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A B S T R A C T   

Accumulating evidence identifies emotions as drivers of effective learning. In parallel, game-based learning was 
found to emotionally engage learners, allegedly harnessing the fundamental tie between emotions and cognition. 
Questioning further whether and how game-based learning elicit emotional processes, the current fMRI study 
examined the neurofunctional correlates of game-based learning by directly comparing a game-based and a non- 
game-based version of a digital learning task. We evaluated neurofunctional activation patterns within a 
comprehensive set of brain areas involved in emotional and reward processes (e.g. amygdala or ventral 
tegmental area) when participants received feedback. With only a few exceptions, decoding of these brain areas’ 
activation patterns indicated predominantly stronger relative activation in the game-based task version. As such, 
our results substantiate on a neurofunctional level that game-based learning leads to an invigoration of learning 
processes through processes of reward and emotional engagement.   

1. Introduction 

Playing digital games is highly popular and a widespread phenom-
enon in today’s society (Lenhart et al., 2008). Moreover, engaging in 
playful activities is deeply rooted in human nature (Huizinga et al., 
2006; Gray, 2013; Panksepp, 2005). In fact, it was suggested that play, 
just as anger, fear, lust, and grief is among the emotional systems of the 
brain that already exist in newborns (Panksepp, 2005). Playing is a 
necessary prerequisite to acquire cultural skills (Huizinga et al., 2006), 
the acknowledged way for children to learn (Edwards, 2002) and 
generally serves essential evolutionary purposes (Ryan & Deci, 2000). 
Contemporarily, we understand play as an intrinsically purposeful ac-
tivity (Wilkinson, 2016) which is also voluntarily used to, for instance, 
surpass obstacles (Krouse et al., 2011; Suits, 2005). 

Next to reaching goals such as winning a competition or gaining 
skills, enjoyment and emotional experiences are often the incentive to 
play digital and non-digital games, making emotions indissociable from 
games (Yannakakis & Paiva, 2015). Not only do emotions play a crucial 
role in our everyday lives (Dixon et al., 2017), they most likely are the 
trigger for positive experiences with games (Yannakakis & Paiva, 2015). 
It only makes sense that they are recognized as an essential element in 
game design (Baharom, Tan, & Idris, 2014; Karpouzis & Yannakakis, 
2016) and their evoking and handling is an integral part of a positive 
gaming experience. 

Educational games try to recruit similar mechanisms for more 
dedicated purposes. They facilitate learning processes by, for instance, 
keeping up motivation, effort, and – in best case scenarios – flow as well 
as engagement during playing. Research in this context frequently 
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highlights the impact of positive affect in game-based learning, such as 
engaged concentration, joy, and excitement for learning (Sabourin & 
Lester, 2014). Positive affect is argued to positively impact learning, 
motivation, and information processing in traditional (Pekrun & 
Linnenbrink-Garcia, 2014) but also digital learning settings (Um et al., 
2012). However, game elements might facilitate not only positive but 
also negative emotions (Ninaus et al., 2019). Importantly, though, 
negative emotions such as frustration, which can occur when learners 
make errors (Kapoor et al., 2007), have also been linked to more positive 
learning outcomes (Shute et al., 2015). The authors argued that a learner 
needs to be sufficiently invested in the actual learning process to actually 
perceive frustration, which is in line with research suggesting overall 
increased emotional engagement (positive and negative emotions) in 
game-based learning (Ninaus et al., 2019). Moreover, in the context of 
games, even negative affective states such as frustration can be part of an 
enjoyable and challenging overall gaming experience (Gee, 2007). 

From a neurocognitive perspective, emotions and cognition were 
historically conceptualized as separate systems (Y. Liu et al., 2009). Now 
they are understood as the result of dynamic interactions (Pessoa, 2008). 
Accumulating evidence states that emotions substantially influence 
human cognition, including perception, attention, learning, memory, 
reasoning, and problem-solving (Barbas, 2000; Brosch et al., 2013; Y. 
Liu et al., 2009; Pessoa, 2008; Tyng et al., 2017). For instance, inducing 
positive but also negative emotions when learning can improve memory 
consolidation (Nielson & Powless, 2007), emotional targets are detected 
more rapidly among distractors than neutral targets (Ohman et al., 
2001), and emotional arousal was observed to facilitate consolidation of 
long-term memories (Hamann, 2001; Phelps, 2004). This means that by 
emotionally engaging the player, cognitive processes can be impacted to 
facilitate learning processes (Greipl et al., 2020; Plass et al., 2015). 
Successful learning games may therefore account for and accommodate 
emotional, but also other faculties like cognitive resources that are in 
constant interaction (Greipl et al., 2020). However, such higher 
emotional engagement suggested for game-based learning was not yet 
substantiated on a neurofunctional level. 

For the current study we adapted a well evaluated educational game 
(Kiili et al., 2018; Ninaus et al., 2017, 2019) such that it can be played 
within a functional magnetic resonance imaging (fMRI) scanner and 
compared it directly to a content-wise identical non-game-based 
version. This allowed for an in-depth evaluation of the involvement of 
reward and emotional processes in a game-based learning scenario. 

