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ABSTRACT

The advent of high-throughput sequencing and microarray technologies has improved
our overall understanding of human health and diseases. Recent developments in
‘omics’ technologies (genomics, transcriptomics, proteomics, and metabolomics) have
made it possible to measure tens of thousands of molecular quantities in parallel (in
the same experiment). One specific objective of this thesis is to scrutinize a com-
paratively small subset of such measurements known as biomarkers or signatures
relevant for predicting the course of a disease or patient’s outcome.

In the context of cancer, the discovery of prognostic biomarkers for predicting
cancer progression is an important problem for two reasons. First, such biomarkers
may be used to treat patients in a clinical setting. Second, it is thought that investigat-
ing the biomarkers themselves would yield novel insights into disease mechanisms
and the underlying molecular processes that trigger pathological behavior. The lat-
ter assumption is investigated in detail in this dissertation. Specifically, we study this
problem for breast and prostate cancer by looking at a large number of previously
reported prognostic signatures of breast and prostate cancer based on gene expres-
sion profiles. For this, we created a novel gene removal procedure (GRP) that purges
all traces of biological meaning of the signatures genes and show that surrogate genes
can be found among the remaining genes with better or equivalent prognostic pre-
diction capabilities but distinct biological meaning as the published signature genes.
As a result, our findings demonstrate that none of the examined signatures have a
sensible biological meaning in terms of disease etiology and are merely black-box
models allowing to make predictions of patient outcome but are not capable of of-
fering causal explanations to improve disease understanding.
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1 INTRODUCTION

In this chapter, the topics and motivation of this dissertation are discussed. In Sec-
tion 1.1, a broad overview of the research is given. Section 1.2 address the research
objectives, and finally, the structure of the dissertation is described in Section 1.3.

1.1 General background

Cancer is a complex disorder with many potential causes. Cancer tumors are het-
erogeneous, involving irregular growth of cells with the ability to metastasize or
migrate to different body parts resulting in death. In the United States for example,
1,898,160 new cancer cases and 608,570 cancer mortality are estimated in 2021 [1].
Nevertheless, early diagnosis and general knowledge of cancer risk factors can help
improve cancer survival rates immensely [2].

Tumor biopsy is the surgical removal of living tissue used as an invasive technique
for cancer detection. But the side effects of biopsy, such as the risk of stimulating
cancer progression, and metastasis have possible adverse effects on the patients [3].
Moreover, multiple biopsies to monitor disease progression and therapeutic response
in patients diagnosed with cancer are almost impractical to perform. Besides, tumors
found in vulnerable locations, such as the prostate, brain, and liver, require highly
qualified medical practitioners to conduct surgical operations adding to the high ex-
pense attributed to tissue biopsy. As a consequence, the use of a safer, low-cost, and
non-invasive or minimally-invasive procedure instead of tumor biopsy is a poten-
tially useful approach.

The advent of high-throughput sequencing and microarray technologies have en-
hanced our comprehensive understanding of human health and diseases. Recent
developments in ‘omics’ technologies (genomics, transcriptomics, proteomics, and
metabolomics) have made it possible to measure tens of thousands of molecular
quantities in parallel (in the same experiment). One specific objective of this study
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is to determine a comparatively small subset of such measurements referred to as
biomarkers or signatures relevant for predicting the course of a disease or patient’s
outcome. These subsets of measurements are referred to as features or feature se-
lection in the statistics and machine learning field [4]. Biomarkers typically play
an important role in early diagnosis, disease prevention, and the prediction and
monitoring of treatment responses to different therapeutic interventions. Molec-
ular biomarkers in particular are commonly known to be used in the study of hu-
man diseases [5]. The prognostic value of such predictions is quantitatively evalu-
ated through a survival analysis, which supports a statistical test to be carried out to
distinguish variations between different patient groups concerning ‘time to event’
information. The definition of ‘event’ is not limited to only death, but also relapse,
disease progression, or organ failure. As a consequence of this phenomenon, prog-
nostic studies are valuable for almost all patient-related medical investigations.

A significant number of molecular markers, especially prognostic markers, have
been known in the literature capable of identifying cancer patients with good and
bad prognoses. The main investigation of this dissertation is to confirm our hypoth-
esis that prognostic signatures of breast and prostate cancer are lacking interpretabil-
ity. In [6], it is stated that "A reliable set of predictive genes also will contribute to
a better understanding of the biological mechanism of metastasis". This assertion is
not confined to the issue above but is generally accepted to be true in the genomics
and translational medicine community. Refuting this statement by showing that
prognostic signatures of breast and prostate cancer are lacking a sensible biological
meaning with respect to disease etiology is one of the main objectives of this disser-
tation.

1.2 Motivation and research objectives

In the previous section, cancer biomarkers are widely discussed and their general
relevance in the clinical setting is indicated. This section highlights the research ob-
jectives of this thesis. The main objective of this dissertation is to demonstrate that
the prognostic signatures of breast and prostate cancer in terms of disease etiology
lack a reasonable biological definition.

18



1.2.1 Motivation and research objectives for Publication I

The gene removal technique introduced in Publication II [7] (and applied in Pub-
lication III) requires direct access to structural information of GO that enables the
graph-theoretical properties of a DAG (directed acyclic graph) to be effectively ex-
ploited. Specifically, how to access the GO-term levels, categorizing GO-terms as
jump nodes (JN), regular nodes (RN) and leaf nodes (LN), etc. So far there is no
software available that provides such a functionality. For this reason, Publication I
provides an R software package that contains functions for solving such problems.

1.2.2 Motivation and research objectives for Publication II

A large number of different prognostic signatures of breast cancer have been sug-
gested. Specifically, Publication II [8] studies 48 such signatures and investigates their
predictive capabilities and their biological meaning. For this analysis, we developed
an approach that systematically purges all traces of biological meaning of signature
genes, as measured by GO-terms (provided by the R package developed in Publica-
tion I).

1.2.3 Motivation and research objectives for Publication III

Due to the fact that the results obtained in Publication II are somewhat surprising we
repeat a similar analysis for prostate cancer in Publication III [9]. This will reveal
if those results hold only for breast cancer or if they do translate to other cancer
types as well. Hence, in Publication III, we extend our analysis in Publication II to
prostate cancer. This provides information about similarities and differences of the
two cancer types. Furthermore, we discuss relations to the hallmarks of cancer.

1.3 Dissertation structure

This dissertation is outlined as follows. Chapter 1 introduces the general background
and therapeutic relevance of biomarkers, Chapter 2 provides a review of the existing
literature on breast and prostate cancer. The methodology of the analysis is pre-
sented in Chapter 3. Chapter 4 contains the summary of the results. A discussion
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and concluding remarks are presented in Chapter 5.
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2 REVIEW OF LITERATURE

2.1 Breast cancer

The breast is the tissue that overlies the pectoralis major muscle on the chest. The
female breast consists of 15 to 20 sections, called lobes (in the lobes are smaller struc-
tures, called lobules), the fatty tissue, ducts, nipple, and the areola, which is the dark
region around the nipple (see Figure 2.1). The primary role of the female breast is
to produce milk for the young.

Figure 2.1 Anatomy of the Female Breast. Reprinted with permission from Terese Winslow LLC, Medical
And Scientific Illustration [10].

21



Breast cancer (BC) originates from the abnormal growth of breast cells. Such cells
divide faster than healthy cells do and begin to build up, forming lump or mass. BC
can be benign or malignant. Benign breast tumors are abnormal growths, but they
do not grow outside the breast. In contrast, malignant tumors are life-threatening
and require immediate therapeutic interventions.

2.1.1 Epidemiology

Breast cancer is the commonest type of cancer in women and the leading cause of
cancer-related death worldwide, with an estimated 2.3 million new cases diagnosed
in 2020, meaning that the disease accounted for 1 in 4 cancer cases and 1 in 6 can-
cer deaths in women [11]. Women of various races, ethnicities, and geographical
locations are prone to this cancer. As a consequence, the incidence, mortality, and
survival rates vary considerably between different regions of the world, population
structure, lifestyle, climate, and genetic factors (see Figure 2.2) [12]. In Finland, 4934
new BC cases were diagnosed in 2018, resulting in 873 causalities. The incidence rate
is 176.75 per 100,000, and a five-year relative survival rate of 91% (Finnish Cancer
Registry). By contrast, In the same year, 268,670 cases and 41,400 deaths was es-
timated in the US [13]. Breast cancer incidence is very low among men. Approx-
imately, 1 in 1000 men will develop BC throughout their lifetime [14]. Interest-
ingly, there is evidence of a decline in BC mortality in the developed countries since
the early 2000s. This is possibly due to reduced use of hormone replacement ther-
apy (HRT), early diagnosis by mammography tests, increased public awareness, and
lifestyle improvements [15, 16].

2.1.2 Etiology

Gender and Age. Breast cancer majorly affects females. Therefore, gender is a big
risk factor; apart from gender, age is one of the most significant risk factors. There
is an elevation in the incidence of BC in older and middle-aged women. For this
reason, women in this age category are more likely to develop the disease.

Race and Ethnicity. In the same way, race and ethnicity is also a risk factor.
White non-Hispanic females have the highest incidence rates of BC, whereas BC
mortality is 40% higher in Black American women relative to white women [1].

22



Estimated age-standardized incidence and mortality rates (World) in 2020, breast, all ages

Belgium

The Netherlands

Luxembourg

France

France, New Caledonia

Bangladesh

Nepal

Mongolia

The Republic of the Gambia

Bhutan

20 40 60 80 1000

Incidence
Mortality

ASR (World) per 100 000
Data source: Globocan 2020
Graph production: Global Cancer
Observatory (http://gco.iarc.fr)

 

Figure 2.2 Estimated age-standardized incidence and mortality rates (World) in 2020, breast cancer
across all ages. SOURCE: GLOBOCAN 2020 (IARC) [11].

Breast cancer history. A history of BC is also a risk factor, about 20 to 30 per-
cent of women diagnosed, treated, and pronounced disease-free after initial local and
regional treatment have a recurrence during follow-up [17].

Genetic predisposition. Researchers estimate that about a quarter of all breast
cancer cases are family history related. Genetic predisposition accounts for approxi-
mately 5–10% of all breast cancers [18]. A number of inherited genes were identified
which may increase the risk of breast cancer. The most common gene is the BReast
Cancer gene 1 (BRCA1) and BReast Cancer gene 2 (BRCA2). Both of which greatly
raise the risk of breast and ovarian cancer [19, 20].

Reproductive factors and lifestyle practices. Reproductive factors for women,
such as never having a child, early menarche, late menopause, or late age at first
pregnancy, may also increase the risk of breast cancer. Also, oral contraceptives
and bad lifestyle choices, such as heavy alcohol consumption and excessive dietary
fat intake, can also raise the risk of breast cancer. Alcohol intake can increase the
number of hormones associated with estrogen in the bloodstream and can activate
the estrogen receptor pathways [21].
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2.1.3 Symptoms

The early symptoms and preclinical signs of breast cancer for most women vary from
painless breast lump (palpable mass), discharge of the nipple other than breast milk,
retraction of the nipple, changes in the appearance of either or both nipples, increase
in size or alteration in the shape of the breast. For metastatic BC, the symptoms are
determined by the body part the disease has progressed to and its stage. A lump may
form anywhere other than the breast. Also, back or hip pain may develop. If the
tumor spreads to the brain, neurological symptoms such as headache, memory loss,
confusion, blurred or double vision, difficulty speaking, or seizure may arise.

2.1.4 Molecular subtypes

Breast cancer is a heterogeneous and complex disease that can be classified into differ-
ent subtypes with distinct biological features, clinical behavior, and response to ther-
apy [22]. Subtyping approaches include histopathology, molecular pathology, ge-
netic analysis, and gene-expression profiling [23]. There are five main molecular sub-
types of BC according to gene-expression profiling. These subtypes are luminal A,
luminal B, HER2-overexpressing or HER2-enriched, basal-like, and normal breast-
like tumors [24, 25]. Luminal A BC are estrogen receptor-positive (ER-positive),
progesterone receptor-positive (PR-positive), HER2-negative, and low level of pro-
tein Ki-67. The tumor is low-grade, has the best prognosis, and a relatively low recur-
rence rates [26]. Luminal B is hormone-receptor positive i.e. ER-positive and (or)
PR-positive. They may also be HER2-negative or HER2-positive with a high level
of protein Ki-67. Luminal B accounts for roughly 10 percent of all BC and have a
poorer prognosis compared to luminal A subtype [27]. Triple negative/Basal-like
BC is hormone-receptor negative i.e. ER-negative and PR-negative and also, HER2
negative. Women with the BRCA1 (BReast Cancer gene 1) gene are more suscepti-
ble to this BC. The tumor tends to occur commonly in younger and black women
[28, 29]. Basal-like tumors are more aggressive with a poorer prognosis compared
to luminal A and luminal B tumors [30]. HER2-enriched BC are ER-negative and
PR-negative and, HER2-positive. It can also be HER2-negative [31]. This cancer
grows faster than luminal tumors and has the worse prognosis. Normal-like BC is
hormone-receptor positive (ER-positive and (or) PR-positive) and, HER2-negative.
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It also has low levels of Ki-67, which slows down the growth of the tumor. It is simi-
lar to the luminal A tumor but with a slightly worse prognosis (it still has a relatively
good prognosis).

2.2 Prostate cancer

The prostate is a small walnut-shaped gland at the base of the urinary bladder (see
Figure 2.3). The gland plays an important role in the male reproductive system. It
helps produce semen, the milky fluid that nourishes and transports sperm. The three
main prevalent forms of prostate disease are benign prostatic hyperplasia (BPH),
prostate cancer, and prostatitis. Prostate cancer (PCa) is one of the commonest types
of cancer. Some forms of the disease grow slowly and are localized to the prostate
gland, and do not cause serious damage, while other types are more aggressive and
can spread rapidly to other body parts leading to death. Early diagnosis of PCa is
the best chance for successful treatment.

Figure 2.3 Anatomy of the Male Reproductive System. Reprinted with permission from Terese Winslow
LLC, Medical And Scientific Illustration [10].

25



2.2.1 Epidemiology

Prostate cancer (PCa) is the second most common cancer in men and the fourth
most common cancer worldwide [32]. The incidence rate of PCa increases with
age. The average age of diagnosis is 66 years, and about 60 percent of all diagnosed
cases occur in men over 65 years old [33]. Thus, it is common in countries with a
higher proportion of older men. It is estimated that 191,930 new cases of PCa will
be diagnosed in the US in the year 2020, resulting in about 33,330 deaths [34]. In
2020, 1,414,259 new cases of PCa are diagnosed globally, representing 7.3 percent of
all cancers, 375,304 death globally was registered in the same year, accounting for 3.8
percent of all cancer deaths (GLOBOCAN 2020) [11]. The incidence and mortality
rates of PCa are highly variable worldwide (see Figure 2.4). From the figure, the
age-standardized rate (ASR) was highest in Northern Europe (83.4 per 100,000), and
the highest mortality is in the Caribbean (27.9 per 100,000). The global variation of
prostate cancer incidence can be linked to rampant prostate-specific antigen (PSA)
testing in developed countries such as Europe and the US and less population-based
testing in developing countries [35].

Estimated age-standardized incidence and mortality rates (World) in 2020, prostate, males, all ages
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Australia and New Zealand

Northern America

Polynesia
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Mortality
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Data source: Globocan 2020
Graph production: Global Cancer
Observatory (http://gco.iarc.fr)

 

Figure 2.4 Estimated age-standardized incidence and mortality rates (World) in 2020, prostate cancer
across all ages. SOURCE: GLOBOCAN 2020 (IARC) [11].
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2.2.2 Etiology

Age. Prostate cancer is an age-dependent disease. In men younger than 50 years old,
there is a moderate overall incidence of PCa [36]. About 60 percent of all diagnosed
cases are in men of age 65 years and above, suggesting that the probability of men
developing the disease quickly rises after they are 50 years old [37].

Race/Ethnicity. Prostate cancer incidence varies widely between various races,
ethnic groups, and geographical locations. The lowest incidence rate of PCa is found
in Asia with an incidence of 13.6 per 100,000, whereas the highest is in Northern
America, an incidence of 73.0 per 100,000 (GLOBOCAN 2020) [11]. Black Amer-
ican males of African descent have the highest risk of prostate cancer globally and
are more likely than other ethnic groups to develop the condition early in their lives
[38].

Family history. Men with a history of PCa in their family are higher at risk of
PCa than men with no family history of PCa [39]. This risk is even higher for men
with relatives diagnosed at a younger age [37]. Also, genetic predisposition such as
having a strong family history of genes such as BRCA1 and especially BRCA2 can
increase the risk.

Diet. Dietary factors can play an essential role in PCa growth. Consumption of
saturated animal fat, red meat, calcium, milk, and dairy products have been related
to an elevated risk of PCa [40, 41, 42].

2.2.3 Symptoms

Although certain men are asymptomatic and hence, do not experience any signs or
symptoms, others in the early stages of the disease may experience discomfort. The
nature of the symptoms largely depend on the location of the tumor in the prostate
and whether or not it is indolent. The symptoms of PCa vary from frequent urina-
tion, increased desire to urinate, especially at night, burning or pain when urinating,
slow or delayed urine flow, blood in the urine or semen. If the disease progresses past
the prostate, there may be signs such as hip, back, and shoulder pain, as well as ex-
cessive weight loss and exhaustion [43].
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2.3 Definition of prognostic biomarkers

2.3.1 What are biomarkers?

According to the National Cancer Institute, a biomarker is ‘a biological molecule
found in the blood, other body fluids, or tissues that is a sign of a normal or ab-
normal process, or of a condition or disease’. In other words, biomarkers provide
measures of biological induced changes in the body that is indicative of disease pro-
gression or other health concerns. A biomarker can be molecular, physiological, or
biochemical. Also, they can either be a single entity, e.g. the mutation of a single
gene, BRCA1/2 in BC, or a collection of those entities called biomarkers or a set
thereof. Importantly, if one has a set of biomarkers, the entities in such a set are typ-
ically of a common type, i.e. all relating to the levels of proteins or the expressions
of genes or genetic mutations. Biomarkers can mainly be classified into three types:
diagnostic, predictive, and prognostic (see Figure 2.5).

Diagnostic biomarkers are used to evaluate an unknown condition and to assess
the progression of the disorder and/or the efficacy of a treatment intervention. On
the other hand, prognostic biomarker according to [44] are characterized as a marker
‘used to identify and classify a patient according to their level of risk of an outcome
of interest in the absence of treatment’, and predictive markers ‘are used to identify
and classify patients to predict an outcome of interest in response to a particular
treatment’. Similarly, [45] also described prognostic biomarkers as ‘a clinical or bio-
logical characteristic that provides information on the likely patient health outcome
(e.g. disease recurrence) irrespective of the treatment’. In the same way, predictive
biomarker ‘indicates the likely benefit to the patient from the treatment’. Based on
the aforementioned definitions, it is clear that biomarkers can be used in defining
patient outcomes. Ideally, we treated such patient groups as a two-class pattern clas-
sification (alive vs deceased). The emphasis of this work is on prognostic biomarkers.

Prognostic biomarkers are capable of binary grouping of patients and the varia-
tion in progression of these patients in these two groups due to the disorder can be
detected through survival analysis. Typically, such groups may demonstrate a vary-
ing survival time to event, considering that the meaning of ‘event’ and ‘survival time’
are contextual. Specifically, an ‘event’ could refer to death, progression, or relapse.
The survival times are called overall survival (OS - death), progression-free survival
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(PFS - worsening of a disorder), relapse-free survival (RFS - recurrence of disorder),
or disease-free survival (DFS - duration of disease-free status) depending on the na-
ture of the event. Accordingly, statistical approaches have been developed to classify
the disparities in survival times of the different patient groups, which are ultimately
accomplished by comparing the Kaplan Meier curves of the corresponding two pa-
tient groups.
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Figure 2.5 Overview of the three types of biomarkers. A: Diagnostic biomarkers. B: Predictive biomark-
ers. C: Prognostic biomarkers.

One can infer from this discussion that to study prognostic biomarkers, certain
things are needed: (i) at least two separate patient groups, whereas (ii) each group rep-
resents a particular state of a disorder. For instance, triple-negative vs non-triple neg-
ative breast cancers [46]. The statement is no suggestion that prognostic biomark-
ers are only useful given the specific states of the disorder. Interestingly, prognostic
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biomarkers are also useful where the specific states of the disease are uncertain. Only
its heterogeneity is needed.

2.3.2 Identifying prognostic biomarkers

A Pubmed search at the time using keywords ‘prognostic biomarkers’ indicates that
more than 85,000 papers have investigated prognostic markers. This is a large num-
ber of publications. However, the central underlying design of the biomarkers in-
vestigated in all these papers can be outlined by a general procedure [47, 48]. This
fundamental procedure is shown in Figure 2.6.

1. Generation of gene expression data

2. Preprocessing of the data

3. Selection of biomarkers

4. Categorization of patient samples

5. Assessment of the biomarkers

1. generation of gene expression data
and 2. preprocessing of data 3. selection of biomarkers 5. assessment4. categorization of samples

high-throughput technology:
  - DNA microarray
  - RNA-seq

preprocessing:
 - normalization
 - �ltering

feature selection:
  - di�erential expression
  - expert insight
  - machine learning-based

classi�cation method:
  - PC1 method
  - SVM

p-value

evaluation:
  - survival analysis

Comparison of survival curves
with a statistical hypothesis test
resulting in a p-value

Figure 2.6 General technique used in studies to create prognostic biomarkers.

The procedure mentioned above is consistent with the general approach used
when prognostic signatures are identified or studied. All studies adopt these steps,
which vary only in terms of the methodology used. Studies have, for example, used
various methods to select genes as prospective biomarkers. A widely used approach
involved the identification of differentially expressed genes, an example is from a
study by [49]. Firstly, the authors studied the TCGA data and 60 genes were identi-
fied that were differentially expressed between favorable and unfavorable prognosis
and maybe a likely biomarker for the prognosis of prostate cancer. The subsequent
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analysis also included the discovery of differentially expressed genes using the lymph
node-negative LAPC samples from Russian patients. They discovered 12 additional
differentially expressed genes as potential prostate cancer markers. Similarly, other
studies by [50, 51, 52, 53, 54], and [55] all use differentially expressed genes to iden-
tify potential prognostic biomarkers for prostate cancer, breast cancer, gastric cancer,
and pancreatic carcinoma. Another approach, based on machine learning, feature
selection, in general, is proposed by [56, 57]. Another example applies to the catego-
rization of the patients (samples from patients) using various classification methods,
such as SVM has been investigated by [58, 59, 60]. The PC1 method can also be used
for this purpose. For instance, in [61] the PC1 of the signatures are computed and
the cohorts are splits according to the median of PC1.

Intriguingly, only one approach namely a survival analysis is employed for deter-
mining the prognostic significance of biomarkers [62]. Specifically, a comparison of
various Kaplan Meier survival curves is made using a statistical hypothesis test that
measures considerable heterogeneity in these curves. Generally, only two survival
curves are compared, referring to two classes of patients with distinctive prognostic
behavior, although it is possible to expand them to more groups.
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3 MATERIALS AND METHODS

The materials and methods used in Publication I - III are presented in this chapter.
In Section 3.1, the gene expression data used in Publication II and III is discussed.
Section 3.2 introduce the breast and prostate cancer prognostic biomarkers that are
used in the study. Section 3.3 explains how the GO-DAG used for retrieving the
GO-terms hierarchy levels in Publication I is generated. Finally, the methods are
discussed in Section 3.4.

