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ABSTRACT
The path integral formulation of quantum mechanics, i.e., the idea that the evolution of a quantum system is determined as a sum over
all the possible trajectories that would take the system from the initial to its final state of its dynamical evolution, is perhaps the most ele-
gant and universal framework developed in theoretical physics, second only to the standard model of particle physics. In this Tutorial, we
retrace the steps that led to the creation of such a remarkable framework, discuss its foundations, and present some of the classical examples
of problems that can be solved using the path integral formalism, as a way to introduce the readers to the topic and help them get famil-
iar with the formalism. Then, we focus our attention on the use of path integrals in optics and photonics and discuss in detail how they
have been used in the past to approach several problems, ranging from the propagation of light in inhomogeneous media to parametric
amplification and quantum nonlinear optics in arbitrary media. To complement this, we also briefly present the path integral Monte Carlo
method, as a valuable computational resource for condensed matter physics, and discuss its potential applications and advantages if used in
photonics.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0055815

I. INTRODUCTION

The path integral formulation of quantum mechanics, devel-
oped in the mid-20th century, is not only a remarkable synthesis of
several of the core ideas of theoretical physics but also a powerful
computational technique for the analysis of a huge variety of phys-
ical systems in very different contexts, such as quantum mechan-
ics,1–6 quantum field theory (QFT),7–10 gauge field theory,11,12 black
hole physics,6 quantum gravity,13,14 string theory,15 topology,6,16

condensed matter physics,17–23 statistical mechanics,2,6,24,25 polymer
physics,5,6 financial markets,5 optical communications,26 atomic
physics,27,28 spectroscopy,29 light propagation in turbid media30 and
classical31–36 and quantum37–39 optics, among others.

The underlying concepts of the path integral approach are
sometimes considered difficult to grasp. Indeed, from a philosoph-
ical standpoint, its underpinnings are extraordinary—in describing
a system, all possible paths between its initial and final states must
be taken into account mathematically. This idea of summing over all
paths has previously been characterized ontologically as everything
that can happen does happen.40

As befits the subject, the history of path integrals is rather cir-
cuitous and does not follow a straight line from Feynman’s seminal
work on the subject, published in 1948,1 to the present day. Already
in the 1920s, the mathematician Wiener had developed a method
to treat Brownian motion and diffusion using a technique of inte-
grating over paths, with formal similarities to Feynman’s eventual
construction but in a purely classical context.41–43 During the early
part of the following decade, the general ideas of de Broglie and
Schrödinger, that waves can be associated with particle dynamics44

motivated Dirac to publish a paper in the Physikalische Zeitschrift der
Sowjetunion (Physical Journal of the Soviet Union), setting the stage
for future developments by proposing the Lagrangian as a more
natural basis for a theory of quantum mechanics, as opposed to a
Hamiltonian-based method, which he argued was less fundamen-
tal due to its non-relativistic form.45 This led him to propose the key
idea that a quantum mechanical transition amplitude for a particle is
given by a phase factor controlled by the action along that particle’s
path.46 This also led him to state that the classical path of a quan-
tum system can be interpreted as resulting from the constructive
interference of all such paths. In other terms, the action S of a given
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system counts, de facto, the number of waves of the path in units of
Planck’s constant h, and therefore, for each path, the phase of the
related wave47 is given by exp(i2πS/h) = exp(iS/h). This allows for
the evaluation of the interference pattern of the particle dynamics
and essentially represents what is nowadays commonly understood
as path integral.2,5

The pivotal step in the development of the theory occurred
in the 1940s when Feynman formulated his version of quan-
tum mechanics, a “third way” following the earlier, well-known
Schrödinger and Heisenberg alternatives.4 Based on integration
over all paths between initial and final physical states, with each
path contributing an action-dependent phase as Dirac had pro-
posed, Feynman’s formulation culminated in his important 1948
paper entitled Space-time approach to non-relativistic quantum
mechanics.1

From a conceptual point of view, one of the most interesting
consequences of path integrals is that they can provide a deep under-
standing of the relation between quantum and classical mechan-
ics, as the limit h→ 0 emerges naturally from the formalism as the
classical limit of the theory.3

Although the concepts underlying the path integral formal-
ism may at first appear quite alien, they are deeply profound.
Even if its utility were limited, the beauty of the idea would still
merit a wide audience. The fact is, however, that the path inte-
gral has an immense value as a practical computational technique
in the physical sciences, and it can be applied to solve problems
in many diverse areas, even beyond physics. Two examples show-
ing the remarkable breadth of its applicability are its use in quan-
tum gravity, where the “sum over histories” is interpreted as a sum
over all different spacetime configurations interpolating between
the initial and final states of the universe,13 and in financial mar-
ket modeling, where the formalism has proven useful, since the
time dependence of asset prices can be represented by fluctuating
paths.5

The universality of the technique has allowed scientists to tackle
many problems and gain tremendous physical insights into them.
In statistical physics, for example, path integrals conveyed the basic
framework for the first formulation of the renormalization group
transformation, and they are largely employed to study systems
with random distribution of impurities.6 In particle physics, they
allow one to understand and properly account for the presence
of instantons.48 In quantum field theory, they provide the natu-
ral framework to quantize gauge fields.11,12,49 In chemical, atomic,
and nuclear physics, on the other hand, they have been applied
to various semiclassical schemes for scattering theory.6 Through
path integrals, topological and geometrical features of classical and
quantum fields can be readily investigated and be used to cre-
ate novel forms of perturbative and nonperturbative analyses of
fundamental processes of nature.15,50,51 In addition to that, path
integrals allow one to re-interpret established results, such as the
BCS theory of superconductivity,7,52 from a novel, more insightful,
perspective.

Explicit, analytical solutions to problems formulated in terms of
path integrals, however, are scarce and only available for very simple
systems, such as a free particle, or the ubiquitous harmonic oscilla-
tor.2 The complexity of the path integral formalism, in fact, increases
very rapidly to overwhelming levels of difficulties for many simple
problems. As an example of that, the simplest quantum system, i.e.,

a single hydrogen atom, required nearly 40 years to be fully solved in
terms of path integrals.53

On the other hand, it is amid complex and computationally
challenging problems that path integrals show their true poten-
tial, providing a simple, insightful, and intuitive perspective on the
physical principles regulating such processes. To do that, numerical
techniques, such as Monte Carlo methods,19,23,54–58 and the com-
putational power of modern supercomputers are crucial to their
successful implementation.

Most of the practical applications to numerical simulations of
quantum particles with path integral approaches are systems with
finite temperature in thermodynamical equilibrium with one of
the statistical ensembles.24 Finite temperature equilibrium involves
dynamics of constituent particles and exchange of energy with envi-
ronment or heat bath. These are the central factors in condensed
matter physics with phase transitions, conductivities, and other pro-
cesses related to interactions between constituent particles. Typi-
cally, one assumes canonical ensembles, where both the number of
particles and the volume they occupy are kept constant at a given
temperature T, but other ensembles can be chosen where needed.

For a many-particle system in finite temperature, there is no
wave function, but the mixed state can be described with a den-
sity matrix, and it turns out that it can be written in terms of path
integrals in imaginary time.2,24 The expectation values of observ-
ables are then evaluated by using the trace of the density matrix,
which in space basis means finite closed loop paths. Thus, in terms
of path integrals, each of the particles propagates from a position
in space in imaginary time back to the same position, the time
period being inversely proportional to the temperature. Then, with
Metropolis Monte Carlo, it is possible to sample particle paths with
correct weight in predefined temperature and collect data enough
for convergence of expectation values of relevant operators.

This approach based on imaginary time propagation is called
Path Integral Monte Carlo (PIMC) method. Pollock and Ceper-
ley carried out seminal development work and a sizable num-
ber of PIMC simulations of various many-particle systems ranging
from superfluid He17 and neutron matter59 to electrons and hydro-
gen in extreme conditions,60 including both bosonic and fermonic
particles.

In recent years, one of the authors of this Tutorial (TTR)
has significantly contributed to taking PIMC simulations to new,
though, simple quantum particle systems, such as small atoms,61,62

molecules,63–66 a chemical reaction,67 and quantum dots,68–70 with
the ultimate goal of providing a more accurate description of their
electronic structure and related properties, including many-body
effects, and how they change with temperature.62,71,72 In this context,
PIMC has proven to be a very reliable and excellent method to cal-
culate the electric polarizabilities of atomic and molecular systems,
therefore leading to an accurate estimation of the optical properties
of both individual small quantum systems and collections of them,
in the form of dilute gases.66,73,74

A different approach based on a real, rather than imaginary,
time path integral (RTPI) has recently been proposed as a way to
describe the full quantum dynamics of a quantum system at 0-K and
to also characterize the evolution of its eigenstates.69,73,75–78 A com-
bination of PIMC and RTPI therefore gives the possibility to have a
comprehensive tool to study the properties of complex systems and
their classical and quantum evolution. This feature, in particular,

APL Photon. 6, 071103 (2021); doi: 10.1063/5.0055815 6, 071103-2

© Author(s) 2021

https://scitation.org/journal/app


APL Photonics TUTORIAL scitation.org/journal/app

might prove to be very useful not only in chemistry and condensed
matter physics, where this technique flourished in the past decades,
but also as a viable mean to understand and design the properties of
materials of interest for photonics.

A fully integrable simulation platform, which allows control of
both electronic and photonic properties of matter exactly, without
the necessity to revert to approximations or effective theories, in fact,
would constitute a tremendous resource toward the optimization of
integrated photonic systems.

It is interesting to note that throughout the last 30 years, path
integrals have been used to describe several problems in classical and
quantum optics, such as the propagation of light in gradient-index
media,31 the estimation of the channel capacity of classical and quan-
tum fiber-based communication networks,26 parametric amplifica-
tion,37,38 light–matter interaction beyond the rotating wave approx-
imation,27 decoherence and dephasing in nonlinear spectroscopy,29

and the effect of retardation in radiative damping.28 Path integrals
have also been employed to link the nonparaxial propagation of
light with different models for quantum gravity.32 All these works
share the common thread of employing nonrelativistic path integrals
to calculate the propagator (i.e., the Green’s function) of the elec-
tromagnetic field in different contexts and use this information to
solve the problem at hand. A different approach, based on path inte-
grals in quantum field theory and Feynman diagrams, has recently
been introduced as a viable way to handle classical79 and quantum39

optical phenomena in arbitrary media.
However, the benefits of path integrals in photonics, namely,

their ability to calculate both the properties of matter and its inter-
action with light in an exact way, without the need of any approx-
imation on both the matter and light side, and the new physical
insight that this could bring to photonics, remain, to date, uncharted
territory.

In this Tutorial, we aim at introducing the concept and meth-
ods of path integrals to the reader unfamiliar with the field and
at providing researchers in optics and photonics with a reference
point for both analytical and numerical methods involving path
integrals, with the hope that this will provide a powerful and prac-
tical toolkit that could be used in the future to tackle challeng-
ing problems in photonics. An accurate description of the diverse
interactions between light and matter, emerging from the inter-
play of fundamental particles and fields, naturally calls for the
use of quantum physics, and its degree of complexity grows very
quickly. Path integrals are a natural way to study these inter-
actions, and they actively take advantage of the complexity of
the problem. Using them in photonics might then lead to novel
methods to exploit complicated light–matter dynamics in photonic
systems.

This Tutorial is split into two main parts: part 1, comprising
Secs. II–VI, covers the basics of the path integral approach in physics
and presents examples on how they can be used to solve problems
in classical and quantum optics, as well as how to employ PIMC
to determine optical properties of materials. In particular, Sec. II
covers the fundamentals of the path integral approach in physics,
treating core concepts, such as the principle of least action, classical
and quantum probabilities, and a brief description of the mathemat-
ics of integration over an infinite number of paths. Basic examples
comprising the dynamics of a free quantum particle, the quantum
harmonic oscillator, and diffraction from a double slit are covered in

Sec. III. To conclude Part I, two examples of the use of path integrals
in classical and quantum optics are presented, namely, the propa-
gation of light in an inhomogeneous medium and how this could be
related to the physics of a harmonic oscillator with a time-dependent
frequency, in Sec. IV, and the investigation of degenerate parametric
downconversion presented in Sec. V (based on Ref. 37), respectively.
Finally, Sec. VI briefly discusses how PIMC can be used to predict
the optical properties of matter and presents some perspectives on
the use of this computational resource for photonics.

Part 2, on the other hand, including Secs. VII–XI, deals with the
basics of path integrals in quantum field theory (QFT) and presents
an application of such a framework to the case of the dynamics of
the electromagnetic field in arbitrary media. In particular, Sec. VII
briefly introduces the concept of path integrals for quantum fields
and makes use of the simple case of a scalar field as an example to
calculate the relevant quantities and establish the formalism. After
having done that, Sec. VIII discusses how to include nonlinear inter-
actions in the formalism and introduces Feynman diagrams. The
results from Secs. VII and VIII are then intuitively and qualitatively
generalized for the case of a vector field in Sec. IX, as a reference
point for Sec. X, where these results are applied to the particular case
of an electromagnetic field propagating in a dispersive medium of
arbitrary shape. Section XI then presents two explicit examples of
how path integrals can be used in quantum optics. The first example
presents how to describe the onset of spontaneous parametric down-
conversion (SPDC) in lossy media through path integrals, while the
second example deals with the calculation of the rate of sponta-
neous emission of a quantum emitter surrounded by a dispersive
medium.

In the spirit of the educational purpose of a tutorial and given
the mathematical complexity of path integrals, especially concern-
ing the concepts introduced in part 2, we also provide, in the
Appendix, a step-by-step guide on how to deal with path integral
calculations for the explicit case of the electromagnetic field in arbi-
trary media. We hope this would serve as a good reference and
guide to better understand the techniques and methods presented
below.

Finally, conclusions and future perspectives are then given in
Sec. XII.

II. FUNDAMENTALS OF PATH INTEGRALS
A. Probability amplitudes: Classical vs quantum

Quantum physics is an abstract theory whose specific fea-
tures beyond classical physics are only typically spectroscopically
observable. A good starting point to find the underlying differences
between the two seemingly different worlds of classical and quantum
physics is represented by their different interpretation of the concept
of probability. This, in fact, turns out to be a direct manifestation
of the wave nature of quantum particles and, thus, the fundamental
issue that we need to incorporate into the study of the dynamics of
quantum systems.

The necessity of a change in viewpoint concerning proba-
bility, and the consequent definition, for quantum physics, of a
complex-valued probability amplitude, emerges very clearly within
the context of the least action principle. Let us consider the situation
depicted in Fig. 1, where classical [Fig. 1(a)] and quantum [Fig. 1(b)]
particles are evolving from an initial time ta to a final time tb.
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FIG. 1. Pictorial representation of the evolution of a classical (left) and quantum (right) system from an initial state at time ta to a final state at time tb over a certain potential
landscape. (a) While many different paths link the initial and final states of the classical system, once the initial conditions have been fixed, only the path with minimal action
(red line) is the actual one undertaken by the system. (b) For a quantum system, on the other hand, the classical path (blue tube) minimizing the action is interpreted as the
path along which the interference of all the contributing paths linking ta and tb is maximum.

For the classical, deterministic, system, although many different
paths joining ta with tb are available, only the stationary paths with
least action [red line in Fig. 1(a)] give a significant contribution to its
dynamics and determine, ultimately, its equations of motion.

For a quantum system, on the other hand, its intrinsic wave
nature (and, ultimately, the uncertainty principle) prevents it for
following one single path, and the classical path [blue tube in
Fig. 1(b)] must be interpreted as the one with maximum constructive
interference coming from all possible paths.

To understand this better, let us consider a classical particle first
propagating from a point xa to a point xc and, subsequently, to a
third point xb. If we denote with P(c, a) ≡ P(xa → xc) the probabil-
ity for the particle to propagate from xa to xc and, similarly, with
P(b, c) ≡ P(xc → xb) the probability for the particle to propagate
from xc to xb, the (classical) conditional probability for the particle
to propagate from xa to xb by going through xc reads

P(b, a) = ∑
c

P(b, c)P(c, a), (1)

where the summation over c takes into account all possible alterna-
tives for the intermediate state c. Note that the definition of con-
ditional probability given above, i.e., P(b, a), differs slightly from
the usual one, which reads P(a∣b). This notation, however, is fully
equivalent with the traditional one and will turn out to be of more
practical use for the purpose of this work.

The above definition can be readily generalized to the case
of continuous variables, i.e., to probability densities, by promoting
P(a) and P(b) to probability density functions and to interpret a and
b as two sets of coordinates {xa} and {xb} for the particle to occupy
at given times ta and tb, respectively.80 In this case, then, the sum-
mation over all possible alternatives c in Eq. (1) becomes an integral
over the set of coordinates {xa}, i.e.,

P(b) = ∫
a
P(b, a)P(a) dxa, (2)

where the subscript a on the integral indicates that the integration
has to take into account all the possible values of the integrating
coordinate xa.

Now, let us extend the concepts introduced above to the case of
a quantum particle with wave nature. To do that, let us first rewrite
Eq. (1) for the probability amplitude ψ associated with the quantum
particle as

ψ(b, a) ≡ K(b, a) = ∑
c
ψ(b, c)ψ(c, a). (3)

The probability amplitude ψ(b, a) defined above constitutes the
basic quantity from which the dynamics of a quantum particle can
be derived, and it is usually referred to in the literature as the ker-
nel (or propagator, or Green’s function) of the quantum system at
hand. The conventional symbol for that in path integral language is
K(b, a), and we then adopt this notation for the rest of this Tutorial.

The kernel defined above has a simple physical interpretation.
In fact, it can be thought as the impulse response of the system at
hand.2,81 Moreover, if we know the probability amplitude of the sys-
tem at a given initial state ψ(a), we can immediately evolve it to a
final state characterized by a probability amplitude ψ(b) using the
following relation:

ψ(b) = ∫
a
K(b, a)ψ(a) dxa. (4)

Finally, the experimentally observable classical probability distribu-
tions are found as squares of the absolute values of the probability
amplitudes, P(a) = ∣ψ(a)∣2 and P(b) = ∣ψ(b)∣2 at times ta (initial
state) and tb (final state), respectively. With this definition, the prob-
ability amplitudes appearing above can be readily interpreted as the
wave function of the quantum system. Equation (3), in particular,
hints at the interpretation of the wave function of a quantum system
as the sum (or, better said, interference) of all possible paths linking
the initial and final states of the considered evolution.

