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ABSTRACT 
Otto Heimonen: Geospatial Analysis of The Spreading of COVID-19 In The United States 
Master’s Thesis Tampere University 
Master’s Degree Programme in Computational Big Data Analytics  September 2021  
The COVID-19 pandemic has been a big threat to public health and there is an increasing need for efficient modelling of pathogens, predicting the daily infection rates to reduce the spread of COVID-19.  

The Moran’s and Geary’s statistics showed significant spatial autocorrelation in the infection counts for the US COVID-19 data. Spatial regression using the simultaneous autoregression (SAR) and conditional autoregression (CAR) models indicate clear association between the confirmed cases and the number of population and the population density in both national county and state specific analyses. The SAR model provided a better model fit with the low AIC value, leaving no significant  autocorrelation for the residuals. The approximate Bayesian computation (ABC) methods were used to provide a flexible posterior distribution of the infection rate for COVID-19 based on the first 100 days of the pandemic. Three different simulation methods such as ABC-Rejection, ABC-Markov Chain Monte Carlo (MCMC) and ABC-Sequential Monte Carlo (SMC) were employed and compared. These algorithms seem to give reasonable posterior estimates for the average daily infections when the likelihood calculations for the spread of a harmful pathogen become complex, or intractable entirely. The posterior distributions of ABC-MCMC and ABC-SMC provided plausible estimations covering all of the observed infection rates at different time points.    Keywords: Approximate Bayesian computation, ABC, spatial regression, simultaneous autoregression, SAR, conditional autoregression, CAR, COVID-19, infection rate  The originality of this thesis has been checked using the Turnitin OriginalityCheck service.  
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1 INTRODUCTION

Background

In the wake of the recent worldwide pandemic, caused by the SARS-CoV-2 virus,
there is reason to consider more efficient epidemiological modelling methods. The
pandemic has caused grand distress, causing millions to be infected and decease. The
ramifications of this sudden outbreak has also brought big downturns in economic
development and increased poverty rates in many regions.

An important aspect of the COVID-19 pandemic has been the level of action
countries have taken to properly handle the spreading of the disease. This has brought
a wide range of commentary from different civil sectors on their respective govern-
mental elements, along with praise and criticism. Perceived satisfaction on the ac-
tions taken by these elements are an important feature to the overall atmosphere and
may shed light on how well ordinary people are going to follow future guidelines.
The objective statistical information on the other hand, gives a narrative into the
numeric efficiency in handling the SARS-CoV-2 virus.

All of the aforementioned features are, in a larger picture, information on how to
improve future efforts to limit the spread of a pathogen. While there has been global
precaution and acknowledgement of virulent diseases, these including the H1N1
swine flu pandemic of 2009, COVID-19 is the first truly widespread pandemic of
the 21st century. As long as there is life on Earth, there will also be different viru-
lent pathogens that can and will have an effect on their surroundings. It is therefore
important to learn from the occurrences of these cases to properly avoid the follow-
ing instance from spreading as rapidly. COVID-19 is a phenomenon in time and
space and can be studied as such.

In their article GIS-based spatial modelling of COVID-19 incidence rate in the con-
tinental United States by Mollalo et al. (2020) study the county level differences of
COVID-19 incidence during the first 90 days of the pandemic, final date of the data
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being April 9th, 2020. In this article, the aim was to model incidence rates for the
virus with geographically weighed regression (GWR) and multiscale GWR (MGWR)
with 35 different possible independent variables, covering areas of topography, so-
sioeconomy, graphic and demography. In the study results, Mollalo et al. describe
how the introduction of spatial autocorrelation could improve the performance of
global OLS model significantly, the models gave poor results, when compared to
results from local models. The highest explained variability by these models was
with MGWR, achieving R2 = 68.1%. In May 2021, the COVID-19 pandemic has
continued for almost one and a half years, with population being vaccinated against
the virus. Therefore, there is much interest in extending the analysis further than
the period of the first 90 days, which could result in additional inference of the pan-
demic.

It is highly valuable to try and prevent an epidemic or pandemic from spreading
or the very least slow the infection rates down. To do this, governing members
need estimations of how large infection numbers can get. It is very difficult or even
impossible to give a confident estimate for the pathogenicity in an early stage, where
there may be only few cases and they are spread in multiple different regions. It is
still highly important to try to give an initial estimate of the possible effect size.

Approximate Bayesian computation (ABC) methods are a set of methods that
approximate posterior distributions of variables in situations, where likelihood cal-
culations are very complicated, or intractable entirely. In their article, Bayesian epi-
demiological modelling over high-resolution network data, Engblom et al. (2020) sim-
ulated the spread of Escherichia coli O157 bacteria in Swedish cattle with the use of
approximate Bayesian computation method framework. Their aim was to provide
a feasibility study for the potential Bayesian public health framework. The results
of the article gave promising results, with the approach performing convincingly in
every synthetic tests. The results from the study suggest that ABC methods can be
applied on a larger scale in an attempt to assess disease spread and thus further proves
applicability for the ABC methods in the field of epidemiology. These results also
then raise to question the amount of data needed to effectively model future scenar-
ios and how early can the methods be applied. ABC methods generally do not need
a large library of data points in order to function and can give results from relatively
tiny data. Therefore, the ABC methods seem promising in the context of epidemio-
logical modelling for the spread of pathogens.
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The focal goal of this thesis is to study the incidence of the COVID-19 virus and
compare them in different regions of the United States. One of the main focuses is
to describe the pandemic through statistical means and present ways of modelling
its spreading, offering tools that can be used in future similar situations to estimate
effective precautions.

Another aim is to try to predict the spreading of the disease based on the first few
months of the pandemic, using Approximate Bayesian Computation (ABC) meth-
ods, focusing on a general scope of the incidence and giving a flexible distribution
estimate for infection rates, rather than just a point estimate. Based on the aforemen-
tioned information, the study question can be worded as "How well can the incidence
of COVID-19 be modelled using ABC methods with a small amount of data from the
first 100 days of the pandemic?". We also describe and model the spread of the disease
using geospatial statistics.

The following sections will focus on the methods applied in the thesis, followed
by description of the COVID-19 data. We present two types of modelling meth-
ods, which include spatial models for areal data and three different ABC methods.
The empirical part of the work presents study results separately for spatial and ABC
modelling. We also present practical issues related to these methods.
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2 METHODS

Spatial data analysis offers methods for tying information into specific geograph-
ical locations. This information is often valuable in depicting these phenomena as
closely as possible to our understanding of the real world. When data includes spatial
information of multiple cities or counties, it is possible to portray that information
with maps and include different spatial measures, such as a distance between two
cities, whilst keeping the information in an easily presentable form, such as visu-
ally presenting the data in maps. Such methods as k-means and k-nearest neighbour
can be applied to these data and then the analysis can be portrayed on a map image,
solidifying the information to these locations.

Spatial statistics separates from traditional data description in its usage of vari-
ables that can be tied to locations. Such information can be, for example, GPS lo-
cations, social media, mobile phone tracking, satellite imagery, postal codes, street
names, country and municipality names and other spatially recognized data that can
be utilized in building a visualization of an area. This information may have poten-
tial to uncover more complex relationships in multidimensional data of phenomena
and places. This information can also then be used in conjunction with time analy-
sis, adding another dimension to the data, which can help produce a more complete
scenario of an event. This can help avoiding some underlying patterns in the data
represented only as numbers in a database being missed, because the human brain
may intuitively notice patterns better, when they are represented in a form that they
are able to effectively handle.

2.1 Spatial Data Analysis

Spatial data consists of information that is tied to locations, where they were ob-
served. In comparison with regular statistical modelling, spatial modelling can offer
additional information to the phenomena that is being studied. This can be applied
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to other events, such as natural disasters, disease, social events such as concerts and
tourism. This spatial information can be divided into different categories such as
Geostatistical data, lattice data and spatial point patterns.

Geostatistical data is assumed to be spatially continuous, such as rainfall measure-
ments, temperature, pH, air pollutant measures and other physical measurements
in a location. This information is visualized on a map and the size of the studied
phenomena can be represented with the colour and size of any interesting measure-
ments.

Lattice data, often described as areal data, presents averages or counts of a phe-
nomenon that make a larger region as a dataset. This information can be, for ex-
ample, number of a species of animal in a region, number of births in a hospital,
recorded cases of a disease in different regions in an area, satellite imaging, median
household income in a neighbourhood and other similar values. This type of data
also is referenced as polygons, where the centroid of the units is used as spatial ref-
erence with the area of the polygon. The data can be displayed as a map and us-
ing colours to discern between different areal units. Analysis for this kind of areal
data involves measures such as representation of spatial proximity and testing for
the existence of spatial patterns, using autocorrelative measures such as Moran’s I
and Geary’s C . The data can also be modelled with autoregressive models, such
as simultaneous autoregression (SAR) and conditional autoregression (CAR). These
measures will be presented later in the thesis.

Spatial point patterns describe a finite number of events in a region, such as lo-
cations of bird nests or craters born from meteor impact or volcanic activity and
locations of homeless. Different categories for this information may be represented
as differently coloured points in visualization and conclusions could be done solely
from visualized data. Some of the goals for spatial point patterns are to see, whether
a regular pattern appears in the points, if there are clear clusters of points, is there
a process that could have produced the pattern and if so, then how intense is this
process and if there are underlying distributions that could have affected the results
to appear in a region.

Each of these data sets can also be referenced in time as spatio-temporal data. Each
of these observations all have then a location, time and a value. Deciding on artificial
borders for different phenomena may be difficult to justify and there may not be
clear discernible borders to a phenomenon, like a disease in a city. Other objectives
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lie with inference for non-spatial structures, predictions of unobserved variables and
clarifying design issues, such as physical locations for taking observations or how
the arrangement of treatment should be handled.

2.2 Moran’s and Geary’s Statistics

In order to utilise neighbouring relationships in spatial statistics, a proximity matrix
W must be constructed. A W matrix is a matrix for data points Zi j so that

Wi j =

⎧

⎨

⎩

1 if two cases i and j are neighbors

0 otherwise.

There are three fundamental ways to define, which cases are neighbours. Two of the
more commonly used are Rook’s and Queen’s Case. In Rook’s case, the neighbour is
strictly adjacent to the current case, while in Queen’s case, the corners are accepted
as well. The third option is the Bishop’s case, where only the corners are taken
into account. Changes in the interpretation of neighbourhood affects the results.
Therefore, it is important to consider, how the neighbourhoods function in context
of real world applicability instead of solely focusing on the data. In this thesis the
data consists of US counties, which are connected with wide networks of roads, not
constricting the neighbours to a situation like Rook’s Case. Other ways to approach
the neighbouring system is to use methods such as k-nearest neighbour, which finds
k nearest values for each point. The analysis in this thesis used k-nearest neighbours
approach to produce neighbours. This is achieved by the R function knearneigh,
which produces k-nearest neighbours for spatial weights.

Moran’s I statistic is a measure of spatial autocorrelation. The statistic describes
the amount of correlation in close spatial locations. The expected E(I ) for Moran’s
I is − 1

n−1 , where n is the number of cases in the data. In an instance, where I >
E(I ), we can expect positive spatial autocorrelation to exist, the further I is from
the expected value, the stronger autocorrelation is. In an instance, where I < E(I ),
spatial autocorrelation is negative. Moran’s I can be defined in the following way:

I =
n
S0

∑︁

i
∑︁

j Wi j (Zi − Z̄)(Z j − Z̄)
∑︁

i (Zi − Z̄)2
,
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where Zi are observations, S0 describes standard deviation and is calculated by
S0 = 2(2r c − r − c), where r and c describe the dimensions of a r × c lattice.
The statistic is a measure of the existence of global autocorrelation and does not give
information on where any clustering of a phenomenon exists.

Geary’s C is compared to Moran’s I as they both are measurements of spatial
autocorrelation. Geary’s C measures the autocorrelation of adjacent observations
in a specific phenomenon. The two measures are related, but Geary’s C is more sen-
sitive to local fluctuations of spatial autocorrelation, whilst Moran’s I focuses more
on global autocorrelation. It can also be stated that the two measures are inversely
related due to Geary’s C emphasizing the amount of dissimilarity of adjacent ob-
servations. The values for the measure fluctuate between 0 and 2, with 1 being the
middle point. If C < 1, this implies positive autocorrelation, due to the amount of
dissimilarity being low. If C > 1, it can be expected that data has negative autocor-
relation. The statistic can be calculated

C =
n− 1

S0

∑︁

i
∑︁

j Wi j (Zi −Z j )
2

∑︁

i (Zi − Z̄)2

The largest difference between the formulas of Geary’s and Moran’s statistics is how
they handle the difference of data. Geary’s C is calculated as the squared difference
of values, while Moran’s I first takes the difference of mean from the observations.

