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Abstract

Crushing of blasted ore is an essential phase in extraction of valuable minerals

in mining industry. It is typically performed in multiple stages with each stage

producing finer fragmentation. Performance and throughput of the first stage

of crushing is highly dependent on the size distribution of the blasted ore. In

the crushing plant, a metal grate prevents oversized boulders from getting into

the crusher jaws, and a human‐controlled hydraulic manipulator equipped with

a rock hammer is required to break oversized boulders and ensure continuous

material flow. This secondary breaking task is event‐based in the sense that ore

trucks deliver boulders at irregular intervals, thus requiring constant human

supervision to ensure continuous material flow and prevent blockages. To au-

tomatize such breaking tasks, an intelligent robotic control system along with a

visual perception system (VPS) is essential. In this manuscript, we propose an

autonomous breaker system that includes a VPS capable of detecting multiple

irregularly shaped rocks, a robotic control system featuring a decision‐making

mechanism for determining the breaking order when dealing with multiple

rocks, and a comprehensive manipulator control system. We present a proof of

concept for an autonomous robotic boulder breaking system, which consists of

a stereo‐camera‐based VPS and an industrial rock‐breaking manipulator ro-

botized with our retrofitted system design. The experiments in this study were

conducted in a real‐world setup, and the results were evaluated based on the

success rates of breaking. The experiments yielded an average success rate of

34% and a break pace of 3.3 attempts per minute.
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1 | INTRODUCTION

Driven by safety and operational cost concerns, mining and con-

struction automation systems have recently acquired foothold in

various process phases of the mineral industry. However, many mi-

neral processing tasks still involve unautomatized manual work that

requires constant human supervision and intervention, which can act

as a critical bottleneck for the process throughput.

One such task is secondary breaking, where controlled size re-

duction of mineral ore is achieved with heavy‐duty manipulators

equipped with hydraulic impact hammers. The mining industry ex-

tensively uses these types of rock breaker booms for size reduction of

oversized boulders, which we will refer to as “rocks” in this paper. The

economic justification for using such booms is to reduce process de-

lays and ensure a steady flow of material, leading to minimal process

downtime, maximized throughput, and increased productivity.

Rock breaker booms can be roughly divided into two categories

based on their application. Small‐scale breaker booms are used in

mobile jaw crushers (see Figure 1a) to resolve material blockages, for

example, for breaking oversized rocks entering the crusher cavity. In

contrast, large‐scale pedestal‐mounted breaker booms (see

Figure 1b,c) are mainly used in stationary grizzly applications, for

example, in underground and surface mines, to process run‐of‐mine

ore delivered by trucks. In grizzly applications, a steel grate is used as

a screening medium to control the coarseness of the material en-

tering an ore pass. In the event of buildup caused by oversized rocks

that cannot pass through the openings of the grate structure, the

rocks must be demolished into smaller particles using the hydraulic

impact hammer.

Rock breaking systems require skilled and alert operators, since

the interaction between the hammer and the rocks must be con-

trolled with appropriate levels of force. Presently, rock breaking

systems are largely operated via manual open‐loop control of each

individual joint, making their use inergonomic and unintuitive from

the operator's point of view, thus increasing accident‐proneness.
Much of an operator's cognitive effort is dedicated to avoiding po-

tentially dangerous and/or harmful situations, such as sudden loss of

contact between the hammer and the rock, which might cause idle

strokes of the hammer in the air–or worse, an unintended collision

with the environment, which could deteriorate the hammer and

shorten its lifespan (Sandvik Mining and Construction, 2016). Impact

on the grizzly itself must also be avoided, as breaking it can lead into

prolonged downtime in production. It has also been reported that

nearly three out of four crane accidents are operator‐induced
(Lovgren, 2004), which is a strong argument for developing semi-

autonomous solutions for rock breaking systems. With this in mind, it

is worth noting that even human operators cannot achieve a 100%

success rate in the breaking process, but will experience many failed

attempts resulting from rocks being moved under the hammer during

break attempts. Another strong argument for semiautonomous and

autonomous systems is the fact that labor represents a major share

of costs in underground mining operations (Hustrulid &

Bullock, 2001). The fact that a large‐scale underground mine can

contain several crusher units further highlights the significance of

automating this phase of the mining process.

To automate such breaking tasks in a harsh environment, the

need for an intelligent robotic system with visual perception is evi-

dent. Human operators can easily distinguish between individual

rocks on the grizzly and choose an ideal spot on the rock's surface to

break it efficiently. However, real‐time three‐dimensional (3D) rock

detection is challenging, as rocks come in arbitrary shapes, sizes,

colors, and surface textures and do not follow any specific patterns.

The high‐precision control of the breaker boom presents another

challenge, as the manipulators have been designed with manual op-

eration in mind, and are thus typically equipped with slow control

valves with highly nonlinear characteristics. In addition, a successful

breaking process involves accurate pose estimation of the rock (the

3D position and 3D orientation of its major surface plane), precise

calibration of the intrinsic and extrinsic camera parameters as well as

the robotic manipulator itself, and a reliable decision‐making me-

chanism that takes action autonomously after an oversized rock has

been detected.

In this manuscript, we propose an autonomous robotic rock

breaking system that utilizes the 3D object detection pipeline

(a) (b) (c)

F IGURE 1 (a) A rock breaker boom on a Metso Locotrack mobile crusher, (b) a pedestal breaker boom in a grizzly application, and
(c) a breaker boom at a gyratory crusher facility [Color figure can be viewed at wileyonlinelibrary.com]
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proposed in Niu et al. (2019) to automatically detect and localize

rocks on the grizzly using a low‐cost stereo camera. The rock posi-

tions are utilized by our real‐time control system for which we have

designed a robust decision‐making mechanism along with a com-

prehensive manipulator controller, trajectory generator, and rock

breaking control algorithm. Figure 2 illustrates the proposed system

on a practical level. We present the measures conducted to precisely

calibrate each subsystem, first separately and then together as a

complete system. The outcome of this manuscript culminates on a

field experiment of the system that acts as a technological proof of

concept in a simplified environment.

1.1 | Literature review

Previous works concerning the automatization or modernization of

rock breaking systems are few. The first reported attempts at auton-

omous vision‐based rock breaking originates from 1998. Takahashi and

Sano (1998) proposed an early image processing approach to detect

rocks on the grizzly. The position of the rocks was obtained by com-

plementing image data with a laser pointer mounted on the manip-

ulator. Corke et al. (1998) proposed an actuated scanning laser

rangefinder to identify and localize rocks. However, it was evaluated

insufficient based on a concluded field test. In the field test, the ran-

gefinder was positioned only slightly above the grizzly, and thus larger

rocks on the grizzly blocked the view easily. The study discussed dif-

ferent visual sensing approaches as well, such as stereo vision, and

proposed a concept of a semiautomated rock breaker. They identified

several key requirements for an automated rock breaker system, such

as a closed‐loop controlled breaking boom, a 3D sensing system, an

autonomous decision‐making system, and a teleoperation system as a

backup control method. They proposed a system that attempts to au-

tonomously break rocks on the grizzly; if unable to complete the op-

eration, it signals an operator to finish the job. With limited human

intervention required, one operator could monitor several booms at the

same time. The study was concluded, however, with a statement that

the technology for such system is “many decades from reality.”

The first teleoperated rock breaker was reported in Hubert et al.

(2000). Designing a teleoperation system for the rock breakers was

motivated by safety concerns. An underground mine in Indonesia

was suffering from wet muck spills that placed the machine opera-

tors in danger. A communication system was designed to control the

manipulators from a surface control room, but the machine opera-

tion was kept in open‐loop manner. More recently, teleoperated rock

breakers have been proposed by Duff et al. (2010), who demon-

strated teleoperation over a distance of 1000 km over the internet.

The breaker boom was also under closed‐loop control, and the op-

erator used resolved rate control to affect the velocity of the ma-

nipulator tip directly. Automatic deployment and parking of the

manipulator was incorporated into the system with a mixed reality

interface that combined computer‐generated scene of the environ-

ment with reconstructed rocks on the grizzly. The 3D view from the

grizzly was obtained using two stereo cameras. A more recent ap-

proach was reported in Boeing (2013) which discusses a system re-

portedly similar to the one presented by Duff, but it is accompanied

by a collision avoidance system to prevent collisions with the

environment.

Space exploration has also advanced the sophistication of vision

based rock detection. In Fox et al. (2002), 2D camera images were

combined with range data to detect larger rocks autonomously.

A more recent study of the automatic detection of large rocks using a

time‐of‐flight (TOF) camera, which is commonly used in the industry,

was presented in McKinnon and Marshall (2014). The intended

application was evaluating rock piles for excavation purposes. In Niu

et al. (2018), a TOF camera was employed for rock detection on the

grizzly, but the TOF camera's low resolution made it insufficient for

the task. In Niu et al. (2019), a deep learning approach was presented

in which the functionality of “you only look once” version

3 (YOLOv3), a state‐of‐the‐art real‐time object detection algorithm

(Redmon & Farhadi, 2018), was extended from using 2D images to

3D point clouds for rock detection.

The notable lack of more recent reported automatized rock

breaking applications indicate that there is further room for im-

provement and plenty of opportunities to apply visual perception

and robotic control in rock breaking tasks, with the aim of making

rock breaking systems safer, faster, and more efficient.

1.2 | Organization of the manuscript

The rest of this paper is organized as follow: Section 2 states the

problem this manuscript aims to solve, along with the identified

challenges and research objective. Section 3 presents the design of

each subsystem of the proposed system. The section describes first

the architecture on a high level, then in more detail about the visual

perception and the control system design. Section 4 discusses the

calibration of the manipulator and camera, as well as their integra-

tion into the same coordinate system. Section 5 presents the ex-

periments with the proposed system and discusses about the

obtained results. Section 6 discusses identified shortcomings of the

Hydraulic 

Robotic Rock 

Breaker

3D Stereo camera

Grizzly

Hydraulic Power Unit

F IGURE 2 Conceptual illustration of the proposed autonomous
rock breaker system [Color figure can be viewed at
wileyonlinelibrary.com]
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proposed system and suggests improvements to address these is-

sues. Section 7 concludes the paper with a projection on future re-

search potential in this area of study.

2 | PROBLEM STATEMENT

2.1 | Rock breaking—use case

Size reduction of blasted ore is an integral part of mineral extraction

in mining. It is an essential process in the sense, that smaller ore

pieces can be transferred more easily and also chemical/mechanical

extraction methods can be applied to them. Size reduction of the vast

majority of material is performed using a primary breaker (e.g.,

gyratory‐ or jaw‐crusher), while oversized rocks, too big for the

primary breaker, need to be broken with a secondary breaker.