B. Lagrangian, action, and path integral
Contrary to the canonical formulation of quantum mechanics,

which bases its premises on the Hamiltonian function H of the sys-
tem and, therefore, on the concept of total energy,82 the path integral
formalism starts from the Lagrangian function, generally defined as
the difference between kinetic and potential energies of the system,83
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i.e., L = T − V . For this reason, the path integral formalism is often
referred to as the third formulation of quantum mechanics, with the
first being the matrix mechanics developed by Heisenberg, Born,
and Jordan in 1925,84–86 while the second one being the familiar
Hamiltonian formulation developed by Schrödinger in 1926.87

Although the Hamiltonian and Lagrangian formulations of
physical problems are essentially, from the point of view of physi-
cal meaning, equivalent, the latter is more elegant, and, also thanks
to its natural appearance in the path integral formalism, has been
adopted as the natural framework for more complicated theories,
such as QFT,8,88 particle physics,89 and string theory.51

For simplicity of notations, we proceed in using the one dimen-
sional space with the coordinate x, but the generalization to three
dimensions is trivial. Then, for a particle with mass m in motion on
the path x(t) with velocity ẋ(t) in a potential V(x, t) the classical
Lagrangian is

L(ẋ, x, t) =
1
2

mẋ2
− V(x, t). (5)

On a way to both finding the classical equation of motion and con-
currently incorporating the wave nature of dynamics of the particle
into the path x(t) from ta to tb, we define the action

S(b, a) = ∫
tb

ta

dt L(ẋ, x, t). (6)

In Lagrangian mechanics, the action is a parameter related to
the path length whose optimization will lead to the equations of
motion. This procedure, i.e., optimizing the path x(t) such that
δS = 0 is called “the principle of least action,” leads to the following
Euler–Lagrange equation:83,90

d
dt
(
∂L
∂ẋ
) −

∂L
∂x
= 0. (7)

If we now substitute Eq. (5) into the equation above, we find the
following differential equation:

mẍ = −
∂V(x)
∂x

, (8)

which we immediately recognize as Newton’s classical equation of
motion. This constitutes the fundamental ingredient for defining the
classical and quantum probabilities as in Eqs. (1) and (3). However,
for the dynamics of a classical system, the integral approach above is
redundant and the traditional approach based on Newton’s equation
of motion is the favorable one in most cases. Similarly, in quantum
mechanics, the Schrödinger equation is the best approach for sim-
ple problems. However, there are several sophisticated cases where
Eqs. (3) and (4) are more practical and easy to handle. For these more
complicated scenarios, therefore, we need to find the kernel K(b, a),
and the right way to do that is to incorporate into the “classical”
path-based approach above the information of the wave nature of
quantum particles, i.e., to introduce interference between paths.

Following the ideas of Dirac45 and Feynman,1,4 we consider
the action S as a (classical) measure of the path length and
Planck’s constant h as the wavelength. Then, we can assign a wave
exp[i2πS(x(t), a)/h] to the path x(t) and follow the phase of the
waves to find the interference effects. In particular, we want to take
into account the contributions of all possible waves of the form
exp[iS(b, a)/̵h] to the probability amplitude K(b, a).

The sum (or integral) over the contributions of all possible
paths is called the path integral, i.e.,

K(b, a) = ∫
b

a
Dx(t) exp[

i
̵h

S(b, a)], (9)

where the notation Dx(t) indicates integration over all paths from
a = (xa, ta) to b = (xb, tb), which, following Ref. 2, can be defined as

∫

b

a
Dx(t) = lim

ε→0

1
A(ε) ∫

dx1

A(ε) ∫
dx2

A(ε)
⋅ ⋅ ⋅ ∫

dxN−1

A(ε)
, (10)

where A(ε) is a suitable normalization factor that ensures the limit
to properly converge [an example of it is given in Sec. III A, but
the explicit for of A(ε) might change depending on the problem at
hand] and ε comes from the discretization of the time interval in
the action S(b, a) in N finite points, i.e., tb − ta = Nε, with t0 = ta
and tN = tb. This, on the other hand, implies a discretization on the
paths x(t), which now are defined as xk = x(tk) = x(t0 + kε), with
x0 = xa = x(ta) and xN = xb = x(tb). This discretization procedure
allows us to consider each of the N − 1 integrals above as stan-
dard Riemann/Lebesgue integrals in the variable dxk. Then, when all
N − 1 integrals have been computed, the limit ε→ 0, together with
the correct definition of the normalization factor A(ε), ensures con-
vergence of the path integral ∫

b
a Dx(t) and justifies its definition as

integration over all possible paths. Note, moreover, that the same
line of reasoning will allow us, in Sec. VII, to define the path integral
for fields.

The explicit form of the path integral above is usually defined
by the form of the potential term V(x) appearing in the Lagrangian
(5). For some potential functions, there are analytical, closed-form,
exact solutions to Eq. (9), but one needs to prepare for numerical
methods with possible approximations in more general cases, such
as multi-dimensional or many-body problems. In what follows, we
present some of the exact propagators.

The above result, obtained for a simple one-dimensional sys-
tem, can be readily extended to three-dimensional and many-
particle systems. While the former is straightforward to work out, in
the latter case, the quantum statistics of fermions and bosons needs
to be taken into account explicitly, which makes the problem of find-
ing the correct generalization of the path integral to the many-body
case less trivial.91

In addition to that, the path integral approach also allows for
an easy way to simulate the evolution of the density matrix for
finite temperature equilibrium systems. An example of this will be
discussed below in Sec. V.

III. BASIC EXAMPLES FOR QUANTUM PARTICLES
For the evaluation of the wave function from the integral equa-

tion (4), we need to explicitly calculate the kernel from the path inte-
gral, i.e., Eq. (9). In this section, we therefore consider the simplest
kernels, with examples following the book of Feynman and Hibbs.2

In case the integrand is an exponential of a quadratic function
(Gaussian integral), the kernel can always be evaluated recursively
using the basic Gaussian integral formula81

∫ dx e−ax2
+bx
=

√π
a

eb2
/4a. (11)
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Another useful result to keep in mind is the fact that for given xa and
xb endpoints, the contributions from other than the classical path
interfere destructively and vanish. Thus, only the classical action
Scl(xb, xa) contributes, leading to the major simplification for the
kernel, i.e.,

K(xb, xa) = F(tb − ta) exp[
i
̵h

Scl(xb, xa)]. (12)

As long as the action involves path variables only up to the sec-
ond order, therefore, the exact propagators in the form above can
be factored out from the path integral, leaving at most to calculate a
prefactor of the form F(tb − ta).

To illustrate how one arrives at the result above, let us consider
a general quadratic Lagrangian in x and ẋ of the form

L(x, ẋ, t) = aẋ2
+ bẋx + cx2

+ dẋ + ex + f , (13)

where {a, b, c, d, e, f } are (arbitrary, but well-behaved) time-
dependent coefficients. The action corresponding to this Lagrangian
is then the integral of Eq. (13) with respect to time between two fixed
end points ta and tb, as given in Eq. (6).

Let us now assume that xcl(t) is the classical path between the
specified end points, i.e., the path for which δS = 0 holds. We can
then represent x(t) in terms of deviations from the classical path
xcl(t) by introducing the function y(t) as

x(t) = xcl(t) + y(t). (14)

This substitution means that instead of defining a point on the path
by its distance from the arbitrary coordinate axis, we instead mea-
sure the deviation y(t) from the classical path. Moreover, at each
time t ∈ [ta, tb], the variables x and y differ only by the constant
xcl(t), and therefore, dxi = dyi for each point ti. In general, then, it
follows that Dx(t) = Dy(t). Note that as a consequence of Eq. (14),
y(ta) = 0 = y(tb), as at the endpoints, the path x(t) coincides with
the classical path xcl(t).

If we then use the change in variables defined in Eq. (14), the
Lagrangian (13) can be written as the sum of three terms as follows:

L(x, ẋ, t) = Lcl + Ly + Lmix, (15)

where Lcl (Ly) is just Eq. (13) with {x, ẋ} → {xcl, ẋcl} ({x, ẋ}
→ {y, ẏ}) and

Lmix = (2aẋcl + bxcl)ẏ + (bẋcl + 2cxcl)y. (16)

Similarly, the action can then be written as the sum of three terms,
namely, the classical action Scl(b, a), the action relative to the devi-
ation y(t), i.e., Sy(b, a), and the mixed action Smix(b, a). Because
of the fact that y(ta) = 0 = y(tb), however, all the terms that con-
tain linear terms in y result in a vanishing integral. Thus, only the
second-order terms in y give rise to a nonzero contribution to the
total action, which can now be written as

S(b, a) = Scl(b, a) + ∫
tb

ta

(a ẏ2
+ b ẏy + c y2

)dt. (17)

Note how Scl(b, a) does not depend on the deviation y(t), and there-
fore, the corresponding exponential can be treated as a constant,

with respect to the path integration Dy(t). The Kernel can then be
written in the following form:

K(b, a) = ∫
0

0
Dy(t) exp[{

i
̵h∫

tb

ta

(a ẏ2
+ b ẏy + c y2

)dt} ]

× exp[
i
̵h

Scl(b, a)], (18)

where the notation ∫
0

0 Dy(t) is reminiscent of the fact that all the
paths y(t) obey the boundary condition y(ta) = 0 = y(tb). The path
integral above can then be written as a function of the time interval
(tb − ta) solely, i.e.,

F(tb − ta) = ∫

0

0
Dy(t) exp[{

i
̵h∫

tb

ta

(a ẏ2
+ b ẏy + c y2

)dt} ]. (19)

This, ultimately, allows us to write the kernel in the following
simplified form:

K(b, a) = F(tb − ta) exp[
i
̵h

Scl(xb, xa)], (20)

which is equivalent to that of Eq. (12).

A. Path integrals for a free quantum particle
The first example concerns the simplest quantum system, i.e., a

quantum particle of mass m, freely propagating without experienc-
ing any interaction. Following the assumptions made in Sec. II, we
discuss the case of a one-dimensional free particle. The generaliza-
tion to an arbitrary number of dimensions can be readily done since
the dynamics of a free quantum particle in D dimensions can be seen
as the product of the independent evolution of D one-dimensional
particles.46

The Lagrangian of a free particle of mass m is given by

L(x, ẋ) =
m ẋ2

2
, (21)

and the equation of motion deriving from the Euler–Lagrange
equation (7) is simply m ẍ = 0. The correspondent action
S = ∫

tb
ta

L(ẋ, x, t)dt can be readily calculated explicitly by means of
part integration and has the following form:

S =
m(xb − xa)

2

2(tb − ta)
, (22)

where xa,b = x(ta,b). To calculate the path integral for a free parti-
cle, we need to consider all the possible paths the particle takes from
the initial state (ta, xa) to the final state (tb, xb). To do that, we sim-
ply divide the time interval T = tb − ta into N smaller intervals of
length ε = ti+1 − ti (such that T = Nε) and calculate the action Si cor-
responding to the particle evolution within each single interval such
that

S =
N

∑

i=1
Si =

N

∑

i=1

m
2ε
(xi − xi−1)

2, (23)

with x0 ≡ xa and xN ≡ xb. We then substitute this result into Eq. (9)
and evaluate the path integral over the set of N distinct trajectories,
i.e.,

∫

b

a
Dx(t) →

1
A(ε)N ∫ dx1 ∫ dx2 ⋅ ⋅ ⋅ ∫ dxN−1, (24)

APL Photon. 6, 071103 (2021); doi: 10.1063/5.0055815 6, 071103-6

© Author(s) 2021

https://scitation.org/journal/app


APL Photonics TUTORIAL scitation.org/journal/app

where A(ε) =
√

(2πi̵hε)/m is a factor included to ensure the inte-
gral to converge. This factor, however, is not merely a normalization
factor since it is complex, and therefore, it contributes to the over-
all phase of the path integral. This was discussed in great detail in
Ref. 2. Finally, we take the limit N →∞ to arrive at the following
expression for the propagator of a free particle:

K(x2, x1) = lim
N→∞

1
A(ε)N ∫ dx1 ⋅ ⋅ ⋅ ∫ dxN exp(

i
̵h

N

∑

i=1
Si). (25)

The integrals appearing above are Gaussian in the variables xi and
can then be readily calculated one after another. To see how, let us
first calculate explicitly the integral with respect to x1. Once we have
this result, we can perform the other integrations in cascade in the
same manner.

First, note that the relevant term in the action depending explic-
itly on x1 (i.e., those obtained by setting i = 1 and i = 2 in the
expression above) gives rise to the term

i
̵h

S1 =
im
2̵hε
[(x2 − x1)

2
+ (x1 − x0)

2
] =

im
2̵hε
(x2

2 + x2
0)

+
im
̵hε
[x2

1 − (x2 + x0)x1] (26)

and that, in particular, the first term does not depend on the inte-
gration variable x1. Integrating the above quantity with respect to x1
then gives

m
2πi̵hε ∫

dx1 exp(
i
̵h

S1) = exp[
im
2̵hε
(x2

2 + x2
0)]

m
2πi̵hε

× ∫ dx1 exp{
im
̵hε
[x2

1 − (x2 + x0)x1]}

=

√

m
2πi̵h(2ε)

exp[
im

2̵h(2ε)
(x2 − x0)

2
],

(27)

where to pass from the second to third line, we have employed the
change in variables X = ix1 and used Eq. (11).

Next, we take into account the terms in the action depend-
ing explicitly on x2, i.e., S2 = S1 + (x3 − x2)

2, and we integrate with
respect to x2. We can do so by simply taking the result of the integral
of S1 given in Eq. (27) and multiplying it by

√
m

2πi̵hε
exp[

im
2̵hε
(x3 − x2)

2
], (28)

and integrating again, this time over x2. The result is similar to that
of Eq. (27), except that (x2 − x0)

2 becomes (x3 − x0)
2, and 2ε→ 3ε.

It is now clear that we can solve the set of N integrals in Eq. (25)
by recursively applying terms of the form (28) and then perform-
ing Gaussian integration with respect to the variable xi. After N − 1
steps, we are left with the following result:

√

m
2πi̵h(Nε)

exp[
im

2̵h(Nε)
(xN − x0)

2
]. (29)

If we now note that Nε = T = tb − ta, it is easy to see that the limit
operation in Eq. (25) can be readily performed, leading us to the final

form for the path integral of a free particle, i.e.,

K(xb, xa) =

√

m
2πi̵h(tb − ta)

exp[
im(xb − xa)

2

2̵h(tb − ta)
]. (30)

The functional form of the real and imaginary parts of the ker-
nel above for a constant time interval tb − ta = T is shown in
Fig. 2. It is worth to comment this result a bit. From it, in
fact, we see how the quantum dynamics of a free particle (but,
more, in general, of an arbitrary quantum system) couples with
its classical dynamics described by action (22). However, this
result also allows us to shed light on the essential difference
between quantum and classical dynamics. While the classical prin-
ciple of least action localized the propagation of a particle on
a specific trajectory x(t) (i.e., the path of minimal action), the
propagator K(x(t), xa) describing the propagation of a particle
from the initial state xa along the classical trajectory x(t) yields,
instead, a complex wave function ψ(x, t) delocalizing in time dur-
ing propagation (obviously within the constraints of the Heisenberg
principle).

B. Refraction of photons at an interface
With the above notations, now consider the space divided

into two parts by a planar interface C and let A and B be two
points located at opposite sides of the interface, as shown in
Fig. 3. Then, we assume constant but different potentials at oppo-
site sides of the interface. At both sides, we expect the path of
the photons to be that of a free particle. With this assumption,
we can project the path connecting the points A and B onto
a one-dimensional subspace, for simplicity. Note, however, that
despite the fact that we will perform the calculations in this one-
dimensional subspace, we still need to think in terms of three-
dimensional space when considering deflection of light rays from the
interface C.

Without loss of generality, we can assume that total energy is
conserved in both separate sides of the interface and while passing
through it. However, since the two sides might have different values
of the potentials (i.e., different refractive indices), the particle pass-
ing through the interface C needs to change its velocity from ẋa to ẋb

FIG. 2. Real (blue, solid line) and imaginary (red, dashed line) parts of the kernel
K(xb, xa) of a free quantum particle, as given in Eq. (30), as a function of x = xb
− xa, for a fixed time interval tb − ta = T . For this plot, we assumed m = 1 = h,
which corresponds to measure time in square meters, rather than seconds.
Moreover, T = 1 has also been used.
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FIG. 3. Schematic representation of a ray of light being refracted from a planar
interface. A light source located at A emits a photon, which gets detected at point
B by using a suitable detector. Between A and B, a planar interface C is placed,
separating the two different media in which the photon propagates. In the language
of path integrals, refraction can be interpreted as the necessary change in the
velocity of the photon along the path where the action has the minimal value, with
respect to the contact point xc on the planar interface C.

to account for this variation in potential energy. The change in the
velocity, moreover, occurs at some position xc on the interface.

As shown in Fig. 3, in case the straight line from A to B is not
perpendicular to the interface, the observed path becomes deflected
at xc.

Now, we can write the action for the path as

Scl(xb, xa) = Scl(xb, xc) + Scl(xc, xa)

=
m
2
[ẋb(xb − xc) + ẋa(xc − xa)], (31)

where the coordinate xc is a free parameter to optimize following
the principle of least action. For the case of a photon refracting from
interface C, therefore, the “minimum optical path length” from A
to B is found by optimizing the coordinate xc. Following Eq. (12),
the kernel for the refraction of a quantum particle from a planar
interface C is given, up to an inessential constant F ≡ F(tb − ta), by

K(xb, xa) = F exp{
i m
2̵h
[ẋb(xb − xc) + ẋa(xc − xa)]}. (32)

We leave as an exercise for the reader to figure out the explicit
expression of the normalization constant F ≡ F(tb − ta).

In the equations above, the two different constant velocities ẋa
to ẋb of the photon follow from two different refractive indices. In
optics, the optimization of the optical path length is called Fermat’s
principle. If we consider the problem from a geometrical optics per-
spective, in fact, it is easy to see how the optimization of xc directly
leads to the celebrated Snell’s law of refraction,92 i.e.,

na sin θa = nb sin θb, (33)

where na,b = 1/ẋa,b are the refractive indices of the two media sepa-
rated by interface C (that can be expressed as the inverse velocity of

the particle in each side of C) and θa,b is the angle the optical rays
emerging from A to B, respectively, make with it. The angle differ-
ence between the two sides of the interface C is reminiscent of the
different wavelength that a photon with velocity ẋa and one with
velocity ẋb experience.

In this simple example, the classical and quantum approaches
give identical explanations for observations. Hence, we see that the
“quantum corrections,” though not absent, may give not only small,
but even vanishing contribution.

C. Diffraction from a double slit
This is the well-known “classic experiment” for demonstrating

the wave nature of light, or, if conducted with quantum particles,
such as electrons, to expose the wave nature of particle dynam-
ics.93 The results of this section can then be thought as valid for
both a photon and a quantum particle. Experimentally, to prove
the wave nature of light, one would need to perform this experi-
ment with monochromatic light, while mono-energetic particles are
needed to unravel the wave nature of particle dynamics. From a
path integral perspective, the interference pattern typical of such
experiments naturally arises when the possible paths the parti-
cle can take to traverse the double slit are explicitly taken into
account.

Our first task is then to construct the kernel for this prob-
lem. To this aim, let us consider the situation depicted in Fig. 4,
where a particle is emitted from a suitable source located at point
A and propagates to a detector (or a collection thereof) placed
at B, through a screen C with two slits C1 and C2 carved in
it. Without loss of generality, we can assume that the evolu-
tion of the particle is that of a free particle and that the only
potential it encounters is represented by the double-slit structure
(which, as a matter of fact, acts as a transfer function for the
particle).