Both Moran’s and Geary’s statistic are measures for testing, whether spatial pat-
terns exist in a data. They give insight, whether it is reasonable to expect different
types of spatial autocorrelation. As it is already known, these measures do not, how-
ever, answer to the nature of these connections. One cannot make inference of the
nature of the phenomena from these measures. For this, spatial modelling must be
used. In the following sections, spatial autoregressive models are discussed that can
be utilised in testing for predictive relations.

2.3 Spatial Models For Areal Data

In exemplary ordinary least square modelling, there are expectations of models ex-
isting in a vacuum of independence. However, a dependent variable tied to an in-
dependent variable is in most cases, also dependent of other variables or the obser-
vations are not fully independent of each other. Observations are all tied to a place
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and are not fully separate from each other. An outbreak of a disease can have multi-
ple straightforward independent variables explaining it, but the outbreak is located
in an area. If an area in a city suffers from an outbreak, it is rarely the case that
the outbreak remains to that single location and that other cases of said disease are
purely independent from the earlier cases in that area. Other areas have outbreaks
of the disease and due to temporary interchanging population of regions caused by
commuting for work, for example. Therefore, it is simply not always sufficient to
consider only the dependent variables as independent. These variables of locational
information are also properties of spatial statistics and thus cannot be ignored either.
The following chapters will give exposition on the inclusion of spatial information.

2.3.1 SAR and CAR Models

Simultaneous autoregressive (SAR) model is a statistical model for spatial data. It has
its roots in the time series autoregressive (AR) model, applied to spatial data. A time
series autoregressive model can be expressed as Yt = ρYt−1+ εt , where the current
value in time Yt is the sum of the former time Yt−1 multiplied by an autoregressive
correlation coefficient ρ and the error term in time ε. If we add a trend, we get
an AR(1) model, which can be expressed thusly: Yt −µt = ρ(Yt−1 −µt−1 + εt ).
Instead of having the autoregression focus on a time variable and a lag effect, SAR
models have a similar spatial effect for its surrounding areas, which means that the
data is in two dimensions for spatial information. For this, the outcome Yt needs
to be expressed in another form to take the second dimension into consideration.
Therefore, for spatial data and for SAR, Yt is replaced with

Zu,v =
ρ

4
(Zu−1,v +Zu,v−1+Zu+1,v +Zu,v+1)+ εu,v ,

where u, v describe the rows and columns for the surrounding observations and
u ∈ [2, R− 1], v ∈ [2,C − 1] in an R×C lattice. In putting this model to a matrix
form, we get

Z = ρW Z + ε, ε∼Nn(0,σ2I ),
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where W is an n × n matrix with n = RC . Now we can set the SAR model for a
matrix form with a trend so that

Z −µ= S(Z −µ)+ ε, ε∼Nn(0,σ2I ),

where S ≡ Si j so that Si i = 0 and I − S is nonsingular and for SAR, the data is seen
to follow the distribution:

Z −µ∼N (0,σ2(I − S)−1(I − S ′)−1)

The Conditional autoregressive (CAR) model is related to SAR in similar ways
that Geary’s and Moran’s statistics are related. Both are a way to create spatial re-
gression models and thus they are often compared with each other. A CAR model
requires symmetricity of the weighting matrix, which is already prevalent in the bi-
nary W proximity matrix. A CAR model can be written so that

(Zi |Z j , j ̸= i )∼N (µi +
∑︂

j

Ci j (Z j −µ j ),σ
2),

where C ≡ Ci j so that Ci i = 0 and I − C is symmetric and the data follows the
distribution:

Z −µ∼N (0,σ2(I −C )−1).

To form a maximum likelihood estimate (MLE) for regression, a log-likelihood
estimate is formed. An MLE estimate is used in regression to find an estimate for a
distribution, which maximises the likelihoods of observing the values in said distri-
bution. This is an important step in regression analysis in forming the most suitable
model for a data. The general MLE for a traditional linear Gaussian distribution, the
log-likelihood model is

−n
2

l n(2π)− n
2

l n(σ2)− 1
2σ2

n
∑︂

j−1

(Z j −µ)
2,

but for SAR or CAR models, the specific characteristics of the matrices have to be
taken into account. This brings the log-likelihood into the following form:

−n
2

l n(2πσ2)+
1
2

l n|B |− 1
2σ2
(Z −µ)′B(Z −µ),
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where

B =

⎧

⎨

⎩

(I − S ′)(I − S) for a SAR model

(I −C ) for a CAR model

The differences between SAR and CAR models may seem subtle, but they give
inference on different situations. A CAR model is best utilised in a situation, where
there is low order dependency between the observations. This means that there
is no strong autocorrelation among observations that are not adjacent to a specific
observation. SAR models, on the other hand, tend to be more suitable in situations,
where the spatial autocorrelative pattern is more global or there exists second order
dependency between the observations. CAR models also requires symmetricity for
the weighting matrix, which is something SAR models do not need.

All the models presented here can be utilized with the spatialreg package in R. The
package has a substantial coverage for spatial data modelling and can produce SAR
and CAR models with the spautolm command. Modelling results will be presented
in the results section for national, regional and county wide modelling for differing
results and additional inference.

The methods used in this thesis do not give an R-squared measure, but a pseudo R-
squared, which makes a direct comparison of the results to the ones from the study
by Mollalo et al. more difficult. In regular linear regression models, the R2 mea-
sure explains the amount of the variability of the data explained by the model. The
pseudo R2 measures are used as approximations for this measure. The Nagelkerke
R2 is a modified version of the Cox and Snell’s R2, which is based on the compari-
son of the log-likelihood for the used model and the baseline model. The measure
is calculated by adjusting the scale of the statistics to cover the explainable variation
of the model to cover the range from 0 to 1. Thus, the pseudo R2 is not directly

comparable to the regular R2, which is received from 1− Unexplained Variation
Total Variation

.

2.4 Approximate Bayesian Computation (ABC) Methods

Approximate Bayesian computation (ABC) methods are a set of methods for approx-
imating the posterior distributions for Bayesian inference. When likelihood calcula-
tions become so complex to calculate that they may even become intractable, ABC
methods can be utilised. In this section, the ABC method family is introduced. We
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first introduce the ABC-Rejection algorithm and present other variation methods
that have been developed in order to make the process more efficient or accurate.

In Bayesian inference, we obtain posterior distributions by combining prior in-
formation and likelihood of the data

p(θ|y) α p(y|θ)π(θ),

where π(θ) represents the prior and p(y|θ) the likelihood function for a model. In
ABC methods, the joint distribution is not calculated through traditional Bayesian
methods, but with simulated data that follows the joint distribution. This simulated
data is then compared to the observed data and is accepted, when the results are
similar to the observed data. This results in the method approximating the likelihood
results.

According to Yang et al., (2018) ABC methods can be divided into two main
categories according to the way the data is simulated. These categories are sampling-
and regression-based algorithms. Sampling-based algorithms directly approximate
the likelihood function using simulated samples that are near the observations. The
closeness of these simulated and observed values is measured with a similarity kernel.
The regression-based ABC, on the other hand, establishes regression relationship of
a model parameter and the conditional distribution p(y|θ). This thesis will focus
mainly on the sampling-based ABC methods.

One of the questions on this algorithm is how to compare the simulated data and
the observed one. One solution to this is to calculate a summary statistic from both
data sets and compare them to each other to see, whether the summary statistic is
accepted as a particle of the posterior distribution. Distances over ϵ are neglected
and values under ϵ are accepted. This process is iterated, until a sufficient amount,
denoted by n, of proposed posterior distribution particles has been reached. This
practice shrinks down the information of the data sets, which oversimplifies the data
in some aspect, Zheng et al. (2017). For example, the use of summary statistics
lessens the amount of dimensionality of the data, which can reduce the number of
discarded particles, but this does neglect the information given by the dimensions of
the data. Sampling for individual proposal particles will in most cases lead to a more
discarded particles, but can offer a wider proposal distribution, which in turn can
offer more for inference. The ABC-Rejection algorithm, in its most simplistic form,
can be written as follows:

1. Sample a candidateθ∗ parameter vector from some proposed distributionπ(θ).
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2. Simulate dataset x∗ from the model received from a conditional probability
distribution f (x|θ∗).

3. Compare the simulated dataset x∗ with experimental data x0 using a distance
function d and a tolerance level ϵ. If d (x0, x∗) ≤ ϵ, we accept θ∗. Otherwise
reject θ∗ .

4. If n particles are not accepted, return to step 1.

The choice of prior has influence on the efficiency of the algorithm. It is one of
the disadvantages of the ABC-Rejection algorithm. If the prior sampling distribu-
tion is vastly different from the posterior, the acceptance rate of new samples will
be low. This can cause accidental inaccurate results to occur by the user choosing
non-informative priors. If the user is not informed or does not simply believe some
outcomes to be possible for the variable estimated, it is easy to undermine the pos-
sible outcomes that can arise from the analysis. This results in the method taking
excessive amounts of iteration and the possible range of the posterior distribution to
be too small. These issues can be mended with different opinions from experts of dif-
ferent areas voicing opinions on the choice of priors. The ABC-Rejection algorithm
is simplistic and easily computable in many softwares. This method has been im-
proved on and there is extensive literature on the subject. In the following sections,
two different improved variations of the ABC-Rejection algorithm are presented.

If we consider the distance measure d , it implies the possibility to compare the
model output to the data directly. If there is an ongoing situation that is develop-
ing day by day, for example an epidemic, the method makes it possible to estimate
the parameters for a Susceptible-Infected-Recovered (SIR) model. The sum of the
squared differences between the actual and the predicted data can be calculated over
time T in d (x∗, x0) =

∑︁T
t=1(xt − x∗t )

2. This can be helpful in a dynamical model
following the developing situation.

One alternative possibility for reducing the number of iterations is to fix the
amount of iteration, after which the algorithm stops and evaluates the accepted par-
ticles. This is much different from the original procedure of iterating, until a set
number of proposal particles are accepted, fixing the time the algorithm uses in-
stead. This process can introduce variability into the results. The algorithm may
result in more proposed particles being chosen than one would have originally used
in the iteration, but there is also a chance that the number of accepted particles will
be low, which can result in lackluster information for inference. The posterior dis-
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tributions may vary greatly because of this and can present a problem for inference.
The fixed iterations approach can however, be used to give preliminary information
on the choices for tolerance levels. Since the time used in the algorithm is fixed in
these cases, there is more room for experimentation for different tolerance levels.
These test runs can quickly give feedback on the choice of parameters.

2.4.1 Markov Chain Monte Carlo Algorithm

The main goal of the approximate Bayesian computation Markov chain Monte Carlo
(ABC-MCMC) is to solve the problem of low acceptance rates often encountered
in the ABC-Rejection algorithm. This is done through the use of Markov chain
Monte Carlo methods. Markov chains are stochastic models that describe transitions
from one state to another. A state zi is dependent of its previous state zi−1 and the
following state zi is affected by the current state. Here we use θi instead of zi .

The ABC-MCMC algorithm can be given as follows.

1. Initialize θi , i=0.

2. Sample a candidateθ∗ parameter vector from some proposed distributionπ(θ).

3. Simulate dataset x∗ from the model received from a conditional probability
distribution f (x|θ∗).

4. Compare the simulated dataset x∗ with experimental data x0 using a distance
function d and a tolerance level ϵ. If d (x0, x∗)≤ ϵ, we go to step 5. Otherwise
θi+1 = θi and go to step 6 .

5. Set θi+1 = θ
∗ with probability α= mi n(1, π(θ

∗)q(θi |θ∗)
π(θi )q(θ∗|θi )

)
and θi+1 = θi with probability 1−α.