3.1 Gene expression data (II, III)

Two types of publicly accessible gene expression data are used for the analysis - DNA
microarray and RNA-seq data. In Publication II, we used both types of gene expres-
sion data. Publication 3 used only RNA-seq data during the analysis.

3.1.1 DNA microarray data

The first set of gene expression data set used is the NKI data set, accessible from [61].
The data set contains breast cancer samples from the Netherlands Cancer Institute
(a.k.a NKI) cohort. The total number of unique samples is 295. Each gene expres-
sion profile had gene expression data for 13,108 genes, and each sample corresponds
to a single patient. The patients have stage I or II breast cancer. The data set is sup-
plemented by survival data, and the development of metastases indicates an ‘event’
for survival analysis. This data set was used in Publication II.

3.1.2 RNA-seq data

The second set of gene expression data used in Publication II is a breast cancer data
set from the Gene Expression Omnibus with accession number GSE96058 [63]. We
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refer to this data as the SWE data. We opted for this data set due to its availability
and the large number of samples it constitutes. In comparison to the NKI breast
cancer cohort, it is a more recent data set. The data were FPKM normalized and
log-transformed. It has the gene expression profiles of 30,865 genes and samples
of subtypes: Basal, Her2, LumA, LumB, and Normal. Each subtype contains 360,
348, 1709, 767, and 225 samples respectively. The samples of normal subtypes are
excluded from the data set. Also, genes without an associated Entrez gene ID are
equally omitted. All genes had expression data available across all the samples. The
overall survival endpoints are used during survival analysis.

The two RNA-seq data sets - HTSeq-FPKM and HTSeq-FPKM-UQ, used in Pub-
lication III contains PCa samples from The Cancer Genome Atlas Prostate Adeno-
carcinoma (TCGA-PRAD) project. The data was obtained from the UCSC Xena
GDC data hub . The two data sets were FPKM and FPKM-UQ normalized and log-
transformed respectively. It contains 551 samples, of which 498 are primary solid
tumors, 52 are solid tissue normal, and just one metastatic sample. The metastatic
and solid tissue normal samples are excluded from the final gene expression data set.
Genes with no expression data across all samples are omitted. After filtering, the final
gene expression profiles had gene expression data for 16,428 genes for HTSeq-FPKM
and 15,165 genes for the HTSeq-FPKM-UQ data set. These data sets are referred to
as GDC cohort A and B. For survival analysis, we used the progression-free survival
endpoints. The patient survival information is provided by [64].

3.2 Biomarkers (II, III)

The second source of data used in the analysis is the prognostic biomarkers of breast
and prostate cancer. The 48 prognostic biomarkers used in Publication II are com-
piled by [61] from 46 published studies through a literature search. Together the 48
biomarkers contain 8106 genes. In Publication III, the prostate cancer gene signa-
tures reported are identified from Pubmed using keywords ‘prognostic’, ‘biomark-
ers’, ‘signatures’ and ‘prostate cancer’. The search resulted in the compilation of
32 prognostic signatures from 31 studies. The biomarkers are reported using the
HGNC gene nomenclature. As a result, the corresponding Entrez gene IDs of each
biomarker set are derived. Table 3.1 and 3.2 contains the respective breast and prostate
cancer signatures that we have used.
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3.2.1 Published breast cancer studies analysed in Publication II

Acronym for a study Number of genes Cancer type Reference
ABBA 111 Breast cancer [65]

ADORNO 2 Breast cancer [66]
BEN-PORATH-EXP1 367 Breast cancer [67]
BEN-PORATH-PRC2 631 Breast cancer [67]

BUESS 30 Breast cancer [68]
BUFFA 3 Multiple cancers [69]

CARTER 70 Multiple cancers [70]
CHANG 355 Multiple cancer [71]

CHI 136 Multiple cancer [72]
CRAWFORD 377 Breast cancer [73]

DAI 35 Breast cancer [74]
GLINSKY 11 Multiple cancer [75]

HALLSTROM 78 Multiple cancer [76]
HE 6 Breast cancer [77]
HU 13 Breast cancer [78]

HUA 1345 Breast cancer [79]
IVSHINA 17 Breast cancer [80]

KOK 179 Breast cancer [81]
KORKOLA 21 Breast cancer [82]

LIU 167 Multiple cancer [83]
MA 30 Breast cancer [84]

MILLER 18 Breast cancer [85]
MORI 156 Multiple cancer [86]
PAIK 16 Breast cancer [87]

PAWITAN 46 Breast cancer [88]
PEI 2 Breast cancer [89]

RAMASWAMY 16 Multiple cancer [90]
REUTER 714 Breast cancer [91]
RHODES 67 Multiple cancer [92]

SAAL 162 Multiple cancer [93]
SHIPITSIN 56 Breast cancer [94]

SORLIE 15 Breast cancer [95]
SOTIRIOU-93 343 Breast cancer [96]

SOTIRIOU-GGI 90 Breast cancer [97]
META-PCNA 129 Multiple cancer [98]

TAUBE 242 Breast cancer [99]
TAVAZOIE 6 Breast cancer [100]

VALASTYAN 6 Breast cancer [101]
VANTVEER 60 Breast cancer [102]

WANG-76 69 Breast cancer [103]
WANG-ALK5T204D 239 Breast cancer [104]

WELM 3 Breast cancer [105]
WEST 468 Breast cancer [106]

WHITFIELD 587 Breast cancer [107]
WONG-ESC 335 Breast cancer [108]

WONG-MITOCHON 217 Breast cancer [109]
WONG-PROTEAS 46 Breast cancer [109]

YU 14 Multiple cancer [110]

Table 3.1 A summary of the published prognostic signatures for Breast cancer used in Publication II.
These signatures genes are derived by [61].
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3.2.2 Published prostate cancer studies analysed in Publication III

Acronym for a study Number of genes∗ Cancer type Reference
AGELL 12 Prostate cancer [111]

BIBIKOVA 16 Prostate cancer [112]
BISMAR 12 Prostate cancer [113]

CHEN 4 Prostate cancer [114]
CHEN_CC 7 Prostate cancer [115]
CHEVILLE 2 Prostate cancer [116]

CHU 8 Prostate cancer [117]
CUZICK 31 Prostate cancer [118]

GLINSKY 11 Multiple cancers [75]
IRSHAD 19 Prostate cancer [119]

IRSHAD_1 3 Prostate cancer [119]
LARKIN 7 Prostate cancer [120]

LI 6 Prostate cancer [121]
LIU 167 Multiple cancers [83]

LONG 12 Prostate cancer [122]
NAKAGAWA 17 Prostate cancer [123]

PENNEY 157 Prostate cancer [124]
RAMASWAMY 16 Multiple cancers [90]

REDDY 16 Prostate cancer [125]
ROSS-ADAMS 100 Prostate cancer [126]

ROSS 6 Prostate cancer [127]
SAAL 162 Multiple cancers [93]

SHARMA 15 Prostate cancer [128]
SINGH 5 Prostate cancer [129]
SONG 15 Prostate cancer [130]

STEPHENSON 10 Prostate cancer [131]
TALANTOV 3 Prostate cancer [132]

TANDEFELT 36 Prostate cancer [133]
TRUE 86 Prostate cancer [134]

WANG 43 Prostate cancer [135]
WU 29 Prostate cancer [136]
YU 14 Multiple cancers [110]

Table 3.2 A summary of the published prognostic signatures for prostate cancer used in Publication III.
Number of gene∗ corresponds to the number of genes following HGNC gene conversion to
Entrez gene IDs [9].

3.3 Gene Ontology (I-III)

The gene ontology (GO) is an important database mostly used to provide biological
interpretations for the analysis of genes or gene set from biological, medical, and clin-
ical problems. Originally, GO supported only three model organisms but has since
been expanded to more than 3200. GO explains our understanding of the biological
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domain in three distinct aspects of gene function, namely biological process (BP),
molecular function (MF), and cellular component (CC) together with over 45,000
terms and 130,000 relations. The majority of the information, however, is based
on ten model organisms (human, mouse, rat, zebrafish, drosophila, caenorhabditis
elegans, dictyostelium discoideum, saccharomyces cerevisiae, schizosaccharomyces
pombe, arabidopsis thaliana, and escherichia coli) [137]. Moreover, GO includes
annotations by relating particular gene products to GO-terms. This facilitates the
connection between genes and GO-terms for the derivation of knowledge unique to
the organism.

3.3.1 Exploring the GO-DAG

Before the GOxploreR package, existing tools do not provide tailor-made functions
to explicitly obtained the GO-DAG for the three sub-ontologies - BP, MF, and CC,
the hierarchy level of a GO-term, creating organism-specific GO-DAGs, or provid-
ing means of visualizing the entire GO tree. Due to this, structural analysis of GO is
extremely difficult for beginners or tedious for the experienced user. To this end, spe-
cial functions are created in the resulting R package of Publication I for this purpose.
Additionally, voiding the genes in a biomarker of all biological meaning requires se-
lecting genes in the gene pool in a defined or constraint manner (Publication II and
III). This approach demands, first and foremost, that:

1 All genes from the respective biomarker be removed.

2 Secondly, genes that belong to the same biological processes as the genes in the
BM are omitted. According to the GO database [138], the biological processes
are hierarchically ordered. Thus, genes of biological processes on the same
hierarchy level are successively removed.

The GO-DAG needs to be deduced so that the structural information of GO can
be investigated for this purpose. Taking into account that a child term of a parent
node does not necessarily have to be on the next hierarchy level after the parent and
can be further down the DAG (jump node). The terms jump nodes (JNs), regular
nodes (RNs), and leaf nodes (LNs) are used to describe GO-terms with these distinct
characteristics. These features demonstrate how one can create the GO-DAG from
this information for every domain, i.e. biological process, molecular function, and
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cellular component. See Publication I for a detailed description of the algorithm
used to create the GO-DAGs.

3.4 Statistical analysis (II-III)

An outcome association method was created for determining the prognostic impor-
tance of random gene sets (RGS). This procedure consists of three key steps. First, se-
lection/construction of a random gene set (see the gene removal procedure described
in Publication II and III), categorization of patient samples, and, finally a survival
analysis. Also, multiple testing correction after survival analysis was conducted us-
ing conservative Bonferroni correction. All statistical analyses were conducted using
the R programming language [139].

3.4.1 Selection/construction of the gene set

Random gene sets (RGS) are chosen or constructed from a gene pool by first elimi-
nating both the biomarker signatures and the genes that belong to the same biolog-
ical processes as the genes in the BM signatures. The proposed method for the gene
removal procedure used is described explicitly in Publication II and III.

3.4.2 Unsupervised classification

An unsupervised classification method by the PC1 method was used to stratified the
patient samples into two classes (low and high risk). The PC1 approach is based
on the principal component analysis which is a dimensional reduction technique.
This method aims to transform a large data set into a smaller one having a lower-
dimensional representation. The R function ‘prcomp’ was used to obtain the first
principal component (PC1) of the signature. Based on the median of PC1, the pa-
tients are classified into two groups.

3.4.3 Survival analysis

To assess the prognostic importance of RGS, survival analysis is carried out. More
precisely, a Kaplan Meier estimate of survival curves is performed and compared
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with the Mantel-Haenszel test [140]. Each comparison is thus distinguished by a
p-value that comes from such a hypotheses test. The R package ‘survival’ was used
for survival analysis. P-values less than 0.05 were considered to be statistically signif-
icant. The categorization of the patient samples for survival analysis was achieved
by the PC1 method as described earlier.

39



40



4 SUMMARY OF THE RESULTS

This chapter summarizes the findings of Publication I-III [7, 8, 9]. First, a brief
description of some of the functionalities of the R package (GOxploreR) which re-
sulted from the analysis of Publication I is described. Next, a summary of the results
from Publication II and III is given. Finally, the contribution of this dissertation is
discussed.

4.1 GOxploreR: An R package for the structural exploration

of GO (I)

In Study I [7], GOxploreR, an R package was developed to facilitate the structural ex-
ploration of GO. The package provides support for ten species corresponding to the
main organisms within the GO database. The package includes features for mapping
gene or gene list to GO-terms and their associated hierarchy levels. If a list of GO-
terms is generated, GOxploreR provides special functions that can help to obtain the
corresponding hierarchy levels of these GO-terms. As already noted, the child of a
GO-term can jump levels. The function ‘GOTERMXX2ChildLevel’ is useful for
giving the child terms of a GO-term and its respective hierarchy levels. The ‘XX’ in
the name can be substituted for BP, MF, or CC. GO offers different unique DAG for
several species because each organism has a specific number of genes. For instance,
human has approximately 20,000 - 25,000 genes and mouse has 30,000. From these
genes, one can derive only a subset of all GO-terms that are connected to a specific
organism. GOxploreR contains 11 DAG, one main DAG, and ten DAGs for each
of the organisms that the package supports. The number of genes, total number of
hierarchy levels, and GO-terms of BP for each DAG varies. In GOxploreR v1.1.0,
the human GO-DAG of BP contains 19,155 genes, 19 hierarchy levels, and 12,436
GO-terms of BP. Similarly, E.coli GO-DAG of BP contains 3,449 genes, 15 hierar-
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chy levels, and 1,491 GO-terms of BP. A detailed overview of the other supported
organism is provided in Publication I.

For enriched GO-terms analysis, one needs to restrict such analysis to more de-
tailed GO-terms that are placed at a higher hierarchy level. The identification of
enriched GO-terms for a list of genes is perhaps the most important function of
GO. It is not unusual to discover a vast number of such GO-terms, making a fo-
cused discussion very challenging to address. Nonetheless, the GO-DAG contains
details that can be utilized for exploratory analysis of such a list. In particular, the
hierarchy levels of GO-terms can be used. Although a GO level is not an absolute
biological indicator, the information provided remains valuable [141]. For this pur-
pose, GO-terms located on a specific hierarchy level can be obtained. Enabling, for
example, a basic ordering of these GO-terms to supplement an enrichment analysis.

4.1.1 Visualization capabilities of GOxploreR

The most challenging aspect of visualizing a GO-DAG is the vast number of GO-
terms such a DAG contains, making the visualization task infeasible. The reduced
GO-DAG is introduced to tackle this problem. The underlying idea of such a GO-
DAG is that the visualization problem is approached by mapping GO-terms into
three-node categories, namely JN, RN, and LN. For example, the GO-terms of BP
containing 12,436 nodes can be visualized using only 52 node categories (see Figure
4.1). Only category nodes containing at least one GO-term are shown, enabling a
system-wide view of all human GO-terms of BP. In the same way, there is another
function that visualizes only sub-GO-DAGs unique to an organism, comprised of
only GO-terms of interest. These overall functionalities make GOxploreR versa-
tile for the structural exploration of GO. A summary of the main functionalities
provided by the package is as follows:

1. direct access to structural features of GO

2. structure-based ranking of GO-terms

3. mapping to a reduced GO-DAG

4. prioritizing of GO-terms
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Figure 4.1 A reduced GO-DAG of BP for human. The whole GO-DAG contains 52 nodes, i.e. RN, JN,
LN and it summarizes all the 12,436 GO-terms of BP available for this organism.

4.1.2 GOxploreR accessibility

The GOxploreR package is freely available from CRAN (Comprehensive R Archive
Network). A thorough introduction to the package functions can be accessed from
the package vignette (https://cran.r-project.org/web/packages/GOxploreR/
index.html). The package can be installed by typing ‘install.packages("GOxploreR")’
on the R console.

4.2 Prognostic signatures of Breast cancer (II)

In study II [8], we systematically showed that the prognostic signatures of breast
cancer outcome do not have a sensible biological meaning with regard to disease
etiology. The study achieved its results using two BC gene expression data sets and
a set of biomarker genes from 46 studies. An exploratory analysis of the genes in
the biomarkers has shown that the size of biomarkers ranges significantly from one
study to another. A pairwise study of the BM signatures has also shown that none of
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the biomarkers are unique. Interestingly, all of them shared genes in common with
at least 2 other biomarkers. On the other hand, the overlap of the GO-terms among
the signatures was also explored. Importantly, the signatures shared at least some
GO-terms with every other signature proving that all the signatures have a non-zero
overlap in their biological meaning as measured by GO-terms.

The prediction capabilities of RGS are investigated by randomly sampling genes
from the gene pool and conducting a survival analysis. The size of the respectively
published biomarkers determines how many genes are sampled per random signa-
ture. The sampling is repeated 1000 times for each study, meaning we have ana-
lyzed 48,000 RGS that are produced in this manner. The outcomes of the study
are summarized in three ways. First, the p-values derived from the survival analysis
are reported without any multiple testing corrections performed (uncorrected). In
the study by [61], the same analysis was done i.e. no multiple testing corrections
were applied to the p-values obtained. Next, we repeated the analysis by applying a
conservative Bonferroni correction to the p-values (corrected) and finally, the pro-
liferation genes are removed from the gene pool, and the p-values from the survival
analysis are corrected using conservative Bonferroni correction (corrected without
proliferation genes (PG)).

The results of the analysis summarized in Figure 4.2 are for the SWE data using
gene removal procedure 2 (GRP 2) discussed in Publication II, where in addition to
BM signatures, genes from the same biological process as the genes in the BM signa-
tures are eliminated. The results are for the last hierarchy level, where all biological
meaning from the RGS has been removed. In the figure, the red/green points re-
flect the results of the original BM signatures, with dark red/dark green suggesting
non-significant values and light colors indicating significant results. The violet dis-
tributions correspond to the outcomes of random signatures and the shaded green
bars correspond to the lower 3rd percentile of these distributions. Also, the horizon-
tal black lines represent the median values of the distribution of random signatures
and the long horizontal blue line corresponds to the significance level of α = 0.05.
The p-values are on a logarithmic scale (i.e. log10). From the results obtained, it is
evident that not all BM signatures (big points) lead to significant outcomes. An ex-
planation for this is that a different validation data than used by the 48 biomarkers
studies is used. Despite this, still, in all instances (see Figure 4.2) 34 BM signatures are
significant. As a consequence, 14 signatures do not show prognostic significance for
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the independent validation data and therefore, lack robustness (For the NKI data, 39
published BM signatures are significant and 14 are non-significant). RGS with sim-
ilar or better prognostic prediction capabilities as the published BM signatures are
referred to as surrogate gene sets (SG). The SG are not assigned (biological) mean-
ing or role, yet have equivalent or better prediction capabilities as the reported BM
signatures as indicated by the green shaded bar in Figure 4.2, but entirely different
biological interpretation. The NKI BC gene expression data indicate the same con-
clusion, implying that our findings are robust.

GRP 2: uncorrected GRP 2: corrected GRP 2 : corrected*
without proliferation genes
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Figure 4.2 Results for gene removal procedure 2 and the SWE data. The patients samples contain LUM
A and LUM B BC subtypes. The results in A are for uncorrected p-values and B for Bonferroni
corrected p-values. In C, the proliferation genes are removed and the p-values are corrected
[8].

4.3 Prognostic signatures of Prostate cancer (III)

In Study III [9], we investigated PCa prognostic signatures concerning their lack
of biological meaning. The gene removal method described in Publication II was
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used to systematically extract all biological associations between the reported BM
signatures and genes in the gene pool from which random genes are chosen. The
published signatures used for the analysis exhibited different characteristics than the
published BC signatures discussed in Publication II. In particular, the size of the
reported PCa signatures are smaller, all less than 200 genes (Table 3.2). A pairwise
similarity study of the GO-terms in the published PCa signatures suggests that the
signatures are more similar at the GO-term level than at the gene level.

Likewise, the outcomes of the investigation was presented in three parts. First,
the results of the uncorrected p-values are presented, followed by the correction of
these p-values by conservative Bonferroni correction. Finally, we show the outcomes
of the optional step of the gene removal procedure discussed in Publication II, i.e. the
PG are removed and the p-values are corrected. The results are shown in Figure 4.3
for the GDC cohort A data. The light/dark red bold points are the outcome of the
previously reported PCa signatures and the new validation data. The blue-colored
distributions are the outcomes of RGS, with the shaded cyan bars representing the
lower third percentile of the distributions and the bold black points are the median
of these distributions. The blue vertical line corresponds to a significant level of
α = 0.05 . The results indicate that all published signatures (red points) do not lead
to a significant outcome. Specifically, 24 and 22 BM out of the 32 published BM
signatures are significant for the GDC cohort A and B data respectively, implying
that the remaining signatures lack robustness for the independent validation data set.

In all three cases i.e, uncorrected p-values, corrected p-values, PG are removed
and the p-values are corrected, we found many RGS with similar or better prognos-
tic prediction capabilities as the PCa published signatures proving our hypothesis
right that the published PCa signatures examined lack a sensible biological meaning
because we were able to find RGS with no assigned biological meaning that provided
the same outcome. We repeated the same analysis for the GDC cohort B data. The
outcomes of which confirmed our analysis that RGS can always be found that yield
significant outcomes.
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Figure 4.3 Results for the prediction capabilities of random gene sets. A: Results for uncorrected p-
values. B: Bonferroni corrected p-values. C: Proliferation genes are removed and the p-
values are Bonferroni corrected [9].
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5 DISCUSSION AND CONCLUSION

This chapter provides a discussion and concluding remarks of this dissertation. The
chapter begins with a section discussing some of the functionalities that our R pack-
age offers. Furthermore, the problems in the interpretation of prognostic biomark-
ers of breast and prostate cancer are highlighted. Finally, concluding remarks are
given.

5.1 Discussion

5.1.1 GOxploreR for scrutinizing biological significance (I)

The GO knowledge-base has become increasingly important in recent years for pro-
viding annotations as the prevalence of data generated by high-throughput tech-
niques has increased. Due to this, tailor-made tools that can enable efficient analysis
of GO are needed. Deriving structural information of GO can be tedious even for
the experienced user and extremely challenging for the novice user. For this pur-
pose, our tool [7] provides functionalities for easy access to structural details of GO
with respect to the underlying DAG (directed acyclic graph). In comparison to other
packages, our package GOxploreR is significantly different. Specifically, one of the
most unique features of GOxploreR is its ability to map a GO-DAG to a reduced
GO-DAG. Also, the visualization of reduced GO-DAGs for the three sub-ontologies
can easily be obtained. The reduced GO-DAG is useful for providing an overview
of the biological information processing of the entire ontology. To our knowledge,
no software tool for analyzing GO provides such capabilities. In addition, GOx-
ploreR includes a prioritizing algorithm for removing GO-terms that capture re-
dundant information from a list of GO-terms. The algorithm utilizes the fact that
higher GO-terms capture more specific biological information [141]. Starting with
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the GO-terms at the highest level, the prioritizing algorithm iteratively applies this
logic, searching for the (shortest) path to the root node. Along these shortest paths,
GO terms are omitted. In summary, GOxploreR is available as an R package, allow-
ing it to be easily integrated into existing analysis pipelines involving GO-terms.

5.1.2 Interpretation issues with prognostic biomarkers (II and III)

The main objective of Publication II and III [8, 9] is to systematically scrutinize
the biological meaning of prognostic signatures of breast and prostate cancer respec-
tively. We searched the literature for prognostic biomarkers and found that such
signature genes are used in two interdependent ways. We refer to these as the predic-
tive utility and biological utility of biomarkers. A brief definition of the two terms
are as follows:

1. Predictive utility: The predictive utility of prognostic biomarkers means that
biomarkers are used to categorize patients according to their prognostic state.