To reach the detector at B, the particle takes a time τ to travel
from A to the screen C (and, in particular, to one of the slits), passes
through the screen, and then arrives at B after a time T − τ, where
T = tb − ta is the total time the particle takes to go from A to B. How-
ever, since we do not exactly know the time at which the particle
arrives on the screen, we need to integrate over all possible times.
In other terms, since we do not know the exact path the particle
will take to reach C from A, we need to integrate over all possible
paths it might undertake. With this in mind and by remembering
that a = (xa, ta), b = (xb, tb), and c1,2 = (xc1,2 , tc1,2) represent the posi-
tion and time at points A, B, and C1,2, respectively, the kernel for the
propagation of a particle through a two-slit screen is given by

K(b, a) = ∫ dτ [K(c1, b; τ)K(a, c1; T − τ)

+K(c2, b; τ)K(a, c2; T − τ)], (34)

where the first term accounts for the particle passing through the slit
C1, while the second one for it passing through the slit C2. From the
expression above, it is clear that interference must occur since the
probability to detect the particle at point B is then proportional to
∣K(b, a)∣2.

In fact, we can arrive at the same conclusion by considering
the case above in terms of the probability amplitudes and observed
probabilities in Sec. II A. In particular, let us have a look at the
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FIG. 4. Left panel: pictorial representation of the double-slit experiment. A quantum particle is emitted from a source located in A and reaches a detector (or a distribution
thereof) located at point B by passing through a screen C, on which two slits C1,2 have been carved. Right panel: sketch of the various possible probability distributions that
could be observed at the detector plane B. (a) Interference pattern P revealing the wave nature of the quantum particle. (b) Probability distribution P2 obtained by closing the
slit C1. (c) Probability distribution P1 obtained by closing the slit C2. (d) Estimation of the total probability distribution P1 + P2, obtained by simply summing the distributions
obtained in (b) and (c), as would be valid for a classical particle where no interference occurs.

probability distribution of the particle observed on the screen at
B for different cases, namely, the probability distribution P when
the interference pattern is observed (both slits are open) [Fig. 4(a)],
the probability distribution P2 observed when the slit C1 has been
closed [Fig. 4(b)], the probability P1 observed when the slit C2
has been closed [Fig. 4(c)], and finally, the probability distribution
P1 + P2 obtained by summing the results of observations in Figs. 4(b)
and 4(c).

As can be clearly seen, the probabilities do not sum up, as
P ≠ P1 + P2. If, on the other hand, we first sum the probability ampli-
tudes, i.e., ψ = ψ1 + ψ2, and then calculate the probability distribu-
tion as P = ∣ψ∣2, we get

P = ∣ψ∣2 = ∣ψ1 + ψ2∣
2
= P1 + P2 + 2Re{ψ1ψ∗2 }, (35)

where the third term is responsible for adding interference on top of
the sum of probabilities P1 + P2 in Fig. 4(d), thus leading to the cor-
rect result of Fig. 4(a). The reader familiar with wave theory would
immediately recognize that the probability distributions shown in
Figs. 4(a) and 4(d) occur for classical waves as well. Specifically,
the distribution in Fig. 4(a) occurs for the interference of correlated
(i.e., first order coherent) classical waves, while the distribution in
Fig. 4(d) results from incoherent classical wave mixing. This is yet
another indicator of the wave nature of quantum particles.94

D. Path integral for the harmonic oscillator
As our next example, we consider a simple harmonic oscillator,

described by the following Lagrangian:

L(x, ẋ) =
mẋ2

2
−

mω2x2

2
, (36)

where m is the mass of the oscillator and ω is its characteristic reso-
nance frequency. Using the Euler–Lagrange equation (7), the equa-
tion of motion reads ẍ + ω2x = 0, and the action S = ∫

tb
ta

L(ẋ, x, t)dt
is explicitly given by2

S =
m

2Tsinc(ωT)
[(x2

a − x2
b) cos(ωT) − 2xaxb)], (37)

where T = tb − ta and sinc(x) = sin(x)/x.
To calculate the path integral for the harmonic oscillator, we

take a slightly different approach, than the one taken above, which
allows us to perform calculations in an easier and more intuitive
manner. Let us then assume that xcl(t) and ẋcl(t) represent the clas-
sical path of the oscillator and its velocity, respectively. We can then
express any other possible path taken by the oscillator, as a deviation
from the classical path, i.e., x(t) = xcl(t) + y(t) and ẋ(t) = ẋcl(t)
+ ẏ(t), and choose the appropriate boundary conditions on y(t) and
ẏ(t), i.e., y(ta) = 0 = y(tb) and ẏ(ta) = 0 = ẏ(tb) as required by the
principle of least action.

If we apply this change in variables to the Lagrangian above, we
get three different terms, namely,

L(xcl, ẋcl) + L(y, ẏ) +m(ẋclẏ + ωxcly), (38)

where the first term has the form given in Eq. (36) and it repre-
sents the Lagrangian for the classical trajectory, the second term is
the Lagrangian (36) for the deviation, and the third term amounts to
a vanishing term (for the Euler–Lagrange equations) and can there-
fore be neglected.2 Using this result, we can then factor the propaga-
tor K(x2, x1) for the harmonic oscillators into two terms as follows:

K(xb, xa) = F(T) exp(
i
̵h

Scl), (39)
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where Scl = ∫
tb

ta
dt L(xcl, ẋcl) and the explicit expression of the func-

tion F(T), which depends upon the time interval solely, is

F(T) = ∫ Dy(t) exp[
i
̵h∫

T

0
dt

m
2
(ẏ2
− ω2y2

)]. (40)

Because of our choice of boundary conditions for the deviations y(t)
and ẏ(t), namely, that they must both be zero at the endpoints, we
can significantly simplify the calculation of the path integral above if
we allow the various paths y(t) to be represented as a Fourier series
as

y(t) =
∞

∑

n=1
an sin(

nπt
T
). (41)

The requirement that y(ta) = 0 = y(tb) and ẏ(ta) = 0 = ẏ(tb), in
fact, corresponds to say that both y(t) and ẏ(t) are T-periodic
functions, which can then be represented in a Fourier series.

This representation of y gives possibility to specify a path
through the coefficients an instead of values of y at any particular
time t. This can be seen as a linear transformation of coordinates
whose Jacobian J is a dimensionless constant independent of ω, m,
or h. Moreover, we do not really need to evaluate J explicitly since
we can always recover the correct normalization factor at the end of
our calculation by requiring that

lim
ω→0

F(T) =
√

m
2πi̵hT

, (42)

i.e., in the limit of ω→ 0, where the Lagrangian of the harmonic
oscillator reduces to that of a free particle, we find the appropri-
ate normalization coefficient for a free particle. For this reason, we
omit J from the following calculations and we restore the correct
normalization factor only at the very end of them.

Before substituting Eq. (41) into Eq. (40), a couple more
assumptions are needed, in order to easily compute the path inte-
gral. First, we truncate the Fourier series to a finite number N so that

∫ Dy(t) →
1

A(ε)N ∫ da1 ∫ da2 ⋅ ⋅ ⋅ ∫ daN , (43)

and we can calculate it recursively as we did for the case of a
free particle. We will then take the limit N →∞ at the end of the
calculation.

Putting everything together, we obtain the following expression
for the term F(T) after performing the trigonometric integrals:81

F(T) =
1

A(ε)N ∫ da1⋅ ⋅ ⋅ ∫ daN exp{
im
2̵h

T
2

N

∑

n=1
[(
πn
T
)

2
− ω2
]a2

n}.

(44)
Note, once more, that the integrals above are all Gaussian in the
integration variables an. As we did for the case of the free particle,
therefore, we can perform them individually and then obtain the
final result recursively. The result of a single integration over an is
then given by

∫

dan

A
exp[

imT
4̵h

f n(ω, T)a2
n] =

√

2
T f n(ω, T)

, (45)

where

f n(ω, T) =
n2π2

T2 − ω
2. (46)

Since there are no linear terms in an in any of the integrals
above, the final result of the path integration will be proportional to
simply the product of N independent terms f n(ω, T), one for each
value of n. This allows us to write

F(T) ∝
N

∏

n=1

1
√

f n(ω, T)
. (47)

We now need to take the limit of the expression above for N →∞.
To do that, let us first rewrite the product above in the following way
using Eq. (46):

N

∏

n=1

1
√

f n(ω, T)
=

N

∏

n=1
(

n2π2

T2 − ω
2
)

−1/2

=

N

∏

n=1
(

n2π2

T2 )

−1/2

×

N

∏

n=1
(1 −

ω2T2

n2π2 )

−1/2

. (48)

The first product does not depend on ω and, together with the Jaco-
bian and the terms

√

2/εT deriving from the various integrations,
can be collected into an overall normalization factor C. The second
product, on the other hand, admits the following limit:

lim
N→∞

N

∏

n=1
(1 −

w2T2

n2π2 )

−1/2

=

√

1
sinc(ωT)

. (49)

Putting everything together and evaluating C =
√

m/2πi̵hT from the
free-particle-limit (42), we get the final expression of the term F(T)
as

F(T) =
√

m
2πi̵hTsinc(ωT)

, (50)

and after substituting this result into Eq. (39), we obtain the final
form of the path integral for the harmonic oscillator to be

K(xb, xa) =

√

m
2πi̵hTsinc(ωT)

exp(
i
̵h

Scl), (51)

where Scl is given by Eq. (37). The real and imaginary parts of the
kernel K(b, a) for the harmonic oscillator are shown in Fig. 5.

FIG. 5. Real (blue, solid line) and imaginary (red, dashed line) parts of the kernel
K(x, 0) of a harmonic oscillator, as defined in Eq. (51), assuming that the initial
condition for the oscillator is xa = 0, and for a given time interval T = 1. Analo-
gously to the convention adopted in Fig. 2, m = 1 = h have been assumed to plot
this as well.
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IV. AN EXAMPLE FROM CLASSICAL OPTICS: PATH
INTEGRAL DESCRIPTION OF LIGHT DYNAMICS IN AN
INHOMOGENEOUS MEDIUM

We now take a look at how path integrals can be used to
solve problems outside quantum mechanics and apply this formal-
ism to describe the propagation of the electromagnetic field inside
a weakly inhomogeneous medium, using the case of gradient-index
(GRIN) media as explicit reference. This problem has been solved by
Gõmez-Reino and Liñares in 1987.31 In their work, Gõmez-Reino
and Liñares first represented the electromagnetic field in a GRIN
medium as a superposition of optical rays and used this picture to
calculate the propagator as a path integral over the rays’ trajectories.
They then provided an explicit expression for it, parameterized in
the so-called paraxial and field rays of an arbitrary (paraxial) optical
system.92

Here, we take a different approach, with which we want to
show how the free propagation of light in a medium can be seen
as, essentially, the evolution of a massive quantum particle in a
harmonic oscillator potential with a suitably defined frequency,
which, in general, can be z-dependent. We will identify such a mas-
sive particle with a photon propagating inside the medium and
all the possible trajectories the particle can take as the possible
optical rays linking the initial (z = 0) and final (z = z) propagation
plane in the medium. We will then calculate the diffraction ker-
nel by means of path integrals, essentially following the results of
Sec. III D, and show how our calculations naturally suggest a rep-
resentation of the diffraction kernel in terms of Hermite–Gaussian
functions.

Without loss of generality and for the sake of simplicity of expo-
sition, we consider light propagating in a 1 + 1-dimensional GRIN
medium, characterized by the following refractive index profile:

n2
(x, z) = n2

0[1 − g2
(z)x2

], (52)

where n0 = n(0, z) is the background index and g(z) is a smooth-
enough function that describes the evolution of the refractive index
along the z axis.

A. Diffraction kernel as a path integral
Let us first assume paraxial propagation of light in a medium

described by the refractive index given in Eq. (52). In general, if we
know the field distribution at an initial plane z = 0 to be E(xa, ya),
we can calculate the field distribution at a plane z > 0 by means of
the diffraction integral95

E(xb, z) = ∫ dxa K(xb, xa, z)E(xa, 0), (53)

where K(xb, xa, z) is the diffraction kernel, i.e., the Green’s function
of the paraxial equation

2 i k n0
∂K
∂z
= −[

∂2

∂x2 + 2k2 n0 n(x, z)]K, (54)

with the boundary condition that K(x, xa, z) → δ(x − xa) for z → 0.
If we imagine the electromagnetic field propagating in the medium
described by n(x, z) as a bundle of optical rays, then the diffrac-
tion kernel can be interpreted as a path integral over all the possible

trajectories of the optical rays contained in the field as

(55)

where = λ/2π = 1/k, and the action functional S for an optical ray
propagating in the medium described in Eq. (52) is defined as

S = ∫
z

0
L(x, ẋ, z)dz. (56)

The Lagrangian L for an optical ray propagating in a medium with
refractive index n(x, z) can be written as follows:

L(x, ẋ, z) = n(x, z)
√

1 + ẋ2. (57)

To justify our starting assumption, i.e., that the electromagnetic field
in the medium can be seen as a collection of rays, we can use dif-
ferent arguments. One possibility would be to represent the field
in its plane wave components and consider each plane wave as an
optical ray.95 Another, more inspiring, possibility is to note that
the paraxial equation (54) is formally equivalent to the Schrödinger
equation for a quantum particle of mass n0 in a potential n(x, z),
where the propagation direction z plays the role of time and k plays
the role of h. Thanks to this formal analogy, we can identify a sin-
gle optical ray as a (massive) photon propagating in the medium
and then easily understand as the diffraction kernel can be seen as
a path integral over all the possible trajectories that such a quan-
tum particle can take when evolving from the initial state to the final
one.

In the form mentioned above, the Lagrangian is of little use
since it provides no analytical solution for the trajectory of the opti-
cal ray and, by extension, does not really allow for an easy handling
of the path integral in Eq. (55). To circumvent this problem, we can
however assume that the medium is weakly inhomogeneous so that
Δn = n(x, z) − n0 ≪ n holds, and we only consider rays propagating
in a small region around the z axis, which corresponds to assum-
ing ẋ≪ 1 (this is equivalent to assuming that the paraxial approx-
imation holds). With these assumptions, we can Taylor expand the
square root in Eq. (57) and the refractive index profile obtaining, to
the leading order in ẋ and x,

L(x, ẋ, z) ≃ n0[1 +
ẋ2

2
− g2
(z)

x2

2
]. (58)

Note that the optical Lagrangian is quadratic in both x and ẋ and
can be therefore interpreted as the Lagrangian of a (shifted) har-
monic oscillator with mass n0 and z-dependent resonance frequency
Ω(z) = g(z). Thanks to this analogy, we can calculate the kernel
K(xb, xa, z) in the same manner we did for the harmonic oscillator
in Sec. III D, with the difference that now we need to account for the
fact that the frequency of the oscillator varies with z. In particular,
we can employ the same trick of writing the components of the tra-
jectories as x(z) = xcl(z) + y(z), with the boundary conditions that
the deviation y(z) is zero at the endpoints z = 0 and z = z, and we
can then write the propagator, in analogy with Eq. (39), as

(59)
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where

(60)

Following this line of reasoning and representing the classical
action Scl(xa, xb, z) in terms of the so-called paraxial [H1(z)] and
field [H2(z)] rays of a general optical system, we can obtain
a similar result, in our (1 + 1)-dimensional model, than the
(2 + 1)-dimensional result obtained by Gõmez-Reino and Liñares,31

namely,96

K(xb, xa, z) =
√

kn0

2πiH1(z)
exp(ik n0 z)

× exp[i k n0
Ḣ1(z)x2

b +H2(z)x2
a − 2xaxb

2H1(z)
], (61)

where the dot stands for the derivative with respect to z and H1,2(z)
are two independent solutions of the following equation of motion:

Ḧ1,2 + g2
(z)H1,2 = 0. (62)

This result, however, is not particularly insightful, and the solution
presented above (or its two-dimensional counterpart presented in
Ref. 31) is quite hard to intuitively link to known results. For this
reason, we present below a much clearer and intuitive approach,
which we hope will help the reader in appreciating the universality
and versatility of path integrals beyond quantum mechanics.

B. Paraxial propagation as a harmonic oscillator
Let us go back to the analogy to the Lagrangian (58) and

calculate the path integral deriving from it. The fact that the fre-
quency of the oscillator is now z-dependent does not really allow
us to repeat the one-to-one calculations in Sec. III D. In particular,
after we introduce the deviations y(z), we cannot represent F(z) in
terms of a Fourier series anymore since now, the oscillator frequency
depends on z as well. Instead of doing that, we then just follow the
same line of reasoning that we used to calculate the path integral
for a free particle in Sec. III A, namely, we divide the propagation
“interval” Z = zb − za into N smaller intervals of length ε = zi+i − zi
such that Z = Nε so that we can write the action correspondent to
the Lagrangian (58) as

Si(xi, xi−1) =
n0

2ε
(xi − xi−1)

2
−

n0ε
2
Ω2

i x2
i , (63)

where x0 ≡ xa, xN ≡ xb, and Ω2
i ≡ g2

(zi). This allows us to approxi-
mate the path integral in Eq. (55) using Eq. (24) and evaluate it first
over a finite set of N trajectories and then to get back to the actual
result by taking the limit N →∞. By doing this, moreover, we gain
the advantage that in each infinitesimal interval ε, the frequency Ωi
of the oscillator is constant, and so we can use the results for the stan-
dard oscillator within each interval of length ε. If we then introduce
the quantities

(64a)

αi = β(1 −
1
2
Ω2

i ε
2
), (64b)

we can then rewrite the path integral in Eq. (55) as N nested
Gaussian integrals, i.e.,

KN(xb, xa, z) = exp[
iβ
2
(x2

a + x2
b)]∫ dx1, . . . , dxN−1

× exp[i
N−1

∑

n=1
αnx2

n] exp(−iβx0x1) ⋅ ⋅ ⋅ exp(−iβxN−1xN),

(65)

and then, the diffraction kernel can be calculated as

K(xb, xa, z) = lim
N→∞

KN(xb, xa, z). (66)

The explicit expression for KN can be calculated by recursively
applying the following Gaussian integral result to Eq. (65):

I = ∫ dx exp{i[αx2
− (a + b)x]}

=

√

iπ
α

exp[−i
a2
+ b2

4α
] exp[−i

ab
2α
]. (67)

This procedure will lead to the quite compact result

KN(xb, xa, z) =
√

aN

2π
exp[i(pN x2

a + qN x2
b) − aN xaxb], (68)

where aN , pN , and qN are quantities that depend on β and αi, and
their explicit expression can be found in Ref. 97. We can then use
the result above and take its limit for N →∞ to get the final form of
the propagator, which is explicitly given as follows:

(69)

where the proper limit for the quantities aN , pN , and qN has been
taken as instructed in Ref. 97 (also see the same discussion for the
simple harmonic oscillator in Sec. III D), ϕ(z) = γ(z) − γ(0), and
the quantities s(z) and γ(z) are determined from the solution of the
following differential equation:

d2

dz2 ξ(z) +Ω
2
(z)ξ(z) = 0, (70)

where ξ(z) = s(z)exp[iγ(z)] andΩ(z) ∈ R. First of all, note the sim-
ilarity between this result and the form of the propagator for a har-
monic oscillator, as given in Eq. (51). In fact, the result above reduces
to the propagator of a harmonic oscillator with constant frequencyω
by means of the substitution s(z) =

√

n0/ω and γ(z) = ωz. We can
then interpret the propagation of light in a medium described by
the refractive index (52) as basically being given by the propagator
of a harmonic oscillator with a suitably chosen z-dependent fre-
quency (which depends on the longitudinal properties of the refrac-
tive index). The propagator, moreover, is uniquely determined by
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the amplitude and phase of the solution of a harmonic-oscillator-
like equation of motion for ξ(z), where the z-dependent profile of
the medium determines, again, the characteristic frequency of the
oscillator.

