraints in (32). b denotes the initial
point for approximating the accuracy of IPM, l represents
the stopping criterion for IPM, and k is employed to update
the accuracy of IPM. Analogously, the complexity of power
allocation subproblem (39) is O(log (�2/bl)/log (k)), where
�2 = 5((*# + "#) + 2((* + ") + ( + 1 is the total number
of constraints in (39).

Therefore, the total computational complexity of P-
BCD method for solving problem (29) is O(41 ×
42 (log (�1/bl)/log (k) + log (�2/bl)/log (k))). Besides, the
complexity of the algorithm proposed by [29] for web brows-
ing is O(43 × 44 (2 ((*# + "#)2)) [46], where 43 and
44 represent iteration times for outer layer and inner layer,
respectively.

V. VIDEO SERVICE CASE

In this section, we focus on the QoE-based joint subchannel
and power allocation design under video service case. Dif-
ferent from web browsing application, the MOS function of
video service is mainly determined by PSNR. As a result, a
distinct different resource allocation policy would have to be
explored due to the impact of different application parameter
on the user QoE. Besides, to ensure minimum satisfaction and
fairness between the video users, the satisfaction thresholds
are introduced into the QoE optimization problem. In the
following, we adopt the proposed P-BCD method to maximize
the sum MOSs of video users by proper subchannel and power
allocation.

A. Problem Transformation

By incorporating MOS function of video service (i.e., (20)
and (21)) into (22), we can formulate the following joint

subchannel and power allocation optimization problem

max
",#,P

∑
B∈S

∑
D∈*B

(
dlog

(
5 + 6

√
'B,D

ℎ

(
1 − ℎ

'B,D

))
+ i

)
+

∑
<∈M

(
dlog

(
5 + 6

√
'<

ℎ

(
1 − ℎ

'<

))
+ i

)
(40a)

s.t. (221) − (226). (40b)

One can observe that the objective function in (40a) is a non-
concave function w.r.t. ", # and P, and (22b) in the problem
(40) is a non-convex constraint w.r.t. ", # and P. Meanwhile,
(22f) in the problem (40) involves integer constraint. Thus,
the problem (40) is challenging to solve. For this reason, we
first convert the objective function into an equivalent form.
Introducing auxiliary variables 's =

{
ZB,D

}
∈ R(*B×1 and 'm =

{Z<} ∈ R"×1, the problem (40) is equivalently reformulated
as

max
",#,P
's ,'m

∑
B∈S

∑
D∈*B

(
dlog

(
ZB,D

)
+ i

)
+

∑
<∈M

(dlog (Z<) + i)

(41a)

s.t. 5 + 6
√
'B,D

ℎ

(
1 − ℎ

'B,D

)
≥ ZB,D ,∀B, D;

5 + 6
√
'<

ℎ

(
1 − ℎ

'<

)
≥ Z<,∀<, (41b)

(221) − (226). (41c)

Note that the added constraint (41b) is a non-convex
constraint because the left-hand-side (LHS) of (41b), i.e.,

5 + 6
√
'B,D
ℎ

(
1 − ℎ

'B,D

)
≥ ZB,D and 5 + 6

√
'<
ℎ

(
1 − ℎ

'<

)
≥ Z<,

are non-concave function w.r.t. ", # and P. By introducing
auxiliary variables (s =

{
[B,D

}
∈ R(*B×1 and (m = {[<} ∈

R"×1, (41b) can be converted into the following forms

5 + 6
√
[B,D

ℎ

(
1 − ℎ

[B,D

)
≥ ZB,D ,∀B, D;

5 + 6
√
[<

ℎ

(
1 − ℎ

[<

)
≥ Z<,∀<. (42)∑

=∈N
�=U

=
B,D log2

(
1 + W=B,D

)
≥ [B,D ,∀B, D;∑

=∈N
�=V

=
< log2

(
1 + W=<

)
≥ [<,∀<. (43)

Then, by introducing the auxiliary variables "̃ =
{
Ũ=B,D

}
∈

Z#(*B×1 and #̃ =
{
Ṽ=<

}
∈ Z#"×1 and using (27)-(28), the

discrete subchannel assignment constraint (22f) in the problem
(40) is transformed into corresponding equality constraints.
After the above transformations, the problem (40) is reformu-
lated as

max
",#,"̃,#̃,P

's ,'m ,(s ,(m

∑
B∈S

∑
D∈*B

(
dlog

(
ZB,D

)
+ i

)
+

∑
<∈M

(dlog (Z<) + i)