2. Biological utility: The biological utility of prognostic biomarkers means that
biomarkers are used to provide biological insights into disease etiology.

The predictive ability of BM signatures is not disputed in this dissertation because
the biomarkers can give an accurate prediction of cancer outcome. The biological
utility, however, is challenged. If one thinks about it, both of these applications seem
to be perfectly natural; after all, how could biomarkers with predictive utility not
be useful for a biological interpretation of a disorder? Statistically, however, it is
understood that there are two types of models. One of which is referred to as an ex-
planatory or causal model, while the other is called the predictive model [142, 143].
Certainly, an explanatory model is more insightful than a predictive model since,
although both may make predictions, only an explanatory model gives a reasonable
justification for the fundamental mechanism about which the predictions are pro-
duced. A causal Bayesian network is an example of an explanatory model. As the
results of Publication II and III show [8, 9], the biomarkers studied in this disser-
tation are no causal models. Therefore, the last-mentioned category of models are
often referred to as black-box models [144].

Previous research on prognostic biomarkers has shown that such a disparity is
also indispensable for biomarkers. Particularly, the authors of [61] examined 48
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prognostic signatures of breast cancer, originating from independent, dedicated stud-
ies, and demonstrated that randomly chosen genes can also have identical predictive
capabilities as the original signatures. Similar findings were previously reported in
Ein-Dor et al. [145]where genes were ranked according to their correlation with sur-
vival outcome, and patients were classified using successive (non-overlapping) classes
of genes. Even though the likelihood of discovering certain groups of correlated
genes for more distant groups is decreased, the authors showed that such groups ex-
ist even for genes that do not rank at the top. Nonetheless, regardless of the selection
mechanism of the various studies, all of them showed that there exist sets of genes
that behave equally in the predictive task.

The work in Publication II and III [8, 9] has extended the above findings by ac-
knowledging that disorders such as cancer represent complex rather than Mendelian
diseases, the validity of the biological significance of biomarkers have been further
tested in this dissertation through a novel GRP that entails removing signatures genes
as well as genes involved in the same biological process as these genes. Prior studies
on prognostic signatures have failed to do this, posing a major limitation to their
studies because it is possible to unknowingly select the signature genes as random
gene set. Furthermore, no removal of biological meaning is achieved by their study
whereas the procedure in Publication II and III performed a strong removal of biolog-
ical meaning, which enabled the conclusion made in this dissertation to be reached.
This gene removal procedure can lead to a further reduction of the size of the pool
of selectable genes, yet the results in Publication II and III showed that even among
these remaining genes there exist random gene sets that perform equivalently in the
prognostic predictive task. Importantly, owing to the absence of all genes that share
biological processes with the original signature genes, the remaining genes do not
share any biological meaning with such a signature. As this is true for every random
gene set derived from the remaining genes, it is clear that these random gene sets have
a biological meaning distinct from the original signature genes.

In summary, the results in publication II and III [8, 9] have shown that there
is no justification for the dual utilization of prognostic biomarkers, i.e. for predic-
tive and biological utility. In particular, the analysis systematically removed the risk
that random gene sets would inadvertently have the same biological meaning as the
original BM signatures genes by removing all those genes from the available pool of
selectable genes. Returning to the statistical differentiation of the models mentioned

51



above, we conclude that none of the methods used to identify prognostic biomarkers
in the studies investigated have established biological utility. Instead, they all form
predictive utility that do not allow conclusions to be drawn about the underlying
biology.

5.2 Conclusion

Prognostic biomarkers have been extensively investigated for decades due to their
clinical usefulness in assisting patients. However, their general interpretation re-
mained so far unclear. In this thesis, we focused on studying the interpretability of
prognostics biomarkers of breast and prostate cancer. In order to be able to perform
our analyses, we created a tool called GOxploreR (Publication I) [7] for the graph-
based exploitation of GO. Due to the absence of software tools to directly explore
the GO-DAG from a graphical theoretical viewpoint, our R package is beneficial
since it complements currently available non-structural analysis tools.

Our results from Publication II and III [8, 9] raise awareness of a new issue re-
lating to the biological meaning of prognostic biomarkers. To avoid misunderstand-
ing and misuse of biomarkers, studies should focus on the predictive utility of the
biomarkers and desist from establishing causal associations to disorders. The prog-
nostic biomarkers that we have analyzed in this dissertation have no biological signif-
icance and are purely of predictive utility. Interestingly, it should be noted that even
though these BM signatures lack a sensible biological meaning they are still useful in
a clinical settings.

In order to help direct future studies on prognostic signatures, we recommend
that any study claiming to have discovered prognostic signatures with a biological
utility should use our GRP proposed in Publication II [8]. This provides a more
stringent criterion than currently used in the literature to safeguard against false
claims. Furthermore, this will aid in distinguishing between the predictive utility
and the biological utility of prognostic biomarkers. Due to the fact that biomark-
ers are typically used in clinical settings any reduction in confusing aspects should
be welcome for obtaining a clear understanding of biomarkers. Finally, prognostic
biomarkers should be presented in a way that emphasizes their demonstrated ability
to make predictions about the prognostic of patients.
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Graph‑based exploitation of gene 
ontology using GOxploreR 
for scrutinizing biological 
significance
Kalifa Manjang1, Shailesh Tripathi1, Olli Yli‑Harja2,3,6, Matthias Dehmer4,5 & 
Frank Emmert‑Streib1,6*

Gene ontology (GO) is an eminent knowledge base frequently used for providing biological 
interpretations for the analysis of genes or gene sets from biological, medical and clinical problems. 
Unfortunately, the interpretation of such results is challenging due to the large number of GO terms, 
their hierarchical and connected organization as directed acyclic graphs (DAGs) and the lack of 
tools allowing to exploit this structural information explicitly. For this reason, we developed the R 
package GOxploreR. The main features of GOxploreR are (I) easy and direct access to structural 
features of GO, (II) structure-based ranking of GO-terms, (III) mapping to reduced GO-DAGs including 
visualization capabilities and (IV) prioritizing of GO-terms. The underlying idea of GOxploreR is to 
exploit a graph-theoretical perspective of GO as manifested by its DAG-structure and the containing 
hierarchy levels for cumulating semantic information. That means all these features enhance 
the utilization of structural information of GO and complement existing analysis tools. Overall, 
GOxploreR provides exploratory as well as confirmatory tools for complementing any kind of 
analysis resulting in a list of GO-terms, e.g., from differentially expressed genes or gene sets, GWAS or 
biomarkers. Our R package GOxploreR is freely available from CRAN.

The gene ontology (GO) consortium funded by the National Institute of Health (NIH) started in 1998. Initially, 
GO contained only three model organisms but extended since then to over 32001,2. The ontology is structured into 
three distinct aspects of gene function, namely, molecular function (MF), cellular component (CC), and biologi-
cal process (BP) together with over 45, 000 terms and 130, 000 relations. However, the majority of information 
is centered around ten model organisms (human, mouse, rat, zebrafish, drosophila, C. elegans, D. discoideum, 
S. cerevisiae, S. pombe, A. thalia and E. coli)2. In addition, GO includes annotations by linking specific gene 
products to GO-terms. This allows the connection between genes and GO-terms for deriving organism-specific 
information. Currently, GO is the most comprehensive and widely used knowledge base concerning functional 
information about genes3–6.

A reason for the widespread applicability of GO is its generality. That means instead of providing solutions to 
particular problems, GO provides generic information that can be connected to any list of genes or gene products 
regardless of the type of upstream analysis that generated such a list. For instance, investigations that can lead to 
a list of genes are from studies about differentially expressed genes or gene sets, GWAS (genome-wide associa-
tion study), biomarkers or gene regulatory networks7–13. These studies could be of biological, medical, clinical 
or pharmacological nature making GO useful across the life and health sciences.

Interestingly, despite the widespread usage of GO for a number of different application types7,14,15, for explor-
ing the GO knowledge base from a graph theoretical perspective16,17 the available tools are surprisingly sparse and 
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only very basic functions are available for obtaining structural information18–20. However, no dedicated functions 
are ready-for-use that give us, e.g., information about the GO-level of a GO-term, the category (regular node, 
jump node or leaf node) of a GO-term, the adjacency matrix of the GO-DAG of BP terms or all GO-terms on a 
specific GO-level, to name just a few. Furthermore, existing tools do not provide means for reducing the overall 
complexity of GO that would be amenable, for instance, for a visualization. Given the size of GO containing 
thousands of GO-terms, such a simplification would be highly desirable.

For these reasons, we created the R package GOxploreR to fill this gap. Our package provides direct access 
to structural information allowing the efficient exploitation of graph-theoretical properties of a DAG (directed 
acyclic graph) for further analysis. We provide also information on a low level. For instance, given a list of Entrez 
Gene IDs our package includes an (online) function to provide the BP, MF or CC of GO-terms associated with 
these genes. To retrieve the most current GO-terms, we use the biomartR package to query the Ensembl website. 
However, for obtaining fast information, we added also an offline version of these functions with pre-assembled 
information. This functionality is supported for ten organisms.

Aside from functions for the quantification of structural properties of GO-DAGs, we provide also visuali-
zation capabilities. Due to the size of GO our visualizations aim at a simplified representation. Specifically, by 
categorizing GO-terms into three classes—called regular nodes (RN), jump nodes (JN) and leaf nodes (LN)—we 
obtain a simplified representation of a GO-DAG with at most three nodes on each GO-level and the connections 
among them. These categories simplify the semantic attributes of GO-terms significantly yet provide important 
information regarding their connectivity. In this way, the GO-DAG of human for BP with 29, 699 GO-terms is 
reduced to a simplified DAG with 39 nodes, which is amenable for a visualization. We provide also extensions 
of such a visualization by, e.g., filtering for a set of GO-terms. This leads to a further reductions of complexity 
and can be utilized for compact visualizations of large lists of significant genes, gene sets or pathways. Finally, 
we provide a function for prioritizing a list of GO-terms as obtained, e.g., from differentially expressed genes, 
that reflects the structural positions of these GO-terms and their biological-semantic importance within the 
entire GO-DAG.

In general, one of the main applications of GO is the identification of over- or under-represented GO-terms 
for a specified gene list (as a result, e.g., from identifying differentially expressed genes) utilizing a hypergeometric 
test (also known as Fisher’s exact test)21,22. A problem with this is that GO has a hierarchical structure in the form 
of a directed acyclic graph (DAG), which means that the GO-terms are dependent on each other. However, the 
above approaches ignore this dependency structure. For compensating this omission, semantic measures have 
been suggested, e.g., utilizing frequencies to assess the similarity/distance between GO-terms23. Alternatively, 
information about the connection of GO-terms has been included to a certain degree for enrichment analysis, 
e.g.,24. Although such approaches are more informative, in practice, they are often ignored and the structure-less 
methods are preferred because they are simpler to apply and interpret. Another problem is that different semantic 
measures seem to be preferable for particular biological data and applications, which further complicates the 
selection of such measures enormously25.

In contrast, the R package GOxploreR is different to the above approaches in the following way. Specifically 
its main features include (I) a direct access to structural features of GO, (II) a structure-based ranking of GO-
terms, (III) a mapping from a GO-DAG to a reduced GO-DAG, (IV) a visualization of reducuded GO-DAGs 
and (V) an algorithm for prioritizing GO-terms. That means the providesd features are meant to complement, 
e.g., approaches for identifying enriched GO-terms by providing alternative approaches for the analysis of GO-
terms. Overall, GOxploreR can help in improving some of the above discussed shortcomings by providing 
novel ways for graph-based exploitations of the GO knowledge base to simplify the interpretation of large sets 
of significant GO-terms by utilizing structural information from the underlying DAG. Due to the fact that such 
a list of GO-terms can come from any type of upstream analysis, GOxploreR is a very versatile and flexible 
tool with respect to potential applications in the life and health sciences.

This paper is organized as follows. In the next section, we describe the underlying methodology of GOx-
ploreR and the provided functionality. Then we showcase the applicability of GOxploreR by highlighting 
some of its features and implemented functions. This paper finishes with a discussion of the available functions, 
a comparison to existing tools and concluding remarks.

Methods
In this section, we provide technical information about the main features provided by GOxploreR. First, we 
discuss how one obtains a directed acyclic graph (DAG) for given GO-terms. Then we discuss organism-specific 
GO-DAGs and a mapping that converts such a DAG into a reduced GO-DAG. Finally, we discuss an algorithm 
for prioritizing GO-terms.

Determining the GO‑DAG.  The problem with existing packages is that none provides a function to directly 
obtain a GO-DAG for a domain, i.e., BP, MF or CC, in the form of an adjacency matrix. Instead, they provide 
local information which needs to be used for deducing such a tree tediously. For instance, GOdb provides the 
function GOBPCHILDREN to get the children of a GO term for BP. For the other two domains similar functions 
are available. The problem is that a children node does not need to be on the next hierarchy level but can jump 
further down the DAG. For an example see Fig. 1. In this figure, the child of node 2 is node 8 which is located on 
level 4, i.e., the child jumps from level 1, the location of its parent, to level 4.

The following example demonstrates how one can deduce a GO-DAG from this information. First, we list all 
children of a GO term (as obtained via the command GOBPCHILDREN).
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The root node is unique and we assign it the level 0, i.e., L(x1) = 0 . The children for the root node receive as first 
assignment for a level the value L(x1)+ 1 = 1 , i.e.,

We wrote the right-hand side as a set because if such a node appeares again, we just add the new level value to 
this set. Going through the list of children, we assign each children of a node xi the value L(xi)+ 1.

(1)CH(x1) = {x2, x3}

(2)CH(x2) = {x8}

(3)CH(x3) = {x4, x5}

(4)CH(x4) = {x6, x7}

(5)CH(x5) = ∅

(6)CH(x6) = {x8, x9}

(7)CH(x7) = ∅

(8)CH(x8) = ∅

(9)CH(x9) = ∅

(10)L(x2) = {1}

(11)L(x3) = {1}

(12)CH(x2) → L(x8) = {2}

(13)CH(x3) → L(x4) = {2}, L(x5) = {2}

Figure 1.   An example for a toy GO-DAG containing 9 GO-terms, whereas each node corresponds to one 
GO-term. The children of a node can jump over levels, as shown in red for the connection between node 2 and 
8.
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From the last line we see that x8 appears once on level 2 and once on level 4, which is correct if one looks at Fig. 1. 
However, there is just one correct level for x8 and this is level 4. In general, if more than one level is assigned to 
a node then the correct one is the largest of these values.

Such a GO-DAG can be constructed for every domain, i.e., biological process, molecular function and cellular 
component. In our package, we call the resulting graphs:

•	 g.GO-DAG.BP: A DAG for all GO-terms of biological processes.
•	 g.GO-DAG.MF: A DAG for all GO-terms of molecular functions.
•	 g.GO-DAG.CC: A DAG for all GO-terms of cellular components.

Organism‑specific GO‑DAG.  Starting from a GO-DAG for a domain, as constructed in the previous sec-
tion and using a list of all genes from an organisms, we can map these genes to GO-terms. For a particular organ-
ism, not all GO-terms may be present but only a subset. Such a subset can then be mapped back to the entire 
GO-DAG of the knowledge base. This gives a subtree of the general GO-DAG that is organism-specific. Using 
the function GetDAG(organism = o.name, domain = "BP") one obtains, e.g., a GO-DAG of BPs for 
the organism given by ’o.name’. For all domains, the following functions can be used:

•	 GetDAG(organism = o.name, domain = "BP"): A sub-DAG for all GO-terms of biological 
processes for organism ’o.name’.

•	 GetDAG(organism = o.name, domain = "MF"): A sub-DAG for all GO-terms of molecular 
functions for organism ’o.name’.

•	 GetDAG(organism = o.name, domain = "CC"): A sub-DAG for all GO-terms of cellular com-
ponents for organism ’o.name’.

Reduced GO‑DAG.  Visualizing one of the GO-DAGs determined above (for all GO-terms or for organism-
specific GO-terms) is usually challenging because of the size of such graphs containing thousands of GO-terms 
corresponding to nodes in a graph. For this reason, we derive a simplified GO-DAG, containing only dozens of 
nodes, that can be easily visualized to obtain a global overview of all used GO-terms.

In order to simplify a GO-DAG, we introduce the following categorization of GO-terms, excluding the root 
node. This categorization is applied to each level separately:

•	 A GO-term is in category ’leaf node’ (LN) if it has no children.
•	 A GO-term is in category ’regular node’ (RN) if all its children are on the next level.
•	 A GO-term is in category ’jump node’ (JN) if it has children and at least one of these is not on the next level.

We apply this categorization for all GO-terms. This results in the mapping

GO-term X → GO-term category on level L

That means we have functions of the form

with c ∈ {LN, RN, JN} and l ∈ N . For instance, from Fig. 1 follows 3 → RN on level 1 and 2 → JN on level 1, 
which can be written formally as

Algorithmically, the implementation is described in 1.

(14)CH(x4) → L(x6) = {3}, L(x7) = {3}

(15)CH(x6) → L(x8) = {2, 4}, L(x9) = {4}

(16)(c, l) = f (X)

(17)( RN , 1) = f (3)

(18)( JN , 1) = f (2)
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Algorithm 1: CATEGORIZATION OF GO-TERMS

1 For a GO-DAG with L levels,M nodes, adjacency matrix A ∈ RM×M and level function l = g(i) for i ∈ {1, . . . ,M} and
l ∈ {0, . . . ,L}

2 Initialize hash H # for nodes in GO-DAG
3 Initialize hash V # for nodes in simplified GO-DAG
4 Initialize hash F
5 Initialize matrixC ∈ R(L+1)×3

6 Initialize vectorsCa,ca,h
7 for i ∈ {1, . . . ,M} do
8 S= links(A(i,)) # find all nodes S linking from i (outgoing links from i)
9 li = g(i)
10 K = / 0
11 foreach node j ∈ S do
12 l j = g( j) # find the level of node j
13 K ← l j

14 if S= / 0then
15 ci =LN

16 else if l j exists in K with l j > li+1 then
17 ci =JN

18 else if |S|> 0 then
19 ci =RN

20 set H{(ci, li)}← i # store set of nodes i with ci and li
21 setCa(i) = ci # categorize node i

22 k = 1 # node ID for nodes in simplified GO-DAG
23 for l ∈ {0, . . . ,L} do
24 # summarize nodes of the same category
25 C(l,1) = |H{(LN, l)}| # number of leaf nodes on level l
26 C(l,2) = |H{(RN, l)}|
27 C(l,3) = |H{(JN, l)}|
28 foreach C(l,c)> 0 do
29 set V{k}= H{(c, l)} # mapping between old and new node IDs
30 set F{(c, l)}= k
31 set h(k) = l # level function of simplified GO-DAG
32 set ca(k) = c
33 k = k+1

34 N = |V | # number of nodes in simplified GO-DAG

In addition to the node categorization, we need to find the connections between these nodes. This is realized 
via the implementation shown in Algorithm 2.

Algorithm 2: CALCULATE NUMBER OF LINKS BETWEEN CATEGORY NODES.

1 For A, F , M, N, h andCa; see Algo 1
2 Initialize adjacency matrix B with B ∈ RN×N for simplified GO-DAG
3 for l1 ∈ {0, . . . ,L} do
4 foreach node x on level l1 do
5 c1 =Ca(x) # find the category of node x
6 i1 = F{(c1, l1)}
7 S=Ch(x) # find all children of x using A
8 foreach y ∈ S do
9 c2 =Ca(y) # find the category of node y

10 l2 = g(y) # find the level of node y
11 i2 = F{(c2, l2)}
12 B(i1, i2) = B(i1, i2)+1
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Overall, a GO-DAG is described by an adjacency matrix A and a level function g and analogously, a reduced 
GO-DAG is described by adjacency matrix B and level function h and C (number of original nodes summarized 
by a new category).

In Fig. 2 we show a complete example for this mapping. The GO-DAG on the left-hand side has 19 GO terms 
and the resulting simplified GO-DAG on the right-hand side has only 8 nodes, whereas these nodes correspond 
to the three GO categories (RN, JN & LN) defined above. As one can see, each level will contain at most 3 nodes 
because this is the number of different categories. However, it is possible to have even fewer nodes, if a category 
is absent on a level.

Importantly, this transformation can be applied to any GO-DAG, regardless if this DAG is for all GO terms 
of, e.g., BPs, or for an organism-specific GO-DAG.

Prioritizing lists of GO‑terms.  In general, the comparison of GO-terms with respect to their biological-
semantic importance is complex. However, the comparison of GO-terms along a path is much simpler because 
the higher a level of a GO-term is the more specific is its biological information26. That means vertically one 
wants to traverse a DAG along a path as far down as possible. This implies that the GO-term at the end of a path 
is most interesting compared to all other GO-terms along this path. This increase in the semantic meaning along 
vertical paths is exploited by our algorithm for prioritizing lists of GO-terms.

Algorithm 3: PRIORITIZING A LIST OF GO-TERMS.

1 For a list, H, of GO-terms in domain XX, a GO-DAG of XX and level function g
2 Initialize a list R
3 n= |H|
4 foreach i ∈ H do
5 li = g(i) # find level for each GO-term

6 while n> 0 do
7 r =rank({li|H}) # ranking of all {li} that are in H from high to low
8 R← arg(r1) # GO-term that belongs to the highest rank
9 for arg(r1) find shortest path(s), p, to root
10 delete all nodes in H that are on p\ arg(r1)
11 n= |H|
12 R contains the prioritized GO-terms.

Figure 2.   An example for the construction of a reduced GO-DAG. Left: An ordinary GO-DAG with 19 GO 
terms is shown. Right: The reduced GO-DAG with 8 nodes summarizes the left graph. Note, the nodes in the 
right graph are no GO-terms but node categories, i.e., either RN, JN or LN.
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Our algorithm applies the above described logic iteratively, by starting from the GO-term at the highest level 
and searches all shortest paths to the root node. Then all GO-terms along these shortest paths are removed from 
the list and the procedure starts over. See Fig. 3 for a visualization. In this figure, one shortest path from node 
17 to the root node is shown. The pseudo-code of this is shown in Algorithm 3. Here XX corresponds to BP, MF 
or CC. The algorithm guarantees that for a non-empty list, H, of GO-terms the resulting set, R, containing the 
prioritized GO-terms consists of at least one GO-term. For instance, say H = {5, 9, 17} . Then our algorithm starts 
at node 17 and searches all shortest paths to the root. One of these is highlighted in green in Fig. 3. As a result, 
the nodes 5 and 9 are eliminated because they appear on a lower hierarchy level than node 17. In this case, the 
final result of our algorithm gives R = {17}.

Overall, our prioritizing algorithm provides a parameter- and assumption-free, non-redundant ranking of 
GO-terms that exploits only vertical structural information of GO.

Technical details about GO.  For the construction of the various DAGs, we are only utilizing information 
from GO-basic. The information about this can be obtained from the go-basic.obo file, which can be obtained 
from the Gene  Ontology website (http://geneo​ntolo​gy.org/docs/downl​oad-ontol​ogy/). This file contains the 
basic version of GO and it is guaranteed that the resulting DAG is acyclic and annotations can be propagated 
through the graph. We would like to note that the relations included in this, i.e., "is_a", "part_of ", regulates, 
"negatively_regulates" and "positively_regulates" also guarantee transitivity (NB: transitivity is not obeyed by 
"has_part" relations which are included in GO-core available from the go.obo file via the GeneOntology website).