6. Set i = i + 1 and go to step 2.

The ABC-MCMC algorithm uses Metropolis-Hastings algorithm in step 5. α or the
acceptance probability is calculated with the relation of the function of the priors
times the likelihoods, given the θ values. Essentially this can be expressed in the
form

α= mi n(1,
P r i o r (θi )l i ke l i hood (θi−1|θi )

P r i o r (θi−1)l i ke l i hood (θi |θi−1)
),

where θi represents our proposed distribution. If the ratio of the distributions is
larger than one, one will be chosen for α and the new value for θ is accepted. One
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way to select the proposed value for θ is to generate a value u ∼ U (0,1) and if u < α,
we set θi+1 = θ

∗. Otherwise, θ stays the same.
The Markov chain is formed by linking the candidate θ∗ values. This ensures

the process will always reach convergence to the target approximate posterior dis-
tribution. This is the shortest form of the Markov chain, because the future sample
depends only on our current sample. If the ABC-MCMC is described more freely,
it could be said that the process is very similar to the simple ABC, but the scope of
the point, from which the proposed particles are taken from, is free to shift towards
areas, where higher acceptance rates can be observed.

One of the potential disadvantages with ABC-MCMC is its dependence of the
parameters chosen at the start. The priors given by the user at the beginning may
influence greatly on how quickly convergence is reached. This is the same problem
as with the ABC-Rejection algorithm, because the greatly differentiating priors may
cause a lot of the early proposed values to be discarded. ABC-MCMC does however,
get faster when the process comes closer to convergence.

The second disadvantage for the priors is the autocorrelation. The algorithm
have more autocorrelation in the beginning of the iteration process and it can raise
suspicion that the simulated values are too dependent on the previous iteration. One
solution to this has been the introduction of burn-in period. A burn-in period is a
term used to describe the practice of ignoring or throwing away a "beginning" part
of the iteration process. The term beginnig in quotes is due to the loose definition for
the beginning period. There has not yet been a strict rule on how to determine length
of the burn-in period. It is therefore dependent on the user on how long the effects
of the more heavily autocorrelated parts last. The burn-in period with a length of n
tries to solve the autocorrelative notion from the beginning of a process defining the
posterior distribution. The possible effects on the posterior distribution diminish
with the amount of iterations however and it can be argued that the effects can be
neglected and the burn-in is not needed.

Another potential disadvantage to the ABC-MCMC is that the correlative sam-
ples and low acceptance rate may cause very long chains that may remain stuck in
regions of low probability for long periods of time. This can happen when the pos-
terior leads to an area of lower likelihood and the next samples will not be accepted
as likely and the ones accepted will not lead to a higher probability area.
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2.4.2 Sequential Monte Carlo Algorithm

The approximate Bayesian computation Sequential Monte Carlo method (ABC-SMC)
is an extension to the traditional ABC-Rejection algorithm. The aim of the ABC-
SMC is to fasten the process of parameter sampling. The way ABC-SMC achieves
this is through gradually decreasing the tolerance level ϵ for the proposal particles
θ∗ from the prior distribution π(θ). The tolerance level ϵi decreases so that ϵ1 >

ϵ2 > ...> ϵT > 0. This ensures the distributions evolve towards a targeted posterior
distribution. The ABC-SMC algorithm proceeds as follows:

1. Initialize ϵ1, ...,ϵT and set t = 0.

2. Set particle indicator i = 0.

3. If t = 0, sample θ∗∗ independently from π(θ).
Otherwise, sample θ∗ from previous population {θ(i )t−1} with weights wt−1

and perturb θ∗ to obtain θ∗∗ ∼Kt (θ|θ∗), where Kt is a perturbation kernel.
If π(θ∗∗) = 0 return to beginning of step 3.
Simulate a candidate dataset x∗ ∼ f (x|θ∗∗).
If d (x∗, x0)≥ ϵt , return to beginning of step 3.

4. Set θ(i )t = θ
∗∗ and calculate the weight for particle θ(i )t ,

w (i )t =

⎧

⎪

⎨

⎪

⎩

1, i f t = 0,
π(θ(i )t )

∑︁N
j=1 w ( j )t−1Kt (θ

j
t−1,θ(i )t )

, i f t > 0.

If i <N , set i = i + 1, go to step 3.

5. Normalize the weights so that
∑︁N

i=1 w i
t = 1. If t < T , set t = t +1, go to step

2.

Single asterisk denotes the particles sampled from the previous distribution and dou-
ble asterisk denotes particles after perturbation. The ABC-SMC first sets a tolerance
level sequence, after which the particle indicator calculator is initialized. On the
very first iteration of the tolerance level sequences, the proposed θ is sampled from
some proposed distribution. Further iterations are received with weights and are
perturbed by a perturbation kernel. If the proposed distribution is larger than 0, the
algorithm will simulate a candidate data set and compare it to the data, accepting or
discarding the particle received from the comparison. When a particle is accepted, it
is given a weight, which is 1 on the first iteration of the tolerance level sequence. On
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the following iterations, the weights are calculated by dividing the proposal distribu-
tion with the sum of the former weights multiplied by the perturbation kernels used
in step 3. This process is iterated until the sufficient amount of particles is reached
and once the number of particles equals to N , a softmax normalization is done for
the weights and the tolerance level is decreased. After this the process of creating a
posterior distribution begins anew with the decreased tolerance level.

The behaviour of the ABC-SMC algorithm is linked to the sequence of tolerance
levels and perturbation kernels. Small decreases between the tolerance levels ϵt−1 >

ϵt will guarantee more particles to be accepted between iterations, but the process
overall will need then more iteration to reach convergence. A longer sequence of
intermediate posterior distributions will also increase the time needed to complete
the algorithm, since with every new tolerance level, a new intermediate distribution
is created. On the other hand, larger gaps between the tolerance levels result in lesser
amounts of overall simulation, but with more discarded particles.

Considering the selection of the tolerance levels, Simola et al. (2020) explain that
there are three primary ways of determining the tolerance sequence for ABC-SMC,
which are to fix the values in advance, adaptively select a tolerance level ϵt based
on a quantile of {d (J )t−1}

N
J=1, where d is the distances of the accepted particles from

iteration t − 1 and to adaptively select ϵt based on some quantile of the effective
sample size values.

Selecting the tolerance sequence from a predetermined quantile can lead to the
proposal particle sampling getting stuck in local modes. Thus, the tolerance levels
have not only effect on the speed at which the algorithm functions, but to the con-
vergence of the posterior. Silk et al. (2013) suggest using the adaptive selection of
the tolerance sequence at every iteration. This is done through estimation of an op-
timal value on the threshold-acceptance rate curve (TAR curve). The method then
balances the shrinkage of the tolerance level in relation to the acceptance rate. The
idea is to select a value at the elbow of the TAR curve so that a vast majority of the
proposed values will be rejected. This approach guarantees the method to converge
to the real posterior. The calculation then requires the estimation of the TAR curve
in each iteration of the algorithm.

The perturbation kernel for ABC-SMC is an important part of the process. In
each intermediate distribution, a weighed sample of parameter vectors are chosen.
In the first iteration, uniform weights are accepted, since there are no previous distri-
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butions to calculate the weights from. Successive distributions are then constructed
through the sampling of parameters from the previous population and perturbing
them through some kernel function, regarded here as perturbation kernel K Filippi
et al (2012). In Machine learning, kernel trick is used to set a linear classifier for non-
linear problems. In doing so, linearly inseparable data is transformed into linearly
separable versions.

Often the kernel Kt can be chosen from a random walk process, either Gaussian
or Uniform. In a simple random walk process, we could have an observation x
to which we add a random effect moving the observation towards some direction,
afterwards we can introduce another random effect to this point and so on, until we
decide to stop the process. The resulting trajectory seems to wander randomly, but is
limited to which distribution the random walk process follows. We can utilise such a
process as our perturbation kernel. This adds some random mixturing components
to our samples perturbing them slightly. A perturbation kernel with a large variance
can prevent the algorithm from becoming stuck in a low probability area, but it can
also lead to the algorithm rejecting a lot of the proposed particles, which in turn
makes the process inefficient.

An advantage of the ABC-SMC in comparison to ABC-MCMC is that the par-
ticles are uncorrelated. This is due to the additional mixture component added by
the perturbation kernel. The accepted particles on the first error threshold level
are sampled and carried to the next intermediate level and perturbed, thus breaking
the immediate dependancy of the former level and thusly the question for a burn-in
period need not be considered.

One of the necessary steps for any ABC algorithm is to determine, when the
algorithm should be stopped. In the earlier methods of ABC-Rejection and ABC-
MCMC the solution was to stop the algorithm when the predetermined number of
particles was accepted. In the sequential version, there is also the option of stopping
the algorithm whenever the tolerance level decreases below a desired level, leaving
the number of accepted particles more open. If ABC-SMC algorithm follows the
same option as the previously introduced algorithms, there may be the risk of un-
necessary iteration and thus increasing time consumption. Once the posterior sta-
bilises and convergence is reached, further reduction to the tolerance level does not
substantially improve the approximation of the posterior. The optimal tolerance
level is chosen by the user, Simola et al. (2020).
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3 EMPIRICAL DATA ANALYSIS

3.1 Data Description

The data used in this thesis consists of the daily updates of COVID-19 statistics up-
held by the New York Times. The data describes daily cumulative infections and
deaths related to the pathogen by each county in the United States. Along this,
there is information on population size and population density, both received from
US census bureau (https://covid19.census.gov/), and poverty percent, received from
Economic Research Service (https://www.ers.usda.gov/).

The first incidence of COVID-19 in the data is dated to 21st of January 2020, in
Snohomish County, Washington. The last date for all the cumulative cases in the
data is for 23rd of May 2021, which is the date the information was exported from
New York Times. This means that the duration of the pandemic, from the first inci-
dent of the virus, is 489 days. The first death related to COVID-19 was recorded on
29th of February 2020, in King County, Washington. The highest accumulation of
incidents for COVID-19 cases was in Los Angeles, California, where there accumu-
lated roughly 1.24 million cases. The highest cumulative figure for deaths related to
COVID-19 was in New York City, with the number reaching over 33,000.

For the accumulation of cases of COVID-19 and the deaths related to it, the result-
ing time series can be seen as well as histograms with density plots in figure 3.1. In
the figure, we can see that the cumulative graphs have a sharp increase after October
of 2020 for infections and in November 2020 for deaths. The cumulative incidence
for COVID-19 cases reaches to over 30 million, whereas the cumulative deaths seem
to come close to 600,000 as of May 2021. The ending points in the data, and as seen
in the graph, are 32,849,985 infections and 586,031 deceased.

23



Figure 3.1 The cumulative cases for COVID-19 infections and deaths related to the virus from January
2020 to May 2021, with their respective histograms with density lines.

The probability density histogram shows that the data does not seem to be nor-
mally distributed, rather having tops at both ends of the distributions and a concave
region around the middle. One possible explanation for this is the phenomenon that
during the initial wave of COVID-19, the infection and death rates were low, due to
the virus not being as widespread and thusly resulting in lower numbers, and after
a certain period of reaching over the entire country, the virus spread much more
rapidly, thus giving a sharp rise to the infection numbers and causing many days of
high incidence rates.

Daily infections for the spread of COVID-19 can be seen in figure 3.2. We can
see the corresponding phenomenon in the daily cases as with the cumulative cases,
seeing a sharp rise to both after October. The maximum values seem to be reached
around December 2020 and January 2021 for daily infections and around February
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2021 for deaths.

Figure 3.2 Daily infections and deaths related to COVID-19 from January 2020 to May 2021.

Maximum for daily infections was 297,799 cases and 5,455 for deaths. The av-
erages for the same daily values are 67,177.88 (s d = 64,293.87) for infections and
1198.43 (s d = 1011.05) for deaths. From the figure, it is possible to see that both
began their acceleration roughly in March. After 60 days from the first recorded in-
stance of COVID-19 infection, the overall infections reached over 20,000 cases per
week, which is 5 cases per 100,000 people. This reaches over the official baseline
limit for overall infections in Finland, and turns into acceleration phase. Before this,
on the first 46 dates, the daily incidences do not surpass the limit of 100 cases and
only on the 5 final days, the incidence passes 1000 cases per day.