Following Ref. 97, we can make this connection appear more
evident by rewriting the propagator above in terms of the eigenstates
of the refractive index potential given in Eq. (52). This can be done
by first rewriting sinϕ(z) and cosϕ(z) as complex exponentials and
then using Mehler’s formula98

exp[−(X2
+ Y2

− 2X Y Z)/(1 − Z2
)]

√

1 − Z2

= exp[−(X2
+ Y2
)]

∞

∑

n=0

Zn

2nn!
Hn(X)Hn(Y), (71)

with Z = exp(−iϕ(z)), , and to
transform the resulting expression in terms of Hermite polynomi-
als and finally obtain (we generalize z = 0 to a generic z = za for
convenience)

K(xb, xa, za, zb) =
∞

∑

n=0
ψ∗n (xa, za)ψn(xb, zb), (72)

where ψn(x, z) are the eigenfunctions of a harmonic oscillator with
z-dependent frequencyΩ(z) and their explicit expression is given as

(73)

where s(z) and γ(z) are solutions of Eq. (70). For light propagat-
ing in vacuum, g(z) = 0 [and, therefore, Ω(z) = 0] and the above
expression of the propagator reduces to the well-known result of the
resolution of the diffraction kernel in terms of Hermite–Gaussian
eigenstates of the paraxial equation.99 The expression above is,
moreover, fully equivalent to that found by Gõmez-Reino and
Liñares,31 but it gives more insights into how path integrals can be
used to easily solve complicated problems in optics, such as the prop-
agation of light in a GRIN medium, whose analytical solution, even
in the simplest cases, is not really available. By establishing the anal-
ogy with a time-dependent harmonic oscillator, on the other hand,
path integrals give a rather elegant and remarkably simple result,
which can be intuitively hinted at using simple arguments, such as
the propagation of light in free space.

V. AN EXAMPLE FROM QUANTUM OPTICS: PATH
INTEGRAL DESCRIPTION OF DEGENERATE
PARAMETRIC AMPLIFIERS

Path integrals, in the form defined in Eq. (9), have also been
used to approach various problems in nonlinear optics. In this case,
as we will see throughout this section, the integral over all the pos-
sible trajectories of the quantum particle will be replaced, in the
formulation originally proposed by Hillery and Zubairy in 1982,38

by an integral over all possible configurations in the complex plane
spanned by coherent states.

As an explicit example, we consider here the case of parametric
amplification, whereby a signal incident on an optically nonlinear
material is amplified.100,101 A pump field impinging on a material
characterized by a χ2 nonlinearity (see Fig. 6) can combine with a
signal field, leading to a depleted pump and an amplified signal (and
an idler field, in order to conserve energy).

In this section, the contents of which based on Ref. 38, we will
then apply the tools presented so far in this Tutorial to the case of the
degenerate parametric amplifier, thus providing an example of how
path integrals can prove useful to solve problems in quantum optics.

For the sake of simplicity, let us consider a single mode of
the radiation field (generalizations of this formalism to multimode
fields were explicitly covered in Ref. 38), and we represent the
field using coherent states, a natural choice here as the Hamilto-
nians under consideration will be expressed in terms of creation
and annihilation operators (a† and a, respectively). This assump-
tion, in particular, will allow us to define the path integral in
terms of coherent states, i.e., as a path integral in the field’s phase
space.

A. Propagator as path integral over coherent states
We begin by defining the time-evolution operator as Û(tb, ta),

which evolves the system’s state at time ta to the state at time
tb by ∣ψ(tb)⟩ = Û(tb, ta)∣ψ(ta)⟩.82 Denoting the time-dependent
Hamiltonian of the system by H(t), the time-evolution operator is

FIG. 6. Pictorial representation of optical parametric amplification. A nonlinear
material with second-order susceptibility (χ2) is impinged upon by pump photons
at angular frequency ωp and signal photons at ωs. Due to the excitation of the
medium to a virtual energy level by the pump (shown at the bottom), the signal
photon stimulates the emission of photons at ωs and, due to energy conservation,
produces an idler field at ωi. For the case of a degenerate parametric amplifier, the
signal and idler fields have the same frequency, i.e., ωs = ωi.
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then Û(tb, ta) = T̂ exp[−i∫
tb

ta
H(t′)dt′], where T̂ is the time-ordering

operator.102

If the electromagnetic field is represented in terms of coherent
states, we can readily give a definition of the propagator using the
time-evolution operator defined above as follows:

K(αb, tb;αa, ta) = ⟨αb∣Û(tb, ta)∣αa⟩, (74)

where ∣α⟩ represent the set of coherent states, defined as the eigen-
states of the annihilation operator, i.e., â∣α⟩ = α∣α⟩.103 If we intro-
duce the notation ∣α, t⟩ ≡ Û(t, 0)∣α⟩, we can rewrite the expres-
sion above in the following form, which will prove useful in the
remainder of this section:

K(αb, tb;αa, ta) = ⟨αb, tb∣αa, ta⟩. (75)

To understand why the form above is useful to our means, let
us show how the quantity above naturally appears when calculat-
ing expectation values of operators and, more generally, correlation
functions in the so-called P-representation. We assume that at time
t = 0, the density matrix of the field can be written as

ρ = ∫ d2αP(α)∣α⟩⟨α∣, (76)

where P(α) is the Glauber–Sudarshan P-function.104,105 In this rep-
resentation, the expectation value of any operator Ô(t) in the
Heisenberg picture can then be written as

⟨Ô(t)⟩ = Tr[ρÔ(t)] = ∫ d2αP(α)⟨α∣Ô(t)∣α⟩. (77)

Using the expression above in combination with the completeness
relation of coherent states, i.e.,

1
π ∫

d2α ∣α, t⟩⟨α, t∣ = 1, (78)

where d2α = d Re αd Im α spans the complex-plane defined by
coherent states,103 any normal-ordered correlation function of the
form ⟨â†

(t1)â†
(t2) ⋅ ⋅ ⋅ â(tN−1)â(tN)⟩ can be then expressed in terms

of the propagator (75). For the simple case of ⟨â(t)⟩, this can be
readily shown as follows:

⟨â(t)⟩ = ∫ d2α P(α)⟨α∣â(t)∣α⟩

= ∫ d2α P(α)⟨α∣Û−1
(t, 0) â Û(t, 0)∣α⟩

=
1
π ∫

d2α d2 β P(α) β ∣K(β, t;α, 0)∣2, (79)

where to pass from the second to the third line, we have employed
the completeness relation for coherent states. For correlation func-
tions containing more creation and annihilation operators, more
propagators, calculated at different times, will appear in the expres-
sion above.38 The propagator is then clearly an important quantity
to evaluate such expectation values.

We now show how to write the propagator as a path integral.
To start with, let us assume that the Hamiltonian of our system is
normal-ordered, i.e., H = H(â†, â, t), and as we did in Sec. III A,
assume to divide the evolution interval tb − ta into N slices of length

ε = (tb − ta)/N. We can mirror this choice directly into Eq. (75)
by inserting N times the completeness relation (78) and set t → tj
= tj−1 + ε for each entry. If we do so, we then obtain

K(αb, tb;αa, ta) = (
1
π
)

N

∫ d2α1, . . . , d2 αN⟨αb, tb∣αN , tN⟩

× ⟨αN , tN ∣αN−1, tN−1⟩ ⋅ ⋅ ⋅ ⟨α1, t1∣αa, ta⟩. (80)

The quantities ⟨αj, tj∣αj−1, tj−1⟩ can be readily evaluated using the
time-evolution operator defined above, and noting that since tj
− tj−1 = ε≪ 1, we can Taylor expand the time-evolution operator to
obtain

Û(tj, tj−1) ≃ 1 − i ε∫
tj

tj−1

dτH(â†, â, τ). (81)

With this result at hand, the individual terms ⟨αj, tj∣αj−1, tj−1⟩ can
be brought, after a simple algebraic manipulation,38 in the following
form:

⟨αj, tj∣αj−1, tj−1⟩ ≈ exp[(−1/2)(∣αj∣
2
+ ∣αj−1∣

2
) + α∗j αj−1]

× exp[−iεH(α∗j ,αj−1, tj−1)], (82)

where we have defined

H(β∗,α, t) =
⟨β∣H(a†, a, t)∣α⟩

⟨β∣α⟩
. (83)

Now that we have an expression of the propagator in terms of N
discrete “trajectories” (i.e., N different coherent states ∣αj⟩), we can
take the limit N →∞ and arrive at the definition of the path integral
in coherent state representation, following the same line of reasoning
used in Sec. III. The details of this calculation are reported in Ref. 38,
and we refer the interested reader therein. The final result of this
calculation is then given as follows:

K(αb, tb;αa, ta) = ∫ 𝒟 α(τ) exp{∫
tb

ta

dτ[
αα̇∗ − α∗α̇

2

− iH(α∗,α; τ)]}, (84)

with the integration measure taken to mean an integral over all
coherent states parameterized by τ, with α(ta) ≡ αa and α(tb) ≡ αb.

B. Propagator for quadratic Hamiltonians
We now apply the above results, focusing on the class of Hamil-

tonians, which are at most quadratic in the creation and annihila-
tion operators. This class of Hamiltonians is of particular interest in
quantum optics, since it describes second-order nonlinear phenom-
ena, within the so-called undepleted pump approximation,101 and
it can sometimes also be used to describe harmonic generation in
third-order nonlinear systems.101,106

The most general quadratic Hamiltonian can be written as

H(â†, â, t) = ω(t)â†â + [ f (t)â2
+ g(t)â + h.c.], (85)

with f (t) and g(t) arbitrary, but well-behaved, time-dependent
functions. The reader might note a similarity between the Hamil-
tonian above and that of a forced harmonic oscillator.2 For this class
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of Hamiltonians, the integrals appearing in Eq. (84) are all Gaus-
sian and can be performed using the methods described in Sec. III.
In particular, to calculate the path integral with the Hamiltonian
defined above, one first needs to discretize the paths over the coher-
ent states α (in the same manner, we discretized the trajectories for
the harmonic oscillator in Sec. III), then express the exponential
appearing in Eq. (84) in terms of Re{α} and Im{α} explicitly, and
note that the correspondent integrals are Gaussian in both the real
and imaginary parts of α. After having calculated a single term, one
could then calculate the remaining integrals iteratively, as done for
the examples in Sec. III. After a lengthy but straightforward calcu-
lation, which was partially covered in Appendix A of Ref. 38, the
propagator for a quadratic Hamiltonian assumes the following form:

K(α, t) = F(α, t) exp[−iΣ(α, t)], (86)

where α = {αa,αb}, t = {ta, tb}, and the functions F and Σ are
defined as

F(α, t) = exp[−
1
2
(∣αb∣

2
+ ∣αa∣

2
) + Y(tb)α

∗

b αa

+X(tb)(α
∗

b )
2
+ Z(tb)α

∗

b ], (87)

Σ(α, t) = ∫
tb

ta

dτ{ f (τ)[2X(τ) + Z2
(τ) + α2

aY2
(τ)

+ 2αaY(τ)Z(τ)] + g(τ)[Z(τ) + αa Y(τ)]}, (88)

where the auxiliary function X(t) is constrained by

dX
dt
= −2iω(t)X − 4i f (t)X2

− i f ∗(t), (89)

with initial condition X(ta) = 0. The functions Y(t) and Z(t) are
instead defined in terms of X(t) as

Y(t) = exp(−i∫
t

ta

dτ[ω(τ) + 4 f (τ)X(τ)]) (90)

and

Z(t) = −i∫
t

ta

dτ[g∗(τ) + 2g∗(τ)X(τ)]

× exp(−i∫
t

τ
dτ′[ω(τ′) + 4 f (τ′)X(τ′)]). (91)

C. Propagator for degenerate parametric
amplification

A degenerate parametric amplifier is characterized by the fol-
lowing quadratic Hamiltonian:101

H(t) = ωa†a + κ(e2iωta2
+ e−2iωta†2

), (92)

where ω is the angular frequency of the mode and κ is a coupling
constant. The above Hamiltonian can clearly be seen to fall into
the class of Hamiltonians given in Eq. (85) if we identify ω(t) = ω,
f (t) = κe2iωt , and g(t) = 0. Although parametric amplification is
formally a three-wave process involving, as depicted in Fig. 6, a

pump, a signal, and an idler field, it is a common practice in non-
linear optics experiments to work within the so-called undepleted
pump approximation,101,106 which treats the pump mode as a classi-
cal (bright) field, whose number of photons does not change signif-
icantly (i.e., the pump field remains undepleted) during the nonlin-
ear interaction. Within this approximation, then, the Hamiltonian
becomes effectively quadratic in the signal and idler modes and can
be described in Eq. (92). The explicit form of the propagator given
below is then valid within this approximation. A fully quantized
analysis of parametric amplification beyond the undepleted pump
approximation in terms of path integrals was presented by Hillery
and Zubairy in Ref. 37.

In this case, with the form of ω(t), f (t), and g(t) given above,
the functions X(t), Y(t), and Z(t) can be written in an explicit form
[in particular, Eq. (89) can be solved analytically], giving Z(t) = 0
and38

X(t) =
1
2i

e−2iωt tanh[2κ(t − ta)], (93a)

Y(t) = e−iω(t−ti)sech[2κ(t − ta)]. (93b)

These time-dependent quantities can then be directly substituted
into Eq. (86), finally yielding the propagator for the degenerate
parametric amplifier,

K(αb, tb;αa, ta) =
√

sech[2κ(tb − ta)] exp(−
∣αb∣

2
+ ∣αa∣

2

2
)

× exp
⎧
⎪⎪
⎨
⎪⎪
⎩

α∗b αae−iω(tb−ta)sech[2κ(tb − ta)]

− i(
α∗b
√

2
)

2

e−2iωtb tanh[2κ(tb − ta)]

− i(
αa
√

2
)

2

e2iωta tanh[2κ(tb − ta)]

⎫
⎪⎪
⎬
⎪⎪
⎭

. (94)

VI. PREDICTING OPTICAL PROPERTIES OF MATTER
USING PATH INTEGRALS

The examples discussed above only deal with a single parti-
cle, either freely propagating or interacting with a suitable potential.
In all these cases, the complexity of the problem is low enough to
allow analytical solutions to the path integrals. As soon as many-
body effects are taken into account, as it is the case, for example,
for atoms and molecules, handling the path integral analytically
becomes impossible and numerical techniques for its evaluation are
necessary. A particularly successful computational method for this
task has been Path Integral Monte Carlo (PIMC). The interested
reader can download Ceperley’s group PIMC++ open-source code
for path integral Monte Carlo simulations, available, together with
its relative documentation, at https://pimc.soft112.com.

In this section, we then present some of the results obtained
using PIMC to predict the exact linear and nonlinear optical
properties of simple systems as a function of frequency. These
results, recently demonstrated by Tiihonen,107 constitute one of
the first attempts to use PIMC to investigate the optical properties
of matter. There, however, only very simple systems were stud-
ied, such as the hydrogen (H) and hydrogen-like (Li+ and Be+2 )
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atoms, helium atoms He and He+, hydrogen molecules H2 and
H+2 , hydrogen–helium (HeH+) and hydrogen–deuterium (HD+)
molecules, and the positronium atom. These systems have been
studied employing different methods, including finite-field simula-
tions for static polarizabilities,65 polarizability estimators for simu-
lation without the external field,74 static field-gradient polarizabili-
ties,66 and finally, dynamic polarizabilities and van der Waals coef-
ficients.73 The last one, in particular, is of great interest, as the
macroscopic electric susceptibility is constructed starting from the
dynamic frequency-dependent polarizabilities.

The results presented in the aforementioned references and
summarized in this section represent an exceptional benchmark
to gauge the capabilities of PIMC in providing accurate and mul-
tidimensional information about the optical properties of mat-
ter and hint at the potential impact that PIMC could have on
photonics, as a new modeling platform to exactly calculate the
optical response of exotic materials, such as 2D materials, the
understanding of which is still in its infancy.108 A great advan-
tage PIMC would give, for example, is the possibility to inves-
tigate the nonlinear properties of 2D materials far from equi-
librium, a physical regime that is currently poorly understood.
This could be of particular importance for the nonlinear opti-
cal properties of 2D materials since for such materials, non-
equilibrium dynamics can be easily reached at relatively small optical
powers.

A. Polarizability in PIMC
The optical response of matter,95 frequently described in terms

of the matter polarization vector P, is completely determined by elec-
tron dynamics solely within the limits of the Born–Oppenheimer
(BO) approximation, which specifies that the nuclear dynamics
occurs on a much longer timescale and can be therefore neglected,
which is implicitly assumed.91 In general, however, when thermal
effects are explicitly taken into account, this approximation might
not be valid anymore, as the role of the nuclei becomes more promi-
nent as the temperature of the system is increased. To properly take
into account these effects, then, an approach able to go beyond
BO is needed to get the correct results. PIMC, then, is the most
viable, if not the only possible, approach to systematically study
the optical properties of materials in this particular regime (which,
for example, includes the calculation of such properties at room
temperature).

While optics makes extensive use of the (linear and nonlin-
ear) susceptibility tensor to describe the optical properties of a
material,101 from a PIMC perspective, it is better to work with
polarizabilities, as they can be defined quite easily in terms of
path integrals. For example, the ij-component of the linear (i.e.,
dipole) polarizability tensor, namely, αij, can be simply calculated
as the (functional) derivative of the expectation value (i.e., first
order correlator) of the dipole moment μ oriented, say, along the
i-direction, with respect to an external electric field oriented along
the j direction,107 i.e.,

αij =
∂

∂Ej
⟨μi⟩, (95)

where the expectation value of an operator Ô is defined with
respect to the density matrix operator of the system in the so-called

imaginary time representation,107 i.e.,

⟨Ô⟩ = 𝒩 Tr{Ô exp[−
S(T)
̵h
]}, (96)

where 𝒩 is a suitable normalization constant, S(T)
= (Ĥ0 − Q̂ ⋅ E)/kBT is the temperature-dependent action of
the system (described by the Hamiltonian Ĥ0) interacting with the
electromagnetic field E, and Q̂ is the electric moment operator.107

Note that to represent the expectation value above as a path integral,
it is computationally more convenient to transform the complex
phase factor exp(i S/̵h), naturally arising from path integrals,
into an exponentially decaying term exp(−S/̵h) by means of a
Wick rotation109 (i.e., a change in the reference frame from real
to imaginary time, namely, t → iτ) since computationally, it is
much easier to deal with real-valued, exponentially decaying terms,
rather than complex-valued, spuriously oscillating ones. In fact,
the everywhere positive exponential function can be considered as
a probability distribution for sampling the imaginary time paths
with the Metropolis Monte Carlo algorithm in the canonical (NVT)
ensemble.