Secondary breaking processes utilizing impact breaking can oc-

cur in multiple contexts, for example, directly at the blasting site

using an excavator‐mounted hydraulic hammer or with a special

breaker boom at a gyratory crusher against the wall of the gyrator

cone. In this study, our focus is on grizzly applications (see Figure 3),

where a steel grating plate is used to prevent oversized rocks from

getting into the primary crusher. The primary crushers are designed

for a specific size reduction of the material flow, and overly coarse

material can lead to material buildups or even material flow block-

age, thus halting the entire operation.

The need for secondary breaking varies between mines and

construction sites and depends on the material being processed.

Even so, the need for secondary breaking is a symptom of imperfect

blasting and problems in the blasting process. In ideal conditions, the

blasting cycle is controlled to obtain material of a desired size

(Zhang, 2016). When the process is well controlled, the need for

secondary breaking is minimal.

Whenever oversized rocks are caught on the grizzly structure, the

rock hammer is used to reduce their size. This temporarily halts ma-

terial flow; for example, an ore truck must stop feeding material to a silo

until the breaker boom operator breaks the oversized rocks into

smaller pieces that can pass through the grizzly. If the boom cannot

execute its task in a limited time frame, the rock is pushed away from

the grizzly for later processing and the arm returns to its resting po-

sition. The material that cannot pass through the openings of the

screening medium should be broken with a hydraulic hammer. This

process is referred to as screening, which is an essential step in crushing

unprocessed run‐of‐mine ore and turning it into a finer substance sui-

table for further treatment (Metso Mining and Construction, 2015).

The actual use case studied here can be described as the process

of breaking an oversized rock caught in the grizzly. Additional use

cases in grizzly applications are raking with the boom to break and

prevent blockages, and reorienting hard‐to‐break rocks for easier

breaking. The current study is limited to the breaking process. The

studied use case can be described on a high‐level with the following

steps:

(1) The boom is driven from a rest position to a standby position

beside the grizzly, with its hammer kept at a 90‐degree angle

relative to the grizzly.

(2) A 3D visual perception system (VPS) detects and localizes

oversized rocks on the grizzly and passes the information on to

the main control system.

(3) The main control system determines the shortest rock‐to‐rock
trajectory from the information provided by the VPS, employing

a lower level control system to break each rock.

(4) The path planner receives the target rock coordinates from the

high‐level controller and generates a trajectory from the ma-

nipulator's current position to a position above the target rock.

(5) An approach motion toward the target rock is performed while

maintaining the desired tool orientation.

(6) When target coordinates are reached, the boom maintains

pressure against the rock and switches the rock hammer on.

(7) After the rock has been broken, the boom shall rise up to a safe

transition height and wait for the next target from the high‐level
control system.

F IGURE 3 Rambooms X88‐540R breaker
boom at the field test site at Tampere
University [Color figure can be viewed at
wileyonlinelibrary.com]
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(8) After clearing the rocks, the boom returns to the standby posi-

tion to wait while the VPS inspects the work and identifies re-

maining rocks on the grizzly.

A critical issue in rock breaking is to make contact with the rock

in a controlled manner and with sufficient force against the rock. In

the case of grizzly applications, tool alignment is an important issue,

as the supportive force from the grizzly points upward and there is

not necessarily anything holding the rock in place in the horizontal

plane. In these scenarios, roughly a 90‐degree angle relative to the

grizzly is the most suitable (see Figure 3). An incorrect breaking angle

may cause excess wear and stress to the manipulator or the rock can

slip away under the hammer. Situations in which a hydraulic cylinder

is at its mechanical stroke limit during hammer operation must be

avoided. Given all these concerns, significant attention and effort is

necessary to avoid dangerous situations and achieve a good contact

with the rock.

2.2 | Challenges

To implement an autonomous system for the rock breaking process,

we have identified four distinct main challenges we will need to

consider and solve. The challenges are related to: (1) The visual

perception, (2) the autonomous operation strategies, (3) the high‐
precision manipulator control and stable contact control, and

(4) system calibration and integration.

To achieve autonomy in the rock breaking process, it is crucial

for the robot to properly understand the scene. However, detecting

each individual rock in a cluttered and dynamic scene is a highly

complex activity, as rocks cannot be characterized by any particular

feature. They may possess a variety of colors, unique surface tex-

tures and arbitrary shapes and sizes. Despite these challenges, the

VPS should operate robustly under dynamic outdoor weather con-

ditions being able to accurately detect all rocks in the grizzly. The

detection must also include rocks partially occluded by overlapping

rocks or the manipulator arm. The VPS should propose a suitable

breaking position based on the surface of each rock.

Next, we need a robust and efficient strategy for autonomous

operation. The decision‐making process should consider the shortest

trajectories between rocks and have the ability to govern manip-

ulator movement sequences. To properly make decisions, perception

information from the vision system must be assessed and cataloged.

In addition, the system should discern valid rock positions and dis-

card any invalid positions received from the perception system. Lo-

cations may be considered invalid for rocks below the grizzly and

rocks outside the grizzly.

Building the control system for the robotic manipulator is an-

other challenge that requires sophisticated and rigorous solutions.

As the manipulator is not retrofitted with fast servo valves and has a

slow natural frequency, its precise control requires thorough con-

sideration. Other constraints, such as tool orientation and flow rate

limitations need consideration as well.

For contact control, we assume the accuracy of the manip-

ulator's tool center point (TCP), which is the tip of the hammer,

to stay at all times within the initial requirement of 150 mm from

the target position. As rocks are typically much larger than this

and the mesh size in our testing grizzly is 400× 400 mm, this

accuracy requirement is reasonable. Based on our preliminary

experiments, the most challenging task is making contact with

rock surfaces so that they do not slide under the hammer or tip

over. Since blasted boulders come in arbitrary shapes and sizes

with sharp edges, they end up laying on the grizzly randomly. As a

consequence, the following two main challenges apply to rock

breaking: first, a boulder or multiple piled boulders may be poorly

balanced on the grizzly and thus cannot support the required

hammer tip loading force without rotating into new orientations,

slipping away from the applied contact force and thus failing to

break. Second, if a boulder has inadequate flat surface area for

firm hammer contact force, the hammer tip may slide along the

rock without breaking it.

Uncertainty about subsystem‐level accuracies is also a challenge

in estimating the final system performance and accuracy. Individual

subsystem calibration for the robotic manipulator and stereo camera

is required to estimate the accuracy of the final autonomous system.

Causes of uncertainty about the accuracy of the final system can be

the precision of rock detection model, the accuracy of the intrinsic

and extrinsic camera calibration, kinematic parameters of the ma-

nipulator used to calculate TCP position, and control system

accuracy.

The most important challenge, however, is integrating all the

distinct subsystems together with their respective safety functions.

Responsibilities and communication between subsystems can be

vague and multifaceted, and managing their complexity is critical.

2.3 | Research objective

The primary objective of this manuscript is to demonstrate a proof

of concept for an autonomous hydraulic breaker boom system. The

aim of this manuscript is not to showcase a finished product, but

rather to demonstrate the feasibility of the concept. This should be

noted when evaluating the experimental results and required

hardware.

The major function of the robotic VPS is twofold: first, achieving

a fast and robust 3D rock detection mechanism regardless of rock

shapes and sizes in overlapping scenarios, and second, providing

reliable positions for the manipulator to break rocks. The objective of

studying visual perception systems is to assess their effectiveness in

detecting objects with unpredictable features for heavy duty ma-

nipulator applications.

From the control system point of view, the objectives can be

categorized as the desired control accuracy of the manipulator and

the desired behavior of the autonomous functions and safety fea-

tures. Given the size of the rocks being broken, the absolute accu-

racy of the control system should be within 150mm, which an

984 | LAMPINEN ET AL.



interview with a domain expert substantiated. Manipulator limita-

tions, such as the size of the control valves, that define maximum

velocity for each actuator, maximum volumetric flow rate of the

hydraulic supply unit that limits maximum endpoint velocity, and

the reachable workspace, must be taken in account when designing

the control system.

Our goal is to make the manipulator independently decide an

intelligent rock breaking order based on the data provided by the

VPS, generate trajectory between each rock, execute the tra-

jectory in the breaking process. While the chance of successful

breaks will not be high initially, we will also endeavor to make the

system detect rocks from the grizzly during operation and adjust

its plan in real time. Safety functions built into the control system

prevent impact to the grizzly during the breaking process

to avoid damage to the hammer and premature component

failure.

3 | SYSTEM DESIGN

3.1 | High‐level architecture

The proposed system comprises of three distinct parts: the in-

strumented hydraulic breaker boom and its hydraulic power unit, the

VPS and the real‐time control system that governs decision‐making,

the manipulator control system, and all measurement data. The

complete system is depicted in the high‐level architecture diagram in

Figure 4.

3.1.1 | Hardware architecture

The hydraulic breaker boom used in this study was the commercial

Rambooms X88‐540R manipulator equipped with a Rammer 2577

hydraulic impact hammer. The breaker boom weighs in total over

10,000 kg and has a horizontal reach of 5.4 m with the breaker in

vertical orientation. The coordinate frame assignment of the ma-

nipulator along with the joint naming convention is shown in

Figure 5. The link lengths a a,2 3, and a4 in Figure 5 are all roughly 3m.

The size of the grizzly (see Figure 3) is 2.6 m× 4.0 m. The manipulator

was retrofitted with Siko WV58MR 14‐bit absolute rotary encoders

for joint angle measurements. The sensor data and the valve controls

were transmitted to and from the real‐time control system via CAN‐
bus interfaces.

The 3D VPS consists of a ZED stereo camera and a Linux PC. The

stereo camera is mounted on a pole approximately 5m above the

workspace such that the grizzly is centered in the camera's field of

view. The 3D VPS is connected to the real‐time control system

through a user datagram protocol (UDP) interface.

The real‐time control system was run on a dSpace MicroAuto-

Box 2 real‐time controller, where all control computations and

decision‐making logic were performed. The interface for the real‐
time controller was created using the dSpace ControlDesk software

on a separate human machine interface (HMI) PC.