(44a)
s.t. (221) − (224), (226), (27) − (28), (42) − (43). (44b)
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B. The P-BCD for Solving (44)

In this subsection, we apply the P-BCD technique described
in Subsection III-A to tackle the problem (44). Similar to
Subsection IV-B, we first formulate a penalized problem
corresponding to (44) to handle the converted equality con-
straints in (27)-(28). Then, we apply the BCD-based inner-loop
iterative approach to update the design variables alternately by
solving the resulting optimization problem with given penalty
parameter. After the inner-loop iterative algorithm converges,
the penalty parameter will be updated iteratively at the outer
loop.

1) The Penalized Problem
According to the P-BCD optimization framework shown

in Subsection III-A, we can obtain the following penalized
version of the problem (44)

max
",#,"̃,#̃,P

's ,'m ,(s ,(m

∑
B∈S

∑
D∈*B

(
dlog

(
ZB,D

)
+ i

)
+

∑
<∈M

(dlog (Z<) + i)

− gΓ(", "̃, #, #̃) (45a)
s.t. (221) − (224), (226), (42) − (43), (45b)

where Γ(", "̃, #, #̃) = ∑
B∈S

∑
D∈*B

∑
=∈N (

��U=B,D − Ũ=B,D ��2 +��U=B,D (1− Ũ=B,D)��2) +∑<∈M
∑
=∈N (

��V=< − Ṽ=<��2 + ��V=< (1− Ṽ=<)��2).
2) The BCD Algorithm for Solving (45)
It is observed that the design variables in problem (45)

are closely coupled with each other, which makes (45) in-
tractable. In the following, we apply BCD method and SPCA
techniques to solve (45) with given g. Similar to Subsection
IV-C, we divide variables of (45) into three blocks, i.e.,
auxiliary variables

{
"̃, #̃

}
, subchannel assignment {", #}, and

power allocation {P}, respectively. These three blocks can be
optimized alternately until the BCD algorithm converges.

Step1: we optimize variables
{
"̃, #̃

}
for any given sub-

channel assignment policy {", #}. By using (31), the optimal
solution

{
"̃, #̃

}
can be obtained.

Step2: we optimize variables {", #} for any given auxil-
iary variables and power allocation policy

{
"̃, #̃,P

}
. Then

subchannel assignment subproblem corresponding to (45) is
expressed as

max
",#,'s

'm ,(s ,(m

∑
B∈S

∑
D∈*B

(
dlog

(
ZB,D

)
+ i

)
+

∑
<∈M

(dlog (Z<) + i)

− gΓ(", "̃, #, #̃) (46a)
s.t. (221), (224), (42) − (43). (46b)

The objective function in (46a) is a concave function w.r.t.
", #, 's and 'm. Both (22b) and (22e) in the problem (46)
are convex constraint w.r.t. " and #. (42) in the problem
(46) is a convex constraint w.r.t. (s , (m, 's and 'm, because
the LHS of the constraint (42) in the problem (46), i.e.,
5 + 6

√
[B,D
ℎ

(
1 − ℎ

[B,D

)
and 5 + 6

√
[<
ℎ

(
1 − ℎ

[<

)
, are concave

function w.r.t. (s and (m. In addition, (43) in the problem (46)
is a convex constraint w.r.t. ", #, 's and 'm. Therefore, the
convex optimization problem (46) can be effectively solved by
advanced convex solvers, e.g., CVX [44].

Step3: we optimize variables {P} for any given auxiliary
variables and subchannel assignment policy

{
"̃, #̃,", #

}
. Then

power allocation subproblem corresponding to (45) is formu-
lated by

max
P,'s ,'m
(s ,(m

∑
B∈S

∑
D∈*B

(
dlog

(
ZB,D

)
+ i

)
+

∑
<∈M

(dlog (Z<) + i)

− gΓ(", "̃, #, #̃) (47a)
s.t. (221) − (223), (226), (42) − (43). (47b)

Note that (22b) in the problem (47) is a non-convex con-
straint w.r.t. P. In addition, since the LHS of the constraint
(43) in the problem (47), i.e.,

∑
=∈N �=U

=
B,D log2

(
1 + W=B,D

)
and

∑
=∈N �=V

=
< log2

(
1 + W=<

)
are non-concave functions w.r.t.