Results
In the following sections, we highlight some of the features provided by the GOxploreR package and show 
some example applications.

Structural exploration of GO.  In Table 1, we show an overview of the organisms supported by the GOx-
ploreR package. Overall, at the moment ten organisms are supported corresponding also to the main organ-
isms within the GO database. The second column in Table 1 shows the option name as used for arguments in 
functions.

For instance, the following command gives for the gene list ’c(10212, 9833)’ containing Entrezgene IDs infor-
mation about the associated GO-terms and hierarchy levels.

Figure 3.   Shown is a path (green) in a GO-DAG, where nodes correspond to GO-terms. Along this path, the 
biological semantics increases from node to node the further down one traverses the path.
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In case a list of GO-terms is already available the corresponding hierarchy levels can be obtained with the 
command ’GOTermXXOnLevel’. Here ’XX’ is either BP, MF or CC. In the following, ’XX’ corresponds always 
to one of these three domains.

> goterms <- c("GO:0009083","GO:0006631","GO:0006629","GO:0014811","GO:0021961")
> GOTermBPOnLevel(goterm = goterms)

Term Level
1 GO:0009083 8
2 GO:0006631 7
3 GO:0006629 3
4 GO:0014811 19
5 GO:0021961 15

For the analysis of enriched GO-terms, one frequently wants to limit such an analysis to more informative 
GO-terms which are located toward higher hierarchy levels. In order to obtain all GO-terms located on a specific 
hierarchy level one can use the function ’Level2GOTermXX’.

Table 1.   An overview of the organisms supported by the GOxploreR package.

Organism Option name Genes Levels BP-terms

Human "Homo sapiens"/"Human" 19155 19 12436

Mouse "Mus musculus"/"Mouse" 20929 18 12328

Caenorhabditis elegans "Caenorhabditis elegans"/"Worm" 14697 17 3689

Drosophila melanogaster "Drosophila melanogaster"/"Fruit fly" 12683 18 5323

Rat "Rattus norvegicus"/"Rat" 19383 18 11584

Baker’s yeast "Saccharomyces cerevisiae"/"Yeast" 5502 17 3050

Zebrafish "Danio rerio"/"Zebrafish" 20718 18 5404

Arabidopsis thaliana "Arabidopsis thaliana"/"Cress" 25891 17 4059

S. pombe "Schizosaccharomyces pombe"/"Fission yeast" 5055 16 2973

Escherichia coli "Escherichia coli"/"E.coli" 3449 15 1491
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> Level2GOTermBP(level = 17, organism = "Human")
[1] "GO:2000321" "GO:0010880" "GO:2000320" "GO:0045630" "GO:2000703"
[6] "GO:2000734" "GO:0031587" "GO:0045627" "GO:0045629" "GO:0045626"

[11] "GO:0021808" "GO:0060315" "GO:0060316" "GO:0021836" "GO:0021972"
[16] "GO:0031586" "GO:0021817" "GO:0097379" "GO:0021816" "GO:0097380"

It is interesting to highlight that the children of a GO-term in a GO-DAG can ’jump’ to different levels. For 
instance, using the function ’GOTermXX2ChildLevel’ gives the GO-terms as well as the corresponding hierarchy 
levels of these.

> GOTermBP2ChildLevel(goterm = "GO:0007635")
$Terms
[1] "GO:0007636" "GO:0007637" "GO:0042048" "GO:0061366"

$Level
[1] 5 7 4 6

Here the GO-term "GO:0007635" is on level 3, however, its children are not only on level 4. The reason for 
this is that in GO there are no cross links on the same level. That means the children of any GO-term are always 
on a lower level because the terms are more specific. This implies that "GO:0007636" which is located on level 5 
has (at least one) parent node located on level 4. In order to find this parent(s) we can use the following.

go <- Level2GOTermBP(level = 4)
L <- length(go)
go.par <- c()
for(i in 1:L){

go.ch <- GOTermBP2ChildLevel(goterm = go[i])$Terms
if( length(which(go.ch == "GO:0007636")) ){

go.par <- c(go.par, go[i])
}

}

In this case there are 1166 GO-terms on level 4 and the only parent of "GO:0007636" is "GO:0007630".
It is important to note that GO does not only provide one DAG but several different ones. The reason for 

this is that each organism has a specific number of genes, and from these genes one obtains only a subset of all 
GO-terms that are connected to an organism. In total there are eleven GO-DAGs available from GOxploreR, 
ten for the organisms and one for all GO-terms.

In order to demonstrate the differences in the GO-terms for different organisms, we show in Fig. 4 the distri-
bution of GO-terms of BP for human (top), zebrafish (middle) and E. coli (bottom). The x-axis corresponds to 
the hierarchy level of the corresponding GO-DAG of BP. As one can see for human one has a GO-DAG with 19 
hierarchy levels whereas for zebrafish one has 16 and for E. coli 14. Furthermore, also the number of GO-terms on 
these levels is considerably different from each other as can be seen from the counts (number of GO-terms) on the 
y-axis. In Table 1, we show an overview of the number of levels (column four) and the number of GO-terms of BP 
(column five) for all ten organisms. For completeness, we want to mention that if one does not specify the organ-
ism in the command ’Level2GOTermBP’ one can obtain a total number of 29698 GO-terms of BP for all levels.

Structure‑based ranking of GO‑terms.  Maybe the most popular application of GO is the identification 
of enriched GO-terms for a list of genes. Unfortunately, as a result from such an analysis it is not uncommon 
to find large numbers of GO-terms making a focused discussion very difficult. However, a GO-DAG provides 
information that can be utilized for an exploratory analysis of such a list. Specifically, the hierarchy levels of 
GO-terms can be utilized. Despite the fact that a GO-level is not an absolute indicator for biological specificity it 
provides still valuable information26. Using our function GOTermBPOnLevel gives the GO-levels of BP for a list 
of GO-terms allowing, e.g., a simple ordering for complementing an enrichment analysis.

For instance, in Fig. 5A, we show results for a list of enriched GO-terms of BP found from an analysis of the 
breast cancer gene regulatory network27. Specifically, the hierarchy levels (x-axis) of these GO-terms (y-axis) 
are shown in purple. For reasons of comparison, the maximal depth of paths in the GO-DAG passing through 
these GO-terms is shown in red. As one can see, in all cases, the GO-terms are not at the end of these paths but 
somewhere situated along the way toward the highest possible (maximal) level that can be reached by passing 
through the corresponding GO-terms. This information is important because on one-hand one wants to inter-
rogate GO-terms that are biologically specific, i.e., are situated toward the highest hierarchy level of the GO-DAG 
- for human this would be level 19. On the other-hand not every GO-term is connected to the highest level, i.e., 
there is no path that would allow to reach the maximal level. Hence, there is a trade-off between absolute and 
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relative position of a GO-term within a GO-DAG. For this reason, the GO-terms in Fig. 5A are ranked according 
to the distance between the two points (purple and red).

This trade-off can be formally quantified by the following score,

Since the left-hand-side of Eq.  (19), i.e, level (GO)
levelmax(GO)

∈ (0, 1] , as well as the right-hand-side, i.e., 
level (GO)

levelGO−DAG(GO)
∈ (0, 1] the resulting score is also positive and at most one. Hence, the score, st , is a product of two 

probabilities, i.e., st = p1(max path)p2(GO − DAG) allowing to optimize the trade-off between both objectives.
The resulting score st is shown in Fig. 5B. As one can see, the ranking of GO-terms is similar to Fig. 5A but 

not identical because Fig. 5A considers for the ranking only the relative distance between the actual and the 
maximal attainable position in a GO-DAG. Hence, both figures provide slightly complementary information. 
For our example GO:0006614 (SRP-dependent cotranslational protein targeting to membrane) and GO:0006613 
(cotranslational protein targeting to membrane) have the highest score, which are interestingly directly con-
nected in the GO-DAG. Overall, in general this information enables an exploratory analysis of GO-terms which 
complement the obtained p-values from an enrichment analysis.

In GOxploreR, such an analysis can be performed by using the commands distRankingGO and scoreRank-
ingGO, i.e., the results in Fig. 5A,B can be obtained by

(19)st = score =
level (GO)

levelmax(GO)
×

level (GO)

levelGO−DAG(GO)
= p1(max path)p2(GO − DAG).

Figure 4.   Distribution of GO-terms of BP for human (top), zebrafish (middle) and E. coli (bottom). The x-axis 
corresponds to the hierarchy level of the corresponding GO-DAG.
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Figure 5.   (A) The hierarchy levels for a list of GO-terms (y-axis) are shown in purple and the hierarchy levels 
for the maximal depth of paths in the GO-DAG passing through these GO-terms is shown in red. (B) Rank 
ordered GO-terms according to the score st.
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distRankingGO(goterm = Terms, domain = "BP", plot = TRUE)
scoreRankingGO(goterm = Terms, domain = "BP", plot = FALSE)

Reduced GO‑DAG.  The starting point for many different types of analyses is usually a visualization of the 
data in order to derive an intuition about the information contained in the data. Unfortunately, for unfiltered 
GO-terms such a visualization is not feasible because the entire GO-DAG of an organism is too large containing 
thousands or even tens of thousands of GO-terms (see Table 1). For instance, even the smallest organism with 
respect to GO-terms of BP consists of 1491 nodes in the corresponding GO-DAG, distributed over 15 hierarchy 
levels. A graph of such a size cannot be visualized in an insightful way28. For this reason, we introduce a so called 
reduced GO-DAG that allows an easy visualization.

The underlying idea of such a reduced GO-DAG is a mapping from GO-terms into three node categories, 
namely: regular nodes (RN), jump nodes (JN) and leaf nodes (LN). A GO-term is called a ’regular node’ (RN) 
if all its children are on the next level, a GO-term is a ’jump node’ (JN) if it has children and at least one of these 
is not on the next level and a GO-term is a ’leaf node’ (LN) if it has no children at all. Such a mapping is obtain 
by the function getGOcategory.

As an example, Fig. 6A shows the reduced GO-DAG of MF for C. elegans. This GO-DAG contains only 37 
category nodes, i.e., RNs, JNs or LNs, which summarize all 2102 GO-terms of MF for this organism on 14 hierar-
chy levels. That means only category nodes are shown that contain at least one GO-term, allowing a system-wide 
view of all MFs of C. elegans. Importantly, a reduced GO-DAG has the same number of hierarchy levels as the 
original GO-DAG because the mapping into category nodes does not effect the hierarchy levels. This holds for 
all GO-DAG. The following code demonstrates how the information shown in Fig. 6A can be obtained.

visRDAGMF(organism = "Caenorhabditis elegans", plot = TRUE)

Similar visualizations are possible for all other organisms because even for human, there are only 52 (BP), 38 
(MF), 43 (CC) nodes in the resulting reduced GO-DAG for the corresponding domains.

In case one has a list of GO-terms, one can also perform such a mapping only for this limited number of 
GO-terms. Furthermore, also a visualization for this sub-set of all GO-terms can be obtained using the function 
visRDAGMF. Overall, a reduced GO-DAG helps in simplifying the complexity provided by the gene ontology 
especially with respect to the connectivity between the GO-terms. This enables a general visualization for an 
exploratory analysis of system-wide information propagation capabilities.

Prioritizing GO‑terms.  Finally, GOxploreR provides a function called prioritizedGOTerms for prioritiz-
ing GO-terms. The idea is to go beyond the ordering of GO-terms for a provided list of GO-terms to eliminate 
selected terms that are capturing redundant and less biologically specific information; see the discussion of 
Fig. 6B below.

In order to realize an implementation for such a function, we apply the following strategy (see Methods Sec. 
2.4 for technical details). Specifically, it is known that the comparison of GO-terms with respect to their biologi-
cal meaning is complex. However, the comparison of GO-terms that can be found along a path is much simpler 
because the higher a level of a GO-term, the more specific is its biological information26. That means traversing 
a path vertically toward higher levels increases the biological specificity of GO-terms implying that the GO-term 
at the end of a path is the most interesting one. Hence, by eliminating all GO-terms that are together on a path, 
except the one on the highest level, results in a prioritizing of terms with respect to the semantic meaning of 
GO-terms. The function prioritizedGOTerms implements this strategy. In Fig. 6B, we show visualized of this. 
Here one path is highlighted containing three GO-terms (GO:1, GO:2, and GO:3) whereas GO:3 has the highest 
level. This results in an elimination of GO:1 and GO:2. Similarly, all other paths are explored resulting in GO:1 
and GO:6 as output of the prioritizing algorithm.

As an example, we investigate a list of GO-terms that was obtained from analyzing a gene regulatory network 
of S. cerevisiae29. The original list contains 30 different GO-terms of BP29, each significantly enriched with a 
significant p-value. Application of our function prioritizedGOTerms for prioritizing GO-terms results in only 5 
GO-terms, shown in Table 2. Each of these 5 GO-terms is located on a separate brunch of the underlying GO-
DAG between which no paths exist. Hence, despite of a certain similarity of the biological processes, e.g., for 
metabolic or mitochondrial processes, each of these terms is from a different, separate semantic category because 
otherwise connections with the DAG would exist. Such an analysis complements available p-values and gives 
further information on which GO-terms a follow-up analysis could focus on.

Overall, the function prioritizedGOTerms can prioritize a list of GO-terms with information about the seman-
tic information content of a GO-DAG as provided by the level of GO-terms. If desired, a separate visualization 
could be obtained only for these GO-terms by using the function visRDAGsubMF.

Discussion
In this paper, we introduced the R package GOxploreR and highlighted some of the functionality it provides. 
Overall, GOxploreR provides functions and algorithms for four different types of analyses. Specifically, GOx-
ploreR enables a (1) direct access to structural features of GO, (2) structure-based ranking of GO-terms, (3) 
mapping to a reduced GO-DAG and (4) prioritizing of GO-terms.
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The first three features of GOxploreR permit an exploratory analysis of GO-terms and GO-DAGs whereas 
the fourth feature provides a dedicated algorithm for a particular problem. Despite the fact that it is well-known 
that GO has the structure of a DAG, there are surprisingly few tools allowing a direct assess to structural, i.e., 
graph-based information of GO. Hence, our features and the corresponding functions help in utilizing this rich 
source of information which is in our opinion so far largely underexplored. A reason for this lack could be that 
the conceptual realization and implementation of graph-based algorithms is not straight forward requiring 
inter- and transdisciplinary knowledge of graphs and the underlying biology.

Figure 6.   (A) Shown is a reduced GO-DAG of MF for C. elegans. The whole GO-DAG contains only 37 
category nodes, i.e., RN, JN or LN and summarizes all 2103 GO-terms of MF for this organism. (B) Underlying 
idea for prioritizing GO-terms in a general DAG. Shown is one search path. Nodes in blue correspond to 
GO-terms in a given list.
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One important novelty of GOxploreR is to provide a mapping from a GO-DAG to a reduce GO-DAG. This 
leads to a tremendous reduction in complexity of graphs because a GO-DAG can contain thousands of nodes, 
depending on the organism and the domain, i.e., BP, MF or CC. In contrast, a reduced GO-DAG has at most 
three nodes of the categories, JN (jump node), RN (regular node) or LN (leaf node) on each hierarchy level. 
The idea behind this mapping is inspired by the detection of differentially expressed genes (DEG)30. While the 
expression level of a gene is continuous, a DEG analysis performs a kind of classification of the expression level 
into two categories: active and inactive. This allows a reduction in the complexity of the gene expression level by 
capturing simplified yet essential information. Our mapping from a GO-DAG to a reduce GO-DAG follows a 
similar strategy by capturing simplified yet essential information of the connection between GO-terms. As far as 
we know, GOxploreR is the only package that provides such a mapping and reduction in the GO complexity.

Another novelty of the GOxploreR package is to provide visualizations of reduced GO-DAGs. This feature 
is directly enabled by the tremendous reduction in complexity of the mapping from a GO-DAG to a reduce GO-
DAG because the visualization of a DAG containing thousands of nodes (see Table 1) is not feasible. In contrast, 
a reduce GO-DAG permits such a visualization allowing to obtain an overview of the biological information 
processing of the entire ontology. Given the novelty of a mapping from a GO-DAG to a reduce GO-DAG other 
packages that provide also visualization capabilities do not offer this particular visualization.

Finally, the GOxploreR package provides a prioritizing algorithm. The idea of this algorithm is to go beyond 
the ordering of GO-terms for a given list of GO-terms, and to eliminate GO-terms capturing redundant biological 
information. For the prioritizing of GO-terms in a list, we utilized the fact that the higher a level of a GO-term is 
the more specific is its biological information26. That means vertically one wants to traverse a DAG as far down as 
possible because the end of a path is most specific compared to all other GO-terms along this path. Our algorithm 
applies this logic iteratively by starting from the GO-term at the highest level and searches all (shortest) paths to 
the root node. Then all GO-terms along these shortest paths are removed from the list and the procedure starts 
over; see Fig. 1 for a visualization. As a result, one obtains a prioritizing of GO-terms that is a parameter- and 
assumption-free algorithm which removes redundant GO-terms by exploiting only vertical structural informa-
tion of a GO-DAG. Hence, the output of our prioritizing algorithm is a non-redundant ranking of GO-terms.

We would like to highlight that there is a crucial difference between our prioritizing algorithm and approaches 
based on the semantic similarity of genes31,32. The difference is that we utilize only vertical information from a 
GO-DAG. This implies that there is no need for comparing GO-terms horizontally because they cannot be con-
nected by any path (besides over the root node). However, this horizontal comparison is usually the problem 
since the biological significance of different GO-terms on the same hierarchy level can be different. This simpli-
fies the analysis yet allows the elimination of redundant GO-terms. The resulting list of GO-terms maybe be 
further reduced, however, not without making additional assumptions, e.g., in the form of semantic similarity 
measures. A common problem with the latter is that there is not one but many different measures for semantic 
similarity all of which are non-trivial in their definition and interpretation33. In contrast, our prioritizing algo-
rithm is parameter- and assumption-free allowing to remove redundant GO-terms by exploiting only vertical 
structural information along paths of a GO-DAG. Another fundamental difference between our prioritizing 
algorithm and semantic similarity measures is that our algorithm focuses on GO-terms and not on genes. This 
facilitates a general systems view on the underlying problem from which the GO-terms have been obtained as 
represented by systems biology34,35.

In Table 3, we compare the capabilities of the GOxploreR package with other software tools available for 
analyzing GO. The first column shows the name of the software whereas the remaining columns refer to various 
features. Specifically, the second column indicates if a software tool is available as an R package and the third 
column refers to direct assess of structural information provided by a GO-DAG. Examples thereof are the hier-
archical level of a GO-term, the GO-terms on a certain hierarchy level or the adjacency matrix of a DAG. The 
fourth column is about identifying the enrichment of GO terms, whereas the fifth column is about the availability 
of reduced GO-DAGs and the sixth column refers to a prioritizing algorithm for a list of GO-terms.

As one can see from Table 3, the GOxploreR package is considerably different from all the other software 
tools, hence, providing novel and complementary analyses functionality. Importantly, GOxploreR is available 
as R package allowing the easy utilization of it within existing analysis pipelines for their extensions. Hence, 
GOxploreR does not provide dead-end functionality via web-interfaces but enables future biomedical data 
science projects36.

Table 2.   Using GOxploreR one can prioritize lists of GO-terms. The table shows results for significant 
GO-terms from analyzing a gene regulatory network of S. cerevisiae29 after the application of our prioritizing 
algorithm. The GO-terms are for BP and complement p-values obtained from an independent enrichment 
analysis.

GO-term GO-level Description p value # genes

GO:0006364 9 rRNA processing 1.6e−39 237

GO:0032543 8 Mitochondrial translation 4.2e−167 100

GO:0044257 6 Cellular protein catabolic process 2.0e−78 347

GO:0019752 5 Carboxylic acid metabolic process 3.5e−67 370

GO:0007005 4 Mitochondrion organization 3.0e−168 282
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Conclusion
In this paper, we introduced the R package GOxploreR, available from CRAN (after acceptance of the paper). 
GOxploreR is a versatile tool that can be applied to any list of GO-terms from an upstream analysis as a result 
from studying, e.g., differentially expressed genes, GWAS, biomarkers, gene sets or gene regulatory network 
studies7–13. Its main features include: 

1.	 A direct access to structural features of GO.
2.	 A structure-based ranking of GO-terms.
3.	 A mapping from a GO-DAG to a reduced GO-DAG.
4.	 A visualization of reducuded GO-DAGs.
5.	 An algorithm for prioritizing GO-terms.

Given the lack of tools for exploring the DAG-structure of GO from a graph theoretical perspective, GOxploreR 
complements non-structural analysis tools. Overall, GOxploreR has the potential to enhance studies inves-
tigating differentially expressed genes, GWAS (genome-wide association study), biomarkers, gene sets or gene 
regulatory network studies significantly because the obtained information has a clear interpretation directly 
derived from the gene ontology knowledge base and is not based on additional assumptions.
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Prognostic gene expression 
signatures of breast cancer are 
lacking a sensible biological 
meaning
Kalifa Manjang1, Shailesh Tripathi1, Olli Yli-Harja2,3,7, Matthias Dehmer4,5,6, Galina Glazko7 & 
Frank Emmert-Streib1,8*

The identification of prognostic biomarkers for predicting cancer progression is an important 
problem for two reasons. First, such biomarkers find practical application in a clinical context for the 
treatment of patients. Second, interrogation of the biomarkers themselves is assumed to lead to novel 
insights of disease mechanisms and the underlying molecular processes that cause the pathological 
behavior. For breast cancer, many signatures based on gene expression values have been reported 
to be associated with overall survival. Consequently, such signatures have been used for suggesting 
biological explanations of breast cancer and drug mechanisms. In this paper, we demonstrate for 
a large number of breast cancer signatures that such an implication is not justified. Our approach 
eliminates systematically all traces of biological meaning of signature genes and shows that among 
the remaining genes, surrogate gene sets can be formed with indistinguishable prognostic prediction 
capabilities and opposite biological meaning. Hence, our results demonstrate that none of the studied 
signatures has a sensible biological interpretation or meaning with respect to disease etiology. 
Overall, this shows that prognostic signatures are black-box models with sensible predictions of breast 
cancer outcome but no value for revealing causal connections. Furthermore, we show that the number 
of such surrogate gene sets is not small but very large.

Since the inception of high-throughput technologies the goal has been to utilize such experimental devices not 
only for obtaining a better elucidation of biology but to translate this knowledge into the clinical practice1,2. One 
particular example for such an application are prognostic studies based on gene expression data3–5. In general, 
the goal of such studies is to select a, preferably small, number of genes as features, called a signature, and to 
utilize these for predicting the course of a disease or outcome of patients represented by gene expression profiles. 
The prognostic value of such predictions is quantitatively assessed via a survival analysis allowing to perform 
a statistical test for detecting differences in different patient groups with respect to ’time to event’ information. 
Due to the generality of ’event’, which cannot only be death but also relapse or development of metastasis or 
organ rejection, prognostic studies are relevant for nearly all patient-related medical investigations. Due to the 
importance of prognostic studies for clinical applications and their general complexity, statistical aspects of this 
problem have attracted much attention in the literature. For instance, in6 the authors addressed the stability of 
the selection of prognostic predictors for various cancer types. They found that the size of the training data and 
the patients in it has a crucial effect on this. The same problem has been studied for breast cancer in7 and the 
authors found that thousands of patient samples are needed for achieving an overlap of 50% between two predic-
tive sets of genes. Such problems have been confirmed in many comparative investigations of feature selection 
mechanisms, see, e.g.,8–10.
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For breast cancer, an early study of a prognostic gene expression signature is from11. The authors used a 
70-gene signature to distinguish good prognosis from bad prognosis groups of patients with stage I or II breast 
cancer. The outcome of this influential paper sparked many follow-up investigations. For instance, in12 a 76-gene 
signature was used predicting development of distant metastases within 5 years of lymph-node-negative pri-
mary breast cancer or in13 an invasiveness signature of a 186-gene signature was used for predicting overall and 
metastasis-free survival. It is important to note that for all such studies not only the predictive outcome is of value 
but also the interpretational biological meaning of the used signatures14. Specifically, it has been stated in7 that 
“A reliable set of predictive genes also will contribute to a better understanding of the biological mechanism of 
metastasis”. This assumption is not limited to the above problem but widely believed to be true in the genomics 
and translational medicine community. The main purpose of this paper is to refute this assumption.