PIMC makes use of several different strategies to compute
the quantities defined above. The zero-field polarizability estima-
tors, for example, are Hellmann–Feynman-type operators107 whose
expectation values give the polarizabilities of various types and
order, without the need of including an external electric field in the
simulation.

Computation of dynamic multipolar polarizabilities, on the
other hand, is more sophisticated, and it requires to first determine,
through PIMC, the multipole–multipole correlation function in the
so-called imaginary time representation and then analytically con-
tinue it to obtain the spectral function in the real-time domain (a
task that is highly non-trivial due to the fact that it is an ill-posed
numerical problem) and finally both the real and imaginary parts of
polarizability.

B. From polarizability to susceptibility
Assuming a very low density gas phase of these small atoms

or molecules, one can evaluate the corresponding macroscopic
susceptibility from the atomic and molecular polarizabilities. At
higher densities, interactions and chemical reactions of these moi-
eties will change the polarizabilities, composition, or both, which
consequently leads to the density dependent susceptibilities.

With increasing density and, in particular, in the case of liquids
and solids, where several electrons interact strongly, the Fermion
Sign Problem (FSP) emerges. This is the notorious challenge for the
Monte Carlo evaluation of essential expectation values of identical
fermions, and it partly discloses a still open problem. The prob-
lem emerges from the evaluation of the difference of two large
contributions with opposite signs, resulting from the sign of the
density matrix (or wave function). There are practical solutions
to FSP in PIMC simulations for many cases,20–23,107 but not any
general robust approaches, yet. Most of the solutions are based
on finding approximate or iterative nodal surfaces of the density
matrix.

The real-time path integral (RTPI) approach74–77 may offer a
remedy in the future, as it directly works with the wave function
with an explicit sign, even though only at 0 K. However, as for
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most of the cases of interests, electrons at room temperature can be
well-described with the 0 K temperature model, this is not an issue.
Moreover, including temperature in RTPI should be, in principle,
possible.

Overall, the FSP represents a challenging problem and sits at
the forefront of current research in PIMC methods. The interested
reader can find in Refs. 20–23, and references therein, a good starting
point to delve deeper in this fascinating, yet challenging, problem. In
the examples that we are going to present below, however, we have
purposely selected simple systems, where there are no more than
two electrons in each moiety and where at low temperatures, we can
assume the system to be in its singlet ground state, thus enabling us
to directly label the light fermions with opposite spins and avoiding
FSP entirely.

C. Some examples
In this section, we present some results concerning simple sys-

tems, such as one- and two-electron atoms and molecules, obtained
using PIMC. In particular, we focus our attention on electric polar-
izability, to show what are the capabilities of this computational
method, and how it could be used to provide a new interesting

platform for photonics, to calculate the optical properties of interest-
ing materials, beyond the standard approaches and approximations
frequently used in optics.95,101 In both examples, polarizability is cal-
culated from the Kubo-like formula for the time-dependent optical
susceptibility91

χ(t) =
i
̵h
Θ(t) ⟨ [P̂(t), Q̂(0)] ⟩ = −Gret(t), (97)

where the square brackets denote a commutator, the angled brackets
denote, instead, the thermal average [see Eq. (96)],Θ(t) is the Heav-
iside step function,81 Q̂ is a multipole operator (which represents
dipole or quadrupole interactions, for the cases presented below),
Gret(t) is the retarder Green’s function of the perturbation P̂, and
the latter represents the perturbation generating the optical suscep-
tibility. The link between susceptibility and polarizability is better
understood in Fourier space, where the following relation is valid:73

χ(ω) = −∫
dΩ
π

A(Ω)
ω −Ω + iη

= ⟨ α(ω) ⟩, (98)

where the spectral function A(ω) is related to the susceptibility
via the Kramers–Kronig relation,95 i.e., A(ω) = Im{χ(ω)}. PIMC is

FIG. 7. Real (top) and imaginary (bottom) parts of the dynamic polarizability as a function of frequency for hydrogen (H, left) and helium (He, right) atoms at T = 2000 K,
within the BO approximation. In these plots, blue lines represent dipole polarizability α1(ω), while green lines represent quadrupole polarizability α2(ω). The black dots
represent the reference simulations of polarizabilities calculated at T = 0 K. The dotted lines correspond to big time steps, i.e., Δτ = 0.1 for hydrogen and Δτ = 0.025 for
helium, while the solid lines correspond to small time steps, namely, Δτ = 0.05 for hydrogen and Δτ = 0.0125 for helium. In PIMC, time steps are defined, in imaginary
time, as Δτ = 1/(MkBT), where kB is Boltzmann’s constant, T is the temperature of the system, and M is the so-called Trotter number, which controls the accuracy of the
discretization of the propagator exp(−Δτ Ĥ). In these plots, the frequency is measured in hartree (1 hartree = 2 Ry = 27.2 eV). To get a better grasp of the span of the
frequency axis of the plots above, a frequency of ω = 0.1 hartree corresponds to a wavelength λ = 456 nm, while a frequency of ω = 1 hartree corresponds to a wavelength
λ = 45 nm. This figure has been taken from Ref. 107 with the permission of the author.
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then used to calculate the value of the expectation value in Eq. (97)
(or, equivalently, the retarded Green’s function), and from it, both
the real and imaginary parts of polarizability are then calculated.
Note, moreover, that the real part of polarizability Re{α(ω)} cor-
responds to the actual optical response of the material, while its
imaginary part Im{α(ω)} is basically the spectral function A(ω).

The first example we present is given in Fig. 7, which depicts
the real (top) and imaginary (bottom) parts of dipole (blue line) and
quadrupole (green line) polarizabilities α1(ω) and α2(ω) for the case
of atomic hydrogen (left) and helium (right) at T = 2000 K. The sim-
ulations have been performed using PIMC with two distinct charac-
teristic time steps Δτ, one large (solid green and blue lines in Fig. 7)
and one small (dotted green and blue lines in Fig. 7), to rule out
possible numerical artifacts.73 The results have then been compared
with polarizability data available in the literature and obtained using
a T = 0 K approach, with methods other than PIMC.110 This refer-
ence is indicated by the black dots in Fig. 7. For low frequencies, i.e.,
in the region 0 < ω < 0.4 hartree (corresponding to 0 < λ < 1.14 μm),
PIMC simulations reproduce very well the standard T = 0 K result.
This, essentially, means that for the hydrogen atom, the eigenstates
at T = 2000 K are essentially the same as those calculated at T = 0 K,

and as a consequence of that, the low-frequency polarizability in
Fig. 7 perfectly fits the results obtained at zero temperature.110

As the frequency is increased beyond ω = 0.5 hartree (corre-
sponding, for the case of hydrogen, to its ionization energy), the zero
temperature approach fails to faithfully describe the optical proper-
ties of the system. In this high frequency range, i.e., ranging from
the near infrared to the deep UV, PIMC produces, instead, a more
accurate and reliable result. This is an important result. Usually, the
models used in photonics to describe the optical properties of vari-
ous materials are based on a zero temperature approach. Although
this is perfectly fine (and enough) for most materials, since the wave-
length at which non-equilibrium effects are starting to become non-
negligible is either in the far IR or in the deep UV, this is not the
case for 2D materials, which can be easily be driven out of equilib-
rium in the wavelength range of interest for different applications
(typically ranging from THz to visible). In this case, traditional,
zero temperature-based, methods would fail to correctly describe the
influence of out-of-equilibrium effects on the optical properties of
2D materials, while PIMC, on the other hand, are able to exactly
account for these contributions, as they naturally take these into
account.

FIG. 8. Real (top) and imaginary (bottom) parts of dynamic polarizability as a function of frequency for molecular hydrogen H2 for various temperatures. The left panel
represents the results for dipole polarizability α1(ω), while the right panel contains the results for quadrupole polarizability α2(ω). The black dots represent the reference
simulations of polarizabilities calculated at T = 0 K. The dotted lines correspond to big time steps, while the continuous lines correspond to smaller time steps. For these
simulations, the time step has been adapted according to the chosen temperature, and it varies from Δτ = 0.02 to Δτ = 0.05. In these plots, the frequency is measured in
hartree (1 hartree = 2 Ry = 27.2 eV). To get a better grasp of the span of the frequency axis of the plots above, a frequency of ω = 0.1 hartree corresponds to a wavelength
λ = 456 nm, while a frequency of ω = 1 hartree corresponds to a wavelength λ = 45 nm. Reproduced with permission from J. Tiihonen, “Thermal effects in atomic and
molecular polarizabilities with path integral Monte Carlo,” Ph.D. dissertation (Tampere University, 2019), Vol. 35.
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The second example deals with a slightly more complicated sys-
tem, namely, molecular hydrogen H2. Figure 8 depicts the real (top)
and imaginary (bottom) parts of dipole (left) and quadrupole (right)
polarizabilities α1(ω) and α2(ω), respectively, for several different
values of the ambient temperature T. A comparison with reference
simulations obtained at T = 0 K from Ref. 110 is also shown (black
dots in Fig. 8).

Note, in particular, the deviation from the zero temperature
behavior in the small frequency regime (insets in the top part
of Fig. 8). This discrepancy is due to the fact that in the case
of molecules, the nuclear contribution (mainly nuclear vibrations
induced by finite temperature) cannot be neglected, as it signif-
icantly changes the behavior of polarizability at low frequencies.
This change only amounts to a shift of the value of Re{α1(ω)}
for dipole polarizability (top left inset in Fig. 8), while it radically
changes the form of Re{α2(ω)} at low frequencies, for the case of
quadrupole polarizability (top right inset in Fig. 8). Note, moreover,
that as in this case, temperature also has a significant effect in shap-
ing the imaginary part of the quadrupole polarizability at very low
frequencies (lower right inset in Fig. 8).

Although they show the optical properties of very simple sys-
tems, such as H, He, and H2, the examples presented in this section
offer good insights into the capabilities and potential of using PIMC
for calculating the optical properties of even more complicated sys-
tems. The large frequency range PIMC can span (from THz to the
deep UV) represents an enormous advantage to test the current
models for susceptibilities and polarizabilities of photonic materi-
als and could, in particular, provide tremendous insight into the
nonlinear properties of exotic materials, such as epsilon-near-zero
materials, for example, as it provides a single, ab initio method to
calculate the optical response in an exact manner, without insert-
ing any approximation or without introducing different models for
different frequency regimes.

Besides that, the examples provided in this section also help the
reader in getting a better grasp of the breadth of path integrals and
how they do not only represent an elegant, alternative formulation of
quantum mechanics but also how their use in atomic and molecular
physics can be pivotal for the accurate description of the properties
of matter.

VII. PATH INTEGRAL FOR CLASSICAL AND QUANTUM
FIELDS

In Secs. II– VI, we have seen how it is possible to describe
the dynamics of a quantum particle (or a collection thereof) in
terms of path integrals. In this section, instead, we extend this for-
malism to the case of quantum fields, where the building blocks
for the path integral are not particles and all the trajectories they
can possibly take to evolve from the initial to the final state, but
rather all the possible configurations of a field, that serve the same
purpose.

A quantum field can be seen as a continuous collection of har-
monic oscillators, one for each point in space where the field is
defined. As such, then, the results presented for the harmonic oscil-
lator in Sec. III D can serve as guidance to better understand this
section and, more generally, the properties of a QFT. Some of the
language and tools used here, however, are slightly different than
those introduced above, and it is worthwhile to introduce some key

concepts and methods proper of QFT before specializing our atten-
tion to the electromagnetic field. To do that in the most beginner-
friendly manner, we use the case of a scalar field as a guidance to
construct the path integral and show how interactions can be intro-
duced in such a theory and what is the consequence of doing that.
Then, we will qualitatively and intuitively extend these results to
the case of a vector field and use those results to look at the linear
and nonlinear dynamics of the electromagnetic field in an arbitrary
medium.

This section closely follows the notation and line of reason-
ing of Ref. 109. For a more formal discussion of path integrals in
field theory, we invite the interested reader to consult Refs. 8, 9,
88, and 109. For the sake of simplicity, natural units c = h = me = 1
are implicitly assumed. If needed, these constants can be easily
reinserted in the final results of calculations by means of simple
dimensional analysis. Moreover, summation over repeated indices
(Einstein summation convention) is also understood.

A. Path integral for a scalar field
To start with, let us then consider a free scalar field ϕ(x) (where

x is a shorthand for {r, t}) whose Lagrangian density is given by

ℒ 0(ϕ(x)) =
1
2
ημν∂μϕ∂νϕ(x) −

1
2

m2ϕ(x)2, (99)

where ημν = diag(−1, 1, 1, 1) is the Minkowski flat space metric ten-
sor109 and subscript 0 indicates that the Lagrangian is that of the free
field, i.e., ϕ(x) is not interacting with either itself or its environment.

Before going any further, it is instructive to discuss the physi-
cal meaning of the parameter m appearing in the above equation. In
QFT, it is customary to give m the meaning of mass of the scalar
field ϕ, as it could represent a scalar massive boson, such as the
Higgs boson,89 or even a scalar fermion in more complicated the-
ories involving dark matter.111 In optics, on the other hand, we
frequently refer to the case m = 0, as the electromagnetic field is
composed of photons, which are massless bosons.89 However, when
propagating inside a medium, the electromagnetic field acquires a
mass, proportional to the refractive index of the medium.92 This
can be easily proven by recalling that the dispersion relation for a
monochromatic electromagnetic field propagating inside a homo-
geneous medium characterized by a refractive index n is given by95

k2
= ω2n2. The dispersion relation for a massive scalar field ϕ, on the

other hand, can be readily calculated from its equation of motion
(i.e., the Klein–Gordon equation109), which can be readily derived
from Eq. (99) using the Euler–Lagrange equations for fields, i.e.,

∂μ[
∂ℒ 0

∂(∂μϕ)
] −

∂ℒ 0

∂ϕ
, (100)

which leads to (∇2
− ∂2

t −m2
)ϕ = 0. If we now assume plane wave

solutions for ϕ, the dispersion relation for a massive scalar field
can be written as k2

= ω2
−m2. Note, now, that upon defining

m2
= ω2
(1 − n2

), the dispersion relation for a massive scalar field
ϕ matches that of an electromagnetic field inside a homogeneous
medium. This allows us to identify the mass (squared) of the
scalar field ϕ with m2

= 1 − n2
= 1 − ε = χ, i.e., the medium’s sus-

ceptibility.95 In this sense, therefore, while a massless scalar field
describes a (scalar112) electromagnetic field in vacuum, a massive

APL Photon. 6, 071103 (2021); doi: 10.1063/5.0055815 6, 071103-19

© Author(s) 2021

https://scitation.org/journal/app


APL Photonics TUTORIAL scitation.org/journal/app

one describes, instead, the (scalar) electromagnetic field in a homo-
geneous medium.

We now proceed to the definition of the path integral for the
scalar field ϕ. To do so, let us note that the Lagrangian density in
Eq. (99) has a similar structure to that of a harmonic oscillator, as
given in Eq. (36). The first term in Eq. (99), in fact, is quadratic in the
derivative of the field and can be associated with its “kinetic energy,”
while the second term, quadratic in the field, is its “potential energy.”
Analogously to what we have done in Sec. II, we can introduce the
action of the field as

S0(ϕ(x), J) = ∫ d4x [ℒ 0(ϕ(x)) + J(x)ϕ(x)], (101)

where d4x = dtd3r and we have introduced the source term J(x)
(analogous to the external force acting on a harmonic oscillator2),
which, for the sake of this Tutorial, can be imagined to simply be a
convenient mathematical tool, introduced to make calculations eas-
ier. The physical meaning of J(x), as its name suggests, is to repre-
sent a source of the field. The x-dependence of the field ϕ(x) is from
here henceforth, and if not specified otherwise, implicitly assumed,
i.e., we define ϕ ≡ ϕ(x) to make our notation less cumbersome.

We can then define the path integral for a free scalar field in the
same manner as we did in Eq. (9), thus obtaining

Z0(J) = ∫ 𝒟ϕ eiS0[ϕ,J], (102)

where the functional measure 𝒟ϕ(x) plays the same role as the
sum over all possible trajectories Dx(t) in Eq. (9), with the con-
ceptual difference, however, that in this case, the sum (integral) is
extended to all possible configurations of the function ϕ(x). Practi-
cally, this means that instead of slicing time into small intervals (as
we did in Sec. II for the case of quantum particles), we divide the
volume of spacetime 𝒱 into N elementary cubes, i.e., 𝒱 = ⋃N

k=1Vk,
with Vk = δ4, and assume that in each Vk, the field ϕ is constant, i.e.,
ϕ ≃ ϕ(ti, xj, yn, zm) = ϕ(xk) ≡ ϕk (this implies that since each field ϕ
is a function of four variables, each taking N possible values, this dis-
cretization of spacetime results in having a total of N4 fields). This
then means that the integration measure can be written as

𝒟ϕ = lim
N→∞

N

∏

i,j,n,m=1
dϕ(ti, xj, yn, zm) ≡ lim

N→∞

N4

∏

k=1
dϕk. (103)

In doing so, each field configuration ϕk becomes an independent
integration variable and the integral ∫ 𝒟ϕ reduces to a usual
Riemann/Lebesgue integral in N4-dimensions.

The above definition of the path integral is valid for both a clas-
sical field and a quantum field. For the latter, the field ϕ(x) needs
to be equipped with a suitable set of commutation relations, which
define the quantum nature and structure of the algebra behind it. To
do that, we can revert back to the analogy with the harmonic oscilla-
tor and use it to find a straightforward definition of such quantities.
First, we discretize the field ϕ(x) and associate a harmonic oscilla-
tor to each point in space. Then, for each oscillator, we introduce
the usual commutation relations between position and momentum,
i.e., [qa(t), pb(t)] = iδab, where δab simply indicates that the oscil-
lators are mutually decoupled. If we then take the continuum limit
[to revert back to the field ϕ(x)], the commutation relations become

those of the field ϕ itself with its canonically conjugated momentum
Π = ∂ℒ /∂(∂tϕ), namely,

[ϕ(r, t),Π(r′, t)] = i δ(r − r′), (104a)

[ϕ(r, t),ϕ(r′, t)] = [Π(r, t),Π(r′, t)] = 0. (104b)

Equation (102), moreover, has implicitly been defined such that
the time interval used for the time integration in the action spans the
whole real axis, i.e., −∞ < t < ∞. Moreover, we require that Z0(J) is
normalized in such a way that Z0(0) = 1.

For a classical field, Z0(J) represents its partition function
Z0(J), from which, in analogy with statistical mechanics, it is pos-
sible to derive all the relevant quantities of the classical field, such as
energy, momentum, entropy, and Green’s function.