P, the constraint (43) in the problem (47) constitutes non-
convex feasible set. Thus, the problem (47) is a non-convex
optimization problem. First, we handle the non-convex con-
straint (22b) in the problem (47). With the slack variables
(s =

{
[B,D

}
∈ R(*B×1 and (m = {[<} ∈ R"×1, we introduce

the following convex constraint:

5 + 6
√
[B,D

ℎ

(
1 − ℎ

[B,D

)
≥ 10

MOSmin−i
d ,∀B, D;

5 + 6
√
[<

ℎ

(
1 − ℎ

[<

)
≥ 10

MOSmin−i
d ,∀<. (48)

Therefore, the non-convex constraint (22b) in the problem
(47) is converted into a convex constraint (48) as well as a
non-convex constraint (43). Then, we focus on tackling the
non-convex constraint (43). Following SPCA approach [41],
we introduce auxiliary variables ts =

{
C=B,D

}
∈ R#(*B×1, tm ={

C=<
}
∈ R#"×1, ss =

{
B=B,D

}
∈ R#(*B×1 and sm =

{
B=<

}
∈

R#"×1. Furthermore, the non-convex constraint (43) in the
problem (47) can be converted into convex forms by utilizing
(34b), (34e), (35)-(36), and (39b)-(39c).

Finally, after a series of transformations based on (34b),
(34e), (35)-(36), (39b)-(39c) and (48), the power allocation
subproblem (47) is transformed into the following convex
optimization problem:

max
P,'s ,'m(s ,

(m ,ts ,tm ,ss ,sm

∑
B∈S

∑
D∈*B

(
dlog

(
ZB,D

)
+ i

)
+

∑
<∈M

(dlog (Z<) + i)

− gΓ(", "̃, #, #̃) (49a)
s.t. (222) − (223), (226), (42), (341), (344), (35) − (36);
(391) − (392), (48) (49b)

which can be effectively solved by advanced convex solvers,
e.g., CVX [44].

In Algorithm 2, the proposed BCD-based method to prob-
lem (49) can be shown which replaces (32) and (39) with
(46) and (49). After executing the inner-layer optimization
of the P-BCD framework (i.e., Step 3 in Algorithm 1), the
penalty parameter gE is iteratively updated according to Step
4 in Algorithm 1. The process continues until the P-BCD
algorithm converges.

C. Complexity Analysis

Similar to the complexity analysis discussed in Subsection
IV-C, in the following, we give the complexity of the pro-
posed P-BCD algorithm for solving problem (44). At each
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TABLE III
COMPUTATIONAL COMPLEXITY OF PROPOSED AND REFERENCE SCHEMES FOR WEB BROWSING AND VIDEO SERVICES

Algorithms Computational Complexity

The proposed scheme for Web Browsing O
(
41 × 42

(
log ( (2((*+" )+(#+# )/bl)

log (k) + log ( (5((*#+"# )+2((*+" )+(+1)/bl)
log (k)

))
The proposed scheme for Video Service O

(
41 × 42

(
log ( (3((*+" )+(#+# )/bl)

log (k) + log ( (5((*#+"# )+3((*+" )+(+1)/bl)
log (k)

))
The scheme in [29] for Web Browsing (or Video Service) O

(
43 × 44

(
((*# +"# )2 + ((*# +"# )2

))

iteration of inner loop, the complexity of BCD approach
is O(log (�3/bl)/log (k) + log (�4/bl)/log (k)), where �3 =
3((*+")+(#+# and �4 = 5((*#+"#)+3((*+")+(+1.
Hence, the total complexity of the proposed P-BCD method is
O(41×42 (log (�3/bl)/log (k)+log (�4/bl)/log (k))), where
41 and 42 are iteration times for outer layer and inner layer, re-
spectively. Besides, the complexity of the algorithm proposed
by [29] for video service is O(43 × 44 (2 ((*# + "#)2))
[46], where 43 and 44 represent iteration times for outer layer
and inner layer, respectively. We summarize the complexities
mentioned above in Table III.