Our study is different from the above mentioned ones with respect to the following aspects. First, we do not 
introduce a new procedure for selecting signature genes. Instead, we provide an analysis of previously intro-
duced signatures with respect to their biological meaning. Second, we do not introduce a new validation method 
because all studied signatures have been previously validated, although we are using an independent validation 
data set for our study. Third, we do not aim to improve the quality of different prognostic signatures, although 
we utilize a more stringent statistical assessment, including conservative multiple testing corrections, compared 
to previous studies. Fourth, we do also not establish a connection between a prognostic signature and disease 
etiology shedding light on the underlying molecular and cell biological mechanisms. Instead, we investigate 
the prognostic benefit of random gene sets having a constrained biological meaning. The main purpose of this 
paper is to systematically demonstrate that sensible prognostic signatures of breast cancer outcome do not have 
a sensible biological meaning with respect to disease etiology. This is accomplished via constrained-sampling, a 
restricted resampling procedure for constructing random gene sets, which we introduce in this paper.

A central aspect of our constrained-sampling analysis is based on the definition of biological meaning of a 
set of genes. For this, we are using two different commonly utilized approaches. The first is centered around the 
meaning of individual ‘genes’ and the second is based on ‘biological processes’. For the gene-based definition of 
biological meaning, we follow a Mendelian-view whereas for the biological process-based definition representing 
a systems-view15, we utilize Gene Ontology (GO)16 and its underlying hierarchically organized GO-terms in the 
form of a directed acyclic graph (DAG).

This paper is organized as follows. In the next section, we describe the underlying methodology and the 
used data. Then we present our results and discuss our findings. This paper finishes with concluding remarks.

Methods
In this section, we provide information about the data and methods used for our analysis.

Gene expression data and BM signatures.  Our analysis makes use of two sources of data—gene expres-
sion data and sets of breast cancer gene signatures from 48 published studies. For the gene expression data we 
use two different data sets publicly available. The first gene expression dataset (in the following called NKI breast 
cancer) is accessible from17 and it contains 295 breast cancer samples from the Netherlands Cancer institute 
(a.k.a NKI) cohort. The data were generated by11. The gene expression dataset consists of 13108 genes and each 
sample corresponds to one patient. All patients had stage I or II breast cancer. The dataset is complemented by 
information about the development of metastases which has been used to indicate an ’event’ for survival analysis. 
The second gene expression dataset (in the following called SWE breast cancer) is from Gene Expression Omni-
bus (GSE96058)18. It contains 30865 genes and samples of the subtypes Basal (360), Her2 (348), LumA (1709), 
LumB (767) and Normal (225). The data were FPKM normalized and log transformed. The 48 biomarker (BM) 
signatures we use for our analysis were compiled in17. The number of genes in each signature varies, but all the 
biomarkers together contain 8106 genes. For the NKI gene expression data 5350 genes are present and for the 
SWE data 5060 genes.

Outcome association.  For assessing the prognostic value of gene sets, we perform a survival analysis. Spe-
cifically, we perform Kaplan Meier estimates of survival curves and compare these with a Mantel–Haenszel test19. 
Hence, each comparison is characterized by a p-value resulting from such a hypothesis test. The categorization 
of patients is achieved by the PC1 method, described below. This method separates the patients according to 
specified gene set. This means that the resulting survival analysis is a function of the gene set used to categorize 
patients. In Fig. 1, we show an overview of the individual steps involved in our analysis. Overall, our analysis 
consists of three main steps. First, selection/construction of a random gene set, second, classification of patient 
samples and, third, performing a survival analysis.

In the next two sections, we specify two different gene removal procedures (GRP) for constructing random 
gene sets. These procedures implement a constrained-sampling for two different views on biology, a Mendelian-
view based on genes (GRP 1) and a systems-view based on biological processes (GRP 2 and GRP 2*).

Gene removal procedure 1.  For this analysis, we investigate the prediction capabilities of random gene sets, 
RGSi , whereas the genes in RGSi are randomly sampled from the set G′

i = G \ BMi . Here G corresponds to the 
total number of genes in our breast cancer data set and BMi is the BM signature of study i, for i ∈ {1, . . . , 48} . 
The number of genes sampled per random signature is the same as in BMi , i.e., |RGSi| = |BMi| . We repeat this 
sampling 1000 times for each study with and without a Bonferroni correction. From numerical analyses we 
found that increasing the number of repeats does not lead to different results. In total we study 96, 000 random 
gene sets that have been constructed in this way. Details of this gene removal process are described as follows: 
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1.	 G : total number of genes in our breast cancer dataset.
2.	 BMi : {g1, . . . , gm} . BMi is the gene signature i (i range from 1 to 48) and g1, . . . , gm are the genes in the cor-

responding signature.
3.	 For each biomarker set i: 

(a)	 Removing biomarker genes in signature BMi from G. This gives a new set of genes G′
i with G′

i = G \ BMi

.
(b)	 From G′ , we sample new sets of biomarker genes of size |BMi| and perform the prognostic task. This 

is repeated 1000 times for each study i.
(c)	 Application of a Bonferroni correction to the p-values.
(d)	 Assessing the performance for a significance level of α.

Overall, gene removal procedure 1 constructs random gene sets by removal of BM signatures. If a random gene 
set has a significant p-value, we call it a surrogate gene set because it has the same prognostic prediction capabili-
ties as a BM signature and hence it is a surrogate for this.

Gene removal procedure 2.  For this analysis, we do not only remove BM signatures, but we remove also genes 
that belong to the same biological processes as the genes in the BM signatures. Due to the fact that according to 
the gene ontology (GO) database16 the biological processes are hierarchically organized, we approach this analy-
sis iteratively by removing successively genes of biological processes on the same hierarchy level20. Details of this 
gene removal process are described as follows:

Figure 1.   (A) Shown is a flowchart of all steps involved in our analysis. (B) Visualization of the underlying 
ideas of GRP 1 and GRP 2. The resulting gene sets G′ and G′′ are used for sampling random gene sets.
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1. G : total number of genes in our breast cancer dataset.
2. BMi : {g1, . . . , gm} . BMi is the gene signature i (i range from 1 to 48) and g1, . . . , gm are the genes in the 
corresponding signature.
3. Removing biomarker genes in signature BMi from G. This gives a new set of genes G′

i with G′
i = G \ BMi.

3∗ Optional step: Removing proliferation genes in PG from G. This gives a new set of genes G′∗
i  with G′∗

i  = 
G′
i \ PG.

4. Mapping of the genes in BMi to GO-terms and the corresponding hierarchy levels. This gives: 

 Note, each gene can be connected to more than one GO-term. For this reason m ≤ t.
5. Ranking of the GO-terms in descending order with respect to the hierarchy levels.
6. For each biomarker set i: Loop-over the hierarchy levels l in descending order, i.e., for 
l ∈ {Lmax(i), . . . , Lmin(i)} . Here Lmax(i) is the highest hierarchy level of biomarker set i and Lmin(i) is the 
lowest hierarchy level. 

(a)	 Delete all the genes associated with GO-terms on level l. This results in a new gene set given by G′′ = 
G′ \ D , where D is the set of genes having GO-terms on level l.

(b)	 From G′′ , we sample new sets of biomarker genes of size |BMi| and perform the prognostic task. This 
is repeated 1000 times for each hierarchy level l.

(c)	 Application of a Bonferroni correction to the p-values.
(d)	 Assessing the performance for a significance level of α.
(e)	 Set G′ = G′′ . Stop if l = Lmin(i) or |G′′| < |BMi|.

In the above procedure, the set PG is the gene set consisting of genes related to proliferation. The genes in PG 
have been defined in21 and consist of the signature genes of Whitfield22 and meta-PCNA17. In total PG contains 
664 genes. Step 3* is an optional step that removes additionally proliferation genes. When step 3* is used, we call 
the procedure GRP 2*, whereas when step 3* is not used, we call the procedure GRP 2.

Put simply, procedure GRP 2 removes first all biomarker genes (see step 3) and then iteratively removes genes 
belonging to the same biological processes as the signature genes (see step 6) from the highest hierarchy level 
Lmax to the lowest hierarchy level Lmin . That means at the end a set of genes G′′ is obtained that contains neither 
signature genes nor genes the belong to the same biological processes as the signature genes regardless of the 
hierarchy level. Results for G′′ for intermediate hierarchy levels l contain a certain overlap with biological pro-
cesses as indicated by l. All sets G′′ are treated in a similar way, i.e., the prognostic task is performed and assessed.

We assess the prediction results again by the p-values from the survival analysis. In addition, we determine the 
accuracy of predictions by declaring significant p-values as true positives (TPs) and non-significant results as false 
negatives (FNs). This allows the estimation of accuracy values, i.e., Acc = (TP + TN)/(TP + TN + FP + FN) 
by Acc = TP/FN23. These evaluations are obtained for each hierarchy level.

Overall, gene removal procedure 2 constructs random gene sets by removal of BM signatures and biological 
process related genes. Also here a random gene set with a significant p-value is call a surrogate gene set. In Fig. 1 
B, a visualization of GRP 1, GRP 2 and GRP 2 ∗ is shown.

Categorize patient samples.  For categorizing the samples of the patients, the PC1 stratification method 
is used. This method is based on a principal component analysis (PCA). The principal component analysis is a 
dimensionality reduction technique (this involves reducing the size of the data set). The goal is to transform large 
data set into smaller ones. This method trades a little accuracy for simplicity, thus achieving interpretability as 
well as minimal loss of information. Using the “prcomp” function available in R, the first principal component 
(PC1) of the signature is derived. The patients are then divided into two groups according to the median of the 
PC1. Specifically, a sample is categorized as group −1 if the PC1 is below the median value and as group +1 if the 
PC1 is above the median value.

For this analysis, a gene expression matrix of the form X ∈ Rm × Rn is used whereas m is the number of genes 
and n is the number of samples. Importantly, m corresponds to a particular gene set and not all genes available. 
Above, we described two different procedures for constructing such gene sets. Other sets we use for our analysis 
are the BM signatures themselves.

Survival analysis.  For assessing the prognostic value of gene sets, we perform a survival analysis. Specifi-
cally, we perform Kaplan Meier estimates of survival curves and compare these with a Mantel–Haenszel test19. 
Hence, each comparison is characterized by a p-value resulting from such a hypothesis test. The categorization 
of patients is achieved by the PC1 method, described above. This method separates the patients according to a 
specified gene set. Therefore, the resulting survival analysis depends on this gene set.

Definition: biological meaning.  In this paper we use the term ‘biological meaning’ in a well-defined way. 
This definition is based on gene ontology (GO)16. Specifically, the biological meaning of a gene is given by the 
GO-terms this gene is associated with as provided by GO. Similarly, the biological meaning of a set of genes is 
provided by the union of the sets of GO-terms of the individual genes.

(1)BMi = {g1, . . . , gm} → {(GO1, L1), . . . , (GOt , Lt)}.
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Results
Our analysis is structured into three main parts. In the first part, we study characteristics of the 48 BM signa-
tures individually and comparatively. In the second and third part, we study prognostic prediction capabilities 
of random gene sets, systematically constructed with two different procedures.

Biomarker set sizes and GO-term in signatures.  In Fig. 2A, we show an overview of the total number 
of genes in each signature. The name of the signatures are on the y-axis and the x-axis provides information 
about the size of the BM signatures.

From this figure, one can see that the signature by Adorno and Pei contains the least number of genes (2) 
whereas Hua has the largest number (1345 genes). That means the size of the signatures varies considerably 
among the studies and the average size of a signature is 168.9 genes.

In Fig. 2B and C, we show information about associated GO-terms with the genes in the signatures for the 
categories: Biological process (BP), molecular function (MF), and cellular component (CC). Currently, there 
are in total 29, 699 GO-terms from BP, 4202 GO-terms from CC and 11, 148 GO-terms from MF. In Fig. 2B, 
we show the absolute number of GO-terms in each study with respect to BP (green), MF (red) and CC (blue) 
whereas Figure 2C shows the corresponding percentage with respect to the total number of GO-terms for each 
category (i.e., BP, MF and CC).

Overall, from Fig. 2 B one can see that the present GO-terms in the signatures is considerably different from 
each other. This variation is particularly large for GO-terms of BP (green). Interestingly, if one considers the 
percentage of present GO-terms (see Fig. 2C) then the differences between the three GO categories (i.e., BP, MF 
and CC) become much smaller, although, also on this scale the differences between studies are considerable. The 
average number of GO-terms is 996.7 for BP, 277.9 for MF and 204 for CC and the average percentage is 0.034 
for BP, 0.025 for MF and 0.049 for CC.

Using a Spearman rank correlation test, we investigate if the order of the size of biomarker sets (see Fig. 2A) 
is conserved by the number of GO-terms (see Fig. 2B). As a result, we find p-values of 1.311469e − 28 for BP 
(green), 3.44238e − 35 for MF (red) and 2.96905e − 29 for CC (blue). Due to the fact that the percentage of 
GO-terms shown in Fig. 2C has the same order as for the number of GO-terms in Fig. 2B, a comparison of these 
results leads to the exact same p-values. Overall, the above p-values indicate that the order of all comparisons is 
highly statistically significant for any sensible significance level α . Therefore, the ranking of the biomarker sets 
with respect to their size is similar to the ranking according to their number of GO-terms, which implies that 
larger BM signatures contain more GO-terms.

Pairwise similarity of signatures.  For our next analysis, we perform a pairwise comparison of the BM 
signatures. That means, we study the overlap of common genes and GO-terms among different signatures. In 
Fig. 3A and B, the results from these pairwise comparisons are shown in form of heat maps. Formally, we define 
the overlap as follows. Let Si and Sj be two signature sets consisting either of genes or GO-terms corresponding 
to these genes. Then we find the percentage zi of common elements in Si that are also present in Sj by

Here zi can assume values between zero and one. We would like to remark that the way we find the overlap 
is asymmetric, i.e., zi  = zi if |Si| �= |Sj| . That means the percentage overlap is taken with respect to the first sig-
nature set Si.

From comparing the gene overlap (see Fig. 3A), the signature of Pei is the only one that is completely included 
in two other signatures namely Ben-porath-prc2 and Sotiriou-93. Interestingly, there is no unique signature, 
which means that each signature has some overlap with at least one other signature. The signature with the least 
commonality with other signatures is from Welm, which has only genes in common with the signatures of Taube 
and Reuter. Also the signature from Adorno has only a gene overlap with 4 other signatures. The signatures with 
the largest number of overlaps are Hua, Reuter and Sotiriou-93. These three signatures are sharing genes with 
42 other signatures. This means that the overlap with other signatures varies considerably from 2 to 42. These 
numbers are added to Fig. 3A in the last column of the heat map.

In contrast to this, the overlap of GO-terms among signatures is shown in Fig. 3B. Also here the overlap 
among the signatures varies considerably. For instance, the signatures of Hua and Reuter share the highest overlap 
of 2614 GO-terms, whereas Adorno and He, Adorno and Welm have the lowest overlap of 1 GO-term. However, 
the most important result is that all signatures share at least some GO-terms with every other signature (see last 
column). Hence, all signatures have a non-zero overlap in their biological meaning as measured by GO-terms. 
This is different to the gene-overlap shown in Fig. 3A.

Hierarchy levels of GO-terms.  For our last analysis of the signatures, we are mapping the GO-terms to 
structural features of a GO-DAG. Specifically, we obtain information about the hierarchy levels of the GO-terms.

In Fig. 3, we show the distributions for the hierarchy levels of the GO-terms of BP. This means that for each 
signature, the levels of the GO-terms of BP are obtained and a boxplot of the distribution is shown. Interestingly, 
a large number of signatures exhibit a similar distribution for the levels, and most of the signatures have the 
same median value of 7 (except for Wong-proteas, Tavazoie, Pei, Mori, Hu, Buffa, Ben-Porath-Prc2 and Adorno). 
Furthermore, all signatures, besides Wong-proteas, Welm, Tavazoie, Ivshina, Hu, and Glinsky, are symmetric. 

(2)xi = Si ∩ Sj

(3)zi =
|xi|

|Si|
.
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Figure 2.   (A) Overview of the total number of biomarker genes in each study. (B) Shown is the number of 
GO-terms in each study. The green points correspond to BP, the red points to MF and blue points to CC. (C) 
The percentage of GO-terms of BP, MF and CC used by each study. The color is the same as for B.
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Figure 3.   (A) Pairwise overlap of genes in BM signatures. (B) A: Pairwise overlap of GO-terms in BM 
signatures. (C) The distribution of GO-terms of BP hierarchy levels for each study.



8

Vol:.(1234567890)

Scientific Reports |          (2021) 11:156  | https://doi.org/10.1038/s41598-020-79375-y

www.nature.com/scientificreports/

Specifically, the signatures Wong-proteas, Welm, Ivshina and Hu are skewed to the right whereas the remaining 
ones are skewed to the left. The Wong-Proteas signature also has the highest median value (9), while Adorno 
and Tavazoie have the lowest median values (6). The degree of variation for the levels remains virtually the same 
for most of the signatures with the exception of a few.

These results demonstrate that despite the size differences of the signatures (see Fig. 2A), the differences in 
the number of GO-terms (see Fig. 2B) and the sparsity in the overlap of genes of the signatures (see Fig. 3A) the 
biological specificity of the GO-terms is very similar.

Prognostic prediction capabilities of random gene sets.  In the following, we investigate the prog-
nostic prediction capabilities of BM signatures and random gene sets systematically. We start by focusing on BM 
signatures and random gene sets for which the BM signatures have been removed. Thereafter, we investigate 
random gene sets for which not only the BM signatures have been removed but also further genes that share 
common biological processes. This will lead to more stringent insights about the biological meaning of BM 
signatures.

Effect of removing individual BM signatures.  The study by17 investigated prediction capabilities of random gene 
sets, RGSi , whereas the genes in RGSi were randomly sampled from the set G′

i = G \ BMi . Here G corresponds to 
the total number of genes in our breast cancer data set and BMi is the BM signature of study i, for i ∈ {1, . . . , 48} . 
The number of genes sampled per random signature is the same as in BMi , i.e., |RGSi| = |BMi| . We repeat this 
sampling 1000 times for each study, i.e., we studied 48, 000 random gene sets that have been constructed in this 
way.

We would like to remark, that the study by17 did not apply a multiple testing correction to the obtained 
p-values despite the fact that multiple hypotheses had been tested. In order to see if these previous results are 
statistically robust, we repeated their analysis using a conservative Bonferroni correction24. Therefore, in total, 
we study 96, 000 random gene sets with and without Bonferroni correction.

The results of this analysis are shown in Fig. 4. Here the red/green points are the outcomes of the original BM 
signatures whereas dark red/dark green colors indicate non-significant values and light colors correspond to sig-
nificant results. The violet distributions correspond to results from random signatures and the shaded green bars 
correspond to the lower 3rd percentile of these distributions. Furthermore, the horizontal black lines represent 
the median values of the distribution of random signatures and the long horizontal blue line corresponds to a 
significance level of α = 0.001 . Note that for the p-values a logarithmic scale (i.e., log10 ) is used.

First, we observe from Fig. 4 that not all BM signatures (big points) lead to significant results. Specifically, 
the dark red and dark green points correspond to non-significant results whereas the light red and light green 
points correspond to significant results. This is a result from using different validation data than have been used 
by the original 48 BM studies. Still, without and with Bonferroni correction there are 39 BM signatures signifi-
cant in each case. Hence, the remaining 9 signatures do not show prognostic value for independent validation 
data and lack robustness.

Furthermore, from Fig. 4 without a Bonferroni correction (left), we find that the median p-values of 37 studies 
are significant (11 studies are not significant) while for a Bonferroni correction (right), we find only 19 significant 
studies (29 studies are not significant). Also, we find that with and without a Bonferroni correction most lower 
3% percentiles (green bars) are significant.

In order to obtain a better understanding of the total number of random gene signatures, we estimate an 
upper bound of the binomial coefficient 

(n
k

)
 . Here n is the available number of genes and k is the size of a random 

biomarker set. The meaning of this binomial coefficient is the total number of random gene sets that can be 
formed by selecting k genes from all available n genes.

For our data set the order of magnitude of n is 104 and according to Fig. 2A the average size of a BM signature 
is k = 102 . For the following estimate, only the order of magnitude of n and k are important as we will see below. 
Due to the fact that 

(10,000
100

)
 cannot be evaluated numerically, we estimate an upper bound of this by

Here e is Euler’s number. The right-hand-side of Eq. 4 can be simplified by

to obtain the order of magnitude as an exponent of 10. Overall, this leads to the following approximation of the 
binomial coefficient

for values of n = 10, 000 and k = 100 and x given in Eq. 6 (after rounding to integer numbers).
This demonstrates that the average number of random gene sets is in the order of 10243 and that one percentile 

of these correspond to 10241 different random gene sets, for each study. Hence, even for studies for which only 
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about three percent of all random gene sets are significant, corresponding to the lower 3rd percentile (green bars) 
in Fig. 4, the number of such gene sets is very large. In order to distinguish such significant random gene sets from 
non-significant gene sets we call the former surrogate gene sets because they have the same prognostic predic-
tion capabilities as the BM signatures. Hence, the lower 3rd percentile corresponds to 10241 surrogate gene sets.

Effect of removing related biological processes.  In our next analysis, we go one step further. Instead of only 
removing BM signatures, we remove also genes that belong to the same biological processes as the genes in the 
BM signatures (see GRP 2 in the Methods section). Due to the fact that according to the gene ontology (GO) 
database the biological processes are hierarchically organized, we approach this analysis iteratively by removing 
successively genes of biological processes on the same hierarchy level. Details of gene removal procedure 2 are 
described in the Methods section.

We assess the prediction results again by the p-values from the survival analysis. In addition, we assess the 
accuracy of predictions by declaring significant p-values as true positives (TPs) and non-significant results as 
false negatives (FNs). This allows the estimation of accuracy values. These evaluations are obtained for each 
hierarchy level.

In Table 1, we show three representative results for the signatures of Pei (top), Chang (middle) and Wong-
Mitochon (bottom). The underlying p-values have been Bonferroni corrected. The remaining results for the 
remaining signatures can be found in the Tables 1 to 96 in the supplementary file. The first column shows the 
hierarchy level up to which the GO-terms have been removed (see GRP 2 Methods section) and columns two 
to six give further details about the involved genes and GO-terms. The accuracy (Acc) summarizes the results 

Figure 4.   Results for gene removal procedure 1 for the NKI data. Shown are prognostic prediction capabilities 
of surrogate gene sets for 48 studies after removing BM signatures. Left: Results for uncorrected p-values (as in 
the original study17). Right: Bonferroni corrected p-values.
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Table 1.   Results for GRP 2 (NKI data) for three signatures. Top: Pei. Middle: Chang. Bottom: Wong–
Mitochon. The p-values have been Bonferroni corrected.