For a quantum field, it represents the vacuum-to-vacuum cor-
relation function, which allows us to calculate transition proba-
bilities and correlation functions of field operators with respect
to the ground state (or vacuum), which is typically a stable and
well-defined state of the QFT at hand. In other terms, Z0(J)
for a quantum field only describes a QFT at equilibrium (i.e., at
zero temperature). To deal with non-equilibrium systems, a fur-
ther step in the definition of the path integral is needed, which
is beyond the scope of this Tutorial. The interested reader is then
referred to Ref. 113 for further information about non-equilibrium
QFTs.

B. The propagator for a free scalar field
To get familiar with the formalism of QFT, in this section, we

calculate the propagator for the free scalar field, which constitutes,
to a certain extent, the QFT analog of the free quantum particle
described in Sec. III A. To this aim, let us first introduce the Fourier
transform of the field as

φ(k) = ∫ d4x ϕ(x) e−ikx, (105a)

ϕ(x) = ∫
d4k
(2π)4 φ(k) eikx, (105b)

where kx = k ⋅ r − ωt. If we substitute the expression of ϕ above into
Eq. (101), we arrive, after some straightforward calculations, at the
following expression for the action in Fourier space:

S0 = ∫
d4k
(2π)4 [−

1
2
φ(k)(k2

+m2
)φ(−k)

+ J̃(k)φ(−k) + J̃(−k)φ(k)], (106)

where k2
= ∣k∣2 − ω2 and J̃(k) is the Fourier transform of J(x). The

trick to use here for calculating the path integral (102) with the
action above is the same as the one we employed in Sec. III A,
namely, we need to discretize the integral appearing in the action
S0 and consider a discrete set of field configurations such that ∫ 𝒟ϕ
can be written as a product of integrals. If we do so, we can then use
the fact that the integrand above is Gaussian in φ(k) and repeatedly
apply Gaussian integration to it to get the final result.

Alternatively, we can operate a change in path integration, by
performing the change in variables χ(k) = φ(k) − J̃(k)/(k2

+m2
),
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such that 𝒟 χ = 𝒟ϕ, to isolate, in the action above, a term that only
depends on the field χ from a term independent of it, i.e.,

S0 =
1
2 ∫

d4k[−χ(k)(k2
+m2

− iε)χ(−k)] +
1
2 ∫

d4k
J̃(k)J̃(−k)

k2
+m2 .

(107)

If we now substitute the expression above into Eq. (102), together
with 𝒟 χ = 𝒟ϕ from the change in field variables, we obtain the
following result:

Z0(J) = exp[
i
2 ∫

d4k
(2π)4

J̃(k)J̃(−k)
k2
+m2 ]∫ 𝒟 χ

× exp{−i∫
d4k
(2π)4 [χ(−k)

k2
+m2

2
χ(k)]}. (108)

Note how the first term has been brought out of the path integral,
as it is independent of χ. Note, moreover, that the path integral can
now be evaluated, using a generalization of the Gaussian integra-
tion formula (see the Appendix), and it essentially amounts to a
normalization factor (which, for convenience, will be, henceforth,
neglected). We then arrive at the final result for the path integral,
which can be written in a very similar form to that of a harmonic
oscillator as

Z0(J) = exp[
i
2 ∫

d4k
(2π)4

J̃(k)J̃(−k)
k2
+m2

− iε
]

= exp[
i
2 ∫

d4x d4y J(x)G(x − y)J(y)], (109)

where

G(x − y) = ∫
d4k
(2π)4

eik(x−y)

k2
+m2

− iε
, (110)

and a small imaginary part ε≪ 1 has been introduced to regular-
ize the ω-integral and allow for its calculation as a contour integral
in the complex plane.81 The quantity G(x − y) is the propagator
(Green’s function) for the free scalar field, which solves the cor-
respondent equation of motion (derived from the Euler–Lagrange
equations of the field), i.e.,

(∇
2
− ∂2

t +m2
)G(x − y) = δ(x − y). (111)

The Green’s function can also be interpreted as the vacuum-to-
vacuum two-point correlation function between the field at point x
and the field at point y as follows:109

G(x − y) = i⟨0∣T̂ϕ(y)ϕ(x)∣0⟩, (112)

where T̂ is the usual time-ordering operator. The two-point cor-
relation function is defined in terms of path integrals as follows:

⟨0∣T̂ϕ(x)ϕ(y)∣0⟩ = ∫ 𝒟ϕ ϕ(x) ϕ(y) exp[iS0(ϕ, J)]. (113)

From this definition, in analogy with the derivative of the exponen-
tial of a function, we can write5

ϕ(y)ei S0(ϕ,J)
= −i

δ
δJ(y)

ei S0(ϕ,J), (114)

where the symbol δ/δJ(y) stands for the functional derivative, and
it is a generalization of the concept of the derivative to functionals5

defined by the operative relation

δ f (x)
δ f (y)

= δ(x − y). (115)

With this in mind, then, we can formally introduce in Eq. (112)
the substitution ϕ(x) → −iδ/δJ(x), thus obtaining an alternative
definition for the propagator of a free field as

⟨0∣T̂ϕ(y)ϕ(x)∣0⟩ = ∫ 𝒟ϕ ϕ(y) ϕ(x) eiS0[ϕ,J]

= (
1
i
)

2 δ2

δJ(y)δJ(x)
⟨0∣0⟩J

= −{
δ2

δJ(y)δJ(x)
Z0(J)}∣

J=0
. (116)

VIII. NONLINEAR INTERACTIONS THROUGH PATH
INTEGRALS

The results above are suitable for describing the free propaga-
tion of a field, such as the electromagnetic field in either free space
(i.e., vacuum) or inside a homogeneous or inhomogeneous medium.
However, neither the Lagrangian (99) nor the path integral (102)
takes into account the possible self-interactions of the field or any
other form of interaction (such as the field–environment interac-
tion, for example). In general, field interactions are very important
because they allow us to gain valuable insights into how the field
behaves in different environments. The self-interaction of a field
with itself, in particular, plays a big role in photonics, where it is sim-
ply known as nonlinear optics. If we then want to use path integrals
to describe quantum nonlinear optics, we need a way to include the
effect of interactions in our theory. In QFT, this is typically done by
adding to the Lagrangian density a so-called interaction term, i.e.,

ℒ =ℒ 0 +ℒ int , (117)

where ℒ int contains information about the nature of all the interac-
tions taking place in the considered system. For the sake of simplicity
of exposition, and because they play an essential role in nonlinear
optics, let us focus our attention on the case of a self-interacting field,
where the interaction part is polynomial in the field ϕ and therefore
the interaction Lagrangian can be written as90

ℒ int =
λ
n!
ϕn, (118)

where λ is a suitable coupling constant describing the strength of
the interaction. Note that the first nontrivial interaction is given by
n = 3, as any quadratic term in the Lagrangian density can be
absorbed in the free Lagrangian as a “shift in the potential energy.”

Inserting Eq. (117) into Eq. (102) gives the formal expression of
the path integral for the interacting theory, i.e.,

Z(J) = ∫ 𝒟ϕ exp{i ∫ d4x [ℒ 0 +ℒ int + Jϕ]}. (119)

In general, Z(J) cannot be evaluated analytically because the integral
at the exponent is intrinsically non-Gaussian due to the presence of
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the n > 2 polynomial terms provided by ℒ int . However, we can use
the following argument to write Z(J) in a form that can be treated
with perturbation theory. First, note that the interaction Lagrangian
ℒ int as defined in Eq. (118) is a polynomial of order n in ϕ. Formally,
then, if we employ Eq. (114), we can say that

ℒ int(ϕ) → ℒ int(
1
i
δ
δJ
) (120)

holds.
Now, thanks to Eq. (120), the interaction term ℒ int does not

depend anymore on the path integral variable ϕ because we have for-
mally substituted each occurrence of ϕ in it with the correspondent
derivative with respect to J. This allows us to bring this term outside
the path integral and therefore rewrite Eq. (119) as

Z(J) = exp[i ∫ d4xℒ int(
1
i
δ
δJ
)]Z0(J), (121)

where Z0(J) is given in Eq. (102).
If we now assume that the interaction is “small enough” (with

respect to a certain energy scale, typical of the problem at hand) that
we can treat it perturbatively, i.e., if we set λ≪ 1, we can expand the
exponential in a power series in λ (truncated at the desired pertur-
bation order) and write the path integral for the interacting theory
in the following manner:

Z(J) =
∞

∑

V=0

1
V!
[

iλ
n! ∫

d4x (
1
i

δ
δJ(x)

)

n

]

V

×

∞

∑

P=0

1
P!
[

i
2 ∫

d4y d4z J(y)G(y − z)J(z)]
P

, (122)

where we have also written Z0(J) in terms of its power series
expansion, for a reason that will become clear in a moment.

The expression above allows us to treat the path integral for
the interacting theory in a perturbative manner, up to an arbitrary
perturbation order in λ. To choose the appropriate one, in fact, one
only needs to truncate the summation in V at the desired order, so
only terms proportional to λV (or lower powers) will appear in the
perturbative series expansion.

A. Feynman diagrams
In general, calculating Eq. (122) analytically is not possi-

ble, and even writing down the terms contributing to Z(J) at a
given perturbation order might be cumbersome. In fact, at order
λV in Eq. (122), Z(J) contains nV functional derivatives through
the term (δ/δJ)n, which acts on the 2P different source terms J
deriving from the P-th order expansion of Z0(J). This, in gen-
eral, amounts to (2P)!/(2P − nV)! different ways the nV functional
derivatives can act on the 2P source terms. It is not difficult to
see from this example, then, how the number of required inte-
grals to calculate becomes very high and complex very easily with
increasing V and P.

An elegant and quite insightful way to keep track of all these
quantities and to focus on their physical meaning, rather than their
complex mathematical expressions, is given by the so-called Feyn-
man diagrams. An example of them for the case of n = 3 is reported
in Fig. 9.

FIG. 9. (a) Relevant Feynman diagram for a scalar ϕ3 interacting QFT for the sim-
ple case V = 1, P = 2. As can be seen, the diagram contains one source term
corresponding to the current J(z) in Eq. (125) and two propagators, G1 (black,
wiggly line) and G2 (red, wiggly line), which are looping around the vertex. By
exchanging the roles of G1 and G2, the diagram does not change, i.e., the value
of Z1[J] in Eq. (125) does not change. This diagram is known in QFT as a tad-
pole diagram. (b) Relevant Feynman diagram for the case of V = 1 and P = 3.
This diagram can be arranged in 3! = 6 different ways, by cycling through the
currents J1,2,3 and the propagators G1 (black, wiggly line), G2 (blue, wiggly line),
and G3 (red, wiggly line), without changing the value of the correspondent par-
tition function. This diagram will be of particular importance for the case of the
electromagnetic field, as its vector counterpart is the basic quantity that describes
second-order nonlinear processes in arbitrary media (see Sec. X).

To understand their meaning, a comprehensive set of rules con-
necting the various parts of these diagrams with the correspondent
integrals and mathematical quantities appearing in Eq. (122) can be
defined, following, for example, Refs. 8, 9, and 109, as follows:

● To represent a propagator −iG(x − y), we use a wiggly line
joining the initial (x) point with the final point (y) of the free
evolution of the field ϕ.

● To represent the interaction between fields, we use a so-
called vertex, i.e., a filled dot, which joins n lines, thus
fulfilling the ϕn nature of the interaction.

● To each vertex, moreover, we associate the quantity iλ ∫ d4x,
which contains the coupling constant λ defining the inter-
action. In addition, we require that energy and momentum
conservation at each vertex hold.

● Finally, to represent the presence of sources J(x), we use a
circle, placed at one end of a propagator, which is associated
with the quantity i ∫ d4xJ(x).

With these simple rules, the terms at different perturbation
orders in Eq. (122) can be conveniently expressed in terms of
diagrams. To illustrate how this works, let us consider two examples.

1. Feynman diagram for the free propagator
To obtain the free theory from Eq. (122), we simply set V = 0

(which corresponds to no interaction). Following the rules stated
above, the path integral Z0(J) can then be diagrammatically written
as follows:

(123)

If we then want to calculate the propagator, we just have to sim-
ply take the functional derivative of the diagram above, i.e., remove
the source terms J(x1) and J(x2) and replace them with simply the
labels x and y for the initial and final points of the propagator. This
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corresponds, in terms of calculations, to the following:

(124)

Note how the action functional derivatives δ/δJ(x), namely, to
remove a source term from Z0(J) and replace x1 (x2) with x (y), now
appear more clear and intuitive.

2. First order perturbation diagram for n = 3
As a second example, let us consider an n = 3 interacting the-

ory with first order perturbation (i.e., V = 1), for the simple cases of
P = 2 and P = 3, as reported in Figs. 9(a) and 9(b), respectively.

The case P = 2 represents the simplest perturbative calculation
that we can do on Z(J) for n = 3 and corresponds to the well-known
tadpole diagram in QFT, i.e., the case where two propagators inter-
act at a single vertex V [Fig. 9(a)]. Note that this diagram contains
2P − 3V = 1 external sources and can be arranged in two different
ways, by exchanging the role of the two propagators G1 and G2. Both
of these configurations, however, are algebraically equivalent and
correspond to the same term in the first order perturbative expan-
sion Z1(J), which, for this simple case, can be written, following the
rules above, as

Z1(J) = −
i
4
(

iλ
3!
)∫ d4x (

δ
δJ(x)

)

3

[∫ d4y d4z J(y)G(y − z) J(z)]
2

=
λ
2 ∫

d4x d4z J(z)G1(z − x)G2(x − x), (125)

where the last term G2(x − x) accounts for the loop appearing in
Fig. 9(a). The factor 1/2 in front of the integral compensates for the
two equivalent ways Fig. 9(a) can be written. Subscripts 1 and 2 in
the propagators have been added to make it easier to recognize the
correspondent terms in Fig. 9 and have no physical meaning.

For the case of three propagators meeting at a vertex (P = 3 and
V = 1), the actual computation of Z1(J) would be rather cumber-
some, as it requires to perform three successive functional deriva-
tives on an object that has six current terms and three propagators. If
we, however, rely on the correspondent Feynman diagram, depicted
in Fig. 9(b), we can readily write the explicit expression of Z1(J) as

Z1(J) =
λ
6 ∫

d4xd4yd4zd4x1 J(x)G(x − x1)

× [G(x1 − y)J(y) +G(x − z)J(z)]. (126)

The diagram in Fig. 9 can be arranged in 3! = 6 different ways by
interchanging the roles of the three source terms Jk. All these differ-
ent arrangements of the diagrams, however, are algebraically equiva-
lent and correspond to the same form of the first order perturbation

Z1(J) written above. The factor 1/6 there, moreover, accounts for
this symmetry.

IX. GENERALIZATION TO VECTOR FIELDS
The results obtained in Secs. VII and VIII for a scalar field are

also valid, if properly generalized, for vector fields and, in particu-
lar, for the electromagnetic field. The correct way to generalize those
results to vector fields, however, is out of the scope of this Tuto-
rial. The interested reader is referred to Refs. 2, 5, 8–10, 88, and 109
for further and more formal details. In what follows, we just give an
intuitive and qualitative generalization.

A. Path integral for free vector fields
For a vector field, in fact, Z0(J) can be qualitatively written

in a similar manner to Eq. (109). To do that, we assume that the
source terms are now vectorial in nature, i.e., J → Jμ, which makes
the Green’s function become a two-index object, i.e., we need to for-
mally make the substitution G(x − y) → Gμν(x − y). This allows us
to immediately extend the result of Eq. (109) to the case of a vector
field by simply introducing the dyadic Green’s function

Gμν(x − y) = (δμν +
1
k2 ∂μ ⊗ ∂ν)G0(r, r′; t, t′), (127)

where G0(r, r′; t, t′) is the Green’s function of the wave equation, i.e.,

(∇
2
− n2∂2

t )G0(r, r′; t, t′) = −δ(r − r′)δ(t − t′), (128)

where n2 is a possibly space-dependent parameter describing the
properties of the vector field. For the electromagnetic field, for exam-
ple, n2 is the refractive index profile of the medium the field is
propagating through.

We can then write the partition function for the non-
interacting vector field simply as

Z0(J) = exp[
i
2 ∫

d4x d4y Jμ(x)Gμν(x − y)Jν(y)]. (129)

Using Eqs. (112) and (116), we can also write Gμν(x − y) as a two-
point correlation function as

Gμν(x − y) = −i
δ2

δJμ(y)Jν(x)
Z0(J)∣

J=0
, (130)

where the shorthand J = 0 means that all the components of the cur-
rent need to be set to zero after the calculation. We will make use of
this result in Sec. X A for deriving the propagator of the effective free
electromagnetic field in an arbitrary medium.

B. Path integral for interacting vector fields
Analogously, Eq. (122) can be qualitatively extended to the case

of interacting vector fields by promoting source terms to vector
fields (i.e., J → Jμ) and the propagators to tensor fields [i.e., G(x − y)
→ Gμν(x − y)], thus obtaining
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Z(J) =
∞

∑

V=0

1
V!
[

i λ{α}
n! ∫

d4x (
1
i

δ
δJα(x)

)

n

]

V

×

∞

∑

P=0

1
P!
[

i
2 ∫

d4y d4z J(y)
←→

G(y − z)J(z)]
P

, (131)

where λ{α} represents a rank-n tensor, whose indices are contracting
the n indices appearing in the functional derivatives and J(y)

←→

G(y
− z)J(z) = Jμ(y)Gμν(y − z)Jν(z). In general, moreover, λ{α} could
also be space-dependent. This result will be used in Sec. X as a
starting point to analyze nonlinear quantum effects for photons
propagating in arbitrary media.

X. PATH INTEGRAL FORMALISM FOR CLASSICAL AND
QUANTUM ELECTRODYNAMICS IN ARBITRARY MEDIA

We now use the formalism introduced above for describing
the propagation and interaction properties of an electromagnetic
field in a dispersive medium of arbitrary geometry. The content of
this section follows the line of reasoning of Refs. 39 and 79, and it
is reported here with a higher level of detail, in order to facilitate
the reader in the process of adapting the formalism developed in
Secs. VII–IX to the case of the electromagnetic field.

Let us then start by making a series of assumptions to construct
a suitable Lagrangian density, which is the starting point for con-
structing the path integral. First, we choose to work in the so-called
Weyl gauge114 where the scalar potential is zero (which corresponds
to assuming that the medium we consider contains no free carri-
ers). This, practically, corresponds to the usual assumption that both
the electric and magnetic fields are fully determined by the vector
potential, i.e., E = −∂A/∂t and B = ∇ ×A. Then, we assume that
light–matter interaction can be fully described within the framework
of the dipole approximation.115

We can then describe the evolution of an electromagnetic
field in a dispersive medium with arbitrary shape in terms of
Huttner–Barnett Lagrangian density116

ℒ HB(r, t) =
ε0

2
E2
−

1
2μ0

B2
+

g(x)
2ε0ω2

0β(x)
(Ṗ2
− ω2

0P2
)

+ g(x)∫ dω [
ρ
2

Ḟ2
(ω) −

ρω2

2
F2
(ω)]

− g(x)[E ⋅ P + ∫ dω f (ω)P ⋅ Ḟ(ω)]. (132)

Let us first understand what is the physical meaning of all the ele-
ments in the expression. ℒ HB describes the interaction of three
fields: the electromagnetic field [represented by E ≡ E(r, t) and
B ≡ B(r, t)], the matter (polarization) field P ≡ P(r, t), and the
reservoir field F(ω) ≡ F(r, t;ω), which essentially models all the pos-
sible decay channels present in the material, which could affect its
optical properties.