VI. NUMERICAL RESULT

This section presents the numerical results to evaluate the
performance of the proposed scheme. The primary simulation
parameters are set as follows. The radii of macro cell and
small cell are set to 500 m and 20 m, respectively [9]. The
maximum transmit power at MBS and SBS are set to 43
dBm and 23 dBm, respectively [32]. The pathloss models at
a distance ' [km] from macro cell and small cell are 128.1 +
37.6 log10 (') dB and 140.7 + 36.7 log10 (') dB, respectively
[13]. The Rayleigh fading is considered to model the small
scale fading channels between BSs and UEs. The number of
subchannels is # = 10. The bandwidth of each subchannel
is �= = 75 kHz [28]. The AWGN spectral density is -174
dBm/Hz [32]. For web browsing service, MSS is set to 1460
bytes [24]. For video service, PSNR1.0 and PSNR4.5 are set to
30 dB and 42 dB, respectively [36]. The tolerance parameters
for the proposed P-BCD algorithm are set to YE = Y; = 0.01.
The penalty parameters 2 is given by 2 = 2 [43], and the initial
value g0 for penalty is set to g0 = 0.001 [43]. In addition, the
number of MUEs is set to " = 2, the number of SUEs in
each small cell is set to *B = 6, the satisfaction threshold
is set to MOSmin = 1, and the web page size (�() for web
browsing is set to 320 KB [24], unless otherwise specified.
Simulation results are obtained on a computer with the Intel
Core i7 9700F and 16G RAM.

A. Impact of the Web Page Sizes and Application Types

This subsection presents the impact of different web page
sizes (�() and application types on the QoE perceived by
users.

In Fig. 3, we plot the MOS value versus user data
rate. The performance is compared at video application and
web browsing application with different �(, where �( =

{18, 30, 50, 100, 200} KB [24]. From Fig. 3, we observe that
user obtains different perceived qualities even when the data
rates are same. This phenomenon illustrates that the network-
oriented QoS criteria, such as data rate, are not sufficient for

evaluating user QoE. In fact, user QoE is also affected by other
factors, such as application type and �(. Such factors are not
related to network QoS but do affect user QoE. Additionally,
we see that the MOS value of user browsing the web with
large �( is smaller than that of user browsing the web with
small �( within a certain range of data rate. Also, we observe
that the MOS value of video streamer is much smaller than
that of web browsing user when those users have the same data
rate. These results can be explained by the fact that compared
to the user who browses the web with large �(, the user who
browses the web with small �( can achieve a high QoE by
the lower capacity. Moreover, a larger capacity is required for
video streamer in order to obtain a high QoE.

In Fig. 4, we investigate the average MOS versus the number
of SUEs per small cell under web browsing application. The
performance is compared at different value of web page size
�( = 320, 400 and 500 KB [24]. The number of SBSs is set
to ( = 10. The satisfaction threshold for web browsing user
is set to MOSweb

min = 1. The average MOS is defined by the
ratio of sum MOSs to the total number of users. From Fig. 4,
we observe that the average MOS decreases as �( increases.
A similar explanation can be found as described in Fig. 3.
Besides, for the results obtained from NOMA schemes, we
can see that the average MOS first increases with the number
of SUEs per small cell. The main reason is that as the number
of SUEs per small cell increases, the distances between SBSs
and SUEs become closer, which contributes to the less path
loss as well as better services. As a result, the value of average
MOS increases. On the other hand, as the number of users
per small cell becomes large, the user interference becomes
severe, which diminishes the performance of average MOS.
For example, for web browsing application with �( = 400 KB,
when the number of users in each small cell is 6, the average
MOS of the proposed NOMA scheme shows 4% performance
degradation compared with the case the number of users per
small cell is 4.

B. Impact of Different Satisfaction Thresholds

This subsection shows the simulation results of average
MOS against satisfaction thresholds under web browsing and
video applications. For comparison, we also consider the fol-
lowing benchmark solutions: (i) ‘NOMA-EPA’: In this scheme,
the transmitted power of BS is equally distributed to each user,
and then the subchannel assignment is addressed via penalty
method and SPCA technique; (ii) ‘NOMA-RSA’: In this
scheme, the subchannels are randomly assigned to users, and
then the power allocation is performed via SPCA technique. In
addition, we assume the same minimum satisfaction thresholds
for all users.
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Fig. 5. Average MOS versus the minimum MOS threshold: a) web browsing application; b) video streaming application.