3.1.2 | Software architecture

The software architecture is divided into two parts based on the

hardware architecture; The VPS running on a linux PC and the

control system running on the dSpace real‐time controller. The VPS

is responsible for perceiving rocks on the grizzly, using the data from

the stereo camera to detect and localize rocks and estimate the pose

of the major surface plane near the highest point of the rocks. The

Mining Area
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Control Area
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F IGURE 4 High‐level architecture of the proposed system. For
clarity, the site cameras surrounding the crushing site and their
visualization computer has been left out. HMI, human machine
interface; TCP, tool center point; UDP, user datagram protocol;
VPS, visual perception system [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 Coordinate frame assignment for the breaker boom.
Frame {B} denotes the base coordinate frame of the manipulator,
while frame {C} denotes the coordinate frame of the stereo camera.
Joint naming convention is also depicted on the figure and the TCP is
marked. TCP, tool center point [Color figure can be viewed at
wileyonlinelibrary.com]
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operation of the VPS is described in detail in Section 3.2. The real‐
time control system is responsible for decision‐making related to

break order logic, controlling the movements of the manipulator, and

managing the safety functions. The operation of the control system is

described in Section 3.3.

3.2 | Visual perception system

A high‐level architecture for the workflow of the 3D VPS is illu-

strated in Figure 6, which consists of three stages: rock detection, 3D

reconstruction and camera to robot coordinate transformation, and

position and orientation estimation for rock breaking. At the first

stage, the object detection module processes the left images of the

ZED stereo camera and extracts the detected rocks as 2D regions. At

the second stage, the detected 2D regions are reconstructed into 3D

point clouds in the camera coordinate system with the aid of cali-

brated intrinsic camera parameters and the depth map. Then, the

detected rock regions in 3D point clouds are transformed into the

manipulator's coordinate system. At the last stage, the positions

required to break each rock are determined by searching the highest

point near the centroid of each region. The surface normals of each

rock are estimated (in the dashed area in Figure 6) using KD‐tree and

RANSAC.

3.2.1 | 3D sensing modalities

Common 3D visual perception sensors are Lidar sensors, TOF

cameras, and stereo cameras. The 3D sensor selected for visual

perception must account for the aforementioned design challenges.

At the boundary distance of 5 m to the grizzly, the mesh

(400× 400mm) and rocks of similar size may appear small in the

field of view. The empirical study with a TOF sensor (Niu

et al., 2018) implies that spatial resolution and the amount of

available information from a scene are decisive factors in accurate

rock detection.

Lidar is gaining popularity across industries. However, compared

to high‐resolution images, Lidar point clouds are unstructured; as

such, generic convolutional neural network (CNN) are not well suited

to process them directly (Qi et al., 2019). In addition, relatively

sparse Lidar point clouds can be inadequate in assessing the details

of a scene where a pile of small irregularly shaped rocks are over-

lapping each other. In fact, current 3D object detection methods in

Lidar applications have been targeted for use with spatially in-

dependent objects (Al Hakim, 2018; He et al., 2020; Ku et al., 2018;

Liang et al., 2019, 2018; Qi et al., 2018; Yang et al., 2018; Zhao

et al., 2019; Zhou & Tuzel, 2018). In contrast, an industry‐ready
stereo camera provides both high resolution images and dense point

clouds. Its images contain rich texture information which is a useful

cue for discriminating objects from the background. Therefore, we

adopted a stereo camera in this study.

A camera setup can be classified as eye‐in‐hand or eye‐to‐hand.
The eye‐in‐hand configuration is known as a close‐range camera,

which is rigidly attached to a robot's end effector. For rock breaking,

this setup requires sustainable solutions to the following challenges:

(1) involvement of robot and eye‐in‐hand calibration errors,

(2) susceptibility to heavy vibrations, and (3) fragile lenses in close

proximity to hazardous rock breaking operations. In light of these

challenges, we considered eye‐to‐hand configuration, in which a

compact ZED stereo camera is mounted on a pole 5m above the

workspace.

Depth from stereo 2D to 3D correspondence

Object detectionLeft image

Right image

Depth map Camera to robot 
coordinate transformation

Detected regions in 2D image

Detected regions in 3D point 
cloud in the camera coordinate

Offline rigid transformation data

Rock breaking 
position search

Detected regions in 3D point cloud 
in the robot co ordinate system

Gather surrounding 
points (KD-tree)

Major plane search
(RANSAC)

Computing  model 
coefficients
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diameter circle
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Real-�me Control System
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F IGURE 6 Workflow architecture of the 3D visual perception system [Color figure can be viewed at wileyonlinelibrary.com]
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3.2.2 | Object detection

Three‐dimensional object detection is one of the most prominent

research areas of visual perception that serves as base for autono-

mous robotic tasks. As one of the main challenges in autonomous

rock breaking, rock detection requires a deep understanding of the

contexts of a scene. Background removal with semantic segmenta-

tion is inefficient, as this task requires every rock to be made visually

distinct from one another in a cluttered and dynamic scene.

In recent years, deep learning frameworks have been available

to computer vision applications to assist learning of deep and high‐
level features. The substantial improvements to object detection

have mostly been applied to 2D images rather than 3D point clouds.

Generally, 2D convolution‐based detection approaches are more

sophisticated than 3D ones in industrial deployment. Among a

number of 2D object detection architectures, region‐based methods

like region‐based convolutional neural networks (R‐CNN) (Girshick

et al., 2014), Fast R‐CNN (Girshick, 2015), and Faster R‐CNN (Ren

et al., 2015) are accurate for detecting multiple objects in an image.

However, their rather complex architectures and relatively low de-

tection speeds are not sufficient for our purposes. In addition, the

potential source of errors is high due to their complexity.

Mentioned briefly in the literature review, the object detection

algorithm YOLOv3 prioritizes both recognition and speed. It is an

improved version of the initial release of YOLO (Redmon

et al., 2016), that used a new approach to object detection. Instead of

repurposing classifiers to perform detection, YOLO uses a single

neural network to predict bounding boxes and class probabilities

from a full image. The third version, YOLOv3, is the result of incre-

mental updates (Redmon & Farhadi, 2017, 2018), and it achieves

high precision and high speeds on benchmark data sets; as such, the

infrastructure of our deep learning network for object detection is

based on YOLOv3.

The next step in deep learning is gathering data, the quality and

quantity of which will determine the performance of the model. Our

rock image data set initially contained 4733 distinct images1 col-

lected from the field test site (see Figure 3), where the amount of

rocks varied between 1 and 15. These images were taken in Sep-

tember and October of 2018. The image data set contains images

taken under sunny daylight condition. Images exhibiting other sea-

sonal and weather‐based conditions, such as rain, snow, and fog, are

missing.

To emulate these missing weather conditions, synthetic data via

data augmentation can be used to bridge the experiment‐reality gap.

Generating realistic environmental variant data can be achieved

using OpenCV and NumPy in Python. Besides different weather

conditions, also dynamic lighting can cause challenges for the stereo

camera and the model. For example, rock edges may become indis-

tinguishable under bright lighting conditions. With this in mind, our

data augmentation process involves generating portions of brighter

images for labeling. This way the original data set was expanded to a

total of 23,850 images. More training data from situations the model

cannot cope with might be used to further improve it. Such condi-

tions may include for example, low and bright lighting, and partly

shaded rocks.

Our image data set contains only one class: the “rock” class. The

data set was split into three parts: 70% images for training

the model, 20% images for validation, and 10% images for testing.

The training was conducted on YOLOv3's darknet‐53 architecture

(Redmon, 2018) on an Ubuntu 16.04 Linux PC with a NVIDIA

Quadro P5000 graphics card. The training step used our training set

to incrementally improve the model's ability to make inferences,

while each epoch updated the weights of the model. The training

converged at an average loss of 0.12 with a batch size of 64 and a

learning rate of 0.001. An evaluation experiment given in Figure 7

illustrates the results of the model inference after training. It also

points to the improvement gained through data augmentation.

To further evaluate the performance of our model, we used the

average precision (AP) metric to compute precision and recall by

Equation (1), where TP denotes the number of true positives, FP the

number of false positives, and FN the number of false negatives.

=
+

=
+

TP

TP FP

TP

TP FN
Precision , Recall . (1)

Table 1 shows the test with the AP metric, where AP50 and AP75

denote the average precision computed at an intersection over union

(IOU) threshold of 0.5 and 0.75, respectively. An average detection

speed of 85ms per frame was achieved during testing.

3.2.3 | Establishing 2D to 3D correspondence

Estimating scene geometry from a pair of pinhole cameras is often

referred to as depth‐from‐stereo. For ease of setup, we employed a

ZED stereo camera. From the left and right images of a stereo

camera, its depth map can be generated with a rectification‐based
stereo‐matching method (Scharstein & Szeliski, 2002) or plane‐
sweeping method (Smirnov et al., 2015). A depth map is an image

representing the depth information of the scene associated with the

corresponding left and right images of the stereo camera.

With the left image and associated depth map, a 3D point cloud

of the scene can be reconstructed with the camera's intrinsic para-

meters. As illustrated in Figure 8, this 3D reconstruction process is

known as triangulation, which can be applied to detected regions in

an image to generate detected regions in a 3D point cloud. Proces-

sing a 3D point cloud of only the detected regions instead of the

whole image decreases the associated computational burden.

3.2.4 | Determining the breaking position for
each rock

The detected rocks are represented as rectangular regions in a 2D

image. The position of the geometrical center of each detected

rectangular region is used to describe each rock position in the image1https://github.com/epoc88/SecondaryBreakingDataset
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coordinate system, which can be transformed into the robot co-

ordinate system by using the calibrated intrinsic and extrinsic cam-

era parameters, see Figure 17.

The geometrical centroid of the identified rectangle itself is not

necessarily an ideal breaking position due to fact that the detection

algorithm does not take the shape of the rock into account. A better

alternative for the breaking position can be obtained instead by

searching for the highest point near the identified centroid. An ex-

amplatory case is depicted in Figure 9. The centroid position as it

appears to the camera is not an ideal breaking position, and the

attempt would fail with a high likelihood due to a probable rock

movement.

Based on our preliminary field tests, the highest point near the

centroid of a rock typically yields the highest likelihood for successful

breaking. Thus, we limit the search area to a concentric rectangle

quarter the size of the detected region. Breaking positions outside of

the search area are discarded, in view of the fact that the likelihood

of the manipulator slipping or the rock moving increases when the

breaking position is located near the edges of the rock.

3.2.5 | Estimating the rock surface normal

At the time of breaking, the tip of the manipulator's blunt tool is in

contact with the rock's breaking position. The contacted area must

be within roughly 70mm of the highest point, as the diameter of

the manipulator's blunt tool is 135mm. To transfer the energy of the

impact hammer to the rocks most efficiently, the orientation of the

hammer must be perpendicular to the surface of the rocks. To

achieve this, the orientation of the rock surface must be estimated.