Hierachy level Genes removed
Cum. sum of 
genes removed Genes left

GO-terms 
removed

Cum. sum 
of GO-terms 
removed Acc. (%) Sig.Acc. (%)

16 3 3 12,135 1 1 3.3 2.5

15 8 11 12,127 3 4 4.0

14 2 13 12,125 1 5 2.9

13 177 190 11,948 2 7 4.7

12 1318 1508 10,630 9 16 3.3

11 616 2124 10,014 8 24 3.7

10 432 2556 9582 10 34 3.2

9 229 2785 9353 11 45 3.4

8 190 2975 9163 13 58 3.1

7 197 3172 8966 9 67 2.8

6 533 3705 8433 24 91 2.5

5 854 4559 7579 16 107 3.2

4 837 5396 6742 4 111 4.1

3 130 5526 6612 4 115 2.5

2 250 5776 6362 3 118 3.0

1 56 5832 6306 1 119 3.2

18 17 17 11,822 1 1 87.0 88.5

17 11 28 11,811 3 4 87.9

16 3 31 11,808 2 6 89.6

15 89 120 11,719 8 14 89.2

14 203 323 11,516 24 38 89.8

13 819 1142 10,697 41 79 87.4

12 1932 3074 8765 91 170 87.1

11 1246 4320 7519 112 282 84.8

10 1216 5536 6303 153 435 84.3

9 1326 6862 4977 174 609 81.9

8 1252 8114 3725 183 792 79.6

7 1258 9372 2467 193 985 70.8

6 711 10,083 1756 165 1150 81.2

5 573 10,656 1183 97 1247 73.2

4 336 10,992 847 54 1301 88.1

3 122 11,114 725 27 1328 86.3

18 17 17 11,913 1 1 78.9 78.0

17 9 26 11,904 3 4 74.9

14 63 89 11,841 9 13 76.7

13 228 317 11,613 12 25 78.0

12 1228 1545 10,385 25 50 78.7

11 826 2371 9559 53 103 76.3

10 1054 3425 8505 60 163 75.5

9 1032 4457 7473 70 233 76.8

8 949 5406 6524 77 310 78.6

7 1754 7160 4770 89 399 69.7

6 810 7970 3960 78 477 68.6

5 868 8838 3092 67 544 63.4

4 461 9299 2631 35 579 63.6

3 339 9638 2292 24 603 65.6

2 238 9876 2054 12 615 56.0

1 30 9906 2024 3 618 56.6
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of 1000 repeats and the overall significant p-values. Finally, Sig. Acc. gives the accuracy when only the signature 
is removed.

As one can see the accuracy values can be very low (Pei: top) or very high (Chang:middle ) regardless of 
the hierarchy level, or they can decline toward higher hierarchy levels (Wong–Mitochon: bottom). However, 
despite this complicated behavior a commonality among all 48 studies is that there is always a non-vanishing 
percentage of random gene sets that make the correct predictions. Hence, the number of surrogate gene sets is 
non-zero for all signatures.

This is summarized in Fig. 5. Specifically, the shown accuracy values correspond to the minimal values 
for each study across all hierarchy levels. For instance, for Chang the minimal accuracy is 70.8% obtained for 
hierarchy level 7; see Table 1. From this figure one can see that also the resulting minimal accuracy values vary 
considerably across the studies, however, only 5 studies have values slightly smaller than 5%. All other studies 
have larger values than 5% and some are even larger than 80%, even for Bonferroni corrected p-values. Examples 
for the latter are the signatures from West, Whitfield, Ben-Porath-Prc2, Reuter and Hau.

For each hierarchy level of each study, one can investigate the resulting distribution of p-values for the ran-
dom gene sets (similar to Fig. 4). Due to the fact that for each study many hierarchy levels have been studied 
(see Table 1 or the supplementary Tables 1 to 96) there are more than 1000 such distributions for all studies. 
For instance, for Pei there are 16 such distributions corresponding to 16 hierarchy levels (see Table 1). In order 
to simplify the presentation, we show only results for the minimal accuracy values in Fig. 5. The corresponding 
results are shown in Fig. 6. Interestingly, these results are qualitatively comparable to the results shown in Fig. 4. 
However, quantitatively, the difference is that in average these p-values are slightly larger. This implies, e.g., that 
the median values of less studies are significant. Specifically, in Fig. 6 the median values of 33 (without Bonfer-
roni correction) respectively 10 (with Bonferroni correction) studies are significant.

In order to estimate the number of surrogate gene sets, we perform a similar approximation of the binomial 
coefficient as in Eq. 7, however, considering the reduced number of available genes. From the tables in the 

Figure 5.   Results for gene removal procedure 2 for the NKI data. (A), (B) Show results for the minimal 
accuracy values across all hierarchy levels, whereas A is for uncorrected p-values and B for Bonferroni corrected 
p-values. (C) Results for GRP 2* for removing all GO-terms on all hierarchy levels (Bonferroni corrected).
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Supplementary File we observe, in average, n = 1000 . Considering this, we obtain x = 143 . Therefore, the total 
number of random gene sets constructed with GRP 2 is

Also this number is very large but a factor of 10100 smaller than the number of random gene sets obtained 
in Eq. 7.

From Fig. 5 and 6 (here the 3rd percentiles are highlighted in green) one can see that also for this procedure 
a certain percentile or random gene sets lead to the correct prediction outcome. Hence, the number of surrogate 
gene sets is for GRP 2 in the order of 10141.

Finally, we repeat the above analysis for another data set from18, in order to demonstrate the robustness of 
our results. In Figs. 7 and 8 we show results for the SWE data. Specifically, in Fig. 7 (top row) we use patient 
samples for LumA, LumB and Her2, in Fig. 7 (bottom row) LumA and Her2 and in Fig. 8 LumA and LumB. As 
one can see our results for the NKI data are confirmed for the SWE data for different subtypes of cancer. Other 
combinations of the subtypes give similar results (not shown).

Discussion
In this paper, we conducted a systematic study investigating the prognostic prediction capabilities of random 
gene sets. For this, we defined two different gene removal procedures (GRP 1 and GRP 2) for a constrained-
sampling of random gene sets.

For clarity, we distinguish in our paper between three different types of genes set. The first one, called a sig-
nature, is a gene set identified in a targeted way. Typically, such genes are identified because it is assumed that 
they are biologically informative for a particular problem. In addition, if used in a prognostic prediction task 
such a signature yields statistically significant results, which evidences practically that the signature is indicative 
for the disease progression of patients. In contrast, a random gene set is obtained by randomly sampling genes 

(8)
(

n

k

)

≤ 10143.

Figure 6.   Results for gene removal procedure 2 for the NKI data. The results in (A) and (B) are for the minimal 
accuracy (see Fig. 5A,B), whereas A is for uncorrected p-values and B for Bonferroni corrected p-values. The 
results in (C) correspond to Fig. 5C where all GO-terms on all hierarchy levels have been removed and, in 
addition, all proliferation genes have been removed.
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Figure 7.   Results for gene removal procedure 2 and the SWE data similar to Fig. 6. Top row: Patient samples 
contain LumA, LumB, Basal and Her2. Bottom row: Patient samples contain LumA and Her2.
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from an available gene pool. No particular meaning or role is attributed to such genes before sampling. Lastly, 
a surrogate gene set is a random gene set that has the same prognostic prediction capabilities as a signature. In 
our case this is indicated by a significant p-value from a survival analysis.

Results from gene removal procedure 1.  The results from GRP 1 are summarized in Fig. 4. From this 
figure, one obtains the following interpretations.

Most random signatures are significantly associated with prognostic outcome: This is only correct for random 
signatures with a median value that is statistically significant, because the median corresponds to 50% of the 
population. Hence, a significant median indicates that 50% of the surrogate signatures are significant. In sum-
mary, without a Bonferroni correction this is correct for 37 (77.1%) studies and with Bonferroni correction for 
19 (39.6%) studies (see Fig. 4). Hence, this statement is signature-dependent and does not hold generally.

Many surrogate signatures are significantly associated with prognostic outcome: This statement is correct for 
surrogate signatures for which a certain percentile of the surrogate signatures is statistically significant. From 
Fig. 4 one can see that this is correct for the lower 3rd percentiles for all studies, with and without a Bonferroni 
correction.

The number of surrogate signatures which are significantly associated with prognostic outcome is very large: 
Despite the fact that not all median values for all signatures are significant, the number of surrogate signatures 
that are significant is for each study very lage. This result has been obtained from approximating the upper bound 
of the binomial coefficient 

(n
k

)
 where n is the number of available genes and k is the size of a surrogate gene set. 

As an approximation we found

for values of n = 10, 000 and k = 100.

Results from gene removal procedure 2.  The results from GRP 2 are an extension of GRP 1 in the sense 
that the genes available for random sampling are further constricted. That means instead of only removing BM 

(9)
(

n

k

)

≤ 10243

Figure 8.   Results for gene removal procedure 2 and SWE data similar to Fig. 6. Patient samples contain LumA 
and LumB.
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signatures, in addition, also genes related to the same biological processes are removed. Hence, the random gene 
sets obtained from this procedure are less biologically similar to the BM signatures.

The initial motivation for exploring GRP 2 came from the observation that the overlap of biological pro-
cesses present in random gene sets and in BM signatures is non-zero. That means whenever at least one gene in 
a random gene set belongs to a GO-term that is also present for a BM signature, possibly for a different gene, 
the random gene set and the BM signature have this GO-term in common. Numerically, we find the average 
number of common GO-terms (corresponding to BP) across all signatures is 341. We find the largest overlap 
for Hua with 2602 and the smallest for Adorno with 1 GO-term. These numbers are understandable because 
Hua contains the largest number of GO-terms (over 5000) whereas Adorno contains the smallest number (19 
GO-terms of BP); see Fig. 2.

The results from GRP 2 for the NKI data are summarized in Figs. 5 and 6 (and for the SWE data in Figs. 7 
and 8). It is interesting to note that the qualitative results are similar for GRP 2 and GRP 1. That means even 
by removing genes related to the same biological processes as the signature genes, the prognostic prediction 
capabilities of surrogate gene sets can be confirmed. Importantly, qualitatively, GRP 1 and GRP 2 are entirely 
different with respect to their biological meaning. Specifically, we designed GRP 2 in a way that the procedure 
allows the gradual removal of more and more biological meaning from random gene sets. This is accomplished 
by a ranking of GO-terms according to their hierarchy levels because it is know that GO-terms in a GO-DAG 
on higher levels contain biological information that is more specific than GO-terms on lower levels25. Due to the 
fact that GRP 2 removes genes, associated with certain GO-terms, gradually from high to low hierarchy levels, 
we were able to study this effect explicitly; see Table 1 and Tables 1 to 96 in the Supplementary File (for the NKI 
data). We would like to remark that removal of GO-terms from all hierarchy levels (corresponding to the last 
step of GRP 2) results in random gene sets with no biological similarity to the original BM signature. Hence, 
per construction, such random gene sets have a biological similarity of zero with the original BM signature.

Considering the biological differences in the meaning of random genes sets resulting from GRP 1 and GRP 2 
the results in Figs. 5 and 6 are remarkable because it means that any biological justification given for the selection 
of an original BM signature is anecdotal. Specifically, by removing genes related to the same biological processes 
as the signature genes we eliminate the possibility of accidentally selecting genes for a random gene set that share 
the same biological interpretation as the original BM signature. Hence, any biological interpretation of such a BM 
signature is meaningless because we demonstrated that one can find surrogate gene sets with the same prediction 
capability but entirely different biological interpretations due to zero overlap in the GO-terms of involved genes. 
This is also true for GRP 2* where additionally proliferation genes have been removed (see Fig. 6C).

We would like to remark that the study by17 did not allow this conclusion because BM signatures have not 
been removed nor genes from associated biological processes. This leaves the possibility of accidentally selecting 
genes for a random gene set that share the same biological interpretation as the original BM signatures because 
these genes belong to the same biological processes as indicated by common GO-terms in the domain BP.

Our study is also different to21 where the investigation by17 has been extended by removing proliferation 
genes. The problem with their design is that resulting random gene sets can still have a non-vanishing overlap of 
common GO-terms and, hence, share to a certain extend biological meaning with a signature. Instead, we aimed 
at the elimination of all common GO-terms so that the resulting random gene sets have a different biological 
meaning. Further constraining of GRP 2 by additionally removing proliferation genes, as studied in21, which we 
named GRP 2*, does not change our main result.

Taking a more specific look into some of the studies we used for our analysis allows to make this point more 
clear. For instance, the study by26 identified a BM signature by computationally investigating 42 breast cancer 
gene expression studies. After demonstrating the prognostic capability of their signature the biological impor-
tance of these genes has been discussed and their functional role has been characterized as cell cycle process 
related and response to steroid hormone stimulus. Similarly, in the studies by Carter27, Chi28, Saal29, Shipitsin30 
and West31 the biological importance of their signatures pointed to chromosomal instability, hypoxia response, 
PI3K pathway signaling, TGF-β signaling pathway and stromal response respectively. However, based on our 
results, none of these biological interpretations established a causal explanation of the underlying cancer biol-
ogy because one can always find alternative gene sets, which we called surrogate gene sets, that contain neither 
genes from their signatures nor from genes with related biological processes (nor from proliferation genes) but 
achieve the same prognostic predictions.

From these and other studies, one can derive the following general pattern that can be found in many prog-
nostic breast cancer studies. First, signature genes are identified by computational, experimental or mixed-
approaches and, second, the biological relevance of the signature genes is discussed. Our results demonstrate that 
neither step is necessary. The first step can be omitted because we showed that a constrained random sampling 
can lead to surrogate gene sets with the same prognostic prediction capabilities. Hence, any sophisticated, e.g., 
biology-driven selection process is equivalent to a random selection process. From our analysis we found that 
the probability that such a random gene set is actually a surrogate gene set is in the percentage range.

The second step can be omitted because we showed that by GRP 2 one can systematically construct surrogate 
gene sets with an entirely different biological meaning as the signature genes. Specifically, due to the fact that 
we remove systematically all genes related to any biological process of the signature genes, none of the genes in 
a surrogate gene set can belong to any of these biological processes. Formally, this can be written as follows (for 
the removal of all hierarchy levels). For any signature

consisting of m genes and corresponding GO-term set

(10)BM = {g1, . . . , gm}
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representing all GO-terms of the genes in BM and any surrogate gene set

consisting of m genes and corresponding GO-term set

representing all GO-terms of the genes in SGS, with t possibly different to t ′ , the two sets GT and GT ′ are disjoint, 
i.e.,

For our results shown in the Tables 1 to 144 (Supplementary File), including also the removal of proliferation 
genes, this holds for the last row in these tables, i.e., the highest level. Hence, due to the fact that the signature 
genes (i.e., BM) and the surrogate gene set (i.e., SGS) do not share any GO-term they have a complementary 
biological meaning. Furthermore, there is not just one surrogate gene set but in the order of 10141 different sets. 
This demonstrates that the biological discussion of BM is meaningless because one can find a huge number of 
surrogate gene sets with a plurality of biological meanings.

In contrast to studies investigating the problem of reproducibility of biomedical results32 requiring the adjust-
ment of approaches, our paper is different because our results point to a fundamental lack of a commonly used 
framework which is unfixable. As a generalization of our results for 48 signatures, we assert that a signature with 
a sensible biological interpretation cannot be found within the studied prognostic framework utilizing survival 
analysis. More formally, this means the commonly used prognostic framework is no causal model33.

In conclusion, we demonstrated that the common assumption that “A reliable set of predictive genes also will 
contribute to a better understanding of the biological mechanism of metastasis”7 is not true.

Falsification mechanism to test biological meaning of prognostic signatures.  For testing the 
validity of general signatures, we suggest the following procedure to test if it is justified to investigate the biologi-
cal meaning of a prognostic signature of breast cancer.

1.	 G : total number of genes in a breast cancer dataset.
2*.	 *Optional step: Removing proliferation genes in PG from G. The set PG contains proliferation genes. This 

gives a new set of genes G∗ with G∗ = G \ PG.
2.	 BM : {g1, . . . , gm} . BM is the gene signature and g1, . . . , gm are the genes in the corresponding signature.
3.	 Mapping of the genes in BM to GO-terms. This gives: 

 Note, each gene can be connected to more than one GO-term. For this reason m ≤ t.
4.	 Mapping of the GO-terms to genes. This gives: 

 for all GO-terms i with i ∈ {1, . . . , t}.
5.	 Delete all the genes in D = ∪i∈{1,...,t}g(i) from G. This results in a new gene set given by G′ = G \ D.
6.	 From G′ , sample new sets of random genes of size |BM| and perform the prognostic task. This is repeated 

1000 times.
7.	 Application of a Bonferroni correction to the p-values and assessing the performance for a significance level 

of α.

From numerical analyses, we found that 1000 repeats are sufficient to estimate the tail distribution of random 
gene sets because, for the signatures studied in this paper, the probability to be a surrogate gene set ( psgs ) is in 
average 3% percent or higher. However, other signatures may require larger repeats due to the reciprocal relation 
between these entities, i.e., # repeats > 1/psgs.

If this procedure does not result in any surrogate gene set with the same prognostic prediction capabilities, 
the BM signature has a biological meaning that deserves to be discussed. Otherwise the BM signature has no 
sensible biological interpretation, which is the case for the 48 signatures studied in this paper.

Conclusion
In this paper, we shed light on the biological interpretability of BM signatures for the prognostic prediction of 
breast cancer. Our results demonstrate that none of the 48 studied signatures has a sensible biological interpre-
tation because for each, surrogate gene sets can be found that perform the same task, however, belonging to 
different biological processes. This implies that every signature (random or not) can just serve as a black-box 
prediction model without a biological interpretation. We believe that this has wider implications, even beyond 
biomedicine, to general machine learning and artificial intelligence models but this remains to be studied34. 
In addition, we proposed a procedure to test the biological meaning of prognostic signatures of breast cancer. 
This test could avoid further confusion in the literature about the biological meaning of prognostic signatures.

(11)GT = {GO1, . . . ,GOt}

(12)SGS = {g ′1, . . . , g
′
m}

(13)GT ′ = {GO′
1, . . . ,GO

′
t′ }

(14)GT ∩ GT ′ = ∅.

(15)BM = {g1, . . . , gm} → {GO1, . . . ,GOt}.

(16)GOi → g(i) = {g1(i), . . . , gk(i)}.
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It is widely know that prognostic signatures of breast cancer are very heterogeneous and sensitive to changes 
in the studied perspective. For this reason, we assumed in this paper a higher conceptual ground, based on a 
systems-view, in order to study a common aspect shared by many signatures that allows to pierce through the 
unavoidable variability and heterogeneity. This concept goes back to the roots of systems biology as envisioned 
in35,36.
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High-throughput technologies do not only provide novel means for basic biological

research but also for clinical applications in hospitals. For instance, the usage of

gene expression profiles as prognostic biomarkers for predicting cancer progression

has found widespread interest. Aside from predicting the progression of patients, it is

generally believed that such prognostic biomarkers also provide valuable information

about disease mechanisms and the underlying molecular processes that are causal

for a disorder. However, the latter assumption has been challenged. In this paper, we

study this problem for prostate cancer. Specifically, we investigate a large number of

previously published prognostic signatures of prostate cancer based on gene expression

profiles and show that none of these can provide unique information about the underlying

disease etiology of prostate cancer. Hence, our analysis reveals that none of the

studied signatures has a sensible biological meaning. Overall, this shows that all studied

prognostic signatures are merely black-box models allowing sensible predictions of

prostate cancer outcome but are not capable of providing causal explanations to

enhance the understanding of prostate cancer.

Keywords: prostate cancer, biomarkers, prognostic biomarkers, survival analysis, data science, computational

biology, biostatistics

1. INTRODUCTION

Prostate cancer (PCa) is the second most prevalent cancer among men, the average age of diagnosis
is 66 years, and about 60% of diagnosed cases occur in men over 65 years old. In the United States,
for example, 191, 930 newly diagnosis cases of PCa are estimated in 2020, resulting in about 33, 330
mortalities (Siegel et al., 2020). A substantial proportion of PCa is characterized as slow-growing
and indolent requiring no immediate therapeutic intervention. However, tumor stages T1 and T2,
and tumor stages higher than T2 are more aggressive and invade the surrounding organs and the
patient is more likely to die from the disease (Chen et al., 2020). Specifically, for men with local or
regional PCa, the 5-year survival rate is almost 100%, whereas the 5-year survival rate for men with
metastatic PCa is 31%.
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Since the inception of high-throughput technologies, a large
number of molecular markers have been described in the
literature capable of distinguishing cancer patients with good and
bad prognosis. Nonetheless, few found their way into clinical
decision making. Many biomarker studies have used genome-
wide gene expression analysis to define unique gene expression
signatures related to the prognosis of PCa. For example, Chen
et al. (2012) developed a 7-gene prognostic signature through
a cluster-correlation analysis to identify differentially expressed
genes in various cell types associated with PCa progression.
Likewise, in Liu et al. (2007), the gene expression of CD44+CD24
of low tumorigenic breast and normal breast epithelium cells
were compared. They used the differentially expressed genes
to construct a 186-gene “invasiveness” gene signature. The
signatures were tested for their association with two clinical
endpoints, overall survival and metastasis-free survival, in breast
and other cancer patients. Interestingly, the signature was
substantially correlated with the two survival endpoints in
patients with breast cancer and other types of cancer. Another
study by Ramaswamy et al. (2003) examined the molecular
variations between human primary tumors and metastases. The
gene expression profiles of different types of adenocarcinoma
metastases and unmatched primary adenocarcinomas were
compared, and the analysis identified a gene expression signature
capable of separating primary from metastatic adenocarcinomas
(Ramaswamy et al., 2003).

There are also studies that use more advanced approaches to
derive the gene signatures. In a study by Irshad et al. (2013),
a 19-gene signature enriched in indolent prostate tumors was
identified. Their final signature includes three genes that, through
a further classification of the 19-gene signature, was established
by a decision tree (DT) model. Similarly, a combination of
artificial neural network analysis and data from literature search
and other studies resulted in a panel of PCa progression markers,
which were used in a transcriptomic analysis of 29 radical
prostatectomy samples correlated with clinical outcome (Larkin
et al., 2012).

Aside from such potential success stories, there are several
well-known problems with prognostic signatures. One such
problem relates to the stability of the selection of prognostic
genes. In Michiels et al. (2005), this has been studied for various
cancer types and the authors found that the size of the training
data as well as the patient data both crucially effect the selection
of such genes. For breast cancer, this effect has been quantified
by Ein-Dor et al. (2006). Specifically, the authors showed that
thousands of patient samples are needed for achieving an overlap
of 50% between two predictive sets of prognostic genes. Further
examples of such studies reporting similar results can be found
in Kim (2009), Haury et al. (2011), and Gilhodes et al. (2017).
A well-recognized study by Venet et al. (2011) addressed yet
another problem by showing that many random breast cancer
gene sets have similar prognostic prediction capabilities as
biomarker (BM) signatures. The study by Goh and Wong (2018)
extended this by removing proliferation genes. A conceptual
problem of both studies is that random gene sets could still share
biological similarity on the level of biological processes (BPs).
The reason for this is that no systematic mechanism has been

implemented that would eliminate such a similarity. In contrast,
the study by Manjang et al. (2021) introduced a gene removal
procedure (GRP) that accomplished this.