The population density was recorded as a measure of people per square kilome-
tres. The highest population density was in New York City, having 27,819.805 peo-
ple per square kilometres and the lowest was for Loving County, Texas, having 0.059
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people/km2. The visualization of COVID-19 cases can be seen in figure 3.3. In the
figure, total amount of COVID-19 cases is represented as a grayscale map of every

Figure 3.3 Overall infections of COVID-19 in every continental state by May 2021.

state. The state of California seems to be a relative hotspot for the infections. Sur-
prisingly, the infections are much lower in the surrounding states. Other states, with
relatively large amount of cases are Texas, Florida and New York. The states at the
western side of midwestern region, North Dakota and South Dakota and Nebraska,
and the states on the northeastern side of western area, which include Montana,
Wyoming and Idaho, seem to have quite few cases. Another area, where the infec-
tions are relatively low, includes the states at the end of the northeastern region,
which are Maine, New Hampshire and Vermont.

The visualization of the amount of infected individuals relative to the population
of each state can be seen in figure 3.4. In comparison to figure 3.3, the relatively
low infection numbers of the western side of the midwestern region, seems to have
quite high infection percentages. North Dakota and South Dakota seem to have
the highest infection percentage, whereas the northwestern and northeastern end of
United States seem to have the lowest infection percentages. It seems from the figure,
that the state of Vermont has the lowest infection percentage of all of the continental
states.

The infection counts of each individual continental county in the US can be seen
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Figure 3.4 Infection percentage of COVID-19 in every continental state by May 2021.

in figure 3.5. In the grayscale map of the counties, it is clear that the most amount of
infections are located in the counties of California and Arizona. There are relatively
high infection counts in some counties of Texas, the southern counties of Florida,
the state of Illinois at the shore of lake Michigan and the New York City.

Figure 3.5 Overall infections of COVID-19 in every county by May 2021.
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For the global feature inspection, the data was also divided into five different re-
gions by geography, dividing the country to Northeast, Southeast, Midwest, Southwest
and West regions. The northeastern region covers the least of the country, but in-
cludes multiple smaller states inside it. On the other hand, the western region covers
the largest amount of land and all of the states inside seem relatively large in compar-
ison to the eastern areas of the US. The southwest region has the least states, totalling
at four, but covers a relatively large area at the southern border of the US.

Northeast Southeast Midwest Southwest West

Connecticut Alabama Illinois Arizona Caliornia

Delaware Arkansas Indiana New Mexico Colorado

Maine District of Columbia Iowa Oklahoma Idaho

Maryland Florida Kansas Texas Montana

Massachusetts Georgia Michigan Nevada

New Hampshire Kentucky Minnesota Oregon

New Jersey Louisiana Missouri Utah

New York Mississippi Nebraska Washington

Pennsylvania North Carolina North Dakota Wyoming

Rhode Island South Carolina Ohio

Vermont Tennessee South Dakota

Virginia Wisconsin

West Virginia
Table 3.1 Continental US regions and the names of states included in each region.

The division of each state into a specific region can be seen in table 3.1. In the
table, we can see that the southeast region has the most states inside it, whilst the
southwest has the least. Overall, the states in eastern US have smaller counties inside,
while the west has fewer, but larger counties. This naturally results in larger popula-
tion density in the eastern regions and lower in the west. The coastal regions tend to
be more populated than inland states and the western US has much more arid areas,
which usually have lower populations than areas with easier access to water. This is
also evident in the population densities of these regions, where the mean population
densities are shown in table 3.2. Interestingly, there is also the largest amount of
different population densities in these regions, with the northeastern region having
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a standard deviation of 2301.14 and the western region having a standard deviation
of 408.60. These large standard deviations may be explained with grand cities. Both,
the northeastern and the western region have grand hot-spot cities, New York City
and Los Angeles, which adds skewness and variation to the population density.

Region Population Density (sd) Poverty Percent (sd)

Northeast 528.76 (2301.14) 11.38 (3.75)

Southeast 74.80 (226.14) 17.60 (6.32)

Midwest 49.02 (150.92) 12.17 (4.48)

Southwest 37.75 (114.28) 16.13 (5.11)

West 71.85 (408.60) 12.61 (4.36)
Table 3.2 Mean population densities and poverty percent for each US region with standard deviations

(sd).

The poverty percent was assessed as population in a county, whose income lev-
els are below the poverty line. The lowest poverty percent was for the northeast-
ern region with 11.38% and the highest for southeast region, with the average being
17.60%. The highest standard deviation (sd) was also in the southeast region, with sd
being 6.32%. This would imply that there is the most heterogeneity in that region
in regards of financial income levels. The coastal and northern regions overall seem
to have the least amount of poverty and the southern regions the highest poverty
rates. Poverty percent was not used in the modelling, since it never had significance
in the preliminary testing for the models.

3.2 Spatial Autocorrelation

To assess the general autocorrelation in the data, Moran’s and Geary’s statistics were
taken over three different levels of the United States. The first two sectors were state
specific, in which the spatial autocorrelation was measured, when the areal units
were states, and county specific, in which the units were counties. The final level was
county level, which took the measurements from each continental state separately
on county level. This approach aimed to give more freedom to local differences
in the spread of the COVID-19 virus and to help spot these differences, instead of
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remaining on a national county wide perspective.
On national county specific level, Moran’s I was 0.2946 (E(I ) = −0.0003), with

p-value less than 2.2e−16 and thus significant. Geary’s C was 0.7704 (E(C ) = 1.0),
p-value 0.0029 and significant (p < 0.01). The inference from both of these measures
would suggest the existence of spatial autocorrelation. In the state specific analysis,
Moran’s I was 0.0354 (E(I ) = −0.0208) and p = 0.3193, significantly lowering the
amount of autocorrelation detected and making it not significant. On the other
hand, Geary’s C was 0.7189 (E(C ) = 1.0) and p = 0.0328, thus significant.

For the separate inspection of each state, some states had to be dropped out from
the material. For example, the District of Columbia cannot be considered indepen-
dently, since it not an official state, but the capital. DC does not have other counties
inside its border and results for Moran’s or Geary’s statistics cannot be achieved sep-
arately from other states. The state of Delaware suffers from the same issue, having
three counties, only one of which has two adjacent counties. Since the analysis for
autocorrelation is made with k-nearest neighbour method, where k = 2, it is impos-
sible to determine two nearest neighbours for the two end counties of the state of
Delaware, which in turn makes it impossible to calculate Moran’s or Geary’s statis-
tics. Other states, such as Alaska, Hawaii, Virgin Islands and Puerto Rico were also
dropped for this same reason, limiting the material to the continental states.

For the separate state analysis, the complete autocorrelation structure for each
state is reported in the appendix section. The states, which both, Moran’s and Geary’s
statistics, gave a significant value under p < 0.01, were Alabama, Arkansas, Col-
orado, Georgia, Indiana, Maine, Massachusetts Michigan, Minnesota, Missouri, New Jer-
sey, Ohio, Oregon, Pennsylvania, Texas, Virginia and Washington. More importantly,
the individual inspection shows that when both measures are taken into account, the
pattern of significant autocorrelated states is not indicating a distinct cluster.

3.3 Spatial Regression Modelling

The spatial regression was conducted for the three different areal units, two of which
were on the national level. These two national levels were county and state specific.
For the final analysis, each state was modelled separately. The regions described in
table 3.1 were used as a trend for the models.
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3.3.1 County Specific Analysis

On a national level the spatial regression model used population size and population
density as continuous and the regions as categorical coefficients. The overall SAR
model was

Zi = ρ×
∑︁

j∈Ni
Z j

|Ni |
+β1× population+β2× population density

+β3× region+ εi , εi ∼N (0,σ2I ),

where Zi represents an observation in a geographical location and Z j represents the
surrounding locations. |Ni | represents the amount of neighbour the location i has
and Ni is the set of neighbouring locations. ρ in this model is the autoregressive
correlation coefficient between the neighbouring units. The βi describe regression
coefficients for population, population density and the effect of different regions.
The results from this model found the coefficient for population to be 0.1027 and
8.7434 for population density. The regional coefficients were −5692.30 for north-
east,−411.30 for southeast,−245.72 for midwest, 403.61 for southwest and−2480.2
for west. Most of the coefficients were significant on p < 0.001 level. The signif-
icance level for southeast, midwest and southwest regions was p > 0.05, thus non-
significant. The lowest p-value for these regions was for the southeast region for
p = 0.4029. The coastal regions for northeast and west were both significant and
surprisingly, their effect was a negative. This means that the only significant trend
was found in the west and northeast regions and the inner areas of the country did
not have significance for the effect of region. The CAR model is similar, as presented
in chapter 2.3.1 so that we get Zi , given their surrounding values Z j . The resulting
coefficients for continuous variables were 0.1030 for population and 8.3303 for pop-
ulation density. For the regional coefficient, the values were−5072.10 for northeast,
−474.08 for southeast, −302.29 for midwest, 295.81 for southwest and −2414.2 for
west. The same coefficients were significant in the CAR model as in the SAR model,
with only the effect of southeast, midwest and southwest regions not being signifi-
cant. The Nagelkerke pseudo R2 reached over 0.80 for both SAR and CAR models,
SAR being 0.8310 and CAR being 0.8312. This means that the CAR model explained
the variance in the data slightly better than the SAR model. The AIC was 68,507 for
the SAR model and 68,504 for CAR. The fitted values for each county from both,
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SAR and CAR models, can be seen in figure 3.6. The resulting patterns for infec-

Figure 3.6 Grayscale map of fitted infection values for each county in the US from SAR and CAR models.

tions seem to be similar to the observed values. The middle and northern sections of
the country have more counties with fewer infections in them. The areas of western
coast and southern border, where the states of California and Arizona are located,
have counties with more infections in the results from both models, which also cor-
responds with the observed infection counts. The autocorrelation of the residuals

from the comparison of fitted and observed values was also inspected. This gives
more insight on the goodness of fit for the models. For the national level, consider-
ing the counties as units, Moran’s I was 0.0012, (E(I ) =−0.0003) and Geary’s C was
(1.1949, (E(C ) = 1) for the SAR model. The p-values were p = 0.4617 for Moran’s
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Figure 3.7 Map of residuals for each county from SAR and CAR models.

I and p = 0.9826 for Geary’s C, respectively. Since both of the p-values were not
significant, it can be said that the residuals did not have sufficient autocorrelation
and thus the model formed a relatively good fit. For the CAR model, Moran’s I was
0.0996, (E(I ) =−0.0003) and Geary’s C was (1.0964, (E(C ) = 1). The p-values for
these measures were p < 0.001 for Moran’s I and p = 0.8581 for Geary’s C . Since
Moran’s I was significant, it signals that there was autocorrelation left in the residu-
als. This then means that the SAR model performed relatively better than the CAR
model in modelling the infections on the national level, when the units are counties.
Interestingly, the results from Moran’s I and Geary’s C differ greatly for the CAR
model.

The residuals from the fitting process were plotted to inspect the pattern of the
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residuals. The results from this plot are in figure 3.7. There seems to be some areas,
where the residuals are distinctly lower than elsewhere. These areas are in the middle
of the country, spanning from north to south. The western areas of the US seem to
have relatively many areas, where the residuals were high. Some western coastal
areas seem to have negative residual values as well. The residuals in the northeastern
region seem to be relatively high as well.

3.3.2 State Specific Analysis

For the national state specific SAR and CAR models, the coefficients for SAR were
0.1008 for population and 5.5439 for population density. The coefficients for regions
were −7493.10 for northeast, 35,382 for southeast, 21,218 for midwest, 61,029 for
southwest and −63,645 for west. The coefficient for population was significant for
p < 0.001, while none of the other coefficients were significant. This means that
on the state level, the only significant factor for the infections was the population in
the states. The coefficients for CAR model were 0.1002 for population and−1.4428
for population density. The p-value for population was significant (p < 0.001) and
population density was not significant. None of the coefficients for regions were
significant for the CAR model, the lowest being p = 0.0684 for southwest region.
Nagelkerke R2 was 0.9856 for SAR and 0.9838 for the CAR model, respectively.
Interestingly, the SAR model explained the variance in the data better than the CAR
model did. The AIC was 1273.40 for the SAR model and 1279.20 for CAR.

The fitted estimates are shown in figure 3.8 respectively for SAR and CAR mod-
els. Both SAR and CAR models produced similar results, with some differences
from each other. The highest infection numbers seem to appear in California, Texas,
Florida and New York, while the lowest were in the northern regions, including the
states of North Dakota and South Dakota, Nebraska, Idaho, Wyoming from inner
parts of the country and Maine, New Hampshire and Vermont in the northeast
coastal area.