Figs. 5(a) and 5(b) show average MOS versus minimum
MOS threshold under web browsing and video applications,
respectively. The number of SBSs is set to ( = 10. It should
be noted that MOSweb

min = 1 or MOSvideo
min = 1 means that there

is not MOS constraint in our considered QoE optimization
problem. As can be seen from Fig. 5(a), the average MOS
of web users increases as the minimum MOS threshold, i.e.,
MOSweb

min , increases from 1 to 4.5. A similar phenomenon can
also be observed from Fig. 5(b), where the average MOS of
video users increases as MOSvideo

min increases from 1 to 3.5.
These results imply that the proposed scheme is beneficial to
improve the MOS of users. In addition, we also observe that
by considering a certain level of satisfaction threshold, the
average MOS can be enhanced in comparison with the cases
in which there are not QoE constraints. For example, when
MOSweb

min = 3, web users obtain about 1% improvement in
average MOS compared with the case in which MOSweb

min = 1.
When MOSvideo

min = 3, video users also obtain about 13%−14%

improvement in average MOS compared with the case in
which MOSvideo

min = 1. The above results demonstrate that
introducing a certain level of the minimum MOS threshold
can lead to an improvement of the average MOS. However,
from Figs. 5(a) and 5(b), we notice that as the minimum MOS
threshold increases further, the achieved average MOS starts
to decline and tends to 1 finally. It is pointed out that when
MOSweb

min or MOSvideo
min is large, there may exist some cases

in which the minimum MOS threshold cannot be satisfied
by each user. In such a case, average MOS is set to 1
for ensuring the fairness of the comparison among different
approaches. These results can be explained by the fact that
the more stringent the QoE demand is, the more difficult
is to achieve high user satisfaction. On the other hand, the
proposed method still outperforms other benchmark schemes
due to its ability to derive more efficient power and subchannel
allocation solution.
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Fig. 6. Average MOS versus the number of SUEs per small cell: a) web browsing application; b) video streaming application.
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Fig. 7. Average MOS versus the number of SBSs: a) web browsing application; b) video streaming application.

C. Impact of the Number of SUEs per Small Cell

This subsection presents the numerical results of average
MOS versus the number of SUEs per small cell under web
browsing and video applications. To evaluate the effectiveness,
we consider the following benchmark schemes: (i) ‘NOMA-
EPA’; (ii) ‘NOMA-RSA’; (iii) Existing NOMA scheme in
[10], where the subchannel and power allocation scheme is
developed to maximize sum rate of all users in order to pro-
vide the QoS-aware NOMA benchmark solution; (iv) ‘OMA’
scheme [47], where the OMA strategy is further developed to
maximize the sum MOSs of all users.

In Fig. 6(a), we investigate the web browsing service case,
where the number of SBSs is ( = 10 and the satisfaction
threshold is MOSweb

min = 1. As can be observed from this
figure, average MOS obtained from some schemes almost
remains constant at the beginning and then decreases as the
number of SUEs per small cell increases, which shows a
similar trend with Fig. 4. Moreover, we can find that MOS

performance of the proposed scheme is always better than that
of the existing QoS-aware NOMA scheme [10]. For example,
when the number of SUEs per small cell is 6, the proposed
scheme obtains about 3%−4% improvement in average MOS
compared with the existing scheme [10]. This is because
existing QoS-based NOMA scheme does not consider other
non-network-related factors affecting user QoE. As a result,
conducting sum-rate maximization alone may not be able to
ensure optimal user satisfaction. Additionally, average MOS
of the proposed scheme significantly outperforms other two
QoE-aware NOMA benchmark schemes, i.e., ‘NOMA-EPA’
and ‘NOMA-RSA’ schemes. This is because that ‘NOMA-
EPA’ scheme does not effectively allocate transmitted power
to users, and ‘NOMA-RSA’ scheme randomly assigns sub-
channel to users without taking into account CSI and other
factors. As a result, average MOS value will decline.

In Fig. 6(b), we investigate the video application case, where
the number of SBSs is ( = 10 and the satisfaction threshold
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Fig. 8. Average MOS versus the SBS transmit power: a) web browsing application; b) video streaming application.
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Fig. 9. Average MOS versus the number of MUEs: a) web browsing application; b) video streaming application.

is MOSvideo
min = 1. We see that for all curves, average MOS

decreases as the number of SUEs in each small cell increases.
This implies that increasing the number of SUEs per small
cell brings severe user interference, which limits average MOS
performance of video users. However, average MOS of the
proposed scheme is always better than benchmark schemes.