The first two lines of Eq. (132) are the free Lagrangian densities
of these three fields, respectively.

The third line, instead, contains all the relevant interactions,
with the first term being the traditional dipole interaction term and
the second one representing the polarization–reservoir interaction,
which models losses in the system.

The geometry of the system under investigation is contained in
the shape factor g(x), which equals 1 inside the region of interest
and zero otherwise.

To complete the picture, the medium is characterized by a res-
onant frequency ω0, static polarizability β(x), mass density (per
unit frequency) ρ(x), and spectral coupling f (ω), which accounts
for the frequency distribution of the various decay channels of the
medium. The dot in Eq. (132), moreover, represents the derivation
with respect to time.

Note that although ℒ HB(r, t) contains interacting terms, from
the point of view of the electromagnetic field, it is still considered as
a free Lagrangian density, as no terms proportional to powers of E
or B (or, equivalently, the vector potential A) higher than two are
present.

We can then substitute Eq. (132) into Eq. (102) to obtain the
full path integral of the Huttner–Barnett model as

Z(J, JP, JF) = ∫ 𝒟A𝒟P𝒟F

× exp{i SHB + i∫ d4x[J ⋅A + JP ⋅ P + JF ⋅ F]}, (133)

where J is the source term for the electromagnetic field, JP is the
source term for the matter polarization field, JF is the source term
for the reservoir field, and SHB = ∫ d4xℒ HB is the Huttner–Barnett
action.

Written in this way, Z(J, JP, JF) allows one to describe, in a
fully quantum manner, not only the dynamics of photons (through
the current J) but also those of polaritons (through the current JP),
i.e., quantum excitations of the matter polarization field, and to also
account for the quantum features of the loss reservoir, through the
current JF . However, for the purposes of this Tutorial, we shall focus
our attention on photons only, and therefore, we set JP = 0 = JF ,
leaving J as the only free parameter. In this limit, the path inte-
grals for P and F(ω) can be performed explicitly, resulting in an
effective path integral for the electromagnetic field propagating in
a medium macroscopically described by an effective dielectric con-
stant. We call the system electromagnetic field plus effective medium
dressed electromagnetic field.

The full procedure on how to do that can be found in Refs. 39
and 79, and it is summarized in the Appendix for completeness.

A. Dressed free electromagnetic field
After performing the path integration with respect to P and

F(ω) as illustrated in the Appendix, the partition function in
Eq. (133) reduces to an effective partition function Zeff (J) given by

Zeff (J) = ∫ 𝒟 A exp[i Seff (A) + i∫ d4x J ⋅A], (134)

where the effective action Seff (A) has the following explicit form:

Seff (A) = ∫ d4x [
ε0

2
Ȧ2
−

1
2μ0
(∇ ×A)2

]

+
1
2 ∫

dt dτ d3r g(r)Ȧ(t) Γ(t − τ) Ȧ(τ), (135)
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where the tensor quantity Γ(r, t − τ) is directly connected with the
dielectric function of the effective medium the “dressed” electro-
magnetic field is propagating into. An exhaustive discussion on the
physical meaning and origin of Γ(r, t − τ) was given in Ref. 79.

If we substitute in the action above the expressions of the elec-
tric and magnetic fields in terms of the vector potential A, i.e.,
E = −∂tA and B = ∇ ×A, we can see that Seff (A) is at most quadratic
in A and ∂tA, meaning that, de-facto, it describes the free evolution
of the dressed field. This means that the path integral in Eq. (134)
can be reduced to a form similar to Eq. (129). In the present case,
however, it is more convenient to write the path integral in Fourier
space, as a function of the frequency ω, rather than time. By doing
this, we then obtain

𝒵 0(J) = exp[
i
2 ∫

dω dR J(r,ω)
←→

G(R,ω)J(r′,ω)], (136)

where dR = d3rd3r′, R = r − r′, and
←→

G(R,ω) is the dyadic Green’s
function of the dressed field in Fourier space, and it is a solution of
the following equation of motion for the dressed field:

[(−δμα∇2
+

∂2

∂xμ∂xα
) − ω2ε(r,ω)δμα]Gαν(r − r′,ω)

= μ0δμνδ(r − r′), (137)

where ε(r,ω) = 1 + g(r)Γ̃(r,ω)/ε0 [with Γ̃ being the Fourier trans-
form of Γ appearing in Eq. (135)].

Alternatively, the Green’s function can be also derived from
Eq. (136) by using Eq. (130) as the correlation function between the
electromagnetic field at points r and r′, i.e.,

Gμν(r − r′,ω) =
δ2𝒵 0[J]

δJμ(r,ω)δJν(r′,ω)
∣

J=0

≡ ⟨Aμ(r,ω)Aν(r′,ω)⟩. (138)

B. Nonlinear quantum electrodynamics
In photonics, the description of nonlinear interactions of the

electromagnetic field in a medium is often expressed in terms of
the induced polarization, which is, in general, expressed as a power
series expansion upon the electric field,101 i.e., Π = ε0(χ1E + χ2E2

+ χ3E3
+ ⋅ ⋅ ⋅), where χn is the n-th order susceptibility tensor, con-

taining the linear (n = 1) and nonlinear (n ≥ 2) response of the
medium to the electric field.

This form of self-interaction can be generated with an interac-
tion Lagrangian similar to that of Eq. (118), i.e.,

ℒ int(A) =
∞

∑

n=3

1
n!
χn−1(r,ω) ⋅An. (139)

The lowest order nonlinear effect described by the interaction
Lagrangian above is that of the interaction of three electromagnetic
fields (photons), i.e., a second-order nonlinear process.101

We can then write the path integral for the nonlinear interac-
tion in analogy with Sec. VIII and expand it perturbatively in powers
of various χn. However, for the particular case of nonlinear optics,
the magnitude of the various nonlinear effects gets progressively
smaller, as n increases, i.e., that ∣χn+1∣ ≪ ∣χn∣ holds for any n.

If we now expand the path integral in powers of χ using
Eq. (131) as guidance, we can decompose the path integral into the
following sum of three contributions:

𝒵 (J) =𝒵 0(J) +
∞

∑

k=2
𝒵 (k)

(J) +𝒵 cross(J), (140)

where 𝒵 0(J) is the free theory given by Eq. (136), 𝒵 (k)
(J) accounts

for the k-th order nonlinearity, i.e., it contains terms proportional to
χk solely, and 𝒵 cross(J) describes the combined interaction of several
orders of nonlinearities (for example, it contains terms of the form
χkχn, with k ≠ n, etc.). Since ∣χn+1∣ ≪ ∣χn∣ holds, however, we can
safely neglect this last term,39 as it contains terms that are 𝒪 (∣χ∣k).
The explicit expression of the term 𝒵 (k)

(J) closely resembles that
of the perturbative expansion for an interacting vector field theory,
defined in Eq. (131), i.e.,

𝒵 (k)
(J) =

∞

∑

n=1
[∫ dω d3r

χk−1
(n!)1/n ⋅ (

δ
δJ
)

k
]

n

𝒵 0(J). (141)

This result can be used to calculate the cross section σ(N)
(r1, . . . , rN)

of a given Nth order nonlinear event to take place, as simply the
vacuum N-point correlation function of the electromagnetic field as

σ(N)(r1, . . . , rN) = σ0 𝒜 (r1, . . . , rN), (142)

where σ0 is a suitable dimensional constant and

𝒜 (r1, . . . , rN) = ⟨Aμ1(r1,ω), . . . , AμN (rN ,ω)⟩

=
δN𝒵 (J)

δJμ1(r1,ω), . . . , δJμN (rN ,ω)
∣

J=0
. (143)

The cross section above can also be interpreted as the probability to
generate N photons through a N-th order nonlinear process. In this
case, the probability is given simply by the modulus square of the
quantity defined above, i.e.,

PN(r1, . . . , rN) = P0∣𝒜 (r1, . . . , rN)∣
2, (144)

where, again, P0 is a suitable dimensional constant that transforms
∣𝒜 ∣2 into a probability density.

XI. APPLICATIONS OF PATH INTEGRALS IN QUANTUM
OPTICS

We now present two examples on how this formalism can be
useful to describe linear and nonlinear quantum optical phenom-
ena in arbitrary media, hoping that this will serve the reader to get
a better insight into the potential applications of path integrals in
photonics.

In this section, we then present the solution, by means of path
integrals, to two well-known problems: (1) the generation of spon-
taneous parametric downconversion (SPDC) in a lossy medium and
(2) the calculation of the spontaneous emission rate of an atom. Both
examples make use of the dressed electromagnetic field introduced
in Sec. X A, for both the interacting and free cases, respectively.
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A. Spontaneous parametric downconversion in lossy
media

Let us consider only the term n = 3 in Eq. (139). The interaction
Lagrangian then becomes

ℒ int(A) =
1
3!
χ2(r,ω) ⋅A3. (145)

This interaction term, as it is well-known within the nonlinear optics
community, is responsible for second-order nonlinear phenomena,
such as second-harmonic generation (SHG), sum- and difference-
frequency generation (SFG/DFG), and spontaneous parametric
downconversion (SPDC).101 As can be seen, ℒ int involves the
interaction of three fields, which are conventionally called pump,
signal, and idler. A very common assumption (and experimen-
tal working condition) is to stimulate the aforementioned phe-
nomena by means of a very bright pump beam whose quan-
tum properties are typically neglected and whose intensity (i.e.,
the number of photons) does not significantly change during
the interaction.106 This approximation is called undepleted pump
approximation.

If we accept this approximation, we can rewrite the interac-
tion Lagrangian above in a form that allows us to easily calculate the
path integral. In doing so, essentially, we make use of the undepleted
pump approximation to eliminate the pump field from the dynamics
(i.e., we consider only the dynamics of the signal and idler photons),
by defining an effective nonlinear susceptibility χ̃μν = χμντA(p)τ , so
that Eq. (145) becomes39

ℒ int[A] = χ̃μν(r,ω)A(s)μ A(i)ν , (146)

where the superscripts {p, s, i} stand for pump, signal, and idler
fields, respectively (mimicking the usual notation of nonlinear
optics).

Substituting the interaction Lagrangian above into Eq. (141)
with k = 3 (the order of the nonlinearity in the Lagrangian) and
n = 1 (first order perturbation term), we can write down the explicit
expression of the partition function for second-order nonlinear opti-
cal processes. In terms of Feynman diagrams, the path integral reads

(147)

where the permutations have to be understood as all the possible
ways to order the three lines (and the correspondent labels) appear-
ing in the Feynman diagram. The dashed line in the diagram above
represents the dressed vacuum state ∣0⟩ ≡ ∣αpump; 0signal; 0idler⟩, i.e.,
the effective quantum vacuum seen by the signal and idler photons.

From Eq. (147), we can calculate the probability for an SPDC
event to occur using Eqs. (143) and (144) with N = 2, namely,

(148)

where 𝒳 (2)μν (x − y) is the biphoton propagator, whose explicit
expression is given as

𝒳 (2)μν (x − y) = ∫ d4z χ̃αβ(z)Gμα(x − z,ωs)Gβν(z − y,ωi), (149)

where ωs,i are the frequencies of the signal and idler fields, respec-
tively. The probability of detecting an SPDC event is then completely
determined by the propagators for the signal and idler fields. As an
explicit example of this, let us consider a lossy isotropic 1D medium
of length L. Since the medium is isotropic, χ2(r,ω) ≡ χ. Moreover,
let us assume that the pump beam can be modeled as a plane wave
of frequency ωp propagating along the x-direction. The effective
nonlinear susceptibility then has the following explicit form:

χ̃αβ(x) = χAp exp[i(kpx − ωpt)]. (150)

To calculate the biphoton propagator, we need the explicit expres-
sion for the Green’s function. For a lossy, isotropic, 1D material, the
dyadic Green’s function can be calculated explicitly using Eq. (110)
(with m = 0, k2

= κ2
− ω2, and by using the residue theorem to

perform the ω-integral) and has the following form:81

G(x − y,ω) =
1

2iκ(ω)
{Θ(x − y) exp[i(κ(ω)(x − y) − ωt)]

+Θ(y − x) exp[i(κ(ω)(x − y) − ωt)]}, (151)

where κ(ω) = k(ω) + iγ(ω) is the complex wave vector of the field
in the medium.

Substituting Eqs. (150) and (151) into Eq. (148), we obtain

PSPDC = ∣exp(−
ΓL
2
)sinc[

(Δk − iΓ)L
2

]∣

2

, (152)

where Γ = γs + γi are the losses seen by the signal [γs ≡ γ(ωs)] and
the idler [γi ≡ γ(ωi)] and Δk = k(ωp) − k(ωs) − k(ωi) is the mis-
match parameter. One can readily see that in the limit Γ = 0, the
equation above reproduces the well-known result from nonlinear
optics101 that PSPDC ∝ sinc2

(ΔkL/2). For the general case where
Γ ≠ 0, instead, the equation above reduces to

PSPDC = −
2 exp(−ΓL)[cos(ΔkL) − cosh(ΓL)]

L2
(Δk2

+ Γ2
)

, (153)

which is depicted in Fig. 10 as a function of the dimensionless quan-
tity x = ΓL, for different values of the phase mismatch parameter
Δk.
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FIG. 10. Plot of the probability of observing a SPDC event in a 1D homogeneous
lossy medium as given in Eq. (153), as a function of the dimensionless parameter
x = ΓL, and for different values of the phase mismatch parameter, namely, Δk = 0
(blue, solid line), corresponding to the case of perfect phase matching, Δk = 5
(red, solid line), and Δk = 10 (black, solid line).

B. Spontaneous emission decay rate of a quantum
emitter in an arbitrary medium

The spontaneous emission decay rate of a quantum emit-
ter embedded in a homogeneous environment can be written as
follows:117

Γsp =
2πcΓ0

ω0
Im{Tr{

←→

G(r, r;ω0)}}, (154)

where Γ0 is the free-space spontaneous emission decay rate (the Ein-
stein A coefficient),ω0 is the characteristic frequency of the quantum
emitter, here modeled as a two-level system with a dipole moment
μ, and

←→

G(r, r;ω) is the dyadic Green function of the electromag-
netic field in which the emitter is embedded, calculated at the posi-
tion of the emitter itself, and Tr{A} = ∑

i
Aii is the trace operation.81

Equation (154) is a general result, which holds for different systems,
such as atoms in free space,117 cavity quantum electrodynamics
(QED),118 and even metamaterials.119

If we assume to consider a homogeneous surrounding medium
characterized by the complex-valued dielectric function ε = ε1 + iε2
and also assume that the dipole moment of the emitter is aligned
along the z axis, Eq. (154) simplifies to120,121

Γ = Γ0Re{
√

ε1 + iε2}. (155)

We can arrive at the same result of both Eqs. (154) and (155)
using path integrals. To show that, we can use the interacting the-
ory of the dressed electromagnetic field described in Sec. XI A, but
rather than calculating the actual nonlinear interaction of the field
with itself (i.e., the second-order nonlinear processes), we turn our
attention to the nonlinear corrections to the free propagator 𝒵 0(J).
These corrections are known in QFT as loop corrections, or, some-
times, vacuum bubbles,8,10,88,109 and are represented by Feynman
diagrams as follows:

(156)

This term can be obtained by using Eq. (147) by simply identifying
the two source terms Jμ and Jν with each other and corresponds to

the following integral:

𝒵 corr = −
1
2 ∫

d4x λαα(x,ω)Gαα(0,ω), (157)

where ω0 is the transition frequency of the quantum emitter. Note
that in the integral above, we have used λαα(x), rather than χ̃αα(x),
since the interaction vertex in this case does not necessarily repre-
sent an actual nonlinear optical interaction, but rather the quantum
emitter, which, initially in its excited state, emits a photon, which
gets absorbed at a later time (from here, the loop term appearing
in the Feynman diagram above). Moreover, the dipole moment μ
of the quantum emitter is aligned along the α direction. If, without
any loss of generality, we assume that α→ z and that the quantum
emitter is localized at the vertex and that it is characterized by a tran-
sition frequency ω0, the interaction vertex λαα(x,ω) = ∣μ∣2δ(ω − ω0)

and therefore
𝒵 corr = ∣μ∣2Gzz(0,ω0). (158)

In QFT, these loop corrections need to be properly renormalized, as
they amount to a sort of self-energy of the vacuum (in our case, self-
energy of the dressed electromagnetic field), which typically diverge.
However, while the real part of the Green’s function above actually
diverges, its imaginary part remains bounded and it is actually the
spontaneous emission rate of the quantum emitter, i.e.,

Γsp = Im{𝒵 corr} ∝ Im{Gzz(0,ω0)}. (159)

To prove that, let us first write down the explicit expression of
the loop propagator Gzz(0,ω0), which is now a scalar quantity, using
Eq. (110) as

Gzz(0,ω0) = ∫
d3k
(2π)3

1
k2
+m2 , (160)

where m2
= ω2

0(ε1 + iε2), i.e., is the mass of the dressed photon in
the medium described by the complex dielectric function (ε1 + iε2).
Since the environment surrounding the quantum emitter is homo-
geneous and isotropic, we can perform the integral above in spheri-
cal coordinates, readily integrating away the angular degrees of free-
dom, which amount to an overall 4π multiplicative term. Separating
the real and imaginary parts of the fraction in the integral above
leads then to the following result:

Gzz(0,ω0) =
1

2π2∫

∞

0
dk

k2
(k2
+ ω2

0ε1)

[k2
− ω2

0(ε1 + iε2)]2

−
iω2

0ε2

2π2 ∫

∞

0
dk

k2

[k2
− ω2

0(ε1 + iε2)]2
. (161)

Both the integrals above can be readily evaluated, giving
Re{Gzz(0,ω0)} → ∞ and

Im{Gzz(0,ω0)} =
ω0

4π
Re{
√

ε1 + iε2}, (162)

which, apart from an inessential multiplicative factor, looks very
similar to the result in Eq. (155).

XII. CONCLUSIONS AND FUTURE PERSPECTIVES
In this Tutorial, we have introduced the reader to the concept

and framework of path integrals. We have discussed their origin,
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historical development, and their interpretation as sums over all pos-
sible trajectories, and in Sec. II, we have provided the foundations
upon which the very concept of path integral is rooted. To help the
reader familiarize with the formalism and the kind of mathematics
needed to deal with path integrals, in Sec. III, we have presented
some introductory standard textbook examples, namely, the free
particle (Sec. III A), the refraction of a light beam from an inter-
face (Sec. III B), the double-slit experiment (Sec. III C), and the
quantum harmonic oscillator (Sec. III D). All these examples have
been discussed extensively, pointing out the procedures and tech-
niques to get to the analytical form of the kernel for those special
cases.