This process is divided into three steps:

(a) Gather surrounding points: A KD‐Tree algorithm (Bentley, 1975) is

used to search for points contained within a sphere with the

same diameter as of the blunt tool and centroid at the breaking

position. The search yields a cluster of points in the form of

circular areas at each rock surface. For a visualization, see the

points colored in blue in Figure 10.

(b) Major plane search: This step analyzes every cluster of points and

carries out plane fitting with a RANSAC algorithm (Fischler &

TABLE 1 Average detection rates of our model

AP50 (%) AP75 (%)

Proposed method 99.00 97.61

(a) (b)

F IGURE 7 Compared detection results following data
augmentation. The scenario depicts a smaller rock on top of a bigger
rock under overexposed lighting conditions. (a) Original model (Niu
et al., 2019) and (b) improved model [Color figure can be viewed at
wileyonlinelibrary.com]

Detected Regions 
in Image

Depth Map

2D to 3D
Correspondence

(u,v) - (X,Y,Z)

Detected Regions 
in 3D Point Cloud

F IGURE 8 This figure illustrates the process of obtaining 3D
point cloud of detected regions from stereoscopic imagery. To each
pixel (u,v) in a detected region, there is corresponding depth
information in the depth map. Combining these two sources for each

detected region, we acquire a 3D point cloud representation of the
detected objects in the camera's coordinate system [Color figure can
be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F IGURE 9 A detected rock region in a 2D
image and a 3D point cloud. The white and red
dots in the figure indicate the centroid of the
detected region and the highest point within a
quarter of the size of the detected region,
respectively. (a) The rock in 2D image, (b) a
point cloud from above, and (c) a point cloud
from the side [Color figure can be viewed at
wileyonlinelibrary.com]
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Bolles, 1981). The algorithm randomly takes three points in the

cluster to establish a plane. Points lying close to the plane are

considered the consensus set for the plane. This process repeats

until all the planes in the cluster are found; the plane with the

largest consensus set is accepted as the fitted plane.

(c) Computing model coefficients: Finally, the model coefficients of

each plane are computed to obtain the corresponding normal

vectors of the plane. An example of the results of this process

are shown in Figure 10.

In the conducted experiments, the 90 degree orientation of the

hammer to the surface at the point of contact was not applied. In-

stead 90 degrees relatively to the grizzly was used.

3.3 | Control system

The control system design is depicted at a general level in Figure 11.

The control system can be divided into four distinct subsystems with

specific tasks. The breaking order logic and path optimization in-

itializes the pipeline, working at a high level to determine rock

breaking order. The second highest level subsystem is the high‐level

manipulator controller, a state machine that dictates the operation of

the manipulator. The third level consists of the trajectory generator

and is closely interconnected with the inverse kinematics controller

and the flow rate limitation algorithm. The lowest level controller is

used for the actual manipulator control, which uses desired joint

angles and velocities as well as the operational state of the hydraulic

hammer.

3.3.1 | Break order logic

The break order logic subsystem is devised around the idea that the

manipulator might be blocking the camera's view, making it in-

evitable that the logic would store previous rock locations sent by

the VPS. The path optimization should minimize movement between

rocks. The optimal trajectory for breaking each rock in a sequence

could be obtained by finding a solution to the classical traveling

salesman problem, in which a traveling salesman seeks to find the

shortest path that visits each city exactly once and return to the

origin. To limit the complexity of our solution, we opted for a simple

heuristic nearest neighbor approach with some additional con-

straints. The developed approach is showcased in the high‐level

(a) (b) (c) (d)

F IGURE 10 Some examples of estimated surface normals. The blue clusters are the rock surface points nearby each breaking position, and
the blue arrows indicate the estimated surface normals. (a) Rock 1, (b) rock 2, (c) rock 3, and (d) rock 4 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 11 General block diagram of the proposed control system for autonomous operation. The VPS in the first block on the left is
described in more detail in Figure 6
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diagram in Figure 12. The pipeline can be described by the following

steps:

(1) The cycle starts when a load of rocks is dumped on the grizzly,

and the system receives command to begin operation. In our

experiments, the cycle was started manually.

(2) First, rock positions from the VPS are obtained via UDP messages.

If the vision system does not respond within a specific time frame

(e.g., camera view is blocked by manipulator), the next target is

determined using existing data. At the first round, the manipulator

is at its standby position and not blocking the view.

(3) The received data is then fused into the existing location data.

This step is omitted in the first round. The data fusion is per-

formed by calculating the Euclidean norm between each rock

from the old and the new data set. If the norm between a rock

from the old and the new data set is less than or equal to 0.1 m,

the rocks are assumed to be the same, and the old position for

that particular rock is updated to correspond to the newly ob-

tained information. If the norm is greater for all rocks in the old

data set, the rock is assumed to be new, and it is added to the

data set. The algorithm is described using pseudo code in Algo-

rithm 1.

(4) Rocks that are out of the grizzly area and possible misidentified

points, for example, due to a manipulator blocking the view, are

filtered out from the data set.

(5) After filtering, the rock closest to the TCP is selected as the next

target to be broken.

(6) The data set cleanup is followed then. The rock selected for

breaking is removed first. Then, based on Remark 1, rocks that

are within 0.5 m of the selected rock are also removed, as they

may be shifted by the break attempt. Aging of data could also be

utilized for more robust operation (e.g., rocks that have not been

detected by the vision system for a set number of rounds can be

assumed invalid).

(7) The system is then suspended until a request for a new target is

received, that is, the manipulator has finished the break attempt

of the last target.

(8) After receiving request for the next target, the systems resumes

operation from Step 2.

(9) After no more rocks are found by the VPS nor any are

remaining in the data set, the system informs the high‐level
manipulator controller and the boom is driven to its standby

position.

Algorithm 1 Data fusion algorithm

Input: Stored position matrix Pmemory , New position matrix Pcamera

Output: Data sets fused into Pmemory

for each ∈p Pnew camera do

newRock← True

for each ∈p Pmemory do

if ∣∣ − ∣∣ ≤p p 0.1new 2 then

newRock← False

←p pnew

end if

end for

if newRock then

←
p

P
P

memory
memory

new

end if

end for

Remark 1. Based on our observations from preliminary

experiments, an attempt to break a specific rock will not affect

rocks that are not in the immediate proximity of the rock being

broken. A 0.5m radius is sufficient margin beyond which rocks will

not be shifted by the broken rock. Due to the vibrations during the

hydraulic hammer operation, rocks might move slightly farther away

than expected, but the total movement of the rocks remains minor.

However, any rocks inside the set radius are likely to move

considerably. This has been tested only in situations, where the

Filter out-of-grizzly 

locations

Send location of the 

closest rock to the 

control system

Remove selected 

rock and any others 

within the specified 

radius

Fuse new matrix to 

old location data

Receive rock 

location matrix

yes

Rocks 

remaining?
no

Wait for request for 

the next rock 

location

Camera 

responding?

yes

no Send manipulator to 

standby position

Load dumped to 

grizzly

F IGURE 12 Breaking order logic pipeline.
The start of the process is marked with green
color and the end with red. The loop in the
middle is continued until no rock are
remaining on the grizzly [Color figure can be
viewed at wileyonlinelibrary.com]
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rocks are resting on the grizzly in a single layer, and may not be valid

in other situations.

3.3.2 | High‐level manipulator controller

The high‐level manipulator controller is an event‐triggered state‐
machine that defines different operating modes of the test manip-

ulator. In this application, three operational states are defined as

follows: automatic unfolding, automatic folding, and autonomous

rock breaking. In its nonoperational state, the main motion controller

of the manipulator is disabled for safety reasons. The nonoperational

state is defined as the default initialization state.

The automatic motion states move the manipulator from its

current position to specific predetermined positions within the

workspace of the manipulator. These positions are called standby

position and resting position, respectively. The boom is driven to

these positions through the following steps: first, the TCP is driven to

a specified transition height. Then, the target is set to the XY co-

ordinates of the prespecified position. Finally, the TCP is driven to

the final target position. Note that the last movement of the TCP is

only vertical.

The autonomous operation pipeline follows a specific pattern.

First, the system requests target position from the break order

logic subsystem. After a new target is obtained, the manipulator is

raised to the transition height, if not already at that height, after

which it is driven above the target rock. The approach move is

triggered next, and this phase is linked to the breaking sequence.

The approach move is executed so that the manipulator is set to

drive 50 mm below the rock's surface to load the internal spring of

the hydraulic hammer. After reaching the rock surface, all joints

but the lift joint are locked to prevent the TCP from slipping away

from the rock. The lift joint is used to maintain pressure against

the rock. The hydraulic impact hammer is then engaged and kept

on for 5 s or until the tip of the manipulator has entered a virtual

safety zone, which is set 50 mm above the grizzly as a collision‐
avoidance measure. After the break attempt, the manipulator is

driven back up to the transition height. The sequence is then

repeated from the first step.

Remark 2. After the first experiments, the autonomous breaking

sequence was revised so that after every third attempt, the

manipulator moves aside to the standby position to give the stereo

camera a clear view of the grizzly.

Remark 3. The modular system design allows for rapid testing of

different approaches for breaking rocks. Contact and external force

estimation are particularly interesting research topics, here omitted,

that may notably increase the success rate of the break attempts.

Impedance control has been proposed as one possible solution to

achieve the required compliant behavior (Hulttinen, 2017;

Koivumäki & Mattila, 2017; Tafazoli et al., 2002). At this stage, a

strategy for approaching the rocks without them slipping and moving

away could be devised. Learning from demonstrations is another

interesting and seemingly promising approach for instructing robots

on contact control with teleoperated demonstrations from a human

operator (Havoutis & Calinon, 2019; Suomalainen et al., 2018).

3.3.3 | Trajectory generation and inverse
kinematics

The trajectory generator for the manipulator is designed to

generate trajectories from the current position of the manip-

ulator's TCP to the target coordinates. Trajectories are created

in a cylindrical coordinate system to minimize unnecessary ac-

tuator movements. The trajectory generator first converts the

start and end coordinates to the cylindrical coordinate system,

respectively. Then, quintic rest‐to‐rest trajectories are created

between the two points using

= + + + + +x t a a t a t a t a t a t( ) ,0 1 2
2

3
3

4
4

5
5 (2)

where x contains an individual point‐to‐point trajectory, and coeffi-

cients ∈ai are obtained using

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

t t t t t

t t t t

t t t

t t t t t

t t t t

t t t

a
a
a
a
a
a

x

x

x
x

x

x

1

0 1 2 3 4 5

0 0 2 6 4 20

1

0 1 2 3 4 5

0 0 2 6 12 20

˙

¨

˙

¨

,
f f f f f

f f f f

f f f

f

f

f

0 0
2

0
3

0
4

0
5

0 0
2

0
3

0
4

0
2

0
3

0
3

2 3 4 5

2 3 4

2 3

0

1

2

3

4

5

0

0

0
(3)

where t0 is time at the beginning and tf is time at the end. x x, ˙0 0, and

ẍ0 denote the initial position, velocity and acceleration, respectively,

whereas x x, ˙f f , and ẍf define the final position, velocity and accel-

eration, respectively (Jazar, 2010).