The plot for the residuals of the state specific model can be seen in figure 3.9.
Based on the figure, there seems to be a similar area of lower residuals in the middle
of the US as was with the county specific analysis. The western coastal states seem
to have strongly negative residuals and the inland states have positive residuals. The
northeastern region has some negative values around Virginia and North Carolina.
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Figure 3.8 Grayscale map of fitted infection values for each state from SAR and CAR models.

The inspection for autocorrelation in the residuals for the state specific mod-
els produced somewhat similar results to those from the county specific analysis.
Moran’s I was 0.0654, (E(I ) =−0.0208) and Geary’s C was 0.8272, (E(C ) = 1) for
the SAR model. The p-values for these measures were p = 0.2467 and p = 0.1121.
The residuals did not have sufficient autocorrelation and thus the model gave a rel-
atively good fit. For the CAR model, Moran’s I was 0.2551, (E(I ) = −0.0208) and
Geary’s C was 0.6296, (E(C ) = 1). The respective p-values for these measures were
p = 0.0146 and p = 0.0042. Both, Moran’s I and Geary’s C are significant, which
means that there was autocorrelation in the residuals for the CAR model. It can
be concluded that the SAR model formed a better fit for the data in the state spe-
cific analysis as well. There does not seem to be difference for the interpretation
between the county specific and state specific models for the national level. In both
approaches, the residuals from the CAR model seemed to have some autocorrelation,
while no significant autocorrelation for either of the SAR models was detected.
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Figure 3.9 Map of residual for each state from SAR and CAR models.

As stated in the introduction, Mollalo et al. (2020) aimed to model the spread
of COVID-19 with GWR, which yielded a result of R2 = 68.1 for the US. On a
national level, the SAR and CAR models, when considering the counties as units,
covered over 80% of the variability, which seems somewhat satisfactory, considering
the model held only population size and population density as continuous indepen-
dent variables, and regional categories as a categorical variable. Moran’s and Geary’s
statistics were not significant for the residuals for the SAR model and only Geary’s
C was significant for the CAR model. The states as units approach produced simi-
lar results. The overall Nagelkerke R2 was 0.99 for SAR and 0.98 for CAR models,
which suggests a very good fit. However, in the residual inspection of the models it
was noticed that Geary’s C was significant with p < 0.05 for the CAR model. The
SAR model formed a better fit for the data in both national levels.
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3.3.3 Analysis For Each State

The full table for the regression coefficients for counties of each state received from
SAR and CAR models, is presented in the appendix section. The maximum positive
coefficient for population in the SAR model was for Rhode Island (population =
0.1626 and the minimum was for Vermont (population = 0.0258). The maximum
for population density was for Arizona (population density = 760.4765) and min-
imum for New Mexico (population density = −121.3584). The maximum coeffi-
cient for population size in the CAR model was for Florida, the value being 0.1613
and the minimum for Vermont 0.0246. The maximum-minimum values for popu-
lation density in the CAR models was 99.9058 for Arizona and −67.4166 for New
Mexico. There seems to be some differences in the effect sizes for the coefficients
from the two models.

There seems to be a greater amount of variation for the effect of population den-
sity, when compared to population size. The effect seems to behave very differ-
ently depending on the region, while the coefficient for population stays more or
less the same throughout the data. The coefficients reported here are only for the
ones, where p < 0.05. Non-significant coefficients were found for example for Col-
orado and Kansas, where the coefficients for the effect of population density were
both above 0.1. Altogether, the coefficient for population was found to be significant
in 46 states in both SAR and CAR models, while population density was significant
in 29 SAR and 27 CAR models.

The Nagelkerke pseudo R2 was varied between the models for all states. The
median for SAR models’ pseudo R2 was 0.9717, while the minimum and maximum
values were 0.6002 and 0.9995 respectively. For CAR models, the median for pseudo
R2 was 0.9809 and the minimum-maximum values were 0.6144 and 0.9995. There is
some variety in how much variance is explained by the spatial regression models, but
the lower-end seems to include mainly outliers, which the models could not cover
properly. The median is very high for both models, which suggests that the models
generally cover the variations in the states rather accurately.
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3.4 ABC Modelling

ABC methods are frequently used in studies that involve creating data by pseudo-
random sampling, also known as simulation studies. Often in these studies, the aim
is to evaluate the behaviour of a statistical model, when mathematical proof is dif-
ficult or impossible to find. ABC methods are used similarly, but the aim of the
simulation is to study the behaviour of some variable, the behaviour of which is
difficult or impossible to calculate. An example of this is shown in a blog post by
Rasmus Bååth, where the ABC-Rejection algorithm was used to give an estimation
of the total amount of socks in the laundry, given a sample of 11 discreet socks. The
results from this analysis gave accurate results, the estimated total amount of socks
being 44, when the total amount of socks in the data was 45. The full information
for this study is given in the appendix A.

In order to model the incidence and to compare the results, it is necessary to
model the current circumstances based on a time window from the start of the pan-
demic. As stated in chapter 3.1, the incidence rate for the infection numbers did
not begin climbing until after 60 days from the first registered case of COVID-19
had passed. These first 60 days of low activity can skew the interpretation for the
analysis. Thus, it is reasonable to not include the first 60 days of the data, when
the pandemic was not yet in its acceleration phase. This assumption is strength-
ened by inspecting the infection rate from the first 100 days. The average of in-
fections for the full data from the first 100 days is 10,417.84 (s d = 13,362.16) and
25,596.42 (s d = 8146.873) for the data from the last 40 days. As expected, the mean
for daily infections increased greatly after the exclusion, with the size being nearly
2.5 times larger. The standard deviation also decreased by over 5000, but the change
is not as drastic as with the mean. The length of the original data spans to 489 days
and after the exclusion the length is 429 days. The new starting point for the analysis
will then be the starting point of the acceleration phase, which is the 61st day from
the first case of COVID-19 in January 2020.

When the infection rate is divided by the population of the US, we get 0.000032
with the full data from the first 100 days, and 0.000078 from the 61st to 100 days.
This means that based on the first 100 days, from 0.0032% to 0.0078% of the entire
population of the US gets infected daily. If the infection rate is then divided by
the infection percent, we get the original US population again, meaning 10,417.84

0.000032 =

38



327,409,635. When the estimated amount of infections is divided by the computed
percentage of the total population, we get a figure representing the US population.
Formally, we set

infection rate
infection percentage

= population.

This value can be used to measure, how close is the computed population to the
true population of US. The reason for this is that at 100 days, there is no further
comparison point for the daily infections and thus an estimated average infection
rate is not a viable estimate to compare to. The total population of US is known
however, which is directly linked to the infection rate and this makes it suitable for
comparing the estimates from the ABC analysis. When the distance between the
true US population and the estimated population is acceptably small, the estimate
for infection rate can be accepted to the posterior distribution. Thus, the more likely
an estimate is, the more likely it will repeat in the simulations, thus accumulating a
higher point in the posterior distribution.

When the daily infection rate is multiplied by days, the resulting values should
have similarity with the number of infected on that specific day. Therefore, when
the posterior distribution for estimated daily infections is then multiplied by days,
a distribution of possible infections at that time is calculated. This can be then com-
pared to the observed values at that date. Together, the posterior distribution of
infection rates and the predictions based on these values produce a window of pos-
sible outcomes for the spread of COVID-19, which in turn functions as a possible
threat assessment. The next sections will focus on these estimations and the results
produced by the different ABC methods.

3.4.1 Infection Rate Approximation

In this thesis, the ABC methods were used as a way to predict the future spread of
SARS-CoV-2 with limited amount of data from the early days of the pandemic. The
full aim was not to accurately state, which prediction was going to happen, but to
offer an array of possible infection rates based on the early data in order to provide a
threat analysis fo the spread of the disease. Different ABC methods were then used
for creating these estimates.

To acquire candidate samples for average daily infections, a Gamma distribution
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was used. The variance for the analysis was not limited to that of the data from
the 61st to 100 days, since it would introduce too little variability for the possible
daily infections. Therefore, the variance was multiplied by 2.5. The proposal esti-
mates followed a Gamma(α,β) distribution, where α and β were calculated with
the mean from the data from the last 40 days and the multiplied variance. This pro-
posal distribution was chosen, because it gave only positive values as estimates for
the infection rate. Since there is no knowledge of the observed infection percentage
after the first 100 days, the infection percentage has to be estimated. Each infection
percentage was sampled from Be t a(4,22000) distribution. This distribution pro-
vides samples, where the observed infection percentage of 0.000032 or 0.000078 are
below the 1st quarter of samples, signifying that the daily percentage from the first
100 days assumed to be relatively small in the overall distribution of infection per-
centage. The upper limits of the percentage sampling distribution produce suggested
infection percentages of roughly 10 times the observed percentage from the first 100
days, which offer more variability to the estimation of the possible outcomes for
infection rates.

The sequential Monte Carlo version of ABC focused on calculating the posterior
distribution of infection rates by forming intermediate posterior distributions, the
limits of which are shrunk throughout each iteration loop to get a more accurate
representation of the posterior distribution. The user chooses each error tolerance
threshold and the sequence chosen for this thesis was ϵ ∈ [1000000,500000,100000].
These error thresholds describe the acceptable limit for the difference between the
estimated population and the population of United States. The perturbation kernel
K followed the U ni f o r m distribution with K ∼ U (0.85,1.25). The last threshold
of 100,000 was the limit used for each of the ABC algorithm variants. This means
that if the estimated population differs from the real US population by 100,000 or
less, we can accept the proposed infection average to the posterior distribution.

The ABC-Rejection algorithm needed 59,514,392 iterations to reach 10,000 par-
ticles. The overall mean for the ABC-Rejection algorithm was 34,833 cases per day,
which corresponds to an estimation of 14,943,363 cases at 429 days. The maximum
value was 95,407 which, when multiplied by 429 days, produced the closest estimate
to the observed infection size of 32,832,058 at 429 days from the ABC-Rejection ap-
proach. The posterior distribution of infection rates can be seen in figure 3.10. In
the plot, the vertical red lines depict the observed average of daily infections at dif-
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ferent days, which are indicated with text. The black curve depicts the posterior dis-
tributions of the estimates produced by the ABC-Rejection approach. In the case of
ABC-Rejection algorithm, the peak of the distribution is quite far from the observed
infection rate at 429 days, which would suggest that the ABC-Rejection algorithm
does not give accurate predictions that far into the future, even though the observed
infection rate is below the maximum value. The kurtosis of the posterior distribu-
tion seems quite high in comparison to the distributions of the other approaches and
with the least variability. The infection rate at 429 days situatea almost to the tail end
of the distribution on the right-hand side. On the other hand, the ABC-Rejection
approach could predict the infection rate at 100, 200 and 250 days relatively well,
with their respective vertical lines situating well inside the posterior distribution of
infection rates. The overall time spent on the ABC-Rejection analysis took roughly
7 minutes to produce the posterior distribution.

The estimates given by ABC-MCMC are more accurate in comparison with the
results from ABC-Rejection, the mean being 66,121, which is closer to the observed
infection rate than in the ABC-Rejection algorithm. The observed amount of in-
fected at 429 days is closer at 3rd quarter of the posterior distribution at an estimated
34,460,941 infected in 429 days, with the maximum reaching over 73 million. The
estimate at 34 million is roughly only 2 million off from the observed amount of
infected at 429 days. The posterior distribution for the estimates of infection rates,
given by the ABC-MCMC approach can be seen in figure 3.11. In the figure, it is pos-
sible to see that unlike in the rejection approach, the observed infection rate at 429
days is much further inside the distribution of daily infection rate estimates. How-
ever, the tail of the ABC-MCMC on the right-hand side seems to continue much
further after the elbow of the curve. This does not pose great problems, because in
most cases, the wider tails have relatively low densities. It is also evident in the figure
that the estimates of the ABC-MCMC approach gave the most accurate representa-
tion of the three approaches.