D. Impact of the Number of SBSs

Figs. 7(a) and 7(b) make the same comparison as Fig. 6(a)
and Fig. 6(b), respectively, but from the number of SBSs
perspectives. The performance of average MOS is compared
via different benchmark schemes. From Fig. 7(a), we observe
that when the number of SBSs increases, all curves tend to
diminish. This can be explained by the effect of severe inter-
cell interference between different small cells when more small
cells are deployed within the macrocell. In addition, the pro-
posed scheme is more effective than other benchmark schemes,
the average MOS gap between them becomes larger as the
number of SBSs increases. In Fig. 7(b), the average MOS of

some schemes is almost constant and then degrades as the
number of SBSs increases, which shows a similar curve trend
with Fig. 7(a). Furthermore, the proposed scheme achieves
substantial improvement of average MOS than OMA scheme
as well as comparable NOMA schemes. This is because the
proposed scheme can provide more freedom in subchannel
assignment and more efficient power allocation policy, which
further enhances the performance of average MOS.

E. Impact of the SBS Transmit Power

This subsection investigates the performance of the average
MOS versus the maximum transmit power of each SBS.
The performance is compared using the following NOMA
benchmarks: (i) ‘NOMA-Exhaustive Search’ (over all possible
choices of subchannels and transmit power). Herein, the op-
timal power allocation scheme with exhaustive search, would
examine all possible power allocation combinations at a very
small step, i.e., %

B
m0G
!

(or %"m0G
!

), over [0, %Bm0G] (or [0, %"m0G]).
We set ! = 1000 for simulations [45]; (ii) ‘NOMA-EPA’; (iii)
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Fig. 10. Convergence behavior: a) web browsing application; b) video streaming application.

‘NOMA-RSA’; (iv) Existing NOMA scheme in [10]. As can be
seen from Figs. 8(a) and 8(b), the average MOS first increases
from 0 dBm when SBS transmit power increases. This is
because the achieved average MOS of users can be improved
by efficiently allocating the transmit power and the subchannel
resource through the proposed method. On the other hand,
as the SBS transmit power increases further, the achieved
average MOS takes on a slow growth trend. This is because the
increase in SBS transmit power brings stronger interference,
which degrades the average MOS performance. However, the
proposed scheme still outperforms other baseline solutions in
(ii)-(iv). Besides, it can be seen from Figs. 8(a) and 8(b),
the proposed method can achieve a high MOS performance
which is near to the optimal solution with lower complexity,
compared to benchmark in (i) which can find the globally
optimal solution but has exponential worst-case complexity
with respect to the number of optimization variables. This
result verifies the effectiveness of the proposed method.

F. Impact of the Number of MUEs

This subsection presents the numerical results of average
MOS versus the number of MUEs. The performance is
compared through the following NOMA benchmark schemes:
(i) Existing NOMA scheme in [29], where a NOMA-based
resource allocation scheme was proposed to maximize the sum
MOSs of the JT-enabled SUEs, while OFDMA policy and
QoS requirement were considered for the MUEs. It should be
pointed out that the average MOS considered in this paper is
defined by the ratio of sum MOSs of all users, including MUEs
and SUEs, to the total number of users. In this context, the
achievable MOSs of MUEs are also considered into the design
solution of [29] for ensuring the fairness of the comparison
among different schemes; (ii) Existing NOMA scheme in [10];
(iii) ‘NOMA-EPA’; (iv) ‘NOMA-RSA’. From Figs. 9(a) and
9(b), we can see that when the number of MUEs is small,
the average MOS of [29] achieves better performance gain
than that of the proposed scheme in this paper. However, as
the number of MUEs becomes large, the proposed scheme

achieves a higher average MOS than the scheme in [29],
and meanwhile, the performance gap between the proposed
scheme and the scheme in [29] tends to increase with growth
of the number of MUEs. The reason is as follows. When the
number of MUEs is small, the integration of JT-NOMA for
SUEs is used in [29] such that the SUEs have opportunity to
be served by multiple SBSs, which contributes to additional
performance gain. On the other hand, when the number of
MUEs becomes large, the proposed NOMA scheme in this
paper achieves higher MOSs for MUEs in comparison with the
results computed by the OFDMA-enabled scheme for MUEs
in [29]. The performance gap tends to grow with the increase
in the number of MUEs. For example, when the number of
MUEs is " = 10, the proposed scheme takes about 1.4%
(1.7%) extra computation time, but attains about 3.1% (4.2%)
improvement in average MOS under web browsing case (video
streaming case) compared with the reference scheme in [29].
From the above results, we can conclude that when the number
of MUEs is large, the proposed scheme can achieve better
average MOS with slightly high complexity than [29].