The trajectory generator provides the position and velocity along

the path in Cartesian coordinates, but those must be transformed into

joint space for the joint controller. Let ∈v 3 denote the desired

velocity of the manipulator in robot coordinates. For a redundant

four‐joint manipulator, the required joint velocities can be identified

using a pseudo‐inverse of the Jacobian matrix, which is defined as

= − − −J W J JW J( ) ,T T† 1 1 1 (4)

where ∈ ×J† 4 4 is the Jacobian pseudo‐inverse, ∈ ×W 4 4 is a

symmetric positive definite weighing matrix, and ∈ ×J 3 4 is the non‐
invertible Jacobian matrix (Sciavicco et al., 2000). The weight matrix

W is updated dynamically based on the joint configuration and the

direction the joints are moving to prevent any actuator from

reaching its mechanical stroke limits. Near the mechanical stroke

limits, the weight of the corresponding actuator increase and thus

prevent it from reaching mechanical limits. For more detailed de-

scription see (Lampinen et al., 2020).

The redundancy of the manipulator is utilized to control the

angle of the hammer with respect to the ground. To change the pose

of the manipulator without moving the TCP, we use the null space of

the Jacobian matrix. The null space J( ) is obtained using
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= −IJ J J( ) .† (5)

The joint velocities with null space control are finally calculated as

= +q J v J q˙ ( ) ˙ ,†
0 (6)

where ∈q̇0
4 is the joint control term that changes the pose of the

manipulator without affecting the position or velocity of the end‐
effector, while ∈q̇ 4 denotes the joint velocities corresponding to

the Cartesian velocity ∈v 3.

3.3.4 | Flow‐rate limitation

Hydraulic systems are characterized by many nonlinearities and

constraints specific to hydraulics. An important restriction for hy-

draulic systems is the flow restriction from the hydraulic supply unit,

that limits the achievable TCP velocity, especially when driving

multiple actuators simultaneously. To address this constraint, a flow‐
bounded control strategy is utilized. This approach is presented in

detail in Lampinen et al. (2020). The selected approach is inspired by

torque‐bounded trajectories presented in Dahl and Nielsen (1990)

and Dahl (1994), and is similar to an online method proposed re-

cently to limit velocity in manual coordinated control (Wanner &

Sawodny, 2019).

The main function of the algorithm is to dynamically scale

trajectories to a velocity that is attainable for the manipulator's

configuration. Due to the nonlinear nature of hydraulic systems,

the attainable velocity can vary significantly depending on

the manipulator configuration. To ensure that the manipulator

can reach the desired velocity of the trajectory generator, the

required volumetric flow rate for the hydraulic actuators

must not exceed the flow rate generated by the hydraulic sup-

ply unit.

Let ∈ ×Jx
4 4 be an actuator space mapping matrix that trans-

lates joint velocities into actuator space as
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In the case of the hydraulic motor, the velocity is simply the angular

velocity of the base of the manipulator divided by the gear ratio of

the ring gear and the planetary gear.

The required flow rate of each cylinder can be obtained by using
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where ∈x x x x A˙ {˙ , ˙ , ˙ },i Alift tilt breaker and AB are the areas on the A‐ and B‐
sides of the hydraulic cylinder, respectively, and for the hydraulic

motor by using
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where Dm is the volumetric displacement of the motor, and ηvol is the

volumetric efficiency of the motor. Summing the required flow of

each actuator yields the total required flow from the supply, Qr . The

scaling factor is then obtained using

= ( )s
Q

Q
˙ min 1, ,

p

r

(10)

where Qp is the maximum flow from the supply pump.

The algorithm is employed by the control system via a connec-

tion to the trajectory generator. In equation (2), the trajectory is a

function of time. However, if we define =t s˙ ,̇ where ṡ is the trajec-

tory scaling factor, we can make (2) a function of scaled time that

effectively limits the trajectory to an attainable velocity. This con-

nection is visible in Figure 11.

3.3.5 | Motion control

The motion control system used in the experiments relies heavily on

learned velocity feed‐forward mapping complemented by a propor-

tional controller. The manipulator is equipped with Danfoss PVG‐120
mobile proportional control valves with a significant dead‐zone (ap-

proximately 30% per direction), thus making dead‐zone inversion

obligatory in the control design (Bak & Hansen, 2012). Moreover, it

significantly improves control accuracy. For more accurate control of

the manipulator, stability guaranteed model‐based control methods

have been shown to achieve state‐of‐the‐art performance (Mattila

et al., 2017). In Lampinen et al. (2019), such a model‐based controller

was proposed. Its use was demonstrated on the last link of the ma-

nipulator with a novel method of handling the nonlinearities of the

pressure‐compensated valves with dead zones.

In this study, velocity feed‐forward learning for each valve‐
actuator pair was performed using the algorithm proposed in Nurmi

and Mattila (2017). The algorithm identifies a feed‐forward model of

the valve‐actuator pair by driving the actuator in a sinusoidal tra-

jectory, while at the same time using adaptive control methods to

map valve control and actuator velocity. The feed‐forward model is

identified in 24 distinct segments of the whole control region to

accurately represent the valve characteristics.

3.3.6 | Control system verification

To demonstrate the control system's performance with dynamic

trajectory tracking, a 3‐DOF test trajectory was designed. This tra-

jectory is shown in Figure 13. It consisted of five piecewise smooth

segments of quintic paths generated using Equation (2), with the

design time of each segment set to 8 s. However, due to the scaling

of the trajectory, the timing was not absolute. The total time re-

quired to complete the trajectory was 42.4 s. The Cartesian tracking

error during the trajectory was shown in Figure 14. The maximum

tracking error during the trajectory was approximately 58mm, while

the mean error was 17.8 mm. Individual trajectories of each joint are

shown in Figure 15, which highlights that each joint can track their

respective trajectories with high precision.
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3.3.7 | Short discussion on implementing force
control with force estimation

This section continues the discussion of Remark 3 on the topic of force

estimation and force control. Force control of hydraulic series ma-

nipulators is not a novel concept, but due to the highly nonlinear

dynamic behavior of hydraulic systems, it has remained mainly a

curiosity in industrial applications, and the documented implementa-

tions limit to technical demonstrations in laboratory environment

(Mattila et al., 2017). Contact identification and classification methods

on the other hand have been well surveyed in (Haddadin et al., 2017).

Within the scope of this study, our aim was to create a system

that requires minimal modifications to the original system and thus

has less possible points of failure. With the aid of pressure sensors,

similar model based control approach as proposed by Lampinen et al.

(2019) could be extended to the whole manipulator. Force estimation

could then be implemented using the measurable cylinder piston

forces and estimated dynamics of the manipulator as proposed by

Koivumäki and Mattila (2015). The more advanced model based

control method could be utilized with impedance control scheme as

shown in Koivumäki and Mattila (2017) to achieve the compliant and

force aware contact control for a stable rock contact. A different route

of utilizing force estimation could be to leave the control system un-

touched and use the force estimation only for contact detection and

classification as well as external event detection, for example, tool

slipping, rock slipping, or detection of a break instance.

4 | MANIPULATOR AND CAMERA
CALIBRATION

4.1 | Manipulator calibration

An accurate forward kinematic model of the manipulator is a prerequisite

for vision‐based operations using absolute coordinates. Therefore, before

anything else, the manipulator's internal link coordinate system, from its

base to the TCP, must be calibrated using accurate external measure-

ments, to compensate for errors in nominal link lengths and uncalibrated

encoder offsets. Alternatively, the uncertainty related to the kinematic

parameters could be mitigated by using eye‐in‐hand tracking of the TCP

and relative positions (i.e., the vision system gives rock positions relative

to the perceived TCP location). However, such an application could prove

to be very harsh for the camera, due to the high‐frequency vibrations of

the impact hammer. Therefore, we opted for the kinematic calibration

process instead.

All four joint axes of the manipulator are equipped with 14‐bit
SIKO WV58MR absolute rotary encoders, with an angular resolution

of ∘0.022 . The external measurement device used was a SOKKIA

NET05 total station laser theodolite, which provides 3D position

data with sub‐millimeter accuracy. A spherically mounted retro-

reflector was attached to the hammer tip, and its laser‐indicated
position together with joint encoder readings were recorded in 28

joint configurations when the boom was static.

Figure 5 illustrates the coordinate frame assignment for the

boom, which was done following the Denavit–Hartenberg (DH)

convention. First, the homogenous transformation from the theo-

dolite measurement frame to the mechanical base frame of the

manipulator (which is found at the intersection of its first two joints)

was estimated with a circle fitting procedure (Bernard &

Albright, 1994). Then, using the nominal dimensions of the boom as

an initial guess, an estimate of the actual DH parameters was de-

termined by applying the Levenberg–Marquardt algorithm to itera-

tively find a numerical solution that best described the boom

geometry.

The resulting position residuals between the calibrated forward

kinematic model and the values indicated by the external measure-

ment device are visualized in Figure 16. The top of the figure visua-

lizes X, Y, Z, and Cartesian position residuals from each individual

measurement, while the bottom presents the distributions of these

respective errors as a histogram. The kinematic calibration resulted in

a spatial mean error of less than 10mm and maximum errors of less
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F IGURE 13 Cartesian trajectory used for control system
verification [Color figure can be viewed at wileyonlinelibrary.com]
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than 25mm. By comparison, the diameter of the blunt tool that comes

into contact with rocks is 135mm. For a 9‐ton manipulator with a

reach of 7m, this degree of accuracy can be considered impressive,

and higher accuracy is likely impossible due to structural flexibilities.

As a remark, the accuracy reported here was achieved with a

less than 4 year old breaker boom that has seen only light work-

cycles (acting mainly as motion control platform without significant

amounts of rock breaking activity) and can thus be considered
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F IGURE 15 Individual joint tracking during control system verification experiment [Color figure can be viewed at wileyonlinelibrary.com]
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relatively intact. In an actual breaker boom plant subject to con-

tinuous stress and impacts, the repeatability of the manipulator

might deteriorate over time due to wear. Consequently, the

achievable absolute accuracy of the manipulator might decrease

during its lifespan, despite including regular recalibration as a part of

maintenance operations.