Starting from Sec. IV, then, we have built upon this knowl-
edge and presented a series of less trivial applications of path inte-
grals in both classical and quantum optics, with the twofold aim
of presenting an alternative derivation, based on path integrals, of
the results known in optics and helping the reader contextualize
this framework in an accustomed environment. In particular, we
have discussed the propagation of light through an inhomogeneous
medium in Sec. IV, while in Sec. V, we have shown how this frame-
work can also be employed to solve problems of quantum nonlin-
ear optics and we have explicitly discussed the case of parametric
amplification.

The first part of our Tutorial concludes with Sec. VI, where we
give the reader an idea of the computational capabilities of PIMC
and briefly discuss how this could be used in photonics. Within
the current photonic ecosystem and considering the present chal-
lenges faced by this discipline, in fact, we believe that having at
disposal a computational framework that allows for calculations of
complex light–matter interaction scenarios and the derivation of
optical properties of complex materials in an exact way, without the
need to resort to any particular regime of approximation, could rep-
resent a very viable resource for photonics. This, somehow, is the
very aim of our Tutorial, i.e., to introduce the photonic commu-
nity to this elegant, but also very powerful, formalism and stim-
ulate cross-contamination between these two seemingly different
disciplines.

The second part of our Tutorial, starting with Sec. VII, gives the
reader a very basic introduction on the use of path integrals in QFT.
Although at first glance this might seem too advanced for the spirit
of this Tutorial, we, nevertheless, included this topic for essentially
two reasons. First, since many of the modern problems in theoretical
physics, such as quantum gravity, string theory, topological field the-
ories, and so on, are formulated in terms of path integrals, introduc-
ing the reader to the very basic formalism of path integrals in QFT
would greatly help them, were they interested in reading more about
these topics. Second, Secs. VII–IX set the stage for Sec. X, where we
present a unified way to describe quantum nonlinear dynamics of
the electromagnetic field in arbitrarily shaped media in terms of path
integrals, as an example of the potential that this framework has to
offer to photonics, not only from a purely computational perspec-
tive, such as the prediction of optical properties of materials granted
by PIMC, but also as a viable and simple analytical tool for complex
problems in photonics.

With this Tutorial, we hope to have sparked the curiosity
and interest of the reader on the topic and conveyed the message
that path integrals do not only represent an elegant formulation of
quantum mechanics but also provide the language of modern

theoretical physics and can be applied in many different areas of sci-
ence. For the specific case of photonics, as extensively discussed in
this Tutorial, path integrals could represent a valuable analytical and
computational resource for investigating complex and multi-physics
photonic devices, which would require the assembly of model sys-
tems from different disciplines, a task that is not always simple to
carry out. The universality of path integrals, the simplicity of adap-
tion of the formalism to very different situations, and their remark-
able ability to treat very complex problems in an easy and accessible
way could represent a significant step forward toward this goal.
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APPENDIX: HOW TO DEAL WITH PATH INTEGRALS IN
QFT: REDUCING EQ. (133) TO EQ. (134) USING PATH
INTEGRATION

In this appendix, we show how one can perform the path inte-
gration over the matter P and reservoir F(ω) fields in Eq. (133),
converting the full path integral partition function to the effective
partition function Zeff (J) shown in Eq. (134). This will introduce to
the reader not accustomed to this field how one can perform explicit
calculations relating to path integration for fields.39,79

Before we begin our calculations, it is useful to recall the explicit
formula for calculating a Gaussian integral in n dimensions,7,102

which will be useful for the calculations presented in this appendix.
To do so, we first need to define two vectors x = (x1, x2, . . . , xn) ∈ Rn

and b ∈ Rn, a non-singular n × n matrix A ∈ C, such that the scalar
product (x, Ax) = xT

i Aijxj is a quadratic form, the following result
holds:

∫ dn x exp[−
1
2
(x, Ax) − (b, x)] =

√

πn

det A
exp[

1
2
(b, A−1b)],

where A−1 is the inverse of A.
This result can be used to compute Gaussian integrals over field

configurations. In analogy with what has been done in Sec. III for
quantum particles, one can, in fact, discretize the path integral over
the field configuration into a sum over a finite set of configurations,
i.e., dP∝∏kdP(xk), perform Gaussian integration with respect to
xk, and then take the usual continuum limit.

We begin by restating the full path integral of the
Huttner–Barnett model116 as given in Sec. X, setting JP = JF = 0,

Z(J) = ∫ 𝒟A𝒟P𝒟F exp(i SHB + i∫ d4x J ⋅A). (A1)

As we have set JP = JF = 0 (because, as said in the main text, we
are only interested in photon dynamics, and not in the dynamics
of polaritons or other quasi-particles), the only free parameter is the
source term J for the electromagnetic field. Moreover, since we want
to reduce the path integral above to Eq. (134), we can first factor out
the parts of the Huttner–Barnett Lagrangian that depend only on the
electromagnetic field, including the J ⋅ A-term above. To do so, we
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group them into the term Sem(A), in order to rewrite the integral
above in the following nested form:

Z(J) = ∫ 𝒟A exp[iSem(A)] IP(A), (A2)

with

IP(A) = ∫ 𝒟P exp[i(Smat(P) + Sm f (A, P))]IF(P) (A3)

and
IF(P) = ∫ 𝒟F exp[i(Sres(F) + Smr(F, P))], (A4)

where the various actions Sk appearing above sum to the
total Huttner–Barnett action SHB = ∫ d4xℒ HB, where the
Huttner–Barnett Lagrangian is given in Eq. (132), from which the
following individual pieces can be easily defined:

ℒ em(A) =
ε0

2
Ȧ2
−

1
2μ0
(∇ ×A)2, (A5)

ℒ mat(P) =
g(x)

2 ε0 ω2
0 β(x)

[Ṗ2
− ω2

0 P2
], (A6)

ℒ res(F) = g(x)∫
∞

0
dω[

ρ(x)
2

Ḟ2
−
ρ(x)ω2

2
F2
], (A7)

ℒ f m(A, P) = −g(x) Ȧ ⋅ P, (A8)

and
ℒ mr(P, F) = −g(x)∫

∞

0
dω f (ω, x)P ⋅ Ḟ. (A9)

In the above equations, a dot indicates the derivative with respect to
time.

Note how Eq. (A4) only contains quantities depending on the
reservoir field F(ω) [with the matter field P acting as a parameter,
with respect to 𝒟F(ω)], and no term of order higher than F2

(ω)
appears, meaning that we can compute this integral by means of
Gaussian integration.

1. Integration over the reservoir fields
Let us start by rewriting the exponent in Eq. (A4) in a form

that will explicitly contain a quadratic form [F(ω), ÂF(ω)] in the
reservoir field. We then first integrate by parts (with respect to time),
use the identity

(
∂ϕ
∂t
)

2
=

∂

∂t
(ϕ

∂ϕ
∂t
) − ϕ

∂2ϕ
∂t2 , (A10)

and integrate again by parts to get the following result:

Sres(F) + Smr(F, P) = ∫ dt dt′ d3x∫
∞

0
dω g(x)

× {−
1
2
(F(t′), Â(t, t′)F(t)) − (b(t′), F(t))},

(A11)

where x is relabeled as x from now on in this appendix, for simplicity,
and we define

b(t′) = −i g(x) f (ω) δ(t − t′) Ṗ (A12)

and the operator Â ≡ Â(t, t′) as

Â(t, t′) =
i ρg(x)

2
(
∂2

∂t2 + ω
2
)δ(t − t′). (A13)

Note how we have added a second time integration [and conse-
quently a Dirac delta function δ(t − t′)] into Eq. (A11) to facilitate
the definition of the quantities presented above. Note, moreover,
how the operator Â(t − t′) is very similar to the usual wave equation
operator.109,117

It is instructive to repeat the salient steps that led to Eq. (A11).
First, integration by parts with respect to time allows us to rewrite
the reservoir-matter field interaction term as

∫ dt [−g(x) f (ω)P ⋅ Ḟ] = g(x) f (ω) ∫ dtṖ ⋅ F. (A14)

Then, the identity presented in Eq. (A10) can be used to rewrite the
term proportional to Ḟ2 as

ρ g(x)
2 ∫ dt dt′ δ(t − t′)

∂F
∂t

∂F
∂t′

, (A15)

where the Dirac delta function δ(t − t′) has been inserted to differ-
entiate the two time derivative terms, thus making the effect of part
integration appears more obvious. At this point, if we integrate by
parts, we can shift one of the time derivatives in one term onto the
other one, thus obtaining

−
ρg(x)

2 ∫ dt dt′ δ(t − t′)F
∂2F
∂t2 . (A16)

Putting everything together, we can easily reconstruct both the linear
and quadratic forms in Eq. (A11).

2. How to calculate the operators Â and Â−1

The Green’s function for the operator Â in Eq. (A13) can be
found in the following manner. The operator contains no spatial
derivatives, and so the Green’s function K(t − t′, x − x′) associated
with it will have a localized spatial dependence of the form δ(x − x′).
Hence,

iρg(x)(
∂2

∂t2 + ω
2
)K(t − t′, x) = δ(t − t′). (A17)

Taking the Fourier transform of (A17) with respect to time produces

(−Ω2
+ ω2
)K(Ω, x) =

exp(iΩ t′)
i ρ g(x)

. (A18)

From these results, one finds the expression for the Green’s function
K(t − t′, x) by simply integrating the result above with respect to the
frequency Ω, obtaining
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K(t − t′, x) =
1

i ρg(x) ∫
dΩ
2π

exp[iΩ(t − t′)]
(ω2
−Ω2
)

≡
DF(t − t′,ω)

i ρg(x)
, (A19)

with DF(t − t′,ω) being the Feynman propagator of the reservoir
field, explicitly given by

DF(t − t′,ω) = ∫
dΩ
2π

exp [iΩ(t − t′)]
(ω2
−Ω2
)

. (A20)

Hence, by recalling that the Green’s function of an operator Â can
be interpreted as the inverse of that same operator,81 we can make
the following formal identification:

Â−1
→ K(t − t′, x) =

DF(t − t′,ω)
iρg(x)

. (A21)

3. Calculation of the integral IF
If we now discretize the integration measure, i.e., 𝒟F

→∏k dF(xk,ω), we can perform the integral appearing in Eq. (A4)
using first Gaussian integration and then taking the continuum
limit. By doing so, we obtain the following result:

IF(P) = 𝒩 F exp[
1
2
(b, Â−1b)], (A22)

with 𝒩 F being a suitable normalization constant and

(b, Â−1b) = −i[∫ dt d3x∫
∞

0
dω
∣ f (ω)∣2 g(x)

ρ
P2
(t)

+ ∫ dt dt′ d3x
g(x)
ρ

P(t)G(t − t′, x)P(t′)], (A23)

where

G(t − t′, x) = ∫
∞

0
dωω2

∣ f (ω)∣2 DF(t − t′,ω) (A24)

is defined to be the time-domain Green’s function of the reservoir
field.

4. Integration over the matter fields
Equation (A22) is the solution to the integral over the reservoir

degrees of freedom. As can be seen, this result contains a dependence
on the matter polarization field P. If we wish to solve the integral
IP with the same strategy adopted above for IF , i.e., by employing
Gaussian integration, we first need to rewrite it in a way containing a
quadratic form of the kind (P, B̂ P). To do that, we can first integrate
by parts with respect to time t and to time t′ in Eq. (A23), which
allows us to rewrite the term containing Ṗ DF(t − t′, x) Ṗ as

∫ dt′ dt′′ P(t)
∂2DF(t − t′,ω)

∂t∂t′
P(t′). (A25)

As the Feynman propagator depends on the difference t − t′, one
can change variables to τ = t − t′, yielding ∂2

/∂t∂t′ = ∂2
/∂τ2. The

fact that the Feynman propagator obeys

(
∂2

∂τ2 + ω
2
)DF(τ,ω) = δ(τ) (A26)

allows us to write

∂2DF(τ,ω)
∂τ2 = δ(τ) − ω2DF(τ,ω). (A27)

Converting back to the separate time variables, t and t′, and inserting
our result into Eq. (A25), we get

∫ dtP2
(t) − ω2

∫ dtdt′P(t)DF(t − t′,ω)P(t′). (A28)

Before proceeding with our calculations, it is useful to introduce the
following quantity:

G(t − t′, x) = ∫
∞

0
dωω2

∣ f (ω, x)∣2DF(t − t′,ω), (A29)

which can be interpreted as the reservoir-weighted Green’s function.
With this at hand, the exponent in Eq. (A23) becomes

−
i
2
[∫ dt d3x∫

∞

0
dω
∣ f (ω)∣2g(x)

ρ
P2
(t)

+ ∫ dt dt′ d3x
g(x)
ρ

P(t)G(t − t′, x)P(t′)]. (A30)

5. Derivation of the quadratic form for IP
In the form above, the exponent of IF(P) contains a term pro-

portional to P2. This term can be summed with the correspond-
ing quadratic term appearing in the free part of the matter action
Smat(P) in the expression of IP(A) given by Eq. (A3), i.e.,

∫ dt d3x{−
g(x)
2ε0 β

− ∫

∞

0
dω
∣ f (ω)∣2g(x)

2ρ
}P2
(t). (A31)

If we now introduce the quantity v(ω) = f (ω)
√

ε0ω2
0βρ and the

scaled resonance frequency

ω̃0
2
= ω2

0 + ∫

∞

0
dω
∣v(ω)∣2

ρ2 , (A32)

we can rewrite the term in the curly brackets above in the following
compact form:

−
g(x)
2ε0 β

− ∫

∞

0
dω
∣ f (ω)∣2 g(x)

2ρ
= −

g(x) ω̃2
0

2ε0 ω2
0β

. (A33)

Note how the primary effect of the reservoir field is to introduce
a frequency-dependent shift in the resonance frequency ω0 of the
material.

The IP-integral now reads

IP = ∫ 𝒟P exp[iΦ(P)], (A34)
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where now

Φ(P) = ∫ dt d3x [
g(x)

2ε0 ω2
0 β
(Ṗ2
− ω̃2

0 P2
) + g(x) Ȧ ⋅ P]

+
1
2 ∫

dt dt′ d3x
g(x)
ρ

P(t)G(t − t′, x)P(t′). (A35)

As we did for IF , one can then integrate by parts the term propor-
tional to Ṗ2 and introduce an extra integral with respect to time,
to be able to write the above quantity as a quadratic form, i.e.,
(P, B̂ P) + (c, P), where

c(t) = −ig(x) Ȧ, (A36)

and the expression for the operator B̂ ≡ B̂(t, t′) is obtained by look-
ing at the terms sandwiched between the terms P(t′) and P(t), i.e.,

B̂(t, t′) =
i g(x)
ε0 ω2

0 β
(
∂2

∂t2 + ω̃0
2
)δ(t − t′) −

i g(x)
ρ

G(t − t′, x). (A37)

Note how the form of the operator B̂ is very similar to that of the
operator Â introduced when calculating IF . The extra term appear-
ing above, i.e., −ig(x)G(t − t′, x)/ρ, however, makes B̂ intrinsically
integro-differential, which, in turn, makes the determination of its
correspondent Green’s function quite complicated (we discuss it
briefly in the Appendix Sec. 6, but the interested reader is referred
to Ref. 79 for more details).

Once we have transformed the exponent Φ(P) into a quadratic
form, we can again discretize the path integral, solve using Gaus-
sian integration, and then take the limit of it to obtain the following
result:

IP(A) = exp[
i
2 ∫

dt dt′ d3x g(x) Ȧ(t) Γ(t − t′, x) Ȧ(t′)],

where Γ(t − t′, x) is the Green’s function of the operator B̂.

6. Expression and physical meaning of Γ(t − t′,x)
The Green’s function for the operator B̂ just defined can be

found in the following way: first, note that the prefactor ig(x) in the
definition of B̂, i.e., Eq. (A37) can be treated, for the purpose of find-
ing the Green’s function, as a “numerical” constant, and therefore,
it can be neglected during calculation (we can put it back at the end
of it). Using the definition of Green’s function,81 we then know that
Γ(t − t′, x) is a solution of the equation B̂ Γ(t − t′, x) = δ(t − t′).

It should be noted that in this case, the operator B̂ is not simply
a differential operator, as was the case earlier in (A13), but it contains
an extra source term. The Green’s function for B̂ is then found as the
solution to the following integro-differential equation:

1
ε0 ω2

0β
(
∂2

∂t2 + ω̃0
2
)Γ(t − t′, x) −

1
ρ ∫

dτ G(t − τ, x) Γ(τ − t, x)

= δ(t − t′). (A38)

We can solve the equation above by means of Fourier transforma-
tion with respect to t − t′, thus obtaining

1
ε0ω2

0β
(ω̃0

2
−Ω2
)Γ̃(Ω, x) −

1
ρ

G̃(Ω, x)Γ̃(Ω, x) = 1, (A39)

where G̃(Ω, x) is the Fourier transform of G(t − t′, x). After a
lengthy but straightforward calculation,79 one can arrive at the
following form for the Fourier transform of Γ(t − t′, x):

Γ̃(Ω, x) =
ε0ω2

0β
ω2

0 −Ω
2
[1 + λF(Ω)]

, (A40)

where λF(Ω) is the Fourier transform of the Feynman propagator
DF(t − t′,ω).

The above result can be interpreted as an effective dielectric
constant for the “dressed” electromagnetic field. To see this, let us
consider the full expression of the effective Lagrangian coming from
ℒ em as given in Eq. (A5) and the result given by IP(A). Combining
these two terms and remembering that Ȧ = −E and ∇×A = B, we
get, in Fourier space,

ℒ eff (E, B) = ε0∣E(Ω, x)∣2 +
1
μ0
∣B(Ω, x)∣2

+g(x)Ω2 Γ̃(Ω, x) ∣E(Ω, x)∣2, (A41)

where the effective Lagrangian has been written in terms of the
electric and magnetic field since this form will provide an easier
understanding of the interpretation of Γ(t − t′, x). From ℒ eff , we
can calculate the displacement vector D(Ω, x) as follows:90

D(Ω, x) =
∂ℒ eff

∂E∗
= ε0E(Ω, x) + g(x)Γ̃(Ω, x)E(Ω, x). (A42)

If we then recall the usual constitutive relation for the displacement
vector,95 i.e., D = ε0εE, we can identify the term Γ̃(Ω, x) with the
dielectric constant of a medium, i.e.,

ε(Ω, x) = 1 +
g(x)
ε0

Γ̃(Ω, x). (A43)

It should now appear clear that Γ(t − t′, x) represents the dielectric
function of an effective medium the electromagnetic field is prop-
agating through. In particular, it contains information on both the
loss channels present in the medium (through the reservoir field)
and the possible interaction channels that the medium has with the
electromagnetic field (through the matter porlarization). After the
integration with respect to F and P, the partition function has the
following form:

Z(J) = ∫ 𝒟A exp{i Sem + i ∫ d4x J ⋅A

+
i
2 ∫

dt dt′ d3x g(x) Ȧ ⋅
←→Γ ⋅ Ȧ}, (A44)

where Ȧ ⋅
←→Γ ⋅ Ȧ = Ȧμ(t) Γμν(t − t; , x) Ȧν(t′), and now, we have

restored the current-dependent term because now we are going to
perform the path integration with respect to the vector potential A.
The result above then matches the form of the effective partition
function introduced in Eq. (134).
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