The purpose of this paper is to test a hypothesis about the
systems behavior of PCa. Specifically, despite well-documented
differences between breast cancer and PCa, e.g., PCa affects men
exclusively, whereas breast cancer commonly affects women,
likewise both tumors arise in different organs involving different
physiological functions, we hypothesize that their functional
similarity, e.g., via the hallmarks of cancer (Hanahan and
Weinberg, 2000, 2011), induces similar results for prognostic
signatures. In order to investigate this, we study 32 published
prognostic PCa signatures from the literature and demonstrate
that random gene sets can be found with similar prediction
capabilities as these signatures but opposite biological meaning.

The paper is organized as follows. In the next section, we
describe our methods and data used for our analysis. Then
we present and discuss our results. The paper completes with
concluding remarks.

2. MATERIALS AND METHODS

In this section, we provide information about the data and
methods used for our analysis.

2.1. Biomarker Signatures
We identified reported PCa gene signatures from a literature
search. From this search, we found 32 signatures from 31
studies that have been published between 2002 and 2020. For
all signatures, the Entrez gene IDs corresponding to the HGNC
gene symbols are determined. All genes without an associated
Entrez gene ID are discarded. Table 1 shows an overview of the
published gene signatures we use for our study.

2.2. Gene Expression Data
We collected RNA-seq data (HTSeq-FPKM and HTSeq-FPKM-
UQ) of patients with PCa from the TCGA-PRAD project.
We obtained the data from the UCSC Xena GDC data
hub (https://xenabrowser.net/datapages/) on September 7, 2020.
FPKM stands for Fragments Per Kilobase of transcript per Million
mapped reads (Trapnell et al., 2010). It accounts for a situation in
which only 1 end of a pair-end read is mapped. The FPKM of a
gene is estimated as follows:

FPKM

=
109 × number of reads mapped to the gene

(number of reads mapped to all protein−coding genes

×length of the gene in base pairs)

(1)

Similarly, FPKM-UQ means Fragments Per Kilobase of
transcript per Million mapped reads upper quartile. It is a
modified estimate of FPKM where the total protein-coding read
count is replaced by the 75th percentile read count for a sample.
A notable difference between the two is the values of FPKM-UQ
tends to be much higher due to the significant disparity between
the total mapped number of reads in an alignment and the
mapped number of reads to one gene.
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The gene expression data set used in our study contains
551 samples, of which 498 are primary solid tumors, 52 are
solid tissue normal, and one is metastatic. We exclude the
metastatic and solid tissue normal samples from the data set.
From these data, we used only protein-coding genes without
missing information for the HTSeq-FPKM data cohort. Likewise,
from the HTSeq-FPKM-UQ data we used only genes with < 2%
missing information across all samples. The final HTSeq-FPKM
data set contains 498 samples and 16, 428 genes, whereas the
HTSeq-FPKM-UQ data set contains 498 samples and 15, 165
genes. Lastly, patient survival information for each sample
was derived from Liu et al. (2018). Specifically, we used the
progression-free interval end-points. In this paper, we refer to
the HTseq-FPKM and HTSeq-FPKM-UQ in our analysis as GDC
cohort A and GDC cohort B, respectively.

2.3. Outcome Association
In order to determine the prognostic importance of a random
gene set, we perform a survival analysis. We estimate Kaplan–
Meier survival curves and compare these with aMantel–Haenszel
test (Emmert-Streib and Dehmer, 2019). That means each
comparison provides a p-value from such a hypothesis test.

The patients are stratified into two classes (low and high
risk) by using the PC1 method. This method categorizes patients
according to a particular gene set. Hence, the resulting survival
analysis is a function of the gene set used to categorize the
patients. Overall, our study consists of three main steps: first,
the selection/construction of random gene set; second, the
classification of patients samples; and third, the survival analysis.

In the next section, we explain our method we use as GRP for
constructing random gene sets.

2.4. Gene Removal Procedure
OurGRP entails the removal of both the BM signatures and genes
that belong to the same BPs as the genes in the BM signatures.
The gene ontology (GO) is hierarchical (Ashburner et al., 2000).
Hence, we approach this analysis iteratively by removing genes of
BPs successively from the same hierarchy level. The GRP we use
is defined as follows:

1. G: the genes in the PCa data set (16, 425 and 15, 165 for GDC
cohort A and B, respectively).

2. BMi : gi, . . . , gm. BMi is the gene signature i (i range from 1 to
32) and gi, . . . , gm are the genes in the respective signatures.

3. Removing biomarker genes in signature BMi from G. This
produces a new set of genes G′

i with G′
i = G\BMi.

3∗ Optional step: Remove the proliferation genes, PG from G.
This gives a new set of genes G′∗

i with G′∗
i = G′\PG.

4. Map the genes in BMi to GO-terms and the corresponding
hierarchy levels. This gives: BMi = {gi, . . . , gm} → R =

{(GO1, L1), . . . , (GOt , Lt)}(Manjang et al., 2020).
Note, each gene can be connected to more than one GO-

term. For this reason,m ≤ t.
5. Map each GO-term in R, i.e., GOi with i ∈ {1, . . . , t}, to its

gene set GSi.
6. For each biomarker set i: Loop-over the elements in set R.

TABLE 1 | Overview of published and evaluated prognostic signatures for

prostate cancer used for our study.

Acronym of a

study

Number

of genes∗

Cancer type Reference

AGELL 12 Prostate cancer Agell et al., 2012

BIBIKOVA 16 Prostate cancer Bibikova et al., 2007

BISMAR 12 Prostate cancer Bismar et al., 2006

CHEN 4 Prostate cancer Chen et al., 2020

CHEN_CC 7 Prostate cancer Chen et al., 2012

CHEVILLE 2 Prostate cancer Cheville et al., 2008

CHU 8 Prostate cancer Chu et al., 2018

CUZICK 31 Prostate cancer Cuzick et al., 2011

GLINSKY 11 Multiple cancers Glinsky et al., 2005

IRSHAD 19 Prostate cancer Irshad et al., 2013

IRSHAD_1 3 Prostate cancer Irshad et al., 2013

LARKIN 7 Prostate cancer Larkin et al., 2012

LI 6 Prostate cancer Li et al., 2019

LIU 167 Multiple cancers Liu et al., 2007

LONG 12 Prostate cancer Long et al., 2011

NAKAGAWA 17 Prostate cancer Nakagawa et al., 2008

PENNEY 157 Prostate cancer Penney et al., 2011

RAMASWAMY 16 Multiple cancers Ramaswamy et al., 2003

REDDY 16 Prostate cancer Reddy and Balk, 2006

ROSS-ADAMS 100 Prostate cancer Ross-Adams et al., 2015

ROSS 6 Prostate cancer Ross et al., 2012

SAAL 162 Multiple cancers Saal et al., 2007

SHARMA 15 Prostate cancer Sharma et al., 2013

SINGH 5 Prostate cancer Singh et al., 2002

SONG 15 Prostate cancer Song et al., 2019

STEPHENSON 10 Prostate cancer Stephenson et al., 2005

TALANTOV 3 Prostate cancer Talantov et al., 2010

TANDEFELT 36 Prostate cancer Tandefelt et al., 2013

TRUE 86 Prostate cancer True et al., 2006

WANG 43 Prostate cancer Wang et al., 2017

WU 29 Prostate cancer Wu et al., 2013

YU 14 Multiple cancers Yu et al., 2007

Number of genes∗ corresponds to the number of genes in a signature after conversion

from HGNC gene symbols to Entrez gene IDs.

a. Delete all the genes associated with the GO-terms in set R.
This results in a new set given by G′′ = G′\D, where D is
the set of genes having GO-terms in R, i.e., D = ∪t

i=1GSi.

7. From G′′, we loop from 1 to 1, 000:

a. We sample new sets of biomarker genes of size |BMi ∈ G|
and perform the prognostic task. We repeat this for 1, 000
times.

b. Application of a Bonferroni correction to the p-values.
c. Set G′ = G′′. Stop if l = Lmin(i) or |G

′′| < 2× |BMi ∈ G|.

In the above procedure, the optional step called 3∗ involves the
removal of the 664 genes that are related to proliferation (this
gene set is called PG). We extracted the genes in PG from Goh
and Wong (2018).
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The prediction results are assessed using the p-values obtained
from the survival analysis. We call a random gene set with a
significant p-value, a surrogate gene set.

2.5. Unsupervised Classification
The patient samples are categorized using the PC1 stratification
method, which is based on a principal component analysis
(PCA). Briefly, PCA is a dimension reduction technique (this
involves reducing the size of the data set). The goal is to
transform a large data set into a smaller ones having a lower
dimensional representation. This method trades a little accuracy
for simplicity, thus achieving interpretability as well as minimal
loss of information (Lever et al., 2017). For performing the PC1
method, we use the R function "prcomp" to obtain the first
principal component (PC1) of a signature. The patients are then
divided into two groups according to the median of the PC1, i.e.,
a sample is either categorized as group −1 if the PC1 is below
the median or as group +1 if the PC1 is above the median value.
Hence, the PC1 method is used to classify (or group) the patients
into two classes, whereas this separation depends on a signature
gene set. This approach has been previously used (see, e.g., Venet
et al., 2011).

Formally, our analysis is based on a gene expression matrix of
the form X ∈ Rm × Rn, wherem is the number of genes and n is
the number of samples. Importantly, here m corresponds to the
number of genes in a particular signature gene signature and not
to all genes that are available in a data set.

2.6. Survival Analysis
For evaluating the prognostic value of gene sets, we conduct
a survival analysis. Specifically, we estimate a Kaplan–Meier
survival curve for each patient group and compare different
groups with the Mantel–Haenszel test (Emmert-Streib and
Dehmer, 2019). Hence, each comparison is characterized by a p-
value resulting from a statistical hypothesis test. For the survival
analysis, we use the progression-free interval as endpoint.

We would like to remark that due to the fact that the PC1
method provides a categorization of the patients, the resulting
survival analysis depends on the gene set used for obtaining the
first principal component of the signature.

2.7. Measuring of Biological Meaning
In order to have a well-defined meaning of the term “biological
meaning,” we use information from the GO (Ashburner et al.,
2000). Specifically, GO defines the biological meaning of a gene
by a list of GO-terms associated with this gene. For a list of genes,
the biological meaning of this set can be defined by the union of
the sets of GO-terms of the individual genes. For instance, given
three genes, g1, g2, g3, with associate GO-terms the biological
meaning (M) of these genes is given by

M(g1) = {GO1(1),GO1(2), . . .GO1(m)} (2)

M(g2) = {GO2(1),GO2(2), . . .GO2(n)} (3)

M(g3) = {GO3(1),GO3(2), . . .GO3(o)} (4)

with m, n, o ∈ N. Here, the GO-terms are from a category, e.g.,
BP. Similarly, the biological meaning of the set of genes {g1, g2, g3}

is given by

M({g1, g2, g3}) = M(g1) ∪M(g2) ∪M(g3) (5)

whereas ∪ is the union of the individual sets. Hence, the
biological meaning of {g1, g2, g3} is given by the set of GO-terms
M({g1, g2, g3}).

From this follows that, e.g., the similarity of two sets of genes,
{g1, g2, g3} and {g4, g5, g6}, is zero if

M({g1, g2, g3}) ∩M({g4, g5, g6}) = ∅. (6)

Importantly, our GRP defined above constructs random gene sets
(RGS) with this property, i.e.,

M(RGS) ∩M(BM) = ∅ (7)

with RGS a set of random genes and BM a set of biomarker genes.

3. RESULTS

In this section, we present the results of our analysis. First, we
study published prognostic biomarkers of PCa individually and
comparatively. Then we study random gene set and show results
for prognostic outcome.

3.1. Prognostic Biomarkers of Prostate
Cancer
3.1.1. Size of Biomarker Sets and GO-Terms in

Signatures
In Table 1, we show an alphabetically ordered overview of all
32 prognostic BM signatures included in our analysis. The
smallest signature is from Cheville consisting of 2 genes only,
whereas the signature from Liu is the largest containing 167
genes. Interestingly, there are some signatures that have the same
number of genes. Specifically, the signatures of Irshad_1 and
Talantov have 3 genes, the signatures of Li and Ross have 6 genes,
the signatures of Chen_cc and Larkin have 7 genes, the signatures
of Agell, Bismar, and Long have 12 genes, the signatures of
Sharma and Song have 15 genes, and the signatures of Bibikova,
Ramaswamy, and Reddy have 16 genes in their BM sets. An
overall summary of the size distributions of all BM signatures is
shown in Figure 1A.

In Figure 1B, we show information about the GO-terms
associated with the genes in the signatures. The three colors
correspond to the three GO categories: BP shown in cyan,
molecular function (MF) shown in red, and cellular component
(CC) shown in yellow. For each of these three categories, we
show the absolute number of GO-terms in each study. Overall,
from Figure 1B one can see that the present GO-terms in the
signatures differ significantly from each other. That means some
signatures are very specific because they contain only a very small
number of different GO-terms, e.g., the signatures from Talantov,
Cheville and Li, while others are rather generic containing many
GO-terms, e.g., Penney, Liu and Saal. For GO-terms of BP (cyan),
this variation is particularly large.
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FIGURE 1 | (A) Distributions of the number of biomarker genes in each study. (B) Number of gene ontology (GO)-terms associated with the signature genes in each

study. The cyan points correspond to BP, the red points to molecular function (MF), and yellow points to cellular component (CC).

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 649429



Manjang et al. Prognostic Biomarkers of Prostate Cancer

3.1.2. Pairwise Similarity of Signatures
In order to study differences between the 32 signatures, we
conduct a pairwise comparison of these BM sets. Specifically, we
study two different types of overlap. We study (i) the number
of common genes and (ii) the number of common GO-terms
among pairs of signatures. Formally, we define these two overlap
measures as follows. Let Si and Sj be two signature sets consisting
either of genes or GO-terms. Then we find the percentage zi ∈
[0, 1] of common elements in Si that are also present in Sj by

xi = Si ∩ Sj (8)

zi =
|xi|

|Si|
(9)

Here, zi can assume values between zero and one and |z|
corresponds to the number of elements in set z. We would like
to remark that the way we define the overlap is asymmetric, i.e.,
zi 6= zj if |Si| 6= |Sj|. That means the percentage of the overlap is
taken with respect to the first signature set Si on the right-hand
side of Equation (8).

The two heatmaps in Figures 2A,B show the results of
this analysis. From this analysis of the gene overlap, we find
that the signatures of Chen_cc and Chu do not overlap with
other signatures at all, i.e., both have a zero overlap with any
other signature. This implies that the genes in the signatures
of Chen_cc and Chu are unique concerning the genes in
their corresponding BM sets. Every other BM signature has at
least some overlap with another signature; see the last column
in Figure 2A (red numbers) providing information about the
number of signatures with a non-zero overlap.

The signature of Cheville, which has the smallest number of
genes, has a gene overlap with the three signatures of Cuzick, Li,
and Penney. Surprisingly, the signature of Liu, which contains
the highest number of genes, has only genes in common with 9
other signatures. Irshad_1 is the only signature that completely
overlaps with another signature (Irshad); however, we would like
to note that both signatures are from the same study (Irshad
et al., 2013). Finally, we find that the signature of Penney has
the highest gene overlap with other signatures (it has genes in
common with 20 signatures). From this analysis, we see that
there is a wide range of behaviors for the gene overlap reaching
from zero overlap (for Chen_cc and Chu) to an overlap with 20
signatures (for Penny) corresponding to an overlap with 64.5%
(= 20/31) of all signatures. This implies that all signatures are
unique to a certain extend because this percentage would be
much higher.

In contrast to these findings, Figure 2B shows the overlap
of GO-terms among the signatures. Again, the overlap between
the signatures varies considerably. For instance, the signatures of
Saal and Penney share the highest overlap with 490 GO-terms.
Interestingly, all the signatures have a non-zero overlap in their
biological meaning.

Importantly, a difference to the gene overlap (see Figure 2A)
is that for a GO-term overlap, all signatures share at least one GO-
term with 26 other signatures (see last column in Figure 2B) and
most signatures (25) have at least one common GO-term with
all other signatures. This implies that on a GO-term level, the

signatures are much more similar to each other than on a gene
level. This underlines the importance of a systems-view on PCa.

3.2. Prediction Abilities of Random Gene
Signatures
Next, we systematically investigated the prognostic prediction
capabilities of the 32 BM signatures and random gene sets. We
begin by systematically removing BM signature genes from the
available gene expression gene pool. Subsequently, we also omit
hierarchically genes that share a biological meaning with the
respective published signatures.We randomly sample 1,000 set of
the same size as the BM signature from the gene set left to create
random gene signature. The results are as follows:

The outcome of the study is given in three parts. First, from the
gene pool, we systematically remove the published signatures and
the genes that share a similar biological meaning with them and
compute the outcome association. Next, we correct the obtained
p-values by conservative Bonferroni correction and report the
results. And finally, the analysis is repeated by omitting the
proliferation genes from the gene pool, we correct the p-values
by conservative Bonferroni correction, and present the results.

3.2.1. GDC Cohort a Data
The results for the GDC cohort A data are shown in Figure 3.
The light/dark red points represent the outcome of the published
signatures (without any gene removal), whereas light red
indicates significant results and dark red non-significant one.
The blue colored distributions are the result of random gene
sets, whereas the shaded cyan bars correspond to the lower third
percentile of the distributions and the bold black points are
the median values of these distributions. The blue vertical line
corresponds to a significant level of α = 0.05. We would like to
note that the p-values are on a logarithmic scale (i.e., log10).

First, from Figure 3 we observed that not all published
signatures (red points) lead to significant results. In order to
highlight this, we show significant results by points in light red,
whereas non-significant results are shown in dark red. A possible
reason for this observation is that our analysis uses a different
data set than the original studies and, hence, the observed
results indicate to the well-known instability of biomarkers
(lack of robustness) (Drier and Domany, 2011). Specifically, for
our analysis 24 of the 32 biomarker signatures are significant
and the remaining published signatures lack robustness for the
independent validation data set.

Figure 3A shows results without a Bonferroni correction.
This analysis is similar to the study by Venet et al. (2011),
which also did not use a multiple testing correction even though
many comparisons were conducted. Interestingly, in Figure 3A

all lower third percentiles (cyan shaded bars) are significant.
That means for all random gene sets we find at least 3%
of these to be significant. When compared to the published
signatures (red points), the lower third percentile of random gene
sets outperform even 26 signatures. Five published signatures
performed as well as the lower third percentile of random sets, or
the random sets slightly outperformed them. Only one signature
(Song) achieves a more significant outcome than the lower third
percentile of the random gene sets. Two signatures Ross and
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FIGURE 2 | Pairwise overlap between prognostic biomarkers. (A) Overlap in the number of genes. (B) Overlap in the number of gene ontology (GO)-terms. The last

column in both heatmaps (red numbers) gives the number of signatures with a non-zero overlap.
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FIGURE 3 | Shown are the prognostic prediction results of random gene sets for 32 signatures using the GDC cohort A data. (A) Results for uncorrected p-values.

(B) Bonferroni corrected p-values. (C) Proliferation genes are removed and the p-values are Bonferroni corrected. The significance level is α = 0.05 (vertical blue line)

and the light/dark red points represent the outcome of the published signatures. The blue-colored distributions are the results of the random gene sets, whereas the

shaded cyan bars correspond to the lower third percentile of the distributions and the bold black points are the median values.

Ross-Adams perform as worse as the median of the random sets
and three signatures (Singh, Bismar, and Yu) perform even worse
than the median of the random gene sets. The median of the
random sets (bold black points) are all non-significant.

In Figure 3B, we repeated the analysis applying a conservative
Bonferroni correction. With a Bonferroni correction, four
signatures (Singh, Ross, Bismar, and Yu) performed worse than
the lower third percentile of random signatures. Likewise, five
published signatures, Chu, Song, Bibikova, Cuzick, and Saal,
outperformed the random signatures. As one can see from
Figure 3B, not all the lower third percentile are significant.
However, for all random signatures (such as Penney and Liu),
we find at least some significant random signatures. Interestingly,
many smaller random signatures perform better in comparison
to larger ones. For instance, Cheville, Talantov, Irshad_1, Chen,
Singh, etc., all performed better than the top 5 largest signatures
(True, Ross-Adams, Penney, Saal, and Liu).

In a previous breast cancer study (Goh and Wong, 2018),
it has been found that the removal of proliferation genes from
random signatures leads to diminishing results of the prognostic
performance of random signatures. In order to study this effect,

we removed additionally all proliferation genes from the gene
pool and repeated our analysis with a Bonferroni correction. The
results of this are shown in Figure 3C. Qualitatively, the results in
Figures 3B,C are similar. Overall, for all results in Figures 3A–C,
one can see that for all random signatures there are at least some
that are statistically significant. We would like to emphasize that
all random gene sets share per construction no biological meaning
with the published signatures yet can perform prognosis as well
as the BM signatures or better.

3.2.2. GDC Cohort B Data
In order to study the influence of the data processing, we repeat
our analysis for the GDC cohort B data. The results of this
analysis are shown in Figures 4A–C. In these figures, there are
in addition to the dark and light red points, light green points
indicate the BM signatures. These correspond to significant BM
signatures, whereas the median values of the random gene sets
(black points) are non-significant.

Again, we observe that not all BM signatures lead to a
significant outcome. Specifically, we find 22 of the 32 signatures
to be significant (Figure 4). Interestingly, we find also non-robust
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FIGURE 4 | Shown are the prognostic prediction results of random gene sets for 32 signatures using the GDC cohort B data set. (A) Results for uncorrected

p-values. (B) Bonferroni corrected p-values. (C) Proliferation genes are removed and the p-values are Bonferroni corrected. The significance level is α = 0.05 (vertical

blue line) and the light/dark red points represent the outcome of the published signatures. The blue colored distributions are the results of the random gene sets,

whereas the shaded cyan bars correspond to the lower third percentile of the distributions and the bold black points are the median values.

results. For instance, Cheville, Irshad_1, Reddy, Ramaswamy,
and True failed to predict the outcome in the GDC cohort B data
set, but these signatures were significant for the GDC cohort A
data (see Figure 3). Similarly, Chen, Stephenson, and Sharma are
significant for GDC cohort B (see Figure 4) but not GDC cohort
A (see Figure 3).

Also for the distributions of the results for the random gene
sets, we observe very similar results as for the GDC cohort A data
in Figure 3. Hence, overall, the results in Figures 4A–C confirm
our analysis, which means there are always random gene sets
leading to significant results.

4. DISCUSSION

Our hypothesis for the present study was that prognostic
signatures of prostate cancer are lacking a sensible biological
meaning. In order to investigate this, we used a GRP
introduced in Manjang et al. (2021). This GRP allows
to systematically construct random gene sets by omitting
all biological similarities between published signatures and
the genes in a gene pool from which random gene sets
are drawn. These random gene sets are not assigned any

particular (biological) meaning or role. Importantly, such
random gene sets do not necessarily have predictive capabilities
as assessed by predicting progression-free survival as outcome
variable. For this reason, we distinguish between random gene
sets that are predictive (indicated by a significant p-value
from a survival analysis) and non-predictive by calling the
former ones surrogate gene sets. A published BM signature
(see Table 1), on the other hand, is a gene set that is
obtained in a targeted and non-random manner indicative of
disease progression.