4.2 | Camera calibration

Stereo cameras have been extensively used in real‐time robotic vi-

sion applications, such as detecting and measuring objects, and es-

timating objects' poses in a scene. The accuracy of such stereoscopic

visual system relies entirely on calibration, which determines the

overall performance of the system.

A stereo camera is typically composed of a pair of pinhole

cameras. The camera calibration process estimates the geometric

properties of the camera, as well as its pose in robot coordinate

system (Forsyth & Ponce, 2002). The camera calibration parameters

include intrinsic and extrinsic parameters and distortion coefficients,

as illustrated in Figure 17.

Given a 3D point (X Y Z, , ) in the robot coordinate system, its cor-

responding point (x y z, , ) in the camera coordinate system and (u v, ) in

the 2D image plane, the extrinsic calibration parameters follow a rigid

transformation between camera and robot coordinates:
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The intrinsic calibration parameters represent the projective trans-

formation between the 2D image coordinates and 3D camera

coordinates:
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where z is the depth at the image coordinate u v( , ). Combining the

above two equations, a general perspective transformation can be

written as
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where f f( , )x y is the focal length in pixels, c c( , )x y is the optical center in

pixels, ∈ ×R 3 3 is a rotation matrix, and ∈t 3 is a translation

vector.

4.2.1 | Intrinsic calibration

Real lenses always exhibit some radial distortion and slight tangential

distortion. Camera calibration helps correct radial lens distortions

and measurement errors. The Stereolabs ZED stereo camera in our

system is an integrated parallel stereoscopic camera with a known

baseline. Even though it comes with factory calibration, its accuracy

can still be improved with recalibration. The calibration process

follows a multi‐plane calibration approach (Zhang, 2000), which only

requires a planar pattern. Without knowing positions and orienta-

tions, calibration was performed by moving the camera with respect

to the planar calibration pattern on a 27‐inch 2560× 1440 display.

The ZED camera calibration parameters for a resolution of

1280× 720 pixcel were recorded in Table 2, which contains the in-

trinsic parameters, focal lengths f f,x y , principal points c c,x y , and the

lens distortion of both the left and right eye of the camera

k k p p k[ , , , , ]1 2 1 2 3 , as well as the extrinsic parameters of the right eye

with respect to the left eye of the camera, R0 and t0. Here, the

common lens distortion can be corrected with Brown‐Conrady model

(Brown, 1966), which takes into account both radial distortion and

tangential distortion:

= + + + + +
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where = − + −r u u v v u v( ) ( ) , ,n c n c d d
2 2 2 are coordinates in the distorted

image, un and vn are coordinates in the undistorted image, uc and vc are

coordinates of the distortion center, k1 and k2 are radial distortion

coefficients, and p1 and p2 are tangential distortion coefficients.

4.2.2 | Extrinsic calibration

The extrinsic parameters are determined by how the camera is posi-

tioned in the robot coordinates. A point in the camera coordinate frame

depicts its position with respect to the optical center of the left eye of the

camera. For the robot manipulator, it is more useful to know where this

point is relative to the robot base in the robot coordinate frame, which

coincides with the world coordinate frame. Both the camera and the

robot coordinate frame follow the right hand rule, as shown in Figure 5.

For a stationary camera and robot base, any objects in the

camera coordinates should retain the same geometry and scale after

transformation into robot coordinates. This geometric transforma-

tion aligns every corresponding point of two‐point cloud sets; this is

referred to as rigid transformation, which is expressed by Equation

(11). The approaches to find rotation R and translation t can be

categorized as singular value decomposition (SVD)‐based (Arun

et al., 1987; Ho, 2013) and quaternion‐based (Horn, 1987; Horn

et al., 1988; Walker et al., 1991). The SVD‐based method was

adopted to obtain the highest possible level of accuracy and stability.

Let the points in camera coordinate be =C c{ }i , and =c x y z[ , , ]i i i i
T in

3D, where = …i N1, 2, andN is the number of points and corresponding

Extrinsic3D World 
Coordinate 

(X, Y, Z)

3D Camera 
Coordinate

(x, y, z)

2D Image 
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(u, v)

Intrinsic

F IGURE 17 Camera calibration process [Color figure can be
viewed at wileyonlinelibrary.com]
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points. Then let the corresponding points in the robot coordinates be

=W w{ }i , and =w X Y Z[ , , ]i i i i
T in 3D, which can be expressed as
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According to the SVD approach,

=U S V SVD CW[ , , ] ( ),T (16)

where C and W are the × N3 matrices that have − ∑
=

c ci N i

N i1

1
and

− ∑
=

w wi N i

N i1

1
as their columns, respectively, and U and V are or-

thonormal matrices from which we obtain

=R VU .T (17)

Subsequently, the translation vector t can be computed as
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Unlike intrinsic calibration, which was performed indoors,

the actual extrinsic calibration was conducted outdoors at a rock

breaking field. The calibration workspace in the field consisted of

measurement equipment, the grizzly, markers, the overhead ZED

camera, and the Rambooms manipulator. For successful extrinsic

calibration, the following conditions were fulfilled:

• The intrinsic calibration of the ZED camera was completed;

• The manipulator's forward kinematics model was calibrated;

• The marker positions in camera coordinates were accurately

measured;

• The corresponding marker positions in robot coordinates were

accurately measured.

Extrinsic calibration was initiated by distributing markers

into the workspace in such a way that flat red markers appeared

around the middle of the camera's field of view. To achieve the

best possible contrast between the markers and the background,

lower exposure for image acquisition was set. An example of the

acquired image (at 1280× 720 resolution) is shown in Figure 18,

where there are six markers in the scene. Next, the process for

marker segmentation was performed to the corresponding point

cloud in the camera coordinates using a color mask to filter all

objects except the markers. After filtering, what remained of the

scene were the markers, presented in the form of clusters of

points, as shown in Figure 19. A k‐means clustering algorithm was

used to locate all markers' centroid positions and thus obtain

their positions in the camera's coordinates.

For measuring marker positions in robot coordinates, multiple

approaches were available. A quick and effective approach was to take

advantage of the calibrated Rambooms manipulator to manually align

the centroid position of each marker with the manipulator's TCP, so

the manipulator could convert each marker position to robot co-

ordinates. For this method, robot accuracy must be taken into ac-

count. Once all corresponding camera and robot coordinate positions

were measured, measurement data was validated and represented in

homogeneous coordinates. Finally, the extrinsic parameter rotation

matrix R and translation vector t were calculated according to Equa-

tion (17) and (18), respectively. These numerical values are presented

in Table 2, together with the camera intrinsic parameters.

4.2.3 | Verification of vision system accuracy

The accuracy of the vision system was determined with the ZED

camera's inherent accuracy, intrinsic and extrinsic camera calibration

methods, and measurement errors during camera calibration. The

TABLE 2 Stereo camera parameters
ZED fx fy cx cy Distortion coefficient k k p p k[ , , , , ]1 2 1 2 3

Left 700.79 700.79 634.822 356.993 [−0.176, 0.029, 0.00196,
−0.00044, 0.00]

Right 700.71 700.71 626.699 356.066 [−0.172, 0.027, 0.00164,

0.00016, 0.00]

R0 [−0.00659, 0.01328, −0.00013]

t0 [mm] [−120.002, 0.00, 0.00]

R [−0.019, −0.003, −0.024]

t [m] [−0.480, −4.491, −3.209]

F IGURE 18 A view of red markers acquired at low exposure
[Color figure can be viewed at wileyonlinelibrary.com]
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ZED camera is a binocular pinhole camera with an operating range of

up to 20m, but its depth accuracy decreases when the distance

between the camera and the target increases. The accuracy test was

conducted with four to five meters between the grizzly and the ZED

camera. The target objects were the red markers used for calibra-

tion. The calibrated intrinsic and extrinsic parameters of the ZED

camera were used to obtain the estimated target object positions in

robot coordinates. These estimated marker positions were then

compared to corresponding data given by the manipulator. In total,

24 measurements were performed. Figure 20 illustrates position

residuals, where the maximum deviations are 18.4, 22.4, 67.5, and

67.19mm along X, Y, Z axes and Cartesian, respectively. SDs in the X,

Y, Z axes and Cartesian are 10.0, 10.5, 27.9, and 15.14 mm, respec-

tively. Considering the 135mm diameter of the manipulator's blunt

tool, as well as the grizzly's grid size of 400× 400mm, the position

errors are acceptable.

5 | EXPERIMENTS AND RESULTS

5.1 | Rock detection

Rock detection and localization is a crucial step in autonomous

breaking. During the data collection phase, we collected a total of

4733 images of the breaking scene with the grizzly and rocks visible.

Ninty percent of them were used for training and validation data,

while the remaining 10% were used for model and system‐level
testing, which ensured the final experiments could be carried out

seamlessly.

The maximum amount of rocks the grizzly can hold depends on

the size of rocks. During the final rock breaking experiments, the

amount of rocks in each experiment varied from 6 to 12. An example

of a scene with 12 rocks is presented in Figure 21, where the de-

tection speed was 85ms. Once a rock was detected, it was numbered

and enclosed in a purple bounding box. The total sum of detected

rocks is shown in the upper left corner of the image.

To further enhance the robustness of the rock detection process,

we set a region of interest (ROI) indicated with white rectangles in

the image coordinate frame. Rocks detected outside the ROI were

ignored. Whether a rock lay inside or outside the ROI was de-

termined by the centroid position of its bounding box. In addition, we

ignored rocks smaller than the grid openings of the grizzly, as well as

rocks laying beneath the grizzly's upper surface.

5.2 | Position for rock breaking

The positions and orientations for rock breaking presented in

Figure 21 were estimated based on the reconstructed 3D surface

point cloud of each rock. As the software architecture in Figure 6

depicts, this was a long process that began with 3D reconstruction of

the environment using the detected 2D images. Within each region,

every pixel was reprojected onto a corresponding point in the cam-

era coordinates with position values (X, Y, Z) and RGB color codes.

We could thus obtain detected rocks in the form of 3D regions in a

dense point cloud. This process is detailed in Section 3.2.3. Next, the

reconstructed 3D regions were transformed from camera co-

ordinates to robot coordinates. This result is shown in Figure 22.

Finally, the process for estimating the position and orientation re-

quired for rock breaking could be initiated. A more detailed de-

scription of each of these processes is provided in Section 3.2.4

and 3.2.5, respectively.