For the other infection rates, ABC-MCMC seems to provide different results.
The infection rate at 250 days seems to be little behind the peak of the posterior
distribution. The lower infection rate estimates do not seem all that likely anymore
and the general interpretation from the ABC-MCMC posterior distribution is that
the original infection rate at roughly 25,000 could be only the smallest infection rates,
where the average infection rates can reach. The ABC-MCMC approach was more
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Figure 3.10 The distribution of estimates from ABC-Rejection algorithm for infections rates for COVID-
19. The red vertical lines depict the average of daily infections at different points from the
start of the acceleration phase.

time-effective, when compared to the other approaches and produced the posterior
distribution in roughly 4 minutes. The iterations needed to reach 10,000 accepted
estimates for infection rates was the second lowest, requiring 30,305,687 iterations.

The differences between the estimates of ABC-Rejection and ABC-MCMC re-
flect the moving sampling point of the MCMC approach. This caused the mean of
the infection rates to be much further than in the results of the ABC-Rejection al-
gorithm. Both of the algorithms have the same starting point, but since the MCMC
has the freedom to shift the sampling point for infection rate, it will move towards an
area of higher acceptance rate. The results of each approach can also be seen in table
3.3, in which the posterior distribution characteristics are described for the results
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Figure 3.11 The distribution of estimates from ABC-MCMC algorithm for infections rates for COVID-19.
The red vertical lines depict the average of daily infections at different points from the start
of the acceleration phase.

from each ABC approach along with the iterations the approach needed to achieve
10,000 accepted estimates. Under the summaries of the infection rates, there is also
the prediction for infected people at 429 days, which was calculated by multiplying
the infection rate by 429 days.

The estimates from ABC-SMC approach were closer to the observed infection
rate at 429 days than those from ABC-Rejection algorithm and relatively similar to
those from ABC-MCMC. The mean for ABC-SMC was 54,037, which corresponded
to 23,181,899 cases at 429 days. The 3rd quarter estimate of 64,054 was much closer
to the true size of 76,531.60, but was still off by 12,477.60. This produced an esti-
mated value of 27,479,166 infections at 429 days, which is off from the real value by
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Measurement ABC-Rejection ABC-MCMC ABC-SMC

Iterations 59,514,392 30,305,687 28,012,107
Min

(at 429 days)
6230

2,672,581
6540

2,805,456
5875

2,520,315
Max

(at 429 days)
95,407

40,929,405
171,049

73,380,102
134,199

57,571,405
Mean

(at 429 days)
34,833

14,943,363
66,121

28,365,925
54,037

23,181,899
1st Quarter
(at 429 days)

26,205
11,241,868

49,635
21,293,488

42,600
18,275,569

Median
(at 429 days)

33,572
14,402,180

63,905
27,415,084

52,805
22,653,139

3rd Quarter
(at 429 days)

42,107
18,064,048

80,329
34,460,941

64,054
27,479,166

Table 3.3 Summaries for posterior distributions of infection rates from ABC-Rejection, ABC-MCMC and
ABC-SMC methods. The value below each estimate depicts the estimated amount of infected
at 429 days, which were obtained by multiplying the estimate for infection rates by 429 days.

roughly 5 million. The ABC-SMC needed the least amount of iteration to get this
estimate as well, requiring 28,012,107 iterations for 10,000 particles. This result is
however, only for the final iteration level, where the tolerance threshold was 100,000
and with earlier intermediate levels having already been estimated, which means that
the total amount of iteration is much higher, which is also reflected on the time spent
on producing the posterior distribution. The ABC-SMC algorithm needed the most
amount of time for the iterations, spending roughly 12 hours on the process. This
is vastly more time-consuming in comparison to the earlier methods. The increase
in time deficiency may be explained by the combination of multiple factors. Firstly,
the ABC-SMC developed two other intermediate posterior distributions before the
final results. Secondly, the approach used weighed sampling from these previous dis-
tributions, which most likely skewed the amount of represented proposal particles.
Thirdly, the process of calculating new proposal infection rates required to calculate
new values for α andβ for the Gamma sampling distribution. All of these steps pro-
duce a more complex process than in ABC-Rejection and ABC-MCMC approaches,
which in turn makes the process less time efficient.

The observed infection rate at 429 days seems to be much closer to the centre of
the distribution in the ABC-SMC approach, when compared to the ABC-Rejection
approach. The estimates resulting in the same outcome seem to be much more
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Figure 3.12 The distribution of estimates from ABC-SMC algorithm for infections rates for COVID-19.
The red vertical lines depict the average of daily infections at different points from the start
of the acceleration phase.

common in the ABC-SMC approach and the observed infection rate seems much
more plausible. One notable difference between the results from ABC-Rejection and
ABC-MCMC approaches, is that while the ABC-SMC approach provided a wider
window for possible infection rate outcomes, the posterior distribution stayed rela-
tively condensed, having much shorter tails than in the posterior distribution of the
ABC-MCMC approach. The posterior distribution given by ABC-SMC can be seen
in figure 3.12.

From figures 3.10, 3.11 and 3.12, it is possible to deduce that at the minimum, in
the context of the information given at the first 100 days, using the models with the
prior expectations of the spread of the COVID-19, it would seem that the posterior
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distributions given by ABC-SMC and ABC-MCMC captured the observed daily in-
fection rate at 429 days as a plausible outcome. The observed rate at 429 days was
very near the 3rd quarter estimate of the ABC-MCMC and while the the observed
infection rate was outside the 3rd quarter of the ABC-SMC approach, it is still rela-
tively well inside the posterior distribution.

The results may be a merit of the ABC method family to expect more unlikely
developments for infection rates to occur. In figure 3.2, it was seen that there was
a sequence, where there were much more daily infections at and after October of
2020 and lasting until January 2021. This sequence most likely introduced temporal
skew into the average infections, which is also evident in the red vertical lines de-
picting these average infections at different points of time in the figures representing
the posterior distributions from the different ABC approaches. Before day 250, the
infection rates seem to be increasing at steady intervals, but there is a large gap after
the infection rate at 250 days. Incidentally, the period of higher daily infections be-
gun after 250 days. This period affected the average of the infections, which is why
the red vertical lines for 300 and 365 days are further in the distribution than for 429
days, when the period had passed. These higher averages are also present inside the
posterior distributions, which is why it can be argued that the ABC methods could
predict the possible period of higher infection rates, but found it less likely.

The basic method framework of ABC is flexible and offers a lot of room for var-
ious implementations and finetuning. One of the main merits of the ABC methods
is that they are easy to apply and modify for different applications. This is evident
from the different variants, which all have unique approaches to the approximation
process. This manageability and cost-effectiveness of the method makes its use ap-
pealing.

The simplest ABC method, ABC-Rejection, produced the most inaccurate re-
sults. This is most likely due to the most simplistic nature of the method, with the
mean of the distribution, from which the proposal particles are sampled, remaining
stationary. This may have contributed to the estimates of the distribution being rel-
atively small in comparison to the ones produced by ABC-MCMC and ABC-SMC.
The suggested maximum for the infection rate was 95,407, with the mean being
34,833 cases a day, which is not even half of the observed infection rate of 76,531.60
at 429 days. The density plot for the results of ABC-Rejection algorithm, as seen
in figure 3.10, show that the kurtosis of the posterior distribution is the steepest of

46



any of the results from the other ABC algorithm results. This result is also evident
in the relatively high number of iteration needed in order to reach 10,000 estimates.
The curve is very steep, with the lower-ends being areas of very low probability.
The highest estimate of the ABC-Rejection algorithm captures the observed infec-
tion rate at 429 days under the distribution of estimates, but the estimate is clearly at
the tail-end of the distribution, visually showing itself as almost flat on the y-axis. It
would seem from these results that while the ABC-Rejection algorithm did succeed
technically in having the observed infection rate at 429 days as a possible outcome
for the progress of the epidemic, the method provided a more limited estimate win-
dow of the possible outcomes for the infection rates, when compared to the results
from ABC-MCMC and ABC-SMC. The ABC-Rejection algorithm did however, suc-
cessfully capture the predictions for the average infections at 100, 200 and 250 days,
which in turn could suggest that the ABC-Rejection algorithm may be more suitable
in predicting outcomes for data sets with less variability.

ABC-MCMC provided much more accurate results than ABC-Rejection, having
the mean be 66,121 cases a day. This estimate is still 10,000 off from the observed
infection rate, but the estimate at 3rd quarter of the distribution seems to be quite
accurate. The observed daily infection rate at 429 days is well inside the posterior
distribution. This was also evident in figure 3.11. ABC-MCMC provided a much
wider range for the estimates, clearly showing the approach moving the proposal
particle sampling point towards an area of higher acceptance rate and thus approach-
ing the observed rate. Interestingly, the minimum value for ABC-MCMC is the
highest of all of the ABC variants. This also points to one of the drawbacks of the
ABC-MCMC. Since the starting points are similar with ABC-Rejection, depending
on the run of the ABC-MCMC, the estimate range will always vary and if the algo-
rithm happens to receive a couple of successful estimates from a lower probability
area, the algorithm moves its sampling point towards it, which temporarily traps it
to an area of lower acceptability. This is also evident in the relatively long tail of
the ABC-MCMC posterior distribution. This issue highlights the possibility for the
need of the burn-in period mentioned earlier in chapter 2.4.1 for the introduction
for ABC-MCMC. Since the method takes some time to gravitate towards the con-
vergence point, fluctuation in the estimates at the start of the algorithm cause some
increase in the range of the estimates. It is, however, a matter of debate, how many
of the estimates should be neglected, should the burn-in period be introduced. The
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estimates may very well be valid and excluding them could omit valuable estimates.
The interpretation of the density plot for the infection rate estimates given by ABC-
MCMC leave much more room for different outcomes for the spread of COVID-
19. The biggest difference between ABC-Rejection and ABC-MCMC is the kurtosis
between the two densities. The top of the distribution, given by ABC-MCMC, is
much lower and the range of the distribution is larger than the one given by ABC-
Rejection.

The ABC-SMC approach gave more similar results to ABC-MCMC than ABC-
Rejection, but with few notable differences. The 3rd quarter of estimates is as high
as 64,054, which in turn provides a prediction of 27,479,166 infections at 429 days,
which is much closer to the observed amount of infections than the estimates pro-
duced by ABC-Rejection approach were. From the density plots, it is discernible
that the curve of ABC-SMC posterior distribution is much more condensed, when
compared to the plot of the ABC-MCMC posterior distribution. This is most likely
due to the prior intermediate distributions of the ABC-SMC approach. Since the ap-
proach re-runs the particle assigning loops with diminishing acceptance thresholds,
it is possible to shake off parts of the ends of the distributions, which in turn provides
a sharper posterior distribution. In the context of the analysis of this thesis, the ends
of the distribution received much lower weights in sample selection in the interme-
diate distributions. Thus, the lower estimates were selected much more rarely than
their higher counterparts, resulting in the lower-ends of the posterior distribution
having only minimal representation, if not completely excluded. This is a property
missing entirely in the two other algorithms. One possibility to improve the accu-
racy of the ABC-SMC would be to add additional tolerance threshold levels for error.
This would result in additional intermediate posterior distributions, which in turn
would also quickly increase the time required to complete the run of the ABC-SMC
algorithm. However, the analysis used only 3 iterations for the algorithm, which is
a relatively small amount of intermediate posterior distributions.

There are reasons, why the results from the ABC approaches can be criticized,
one of them being a possibility for the models used to get the estimates not depicting
the spread of COVID-19 accurately. With limited data only from the first 100 days,
the expected curve of the spread of the epidemic may be very difficult to estimate.
Here, a Gamma distribution was used for sampling proposed infection rates and a
Be t a distribution was applied for sampling total infection percentage, which could
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have provided incorrect results. However, at 100 days, there is no further informa-
tion that will indicate accurately, which distribution would most accurately depict
the spread of the virus and therefore it is left for the user to decide the generative
model for the ABC method applied.

In addition to the models themselves, a point of criticism is towards the param-
eters inputted by the user. Parameters, such as the particle sampling point, the ac-
ceptance threshold for the error and the amount of accepted posterior estimates re-
quired, until the iteration is stopped, are set by the user and each can have effect on
the accuracy of the estimates.