G. Convergence Behavior

This subsection presents the convergence behavior of the
proposed algorithm under web browsing and video applica-
tions. The number of SBSs is set to ( = 10. As observed
from Fig. 10(a) and Fig. 10(b), the proposed iterative algo-
rithm converges to its stable solution within few iterations,
which validates the convergence properties of the proposed
algorithm. This result also confirms that the proposed iterative
algorithm has high practical value in NOMA HetNet.

VII. CONCLUSION

In this paper, we have presented the QoE-aware joint
subchannel and power allocation framework for NOMA-
enhanced HetNet. Specifically, two different QoE optimization
problem corresponding to web browsing and video services
have been formulated to maximize the sum MOSs of users.



IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. X, XX 2020 17

In order to guarantee the satisfaction and fairness among
NOMA users, QoE constraints on each NOMA user have also
been considered on the resource allocation design. Since the
formulated QoE optimization problems are complex to solve,
we have proposed a P-BCD based optimization algorithm.
The complexity of the proposed algorithm has also been
discussed. Simulation results have demonstrated that the non-
network-related factors, such as application type and web
page size, have a significant impact on the user QoE. As a
result, considering network-related QoS criteria alone is not
sufficiently reliable to measure user QoE. In addition, the
proposed QoE-aware resource allocation scheme can achieve
competitive QoE performance compared to existing NOMA
schemes. For the future work, the proposed QoE-aware re-
source allocation framework can be extended to other more
applications by employing corresponding MOS models into
the proposed method.

APPENDIX A
CONVERGENCE PROOF OF THE ALGORITHM 2

Define ΨgE ("̃, #̃,", #,P) as the objective value of pe-
nalized problem (30) with fixed penalty value gE . Define
Ψ
;1,;
?>F,gE ("̃, #̃,", #,P) = Ψ;?>F,gE , where Ψ;?>F,gE is the

objective value of (39) based on
{
"̃, #̃,", #,P

}
. First, for

given
{
"; , #;

}
, the optimal solution of (31) can be obtained

by step 3 of Algorithm 2, and thus we have

ΨgE ("̃, #̃,", #,P) ≤ ΨgE ("̃;+1, #̃;+1,", #,P) (50)

Second, for given
{
"̃;+1, #̃;+1

}
,
{
"; , #;

}
, and P; in step 4 of

Algorithm 2, we can obtain

ΨgE ("̃;+1, #̃;+1,", #,P) ≤ ΨgE ("̃;+1, #̃;+1,";+1, #;+1,P)
(51)

Third, for given
{
"̃;+1, #̃;+1

}
,
{
";+1, #;+1

}
, and P; in step 5 of

Algorithm 2, we can obtain

ΨgE ("̃;+1, #̃;+1,";+1, #;+1,P)
(0)
≤ Ψ;1,;?>F,gE

("̃;+1, #̃;+1,";+1, #;+1,P;+1)
(1)
≤ ΨgE ("̃;+1, #̃;+1,";+1, #;+1,P;+1) (52)

where (a) holds since problem (33) can be optimally addressed
with solution P;+1 for given

{
"̃;+1, #̃;+1

}
and

{
";+1, #;+1

}
in

step 5 of Algorithm 2. (b) holds since problem (35) offers
a lower bound to its original problem (33) at P;+1. In fact,
the feasible set of problem (39) is always a subset of that of
problem (33). The inequality in (52) indicates that objective
value of (33) is still non-decreasing in each inner iteration,
although only an approximate problem (39) is solved for
obtaining power allocation solution. Furthermore, based on
(50)-(52), one can know

ΨgE ("̃; , #̃; ,"; , #; ,P;) ≤ ΨgE ("̃;+1, #̃;+1,";+1, #;+1,P;+1)
(53)

which implies that for each inner iteration of Algorithm 2,
the objective value of (30) is non-decreasing. Due to the
constraints existed in both total power and subchannel as-
signment, the objective value is thus bounded. Therefore, the
convergence of Algorithm 2 can be guaranteed.
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