To validate the results, the breaking positions for the afore-

mentioned 12 rocks are visualized in Figure 23, which verifies the

correctness and effectiveness of the position values online in

Figure 21. The positions for guiding the manipulator's blunt tool are

marked as red spots on the surface of each rock (including partially

occluded ones). A 3D viewer was implemented for live monitoring

purposes using the Point Cloud Library (PCL) in C++.

F IGURE 19 An example of red markers in a point cloud in the
camera coordinates. The blue crosses denote the markers' centroid
positions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 20 Box plot of position residuals in the X, Y, Z axes and
Cartesian. The boxes show the 25th and 75th percentiles of
residuals, while red lines represent medians, whiskers represent the
minimum and maximum values, and the red “+” symbols signify large

residuals regarded as outliers [Color figure can be viewed at
wileyonlinelibrary.com]
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5.3 | Description of the autonomous operation
evaluation

The experiments reported in this manuscript serve as a technical

demo. The experiments herein represent real use cases of the ma-

nipulator and demonstrate the potential for increased automation of

such systems. The experiments consisted of autonomous rock

breaking ranging from 1 to 10min long, during which there was no

human intervention with the autonomous operation. Before each

experiment, 5–10 rocks of various sizes and shapes were laid on the

grizzly. During the experiment each break attempt were recorded.

After the experiment, success rates and break pace were calculated.

F IGURE 21 Real‐time view of the rock
detection scene. The positions and
orientations for rock breaking are aligned to
the left and right side accordingly [Color
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 22 Real‐time view of the
detected rocks in a 3D point cloud in robot
coordinates (the X, Y, and Z axes are marked
in red, green, and blue, respectively) [Color
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 23 Real‐time view of the
detected rocks with breaking positions
indicated in red dots [Color figure can be
viewed at wileyonlinelibrary.com]
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The break pace describes how many break attempts were performed

within a 1‐min span.

Each of the experiments were performed without any human

intervention during the process. The system was equipped with ad-

ditional safety features, such as a dead man's switch for the breaker

operation and an emergency stop for the entire manipulator to en-

sure safety during the experiments. Fortunately, there was no need

for either of these features during the experiments. The safety fea-

tures included in the control system already prevented direct hits

against the grizzly, and the manipulator was operated in a limited

area above the grizzly. The logic of the autonomous operations

during the experiments follows what is described in Section 3.3.1 and

in Figure 12. The process was repeated until no rocks remained on

the grizzly or the operation was halted by the operator.

Remark 4. The rocks used in the experiment were granite from a

nearby construction site. This is not a typical material in this

application, which should be considered when analyzing the results.

Granite can have compressive strength values of over 200MPa,

which makes it very difficult to break. This might lead to lower

overall success rates than what could be achievable in an actual

environment with more brittle material.

5.4 | Results from the autonomous breaking
experiment

The autonomous breaking experiment consisted of approximately

47min of autonomous operation with varying numbers of differently

sized rocks laid on the grizzly. The breaking was considered suc-

cessful if the rock broke into two or more pieces that were at least

25% of the original volume of the rock being broken, or if the

hammer pushed the rock through the grizzly. Break success rates

were evaluated visually from recorded videos. The average break

success rate was 34.2%, while the break pace was approximately

3.30 attempts per minute. The experiments were conducted during a

very bright weather and objects in the scene suffered from over

exposure and shadows which notably differed from the conditions in

our data set, which resulted in degraded performance of the VPS.

The average Recall of the VPS during the experiments was ap-

proximately 75%. Results from each individual experiment are

gathered in Table 3. All the experiments presented here were con-

ducted without using the rock surface normals as breaking guides;

instead, the hammer was kept at a 90‐degree angle with respect to

the ground at all times.

During Experiment 6, we implemented a change to the autono-

mous operation so that after every third attempt, the manipulator

moved aside to allow a better view of the grizzly for the stereo

camera. Despite the addition of this extra step, the break pace re-

mained almost identical as the manipulator's movements were also

sped up. In Experiment 6, a sharp angled rock was very close to the

area where the manipulator was moved after every third attempt;

consequently the system attempted to break that specific rock al-

ways first. Due to the difficulty caused by the shape of the rock, the

success rate of Experiment 6 was lower compared to other

experiments.

As seen in Table 3, the success rate between experiments varied

considerably. This was caused mainly by the fact that the rocks on

the grizzly in each experiment were dissimilar in shape and size.

Sharp edges were identified as causing the most problems for the

system, which is owed to the relatively low stiffness of the manip-

ulator. An especially problematic feature of the manipulator was the

backlash of the rotation joint. The rotation of the manipulator is

controlled with a hydraulic motor attached to a planetary gear and a

ring gear, which together contribute as a significant source of

backlash. Because of this, the manipulator slipped on inclined sur-

faces easily.

The reference and measured positions of the manipulator's TCP

during Experiment 8 are visualized in Figure 24, where the red lines

indicate the measured trajectory while black dashed lines represent

the reference trajectory. Accurate path following can be observed in

this figure. A closer look at the first 100 s of the experiment at the

TABLE 3 Results from autonomous
breaking experiments Duration

Break

attempts

Successful

breaks

Success

rate (%)

Break pace

(attempts/min)

Experiment 1 3min 50 s 13 7 53.8 3.39

Experiment 2 4min 15 s 14 5 35.7 3.29

Experiment 3 7min 30 s 26 8 30.8 3.47

Experiment 4 1min 10 s 4 1 25.0 3.43

Experiment 5 4min 12 5 41.7 3.39

Experiment 6 5min 30 s 19 2 10.5 3.84

Experiment 7 5min 30 s 16 7 43.8 3.15

Experiment 8 5min 18 5 27.8 3.70

Experiment 9 10min 33 13 39.4 3.42

Total 47min 155 53 34.2 3.30
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individual joint tracking level is shown in Figure 25 while RMS

tracking errors over the same time frame are shown in Figure 26.

The figures indicate the accurate tracking of each joint and demon-

strate that the average Cartesian RMS tracking error over the whole

experiment was only 57.9 mm. The RMS error was the largest when

the controller detected broken rock and began to raise the TCP,

preventing it from hitting the grizzly due to the inertia of the ma-

nipulator. The interaction with the rocks before the break attempt

also caused tracking error due to the trajectory being set below the

rock's surface to achieve pressure against the rock.

A close‐up of an individual break attempt is shown in Figure 27

in which TCP height and lift valve control are shown in parallel to

give better understanding of the actual breaking process. In the

beginning, the manipulator moved to the rock. Then, control was

continued in an open‐loop manner, mimicking manual operation.

Pressure against the rock was first built up using the dual cylinders

of the lift joint of the manipulator. After pressure against the rock

was ensured, the hydraulic hammer was activated. At this point, the

manipulator began slowly moving downward until the rock was

broken, which can be observed as a sudden loss of opposing force

from the rock. In turn, this caused the manipulator's quick accel-

eration. When the manipulator descended below a threshold height,

the rock was considered broken and the manipulator was raised back

up. Due to the large inertia of the 2700 kg hydraulic hammer, the

manipulator kept descending below the threshold height despite the

fact that the control valve had been changed to the opposite open-

ing. Therefore, for safety reasons, the threshold height must be set

higher than the actual grizzly height to avoid impact with it. In our

experiments, this height was set 50 mm above the grizzly. Due to the

large inertia of the manipulator, the TCP could occasionally hit the

grizzly after a rock was broken, but the hammer operation was

halted automatically in advance so that no damage to the grizzly or

the boom could happen.

In this study, we limited our focus on the use of only joint angle

encoders for the sake of applicability to industrial applications with

minimal need of retrofitting the system. However, if we consider the

break attempt shown in Figure 27, it is evident that the use of

pressure sensors would prove beneficial in detecting the instance a

rock is broken; during this time, the pressure inside the lift cylinders

collapse due to the loss of opposing force from the rock, thus making

the break detectable via pressure sensors. The impacts from the
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hydraulic hammer can also be detected from pressure spikes. Using

such data, the breaking process can be controlled more precisely.

6 | SUGGESTED IMPROVEMENTS

The performed experiments in our simplified field test environment

served as a feasibility study providing valuable insight on the auto-

mation of the secondary breaking tasks in grizzly applications.

However, the setup also limited the number of experiments practi-

cally possible to perform, due to a large number of auxiliary tasks

required for each experiment. Yet, the simplified field test environ-

ment served us well and helped at identifying several key challenges

and shortcomings of the proposed system. Further improvement of

the proposed system would benefit from testing environment with

continuous ore flow which would mean preferably an operational

mine. However, these are continuously running highly optimized

production facilities, where production downtime can lead to large

costs. Arranging an experimental setup in such conditions without

affecting the mine operation is a challenging task that requires a lot

of planning, coordination, and development to achieve a mature

enough research platform that can be used in cooperation with the

mine operation. Such environment would prove fruitful for gathering

data for performance analysis between an autonomous system and a

human operator. Similar study comparing forwarder operators with

boom tip control versus traditional control were conducted in

Manner et al. (2019).

This section presents improvements to the proposed system

based on the insight gained from the experiments. The major im-

provements to the rock breaking system are aimed to improve the

robustness and effectiveness of the system under more complex and

realistic environments. The herein proposed changes enhance the

tactical layer of the rock breaking system, bringing it one‐step‐closer
to practical implementations. These improvements are seen as way

to overcome the following shortcomings of the proposed system

identified during the experiments: (1) the break position selection

was able to select a break position on inclined surfaces under specific

conditions. (2) the system was unable to distinguish the difficulty of a

break attempt beforehand in any way. (3) reorientation of difficult

rocks was not considered as a strategy for more difficult rocks.

(4) detection of the break instance relied only on position

measurements, which yielded slow reaction to the dynamically fast

break instance.
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6.1 | Break point selection

A few flaws in the proposed method for break position selection

were identified in the experiments, that should be addressed in fu-

ture research. First, the constraint that the break position must lo-

cate within a rectangular region quarter the size of the bounding box

enclosing the boulder does not always yield the best break position.

For instance, if the boulder has its centroid of mass near one of its

edges and is shaped like an off center pyramid, the highest point

within the search area would yield a break position on a slanted

surface. Based on the experiments, those conditions result with a

high likelihood in an unsuccessful break attempt. Second, due to the

physical constraints of the manipulator, aligning of the rock hammer

is not possible in most cases. Therefore, finding the surface normal

based on the break point may not be the best approach. Instead, an

alternative method could be investigated in the future. Rather than

selecting the angle for impact based on the break point, the break

point should be selected based on the surface properties of the rock

to minimize the possibility of slipping and also avoid having to align

the manipulator for each rock separately.