Another point of criticism is towards the interpretation of the nature of the
spread of COVID-19. It is possible that the nature of the pandemic is erratic and
therefore unforeseeable, resulting in the more highball estimates of infection rates
also being rather low. Some of the open discussion online and in different news out-
lets concerning the pandemic in the US has created a belief that the COVID-19 has
spread with surprising vigour. There may be inaccuracy in the estimates, because the
scale of the spread of SARS-CoV-2 was unpredictable based on the 100 days. On the
other hand, it can be argued that the ABC-MCMC and ABC-SMC approaches gave
somewhat accurate results, since all of the infection rates at different time points
were inside the posterior distributions. The later time points after 300 days after
the period of high infection counts, the infection rates are not situated even at the
very tail-end of the distributions, making them seem plausible outcomes. It is not
yet known, where the final average of the daily infections will be at the end of the
COVID-19 pandemic, so the question for that average infection rate has to be left
somewhat open-ended.

3.4.2 Approximation With Uniform Distribution

The ABC analysis was also run with a noninformative proposal distribution for
comparison with the results from Gamma sampling distribution. In the analysis
the U ni f o r m distribution used the same mean for infections from the 61st to 100
days. The minimum and maximum values for the sampling range of the U ni f o r m
distribution were calculated by adding and reducing the doubled standard deviation
to the average infections. This limit was not enough for the ABC-Rejection algo-
rithm to cover the extent of the infections. The mean from the 61st to 100 days
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was 25,596.42 and the standard deviation, calculated from the variance multiplied
by 2.5, was 12,048.20. This limits the possible upper limit for proposed infection
rates to 25,596.42+ 2× 12,048.20 = 49,692.83, which is well below the observed
value of 76,531.60. This limit would have severely hindered the accurate approxima-
tion results. In order for the ABC-Rejection algorithm to be able to give reasonable
estimates for infection rates, the standard deviation was multiplied by 3 for the ABC-
Rejection algorithm. The standard deviation used for ABC-MCMC was calculated
from the original variance multiplied by 2.5. The comparative analysis was not done
with the ABC-SMC algorithm, since it took very long to form the posterior distri-
bution for infection rates. The results for the ABC-Rejection algorithm with a non-

Figure 3.13 The distribution of estimates from ABC-Rejection algorithm for infections rates for COVID-
19 using noninformative prior distribution. The red vertical lines depict the average of daily
infections at different points from the start of the acceleration phase.
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informative sampling distribution can be seen in the figure 3.13. With the enlarged
standard deviation, the ABC-Rejection algorithm produced better estimates for the
infection rate. The mean for the comparative analysis was 60,956, which is almost 2
times the estimate from the earlier 34,833. The 3rd quarter estimate for the infection
rate was 77,068, which very near the observed rate of 76,531.60. It is also noticeable
that the tail of the distribution on the right-hand side declines very quickly. This
is because of the maximum value achievable by the ABC-Rejection algorithm with
the updated standard deviation was 97885.65, which is very close to the maximum
accepted estimate of 97,884. The comparative analysis needed less iteration to get
10,000 accepted estimates, ending after 50,123,728 iterations. In the figure 3.14, the

Figure 3.14 The distribution of estimates from ABC-MCMC algorithm for infections rates for COVID-19
using noninformative prior distribution. The red vertical lines depict the average of daily
infections at different points from the start of the acceleration phase.
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peak of the distribution seems to be at around 60,000, after which the estimates be-
gin to lower. This is very different from the results of the previous ABC-Rejection
algorithm. The shape of the posterior distribution is distinctly different from the
previous posterior distribution for infection rates. It would seem that the noninfor-
mative proposal distribution, with a larger range for proposal values, produced more
accurate estimates than the original.

The results of the ABC-MCMC algorithm, with a noninformative proposal dis-
tribution, were closer to the values of the posterior distribution with a Be t a pro-
posal distribution. The mean for the ABC-MCMC was 57,462, when the original
was 66,121. The 3rd quarter estimate was 69,363, when the original was 80,329. The
comparative ABC-MCMC algorithm needed 30,559,687 iterations for 10,000 esti-
mates for infection rates, which is only 254,000 iterations more than the original.
The distribution of these estimates can be seen in the figure 3.14. The differences
between the figures 3.11 and 3.14 are not as distinct as with the rejection algorithm.
In the noninformative sampling distribution, the peak of the posterior distribution
seems to be earlier than in the previous one. The peak seems to be quite near the in-
fection rate at the 250 days, while the estimates for the later dates seem to be situated
lower in the distribution.
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4 DISCUSSION

In this thesis, the US COVID-19 data was explored, spatially modelled, and esti-
mated by using both frequentist spatial methods and Bayesian computational meth-
ods. Moran’s and Geary’s statistics showed significant spatial autocorrelation in the
areal data for COVID-19 infections. SAR and CAR models were used to model the
spatially autocorrelated data. The SAR model formed a more accurate representa-
tion for the infections, showing an association between population and population
density in the county specific and state specific analysis. The SAR model left no
spatial autocorrelation for the residuals, suggesting a good fit for the data. The vari-
ability covered by the models on the national level was 0.83 for the county specific
and 0.99 for the state specific SAR models according to Nagelkerke R2. These results
are most likely due to the more complex nature of the county specific analysis, in
which there were more data units than in the state specific analysis. For future analy-
ses, methods that provide mean squared error measures for models could be utilised.
These methods could give different useful insight on the modelling of the incidence
of COVID-19.

Approximate Bayesian computation methods were used to form a prediction for
the posterior distribution of the average infections for the spread of COVID-19 in
the United States. The aim was to use a small amount of data from the first 100 days
of the pandemic to form these posterior distributions for the infection rate. The
three ABC methods used, were ABC-Rejection, ABC-MCMC and ABC-SMC algo-
rithms. The results show that the ABC-Rejection algorithm gave the most inaccurate
results and the ABC-MCMC the most accurate. The results for the ABC-Rejection
algorithm did however improve, when an noninformative proposal distribution was
chosen for the infection rate estimates.

The downside to the ABC-MCMC was that the range of the posterior distribu-
tion was relatively large, compared to the other methods. The ABC-SMC worked
relatively well, but took a very long time to run, which made its use much less
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appealing. The ABC-MCMC and the ABC-SMC formed viable posterior distribu-
tions, where all the infection rates from different time points of the 429 days period
were inside the distributions and could have be plausible outcomes for the spread
of COVID-19, which means that the method can accurately give a threat assessment
for the spread of a pathogen. This information is valuable in the early stages of an
outbreak of a potentially harmful disease to help decide required actions to enact in
order to limit any harm caused by the pathogen as early as possible.

The time of COVID-19 pandemic has given unprecedented events, which were
mostly unforeseeable. It has been debated whether the precautions and reaction to
the onset of COVID-19 were adequate in the US, with many claiming that more
could have been done to discourage the spread of the disease. The United States it-
self is also a vast country with distinctly different geographical regions, with various
cultural circles and financial cells, which all produce diversity. Therefore, producing
a precise estimate for the incidence in such an environment could be seen to be disin-
genuous. There may be too much variability even in a certain region of the country
to produce a point estimate with a confidence interval for the spread of the disease.
It may also be that when a similar situation arises in the future, there is not enough
information to produce such estimates with enough reliable data. Data points may
be scattered to a few cases in few hotspots or be located in a single location entirely,
which creates difficulties in giving an estimate suitable for completely different areas.
ABC can be utilised in these situations to give a more flexible estimate, which could
share vital information for preliminary precautions.

Possible future study aspects would be to further develop the ABC methods and
study, whether some other features, such as regression-based algorithms would pro-
duce more viable estimates for infection rates. These models could potentially ac-
count for more elements, such as the decline of susceptible people for the disease. It
would also be valuable for these future studies to take into account the variants of
COVID-19 and how differently these variants behave in the models.
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A A SIMULATION STUDY FOR THE

ABC-REJECTION ALGORITHM
In a blog post Tiny Data, Approximate Bayesian Computation and the Socks of Karl
Broman by Rasmus Bååth, a researcher from Lund University Cognitive Science,
Sweden, the effectiveness of ABC methods are studied on a set of tiny data (link:
http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/ ). The
data consists of a tweet, made by Karl Broman, a statistician and a professor from
the University of Wisconsin-Madison. In his tweet, Karl Broman states That the 1st
11 socks in the laundry are each distinct suggests there are a lot more socks. Based on this
data, Bååth presents a study question Given the Tiny dataset of eleven unique socks,
how many socks does Karl Broman have in his laundry in total?

Bååth solves the problem by using Approximate Bayesian Computation (ABC)
methods. The process needs a few parameters, which weren_socks= total amount
of socks, n_picked = the number of socks going to be picked, n_pairs = total
amount of paired socks and n_odd= the amount of odd socks. The vector for socks
can be represented then as
socks <-rep(seq_len(n_pairs+n_odd),rep(c(2,1),c(n_pairs,n_odd)))

socks

## [1] 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11

The simulation for n_picked can be set by
picked_socks <- sample(socks, size = min(n_picked, n_socks))

sock_counts <- table(picked_socks)

sock_counts

## picked_socks

## 1 3 4 5 7 8 9 10 11

## 1 2 2 1 1 1 1 1 1

c(unique = sum(sock_counts == 1), pairs = sum(sock_counts == 2))

## unique pairs

## 7 2

Then_socks variable needs to be positive and discrete, since there is a finite amount
of socks. The chosen distribution to sample socks is the Negative Binomial distri-
bution, given by the rnbinom function in R. The parameters for the model are mu
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and size, where size is the relationship between mu and variance s^2 described
as
size = -mu^2 / mu - s^2.

For the analysis, it is presumed that in a family of 3-4 people and a change of socks 5
times a week, it can be estimated that there is on average 15 pairs of socks in the laun-
dry. Therefore, the prior for n_socks is set to follow the Negative Binomial distri-
bution with mean prior_mu = 30 and standard deviation prior_sd = 15.
prior_mu <- 30

prior_sd <- 15

prior_size_param <- -prior_mu^2 / (prior_mu - prior_sd^2)

n_socks <- rnbinom(1, mu = prior_mu, size = prior_size_param)

Instead of direct prior distribution over n_pairs and n_odd, the proportion of
paired socks was modelled with prop_pairs, which was sampled from a Beta
prior distribution, where most of the range of paired socks is between 0.75 and 1.0.
The results from the sampling were rounded to discreet n_pairs and n_odd.
prop_pairs <- rbeta(1, shape1 = 15, shape2 = 2)

n_pairs <- round(floor(n_socks / 2) * prop_pairs)

n_odd <- n_socks - n_pairs * 2

When the prior information was set, the ABC-Rejection algorithm was set with a
fixed amount of iteration set to 100,000, which gives 100,000 samples. The follow-
ing program was then used
n_picked <- 11 # The number of socks to pick out of the laundry

sock_sim <- replicate(100000,

# Generating a sample of the parameters from the priors

prior_mu <- 30

prior_sd <- 15

prior_size <- -prior_mu^2 / (prior_mu - prior_sd^2)

n_socks <- rnbinom(1, mu = prior_mu, size = prior_size)

prop_pairs <- rbeta(1, shape1 = 15, shape2 = 2)

n_pairs <- round(floor(n_socks / 2) * prop_pairs)

n_odd <- n_socks - n_pairs * 2

# Simulating picking out n_picked socks

socks<-rep(seq_len(n_pairs+n_odd),rep(c(2,1),c(n_pairs,n_odd)))
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picked_socks <- sample(socks, size = min(n_picked, n_socks))

sock_counts <- table(picked_socks)

# Returning the parameters and counts of the number of matched

# and unique socks among those that were picked out.

c(unique = sum(sock_counts == 1), pairs = sum(sock_counts == 2),

n_socks = n_socks, n_pairs = n_pairs, n_odd = n_odd, prop_pairs =

prop_pairs))

# just translating sock_sim to get one variable per column

sock_sim <- t(sock_sim)

head(sock_sim)

After the ABC-Rejection algorithm was run, the samples not matching the original
data of 11 unique socks were discarded. This was achieved through the following
code:
post_samples <- sock_sim[sock_sim[, "unique"] == 11 &

sock_sim[, "pairs" ] == 0 , ]

Of the 100,000 samples, 11,506 gave suitable results in post_samples. The me-
dian value of the posterior distribution was 19 pairs of socks and 6 odd socks. This
then gives a total estimate of 19× 2+ 6= 44 socks. The total amount of socks from
the data given by Karl Broman, was 21 pairs and 3 singletons. This then results in
21×2+3= 45. The difference between the estimated total amount of socks and the
observed amount was a total of 1 sock. Therefore, the ABC-Rejection algorithm gave
quite accurate results. The composition of the total amount of socks is criticised, as
the odd amount of socks was higher than in the observed data, but it is commented as
resulting from the difference in the organizational skills between Bååth and Broman.
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B MORAN’S AND GEARY’S STATISTICS FOR