For testing our hypothesis, we studied 32 published BM
signatures of prostate cancer from the literature (see Table 1).
As a result, for all studied 32 signatures we found random gene
sets with better or similar prognostic capabilities but no overlap
in the biological meaning. In order to see if the preprocessing
of the data has any effect on this, we extended our analysis
by examining the effect of different data processing techniques.
Regarding this, we conducted further analysis by using a data
set with different processing methods applied to the raw data
leading to a data set we call GDC cohort B. As a result from this
analysis, we found no systematic influence of a particular data
processing technique on the surrogate gene sets or the overall
results (see Figures 3, 4). Finally, we also removed proliferation
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genes (for both data sets, i.e., GDC cohort A and GDC cohort B)
and found also for this setting no difference in our results (see
Figures 3C, 4C).

As a conclusion from all these analyses, we can infer that
any biological rationale provided for selecting the genes in the
published gene signatures, as shown in Table 1, is anecdotal.
This is taking into account the meaning of random gene sets
arising from the GRP because the used GRP eliminates the risk
of accidentally selecting genes for a random gene set that have
the same biological meaning as the published gene signatures.
Consequently, due to the discovery of surrogate gene sets with
the same predictive capability but a completely distinct biological
interpretation, as a result of the zero overlap in the GO-terms of
the genes involved, any biological significance attributed to such
BM signatures is required.

Interestingly, a similar interpretation has been found in a
breast cancer study by Manjang et al. (2021). They showed that
when all signs of the biological meaning of the BM signature
genes are removed, surrogate gene sets can be determined
among the remaining random gene sets with similar prognostic
predictive capabilities but with contrasting biological meaning.
Therefore, the research findings indicated that with regard to
disease etiology, none of the studied signatures have a plausible
biological interpretation or significance. The study concluded
that prognostic signatures are black-box models that can yield
accurate predictions of breast cancer outcome but with no benefit
for disclosing causal, biological relations. Furthermore, this study
also noted a relationship between the predictive accuracy and
the size of the random gene sets by showing that the accuracy
is higher for larger gene sets. It is interesting to note that in the
current study, we could not establish this relationship. A possible
explanation for this may be the relatively small size of published
BM signatures of prostate cancer, which are all smaller than 200
genes (see Figure 1). In contrast, the breast cancer signatures
studied in Manjang et al. (2021) are much larger in average
reaching up to 1345 genes.

It is important to note that a similar study for breast cancer by
Venet et al. (2011) has been unable to arrive at this conclusion
since no GRP was used. As a consequence, BM signatures as
well as genes from associated BP were not removed leaving the
possibility to inadvertently select random genes with a common
biological meaning as the original BM signatures because these
genes belong to the same BPs as indicated by common GO-
terms in the domain BP. Another statement by Venet et al.
(2011) is that most random signatures are significantly associated
with prognostic outcome. With respect to prostate cancer, this
holds only for the random gene sets of Penney and Liu (see
Figure 4A) because 50% of the surrogate gene sets are significant
as indicated by the median values of the distributions (black
points in Figure 4). However, generally, this assertion is not valid
and only applies to some signatures.

To date, many studies investigated prognostic signatures of
prostate cancer. For example, Bibikova et al. (2007) used a 16-
gene expression signature to predict the prognosis of prostate
cancer. They complemented their results by a discussion of the
functional annotation of these genes, which were involved in
proliferation, cell cycle, differentiation, signal transduction and

basic metabolism. Similarly, the studies by Saal et al. (2007),
Sharma et al. (2013), and Song et al. (2019) argued that the
biological importance of their prognostic signatures is based
on the role of PI3K pathway signaling, altered signaling, P53
signaling and cell cycle process pathway respectively. In this
paper, we studied those and other prognostic signatures of
prostate cancer. Our results, however, demonstrate that such
biological interpretations do not offer a causal explanation for
the fundamental biology of prostate cancer since we can always
find surrogate gene sets with no biological relationship to those
signatures but similar or better prognostic prediction capabilities.

Considering that prostate cancer and breast cancer are two
considerably different diseases yet our results demonstrate a
similarity in the lack of biological meaning of both cancers
one may wonder if there is a common factor giving raise
to these findings. This is very difficult to answer, however,
one common factor that comes to mind are the hallmarks of
cancer (Hanahan and Weinberg, 2000). Specifically, the study
by Hanahan and Weinberg (2000) highlighted six hallmarks
of cancer (self-sufficiency in growth signals, insensitivity to
growth-inhibitory (antigrowth) signals, evasion of programmed
cell death (apoptosis), limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis), which are
shared by all types of human cancers. Later this has been
extended by four further hallmarks (deregulating cellular
energetics, avoiding immune destruction, genome instability
and mutation, tumor-promoting inflammation) (Hanahan and
Weinberg, 2011). If our findings are actually related to the ten
hallmarks of cancer is currently unclear. However, it seems not
implausible to assume that there might be a connection because
the hallmarks state that cancer is a system disease involving a
multitude of pathways. We want to add that these pathways do
not work in isolation but are connected among each other by
intricate regulatory networks (Emmert-Streib et al., 2014).

On a technical note, we would like to remark that there
could be other metrics for evaluating the prediction capabilities
of random gene sets other than p-values. For instance, one
could use information from pathology about disease states,
which allow to use error measures for binary classifications.
While this establishes sensible metrics, e.g., F-score or AUROC,
such measures do not directly utilize survival information
about the progression of patients. Instead, this is the strength
of survival analysis comparing survival curves quantitatively.
Hence, a regression framework, as provided by survival analysis
(Kleinbaum and Klein, 2005), seems to be favorable over a
classification framework allowing a more nuanced evaluation.

Finally, we would like to note that our study has similarities to
recent investigations in Explainable Artificial Intelligence (XAI)
(Xu et al., 2019; Emmert-Streib et al., 2020). Specifically, XAI
explores the dichotomy of predictive and descriptive models
(Emmert-Streib and Dehmer, 2021) in AI and aims to establish
mechanisms for making predictive models also explainable in
a sense that this can enhance our understanding of a system
under investigation. On a wider scope, this discussion has a long
history in the statistics community and refers to the distinction
of black-box models and causal models (Holland, 1986; Breiman,
2001). Our study shows that prognostic biomarkers of prostate

Frontiers in Genetics | www.frontiersin.org 10 July 2021 | Volume 12 | Article 649429



Manjang et al. Prognostic Biomarkers of Prostate Cancer

cancer allow sensible predictions for cancer progression but do
not establish a causal understanding with respect to the biological
meaning of such prognostic signatures. Here, it is important
to extend the considerations to the proposed gene selection
mechanisms used by studies identifying prognostic signatures
(see Table 1). Overall, such models have a predictive utility, e.g.,
for applications in the clinical practice but no biological utility for
enhancing our understanding of cancer biology.

5. CONCLUSION

In this paper, we scrutinized the biological meaning of
prognostic signatures of prostate cancer. Our study utilized a
GRP that results in random gene sets without any overlap
in the biological meaning with biomarker signatures yet a
non-vanishing proportion of these random gene sets, called
surrogate gene sets, achieve similar prediction results. Hence,
our results demonstrate that none of the studied signatures
of prostate cancer has a sensible biological interpretation with
respect to disease etiology. To our knowledge, this is the

first study providing such results for prognostic biomarkers of
prostate cancer.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://xenabrowser.net/datapages/.

AUTHOR CONTRIBUTIONS

FE-S conceived the study. KM performed the analysis. KM and
FE-S analyzed the data and interpreted the results. All authors
wrote the manuscript.

FUNDING

KM has been supported by a fellowship from the Center
for Prostate Cancer, Tampere University. MD thanks
the Austrian Science Funds for supporting this work
(project P30031).

REFERENCES

Agell, L., Hernández, S., Nonell, L., Lorenzo, M., Puigdecanet, E., de Muga, S.,

et al. (2012). A 12-gene expression signature is associated with aggressive

histological in prostate cancer: Sec14l1 and tceb1 genes are potential markers of

progression. Am. J. Pathol. 181, 1585–1594. doi: 10.1016/j.ajpath.2012.08.005

Ashburner, M., Ball, C., Blake, J., Botstein, D., and Butler H., et al. (2000). Gene

Ontology: tool for the unification of biology. The Gene ontology consortium.

Nat. Genet. 25, 25–29. doi: 10.1038/75556

Bibikova, M., Chudin, E., Arsanjani, A., Zhou, L., Garcia, E. W., Modder, J., et al.

(2007). Expression signatures that correlated with gleason score and relapse in

prostate cancer. Genomics 89, 666–672. doi: 10.1016/j.ygeno.2007.02.005

Bismar, T. A., Demichelis, F., Riva, A., Kim, R., Varambally, S., He, L., et al. (2006).

Defining aggressive prostate cancer using a 12-gene model. Neoplasia 8:59.

doi: 10.1593/neo.05664

Breiman, L. (2001). Statistical modeling: the two cultures. Stat. Sci. 16, 199–231.

doi: 10.1214/ss/1009213726

Chen, X., Wang, J., Peng, X., Liu, K., Zhang, C., Zeng, X., et al. (2020).

Comprehensive analysis of biomarkers for prostate cancer based on

weighted gene co-expression network analysis. Medicine 99:e19628.

doi: 10.1097/MD.0000000000019628

Chen, X., Xu, S., McClelland,M., Rahmatpanah, F., Sawyers, A., Jia, Z., et al. (2012).

An accurate prostate cancer prognosticator using a seven-gene signature plus

gleason score and taking cell type heterogeneity into account. PLoS ONE

7:e45178. doi: 10.1371/journal.pone.0045178

Cheville, J. C., Karnes, R. J., Therneau, T. M., Kosari, F., Munz, J.-M., Tillmans,

L., et al. (2008). Gene panel model predictive of outcome in men at high-risk

of systemic progression and death from prostate cancer after radical retropubic

prostatectomy. J. Clin. Oncol. 26:3930. doi: 10.1200/JCO.2007.15.6752

Chu, J., Li, N., and Gai, W. (2018). Identification of genes that predict

the biochemical recurrence of prostate cancer. Oncol. Lett. 16, 3447–3452.

doi: 10.3892/ol.2018.9106

Cuzick, J., Swanson, G. P., Fisher, G., Brothman, A. R., Berney, D. M., Reid, J. E.,

et al. (2011). Prognostic value of an rna expression signature derived from cell

cycle proliferation genes in patients with prostate cancer: a retrospective study.

Lancet Oncol. 12, 245–255. doi: 10.1016/S1470-2045(10)70295-3

Drier, Y., and Domany, E. (2011). Do two machine-learning based prognostic

signatures for breast cancer capture the same biological processes? PLoS ONE

6:e17795. doi: 10.1371/journal.pone.0017795

Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples are needed to

generate a robust gene list for predicting outcome in cancer. Proce. Natl. Acad.

Sci. U.S.A. 103, 5923–5928. doi: 10.1073/pnas.0601231103

Emmert-Streib, F., de Matos Simoes, R., Mullan, P., Haibe-Kains, B., and

Dehmer, M. (2014). The gene regulatory network for breast cancer:

integrated regulatory landscape of cancer hallmarks. Front. Genet. 5:15.

doi: 10.3389/fgene.2014.00015

Emmert-Streib, F., and Dehmer, M. (2019). Introduction to survival

analysis in practice. Mach. Learn. Knowl. Extract. 1, 1013–1038.

doi: 10.3390/make1030058

Emmert-Streib, F., and Dehmer, M. (2021). Data-driven computational social

network science: predictive and inferential models for web-enabled scientific

discoveries. Front. Big Data 4:591749. doi: 10.3389/fdata.2021.591749

Emmert-Streib, F., Yli-Harja, O., and Dehmer, M. (2020). Explainable artificial

intelligence and machine learning: a reality rooted perspective. WIREs Data

Min. Knowl. Discov. 10:e1368. doi: 10.1002/widm.1368

Gilhodes, J., Zemmour, C., Ajana, S., Martinez, A., Delord, J.-P., Leconte, E.,

et al. (2017). Comparison of variable selection methods for high-dimensional

survival data with competing events. Comput. Biol. Med. 91, 159–167.

doi: 10.1016/j.compbiomed.2017.10.021

Glinsky, G. V., Berezovska, O., Glinskii, A. B., et al. (2005). Microarray

analysis identifies a death-from-cancer signature predicting therapy failure

in patients with multiple types of cancer. J. Clin. Invest. 115, 1503–1521.

doi: 10.1172/JCI23412

Goh, W. W. B., and Wong, L. (2018). Why breast cancer signatures are no

better than random signatures explained. Drug Discov. Today 23, 1818–1823.

doi: 10.1016/j.drudis.2018.05.036

Hanahan, D., andWeinberg, R. A. (2000). The hallmarks of cancer.Cell 100, 57–70.

doi: 10.1016/S0092-8674(00)81683-9

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next

generation. Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013

Haury, A.-C., Gestraud, P., and Vert, J.-P. (2011). The influence of feature selection

methods on accuracy, stability and interpretability of molecular signatures.

PLoS ONE 6:e28210. doi: 10.1371/journal.pone.0028210

Holland, P. (1986). Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960.

doi: 10.1080/01621459.1986.10478354

Irshad, S., Bansal, M., Castillo-Martin, M., Zheng, T., Aytes, A., Wenske, S., et al.

(2013). Amolecular signature predictive of indolent prostate cancer. Sci. Transl.

Med. 5:202ra122. doi: 10.1126/scitranslmed.3006408

Frontiers in Genetics | www.frontiersin.org 11 July 2021 | Volume 12 | Article 649429



Manjang et al. Prognostic Biomarkers of Prostate Cancer

Kim, S.-Y. (2009). Effects of sample size on robustness and prediction

accuracy of a prognostic gene signature. BMC Bioinformatics 10:147.

doi: 10.1186/1471-2105-10-147

Kleinbaum, D. and Klein, M. (2005). Survival Analysis: A Self-Learning Text.

Statistics for Biology and Health. New York, NY: Springer.

Larkin, S., Holmes, S., Cree, I., Walker, T., Basketter, V., Bickers, B., et al. (2012).

Identification of markers of prostate cancer progression using candidate gene

expression. Br. J. Cancer 106, 157–165. doi: 10.1038/bjc.2011.490

Lever, J., Krzywinski, M., and Altman, N. (2017). Points of significance: principal

component analysis. Nat. Methods 14, 641–642. doi: 10.1038/nmeth.4346

Li, F., Ji, J.-P., Xu, Y., and Liu, R.-L. (2019). Identification a novel set of 6

differential expressed genes in prostate cancer that can potentially predict

biochemical recurrence after curative surgery. Clin. Transl. Oncol. 21, 1067–

1075. doi: 10.1007/s12094-018-02029-z

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J.,

Cherniack, A. D., et al. (2018). An integrated tcga pan-cancer clinical data

resource to drive high-quality survival outcome analytics. Cell 173, 400–416.

doi: 10.1016/j.cell.2018.02.052

Liu, R., Wang, X., Chen, G. Y., Dalerba, P., Gurney, A., Hoey, T., et al. (2007). The

prognostic role of a gene signature from tumorigenic breast-cancer cells. New

Engl. J. Med. 356, 217–226. doi: 10.1056/NEJMoa063994

Long, Q., Johnson, B. A., Osunkoya, A. O., Lai, Y.-H., Zhou, W., Abramovitz,

M., et al. (2011). Protein-coding and microrna biomarkers of recurrence of

prostate cancer following radical prostatectomy. Am. J. Pathol. 179, 46–54.

doi: 10.1016/j.ajpath.2011.03.008

Manjang, K., Tripathi, S., Yli-Harja, O., Dehmer, M., and Emmert-Streib, F. (2020).

Graph-based exploitation of gene ontology using goxplorer for scrutinizing

biological significance. Sci. Rep. 10, 1–16. doi: 10.1038/s41598-020-73326-3

Manjang, K., Tripathi, S., Yli-Harja, O., Dehmer, M., Glazko, G., and

Emmert-Streib, F. (2021). Prognostic gene expression signatures of breast

cancer are lacking a sensible biological meaning. Sci. Rep. 11, 1–18.

doi: 10.1038/s41598-020-79375-y

Michiels, S., Koscielny, S., and Hill, C. (2005). Prediction of cancer outcome

with microarrays: a multiple random validation strategy. Lancet 365, 488–492.

doi: 10.1016/S0140-6736(05)17866-0

Nakagawa, T., Kollmeyer, T. M., Morlan, B. W., Anderson, S. K., Bergstralh,

E. J., Davis, B. J., et al. (2008). A tissue biomarker panel predicting systemic

progression after psa recurrence post-definitive prostate cancer therapy. PLoS

ONE 3:e2318. doi: 10.1371/journal.pone.0002318

Penney, K. L., Sinnott, J. A., Fall, K., Pawitan, Y., Hoshida, Y., Kraft, P., et al. (2011).

mrna expression signature of gleason grade predicts lethal prostate cancer. J.

Clin. Oncol. 29:2391. doi: 10.1200/JCO.2010.32.6421

Ramaswamy, S., Ross, K. N., Lander, E. S., and Golub, T. R. (2003). A molecular

signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54.

doi: 10.1038/ng1060

Reddy, G. K., and Balk, S. P. (2006). Clinical utility of microarray-derived genetic

signatures in predicting outcomes in prostate cancer. Clin. Genitourin. cancer

5, 187–189. doi: 10.3816/CGC.2006.n.035

Ross, R. W., Galsky, M. D., Scher, H. I., Magidson, J., Wassmann, K., Lee, G.-S. M.,

et al. (2012). A whole-blood rna transcript-based prognostic model in men

with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 13,

1105–1113. doi: 10.1016/S1470-2045(12)70263-2

Ross-Adams, H., Lamb, A., Dunning, M., Halim, S., Lindberg, J., Massie,

C., et al. (2015). Integration of copy number and transcriptomics

provides risk stratification in prostate cancer: a discovery and validation

cohort study. EBioMedicine 2, 1133–1144. doi: 10.1016/j.ebiom.2015.

07.017

Saal, L. H., Johansson, P., Holm, K., Gruvberger-Saal, S. K., She, Q.-B.,

Maurer, M., et al. (2007). Poor prognosis in carcinoma is associated with

a gene expression signature of aberrant pten tumor suppressor pathway

activity. Proc. Natl. Acad. Sci. U.S.A. 104, 7564–7569. doi: 10.1073/pnas.0702

507104

Sharma, N. L., Massie, C. E., Ramos-Montoya, A., Zecchini, V., Scott, H. E., Lamb,

A. D., et al. (2013). The androgen receptor induces a distinct transcriptional

program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47.

doi: 10.1016/j.ccr.2012.11.010

Siegel, R., Miller, K., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J.

Clin. 70, 7–30. doi: 10.3322/caac.21590

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., et al. (2002).

Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1,

203–209. doi: 10.1016/S1535-6108(02)00030-2

Song, Z., Huang, Y., Zhao, Y., Ruan, H., Yang, H., Cao, Q., et al. (2019). The

identification of potential biomarkers and biological pathways in prostate

cancer. J. Cancer 10:1398. doi: 10.7150/jca.29571

Stephenson, A. J., Smith, A., Kattan, M. W., Satagopan, J., Reuter, V. E., Scardino,

P. T., et al. (2005). Integration of gene expression profiling and clinical variables

to predict prostate carcinoma recurrence after radical prostatectomy. Cancer

104, 290–298. doi: 10.1002/cncr.21157

Talantov, D., Jatkoe, T. A., Böhm, M., Zhang, Y., Ferguson, A. M., Stricker,

P. D., et al. (2010). Gene based prediction of clinically localized prostate

cancer progression after radical prostatectomy. J. Urol. 184, 1521–1528.

doi: 10.1016/j.juro.2010.05.084

Tandefelt, D. G., Boormans, J. L., van der Korput, H. A., Jenster, G. W.,

and Trapman, J. (2013). A 36-gene signature predicts clinical progression

in a subgroup of erg-positive prostate cancers. Eur. Urol. 64, 941–950.

doi: 10.1016/j.eururo.2013.02.039

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren,

M. J., et al. (2010). Transcript assembly and quantification by rna-seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nat.

Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

True, L., Coleman, I., Hawley, S., Huang, C.-Y., Gifford, D., Coleman, R.,

et al. (2006). A molecular correlate to the gleason grading system for

prostate adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 103, 10991–10996.

doi: 10.1073/pnas.0603678103

Venet, D., Dumont, J. E., and Detours, V. (2011). Most random gene expression

signatures are significantly associated with breast cancer outcome. PLoS

Comput. Biol. 7:e1002240. doi: 10.1371/journal.pcbi.1002240

Wang, L.-Y., Cui, J.-J., Zhu, T., Shao, W.-H., Zhao, Y., Wang, S., et al. (2017).

Biomarkers identified for prostate cancer patients through genome-scale

screening. Oncotarget 8:92055. doi: 10.18632/oncotarget.20739

Wu, C.-L., Schroeder, B. E., Ma, X.-J., Cutie, C. J., Wu, S., Salunga, R.,

et al. (2013). Development and validation of a 32-gene prognostic index for

prostate cancer progression. Proc. Natl. Acad. Sci. U.S.A. 110, 6121–6126.

doi: 10.1073/pnas.1215870110

Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu, J. (2019). “Explainable

AI: a brief survey on history, research areas, approaches and challenges,” in

CCF International Conference on Natural Language Processing and Chinese

Computing (Dunhuang: Springer), 563–574.

Yu, J., Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., et al. (2007). A

polycomb repression signature in metastatic prostate cancer predicts cancer

outcome. Cancer Res. 67, 10657–10663. doi: 10.1158/0008-5472.CAN-07-2498

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Manjang, Yli-Harja, Dehmer and Emmert-Streib. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 12 July 2021 | Volume 12 | Article 649429






	tuni_manjang_kannet_sivuina_ENG
	TUNI_Manjang_Kalifa_sisus
	disseration_title_page_kalifa
	main
	INTRODUCTION
	General background
	Motivation and research objectives
	Motivation and research objectives for Publication I
	Motivation and research objectives for Publication II
	Motivation and research objectives for Publication III

	Dissertation structure

	REVIEW OF LITERATURE
	Breast cancer
	Epidemiology
	Etiology
	Symptoms
	Molecular subtypes

	Prostate cancer
	Epidemiology
	Etiology
	Symptoms

	Definition of prognostic biomarkers
	What are biomarkers?
	Identifying prognostic biomarkers


	MATERIALS AND METHODS
	Gene expression data (II, III)
	DNA microarray data
	RNA-seq data

	Biomarkers (II, III)
	Published breast cancer studies analysed in Publication II
	Published prostate cancer studies analysed in Publication III

	Gene Ontology (I-III)
	Exploring the GO-DAG

	Statistical analysis (II-III)
	Selection/construction of the gene set
	Unsupervised classification
	Survival analysis


	SUMMARY OF THE RESULTS
	GOxploreR: An R package for the structural exploration of GO (I)
	Visualization capabilities of GOxploreR
	GOxploreR accessibility

	Prognostic signatures of Breast cancer (II)
	Prognostic signatures of Prostate cancer (III)

	DISCUSSION AND CONCLUSION
	Discussion
	GOxploreR for scrutinizing biological significance (I)
	Interpretation issues with prognostic biomarkers (II and III)

	Conclusion

	References
	Publications
	Publication I
	Publication II
	Publication III




	Blank Page
	Blank Page