To fulfill these conditions, suitable break locations may be ob-

tained by first calculating normal vectors for each point of a point

cloud representing a single rock. Then, the point cloud is filtered

based on the normal vectors, to remove points belonging to inclined

surfaces. After filtering, the point cloud is left with points belonging

to flat surfaces. Then, a suitable break position can be obtained by

finding a point with most points in its local neighborhood, i.e., within

a specific radius around the point. Figure 28a,b illustrate the results

of this method. The radius is here set to 65mm, which is the same as

the radius of the blunt tool of the hydraulic hammer.

6.2 | Per rock difficulty estimation

The inability to make any difference between rocks on the grizzly

was identified as an adverse property of the evaluated VPS. Without

any information regarding the difficulty of break attempts, the au-

tonomous system was selecting it's targets only based on the

Euclidean distance metric. However, this was identified as overly

simplified approach, as the strategy for difficult rocks often involves

manipulating the rocks into different poses.

The above described method for the break location identifica-

tion can be leveraged for estimating the difficulty of a break attempt

at the same time. By analyzing the surface properties of the local

neighborhood of the break location its flatness can be estimated and

used as a quality metric. Break points with more points in its local

neighborhood in the filtered cloud indicate flatter surfaces, while low

number of points in the local neighborhood indicate sharp‐edged
surface, as point belonging to inclined surfaces are removed. As

observed in the experiments sharp‐edged and inclined surfaces are

much harder to break.

Other criteria related to the per rock difficulty include, for ex-

ample, the height of the rock in relation to its cross‐sectional area
and the horizontal distance of the break point and the centroid of the

rock. Other criteria may exist as well, such as the overlapping per-

centage, but the fine‐tuning and finding correct relations between

each criteria becomes more complex with more criteria. The main

goal of the difficulty estimation is after all determining whether a

rock may be broken as such or it should be manipulated into a dif-

ferent pose first. Figure 28c has the difficulties estimated for each

break location based on the three first‐mentioned criteria. Difficulty

scores below 10 indicate a typical difficulty, while scores above 10

indicate a challenging rock, that may need to be manipulated into a

different pose before a break attempt. Defining a meaningful metrics

for the difficulty estimation requires further testing to obtain a ba-

lanced relation between different difficulty criteria, and to validate

the results.

6.3 | Break instance detection

Another shortcoming of the experimental setup was the naive ap-

proach for detecting break instances, or more specifically, the lack of

such system. Therefore, we acknowledge the necessity to describe a

few approaches that could be leveraged to detect the break in-

stances. To detect the shattering of the target rock, an intuitive

(a) (b) (c)

F IGURE 28 Visualization of the results of the second break location selection method. The suitable areas with normal vector pointing up
are drawn with green, while the selected break points are marked with red points. (a) Break locations from side, (b) break locations from above,
and (c) break difficulty estimation [Color figure can be viewed at wileyonlinelibrary.com]
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method is to observe the forces of the manipulator and detect a

sudden loss of external opposing force at the TCP. However direct

contact force measurement is not practical due to the harsh appli-

cation, that is typically of of question for fragile force/torque sensors.

Instead, indirect approaches are required to estimate the external

force. Takahashi and Monden (1999) proposed strain gauges at the

chisel of the hammer to detect the external force and ultimately the

break instance. However, the chisel is subject to such harsh use that

the longevity of the strain gauges is susceptible at best. In

Section 3.3.7, force estimation based on model based dynamics

compensation and pressure signals was discussed. Such approach is

an effective way to obtain a force estimate for the break instance

detection, but it requires sophisticated modeling of the dynamics of

the manipulator as well as multiple pressure sensors (in this case six),

both typically avoided in commercial applications. A simpler ap-

proach could be to monitor the pressure of only one side of one

cylinder and detect rapid changes to identify the break instance.

Alternatively, accelerometer could be utilized for the same purpose.

Figure 29 visualizes measurements from a successful break at-

tempt performed manually. The break instance is here detectable by

two methods. First, we have implemented the force estimation

within the manipulator controls, and second, we utilize acceleration

measurements gathered using a Novatron G2 IMU. The acceleration

in the direction of the hammer is first filtered using a high‐pass filter
to remove the effect of gravity. Then, a FIR filter with a window

length of 120ms is used to detect the break instance. The frequency

of the hydraulic hammer is roughly 8 Hz, which yields a near zero

response from the FIR filter at the hammer operating frequency.

However, when the rock is broken, the response will show a large

negative value, due to one half of the acceleration spike being lost.

This method enables us to detect a successful break within ap-

proximately 60–90ms.

6.4 | Improved autonomous operation pipeline

The suggested improvements lead to an improved operational pi-

peline for the autonomous system that has tactical tools to handle

more versatile and realistic situations and environment. The im-

proved break point selection is foreseen to improve the success rate

of breaking as the break points are selected more carefully on lo-

cations that inherently minimize the possibility of manipulator slip-

ping on the rock surface, or the rock moving away. Moreover, the

ability to distinguish challenging rocks from the grizzly further en-

hances the success rate as the system can first focus on easier rocks

and then attempt the harder cases after it has attempted to reorient

F IGURE 29 Demonstration of the break instance detection using external force estimation and acceleration measurements [Color figure
can be viewed at wileyonlinelibrary.com]
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them first. To manipulate difficult rocks into better poses, we pro-

pose that the manipulator is driven through a trajectory that goes

trough the centroid of each difficult rock. Other manipulation tactics

can be applied here as well, for example, the rock may be moved

toward the largest unoccupied area near it, or as a last resort just to

the side of the grizzly for later manual treatment by a human

operator.

The break instance detection can be seen as a feature that in-

creases safety of the operation and at the same time reduces time

between break attempts. The reduced time between the detection of

a break instance is very critical for stopping the manipulator's

downward movement after a sudden loss of opposing force from the

rock being broken. Similar methodology can be applied to detect

other relevant information about the break attempt, for example,

number of impacts from the hydraulic hammer, or the slipping of the

manipulator.

Figure 30 illustrates a simplified operational pipeline possible

with the improvements suggested in this section. The pipeline is

simplified in a sense that it only covers the operations in a high level

leaving smaller details out to just give clear visualization.

7 | CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel autonomous robotic rock

breaking system that was verified in a full‐scale real‐world environ-

ment. The proposed system is built on two developments: (1) a

commercially available rock breaker boom that is instrumented with

high‐precision joint angle encoders used for our robotic control

system deployed on a dSpace MicroAutoBox 2 real‐time system, and

(2) a 3D VPS incorporating YOLOv3 infrastructure. Recent leaps in

the performance of deep learning models enabled us to design a 3D

vision system for resolving real‐world object detection problems. The

proposed integral system enables completely autonomous rock

breaking, which serves to increase automation in the mining industry.

The main contribution of this paper is the full‐scale demon-

stration and integration of an autonomous system for breaker boom

operation in grizzly applications. Such a system has been proposed as

early as the 1990s, but to the authors' knowledge, it has not been

demonstrated before this study. The vision system can achieve rock

detection with an average precision of 97.61%. The manipulator

control system has dynamic accuracy of 60mm in free space op-

eration, which is sufficient for the intended application. Based on the

data gathered by the vision system, the autonomous control system

finds the best rock to break and can sequence the rock breaking,

even in a cluttered and dynamic scene.

The proposed system was shown to be capable of autonomous

operation without any need for human intervention. In the experi-

ments, the system was able to both recognize and localize oversized

rocks on the grizzly, move the manipulator in contact with the rocks,

and engage the hydraulic hammer to reduce the size of oversized

rocks. The shape of the rocks was identified as a crucial factor in

successful breaking, especially with rocks slanted perpendicular to

the rotation of the manipulator, which would slip away from the rock

during the breaking process when pressure was applied against the

slanted rock. The main reason for this is the backlash in the rotation

joint of the manipulator. In the authors' opinions, the break success

rate could be substantially increased even in manual operation if this

problem is addressed and considered in the manipulator's design.

Despite these challenges, our proof‐of‐concept system was able to

achieve a success rate of 34%, which can be considered an adequate

result for a system that can operate continuously without interrup-

tion at a pace of over 3 break attempts per minute. It is also worth

noting that even a human operator will not achieve a 100% success

rate, as the same challenges of rocks or the manipulator slipping

away will persist regardless of the operator. However, a human op-

erator can most likely react and adapt to these challenges more

rapidly by attempting to break different spots on the rock based on

observing to which side the rock is rolling or moving. Teaching the

manipulator control system how to make such observations may be

explored in future research to enhance the performance of the

proposed system.

The results from the preliminary study of autonomous rock

breaker operation presented in this paper are promising and high-

light the system's technological readiness. The road from technical

demo to commercial product is long and requires a lot more testing,

but the main challenges of employing such a system can be over-

come, as shown in this paper. In the experiments, no operator in-

terference was required and no unexpected behavior was

encountered. The system had a good success rate in breaking large

and sturdy rocks, while smaller rocks with sharp shapes caused dif-

ficulty for the system. Nevertheless, the benefit from an autonomous

rock breaker is seen in the more consistent and tireless nonstop

operation that is only achievable with robotic operations. The oc-

casional situations when the system requires human intervention for

aid in the breaking is seen negligible, as operators are foreseen to be

able to simultaneously monitor multiple booms.

Future work on this system should focus on further developing

the individual components of the system, as well as aim for wider and

more practical testing. More comprehensive experiments in a re-

levant environment are required to obtain quantitative information

to analyze and compare the performance of the autonomous system

to experienced operators. An interesting path for further research is

to implement skills that mimic and exploit operating strategies that

experienced operators use to achieve higher success rates, for ex-

ample, manipulating difficult rocks into different poses for easier

breaking. It is worth noting that in different breaker boom applica-

tions, especially with gyratory crushers, the raking and manipulation

of rocks to prevent and remove blockages is almost as widely used of

a strategy as the actual breaking. Different operating strategies for

these applications should also be considered in future research. In an

ideal scenario, the system could be deployed in a real mine as a

secondary system for testing and prototyping purposes. On the

subsystem level, the VPS requires more training data on different

situations to cover a broader range of environmental conditions, for

example, snowfall, rainfall, fog, dust, and artificial lighting. In addition,
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the currently used stereo camera is unsuitable for the intended harsh

outdoor conditions of the target application. As such, alternatives

should be considered and designed from scratch, if necessary. An-

other interesting path for future research lies in the control of the

breaker boom—more specifically, contact control with the rocks. To

control the force applied to the rocks, the use of more sophisticated

control methods must be investigated. A promising way to achieve

higher precision control lies in nonlinear model‐based control.
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