EACH COUNTY

State Moran’s I p-value Geary’s C p-value

Alabama 0.2438 0.0033 0.5741 0.0034

Arizona -0.0852 0.5699 1.218 0.8187

Arkansas 0.415 0 0.637 0.0063

California 0.2929 0 0.6986 0.0748

Colorado 0.4046 0 0.6743 0.0083

Connecticut -0.1493 0.5094 0.9846 0.4755

Florida 0.4011 0 0.6036 0.0106

Georgia 0.6372 0 0.3886 0

Idaho 0.2783 0.0014 0.7118 0.0836

Illinois 0.2391 0 0.5356 0.0128

Indiana 0.3041 0.0001 0.6617 0.0099

Iowa 0.1807 0.0048 0.7725 0.034

Kansas 0.1716 0.0077 0.8255 0.0795

Kentucky 0.1132 0.0148 0.8891 0.2861

Louisiana 0.1113 0.1233 1.0025 0.5073

Maine 0.5902 0.0004 0.3546 0.0041

Maryland 0.3843 0.0087 0.7128 0.0578

Massachusetts 0.7074 0.0002 0.3545 0.0034

Michigan 0.5894 0 0.4231 0

Minnesota 0.3616 0 0.5173 0.0016

Mississippi 0.1132 0.0988 0.7866 0.0441
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Missouri 0.5618 0 0.5621 0.0013

Montana 0.1901 0.0326 0.8573 0.1658

Nebraska 0.2489 0 0.7111 0.0436

Nevada -0.048 0.41 0.7712 0.1704

New Hampshire 0.1764 0.0812 0.8146 0.2385

New Jersey 0.6621 0.0001 0.3248 0.0002

New Mexico 0.1283 0.0721 1.2098 0.8421

New York -0.0352 0.6447 1.2197 0.8002

North Carolina 0.3313 0 0.7665 0.0514

North Dakota -0.123 0.8413 1.2734 0.9555

Ohio 0.2428 0.0021 0.6652 0.0076

Oklahoma 0.2015 0.0049 0.6219 0.0144

Oregon 0.4166 0.0006 0.4989 0.0014

Pennsylvania 0.4976 0 0.5511 0.0023

Rhode Island -0.1952 0.3524 0.9375 0.4092

South Carolina 0.2819 0.0088 0.687 0.0174

South Dakota 0.1682 0.0068 0.8437 0.1849

Tennessee 0.1416 0.0344 0.8414 0.1375

Texas 0.1796 0.0002 0.702 0.0048

Utah 0.2988 0.0038 0.8354 0.2066

Vermont -0.2252 0.8822 1.1288 0.7405

Virginia 0.5351 0 0.4893 0.0002

Washington 0.4433 0 0.5369 0.0073

West Virginia 0.0531 0.2693 0.8706 0.1899

Wisconsin 0.465 0 0.7343 0.0592

Wyoming -0.1631 0.7506 1.1678 0.8004
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C SAR AND CAR REGRESSION RESULTS

FOR US STATES

SAR model CAR model

State
population

( p-value)

population density

( p-value)

Nagelkerke

R2

population

( p-value)

population density

( p-value)

Nagelkerke

R2

Alabama
0.1185

(p < 0.001)

−14.789

(p = 0.2579)
0.9873

0.1114

(p < 0.001)

3.4323

(p = 0.7739)
0.9864

Arizona
0.0980

(p < 0.001)

760.4765

(p = 0.0029)
0.9984

0.1210

(p < 0.001)

162.0454

(p = 0.5634)
0.9983

Arkansas
0.1326

(p < 0.001)

−43.5420

(p = 0.0386)
0.9798

0.1250

(p < 0.001)

−27.6071

(p = 0.1866)
0.9789

California
0.1216

(p < 0.001)

−10.1543

(p = 0.0083)
0.9707

0.1263

(p < 0.001)

−8.1755

(p = 0.0241)
0.9724

Colorado
0.0961

(p < 0.001)

2.3841

(p = 0.1326)
0.9817

0.0963

(p < 0.001)

2.8519

(p = 0.0690)
0.9809

Connecticut
0.08110

(p < 0.001)

45.1900

(p = 0.0432)
0.9914

0.1002

(p < 0.001)

1.6210

(p = 0.9638)
0.9858

Florida
0.1617

(p < 0.001)

−82.7240

(p < 0.001)
0.9328

0.1613

(p < 0.001)

−81.3736

(p < 0.001)
0.9328

Georgia
0.1087

(p < 0.001)

−4.7360

(p = 0.0293)
0.9840

0.1045

(p < 0.001)

−1.1501

(p = 0.6158)
0.9833

Idaho
0.1076

(p < 0.001)

30.7206

(p < 0.001)
0.9950

0.1034

(p < 0.001)

39.4932

(p < 0.001)
0.9943

Illinois
0.1094

(p < 0.001)

−9.7041

(p < 0.001)
0.9995

0.1087

(p < 0.001)

−7.5968

(p < 0.001)
0.9995

Indiana
0.1127

(p < 0.001)

−2.2099

(p = 0.6332)
0.9917

0.1055

(p < 0.001)

5.8726

(p = 0.2196)
0.9914

Iowa
0.1101

(p < 0.001)

14.2923

(p = 0.2642)
0.9871

0.1019

(p < 0.001)

26.3087

(p = 0.0426)
0.9869
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SAR model CAR model

State
population

( p-value)

population density

( p-value)

Nagelkerke

R2

population

( p-value)

population density

( p-value)

Nagelkerke

R2

Kansas
0.1061

(p < 0.001)

−0.5136

(p = 0.8093)
0.9911

0.1062

(p < 0.001)

−0.7000

(p = 0.7415)
0.9917

Kentucky
0.1101

(p < 0.001)

−1.811

(p = 0.2877)
0.9961

0.1077

(p < 0.001)

0.1323

(p = 0.9371)
0.9960

Louisiana
0.1093

(p < 0.001)

−10.7699

(p < 0.001)
0.9857

0.1106

(p < 0.001)

−11.9894

(p < 0.001)
0.9855

Maine
0.04664

(p < 0.001)

16.1334

(p = 0.2021)
0.9658

0.0401

(p < 0.001)

37.6702

(p = 0.0041)
0.9434

Maryland
0.0764

(p < 0.001)

1.6882

(p = 0.3332)
0.9716

0.0763

(p < 0.001)

1.7962

(p = 0.3040)
0.9716

Massachusetts
0.0901

(p < 0.001)

3.5942

(p = 0.0969)
0.9483

0.0909

(p < 0.001)

3.7241

(p = 0.0756)
0.9469

Michigan
0.0823

(p = 0.0024)

24.2249

(p = 9892)
0.9892

0.0805

(p < 0.001)

27.3112

(p < 0.001)
0.9892

Minnesota
0.1058

(p < 0.001)

−4.6266

(p = 0.0011)
0.9922

0.1055

(p < 0.001)

−3.1095

(p = 0.032)
0.9921

Mississippi
0.0621

(p < 0.001)

59.8182

(p < 0.001)
0.9720

0.0550

(p < 0.001)

71.4591

(p < 0.001)
0.9695

Missouri
0.0870

(p < 0.001)

−8.7678

(p < 0.001)
0.9509

0.0934

(p < 0.001)

−8.7094

(p < 0.001)
0.9361

Montana
0.1149

(p < 0.001)

−36.4934

(p = 0.4172)
0.9683

0.1127

(p < 0.001)

−21.1376

(p = 0.6431)
0.9682

Nebraska
0.0912

(p < 0.001)

29.8833

(p < 0.001)
0.9979

0.0919

(p < 0.001)

29.2089

(p < 0.001)
0.9979

Nevada
0.1160

(p < 0.001)

1.5309

(p = 0.9109)
0.9109

0.1161

(p < 0.001)

2.0730

(p = 0.8802)
0.9989

New

Hampshire

0.08289

(p < 0.001)

−5.1982

(p = 0.8110)
0.9691

0.0826

(p < 0.001)

−4.4000

(p = 0.8401)
0.9691
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SAR model CAR model

State
population

( p-value)

population density

( p-value)

Nagelkerke

R2

population

( p-value)

population density

( p-value)

Nagelkerke

R2

New

Jersey

0.1097

(p < 0.001)

2.8380

(p = 0.0136)
0.9718

0.1095

(p < 0.001)

2.9467

(p < 0.001)
0.9715

New

Mexico

0.1246

(p < 0.001)

−121.3584

(p < 0.001)
0.9787

0.1095

(p < 0.001)

−67.4166

(p < 0.001)
0.9775

New

York

−0.0080

(p = 0.1923)

19.5392

(p < 0.001)
0.6002

0.0022

(p = 0.9074)

18.2151

(p < 0.001)
0.6144

North

Carolina

0.0870

(p < 0.001)

12.9279

(p = 0.0014)
0.9808

0.0812

(p < 0.001)

21.7766

(p < 0.001)
0.9795

North

Dakota

0.1274

(p < 0.001)

91.4759

(p = 0.0759)
0.9927

0.1304

(p < 0.001)

76.6258

(p = 0.1315)
0.9927

Ohio
0.0933

(p < 0.001)

3.5997

(p = 0.2628)
0.9964

0.0883

(p < 0.001)

9.8432

(p = 0.0030)
0.9964

Oklahoma
0.1079

(p < 0.001)

9.6769

(p = 0.0934)
0.9981

0.1068

(p < 0.001)

11.7862

(p = 0.0041)
0.9981

Oregon
0.0458

(p < 0.001)

3.3143

(p = 0.4427)
0.9594

0.0464

(p < 0.001)

2.5270

(p = 0.5605)
0.9591

Pennsylvania
0.0870

(p < 0.001)

3.3063

(p < 0.001)
0.9890

0.0859

(p < 0.001)

4.5483

(p < 0.001)
0.9887

Rhode

Island

0.1626

(p < 0.001)

9.6593

(p < 0.001)
0.9989

0.1553

(p < 0.001)

−6.7936

(p = 0.2878)
0.9795

South

Carolina

0.1203

(p < 0.001)

8.1698

(p = 0.7031)
0.9750

0.0978

(p < 0.001)

52.5641

(p = 0.0430)
0.9674

South

Dakota

0.1252

(p < 0.001)

82.0982

(p < 0.001)
0.9897

0.1305

(p < 0.001)

73.9278

(p < 0.001)
0.9900

Tennessee
0.0801

(p < 0.001)

62.3365

(p < 0.001)
0.9832

0.0711

(p < 0.001)

76.0967

(p < 0.001)
0.9829

Texas
0.0699

(p < 0.001)

97.9762

(p < 0.001)
0.9756

0.0696

(p < 0.001)

99.9058

(p < 0.001)
0.9757
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SAR model CAR model

State
population

( p-value)

population density

( p-value)

Nagelkerke

R2

population

( p-value)

population density

( p-value)

Nagelkerke

R2

Utah
0.1608

(p < 0.001)

−45.7393

(p < 0.001)
0.9955

0.1603

(p < 0.001)

−45.1433

(p < 0.001)
0.9955

Vermont
0.0258

(p < 0.001)

22.5539

(p = 0.0085)
0.9515

0.0246

(p < 0.001)

24.0358

(p = 0.0034)
0.9522

Virginia
0.0768

(p < 0.001)

−1.4238

(p = 0.0108)
0.9578

0.0749

(p < 0.001)

−0.9801

(p = 0.0796)
0.9573

Washington
0.0568

(p < 0.001)

−15.8311

(p = 0.3074)
0.9407

0.0571

(p < 0.001)

−17.1757

(p = 0.2691)
0.9408

West

Virginia

0.0822

(p < 0.001)

6.1380

(p = 0.0010)
0.9783

0.0829

(p < 0.001)

5.5067

(p = 0.0039)
0.9783

Wisconsin
0.0999

(p < 0.001)

14.6756

(p < 0.001)
0.9879

0.0996

(p < 0.001)

14.4249

(p < 0.001)
0.9880

Wyoming
0.1139

(p < 0.001)

−114.9679

(p = 0.0322)
0.9708

0.1141

(p < 0.001)

−116.8884

(p = 0.0617)
0.9687
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