A recent review of neural correlates addressing video game play in 
general highlights various, predominantly cognitive aspects. The au-
thors report ample evidence on the involvement of reward processing 
related to gaming but only indirect links to emotional processing, for 
instance, within the context of flow experiences or addiction (Palaus 
et al., 2017). A general synthesis of the neural underpinnings of gaming 
remains difficult because neuroscientific evidence related to game-based 
learning is rare. To our knowledge, only two studies investigated this 
specifically. 

First, using fMRI Howard-Jones et al. (2016) reported reduced acti-
vation of default-mode network hubs but increased activation of the 
ventral striatum (VS) when learning sessions comprised game elements. 
Second, a study by Cole et al. (2012) compared brain activation during 
actively playing the serious game Re-Mission (designed for young cancer 
patients) to passively watching another participant play. This contrast 
revealed increased activation in the anterior cingulate cortex (aCC), 
anterior insula (aINS), putamen (PUT), and thalamus (THA) for active 
playing. Contrasting active playing to a rest condition revealed a 
widespread network of activation including thalamus (THA), anterior 
insula (aINS), and putamen (PUT). 

Most of the areas found active for game-based learning in both 
studies are well in line with expectations derived from the neuroscien-
tific literature regarding reward-related activation, including positive (i. 
e. reward/win) and negative (i.e. punishment/loss) valences of reward 
processing (Silverman et al., 2015; Sescousse et al., 2013). Moreover, 

with the anterior insula (aINS) and the nucleus accumbens (NAC), areas 
typically found active for experiences of emotions and/or pleasure 
(Kurth et al., 2010; Berridge & Kringelbach, 2015) seemed to be 
involved as well. Taken together, it seems that increased activation of 
the so-called reward system may be central for educational benefits of 
game-based learning (Howard-Jones et al., 2016). 

Remarkably, the relationship between reward and emotions seems to 
be very close (Rolls, 2005). However, what is still missing is a systematic 
investigation on whether feedback about a players’ performance within 
a game-based learning environment reflects this concordant rewarding 
(and therefore emotional) nature. As this does not necessarily result in 
observable behavior, it is essential to evaluate activation in brain areas 
specifically associated with processing emotions and rewards. Accord-
ingly, the two central aspects of our study were: a) In addition to 
well-known reward mechanisms, we particularly focus on correlates of 
emotions and emotional processing as an immediate result of the 
interaction with a game-based learning environment. b) We do so by 
comparing a game-based (involving game elements such as a narrative 
and visual aesthetics, etc.) and a stripped non-game-based version of the 
same digital math learning task. We particularly focused on the phase of 
the respective task version in which players received feedback (hence-
forth referred to as feedback episodes). Feedback embedded in the 
game-based version might be perceived more emotionally engaging and 
rewarding (for a more comprehensive view on personal/contextual 
factors influencing how positive/negative feedback is interpreted see e. 
g. Fishbach et al., 2010) as compared to its non-game-based equivalent 
and should, therefore, yield differential activation in specific brain re-
gions involved in processing emotions and rewards which we considered 
regions of interest for our study. 

On a subcortical level, we selected areas known for their involvement 
in various kinds of emotional processing and/or pleasure experiences, 
such as the amygdala (AMY) (Sergerie et al., 2008), ventral pallidum 
(VeP) (Johnston & Olson, 2015) as well as striatal areas including the 
nucleus accumbens (NAC) (Berridge & Kringelbach, 2015), the putamen 
(PUT), and the caudate nucleus (CAU) (Waraczynski, 2006; Silverman 
et al., 2015). Moreover, we considered starting points of the dopami-
nergic pathway such as the ventral tegmental areas as well as substantia 
nigra (pars reticulata, SNr) (Garris et al., 1993; Nieuwenhuys, 1985), 
crucially involved in reward processes (Knutson et al., 2000). Impor-
tantly, we need to note that some of those regions are also involved in 
processing negative emotions. More specifically, positive and negative 
emotions seem to be processed in several valence-insensitive brain re-
gions making a differentiation between positive and negative emotions 
on levels of brain activity very difficult (Lindquist et al., 2016). 

Cortically, the anterior insula (aINS) and the frontal medial cortex 
(fmC) seem to be among the areas strongly linked to emotional pro-
cessing (Phan et al., 2002; O’Doherty et al., 2001; Kurth et al., 2010; see 
also Lindquist et al., 2016) whereas activation of the medial orbital 
cortex (foC) was identified as a neural correlate of pleasure (Berridge & 
Kringelbach, 2013). Additionally, anterior and posterior parts of the 
cingulate cortex (aCC and pCC) were frequently found to be involved in 
reward processing (Silverman et al., 2015). 

2. Methods 

2.1. Participants 

47 right-handed adult participants took part in the study. We 
excluded five participants from data analysis. One participant due to 
problems with vision correction and four subjects due to technical 
problems. Thus, data from 42 participants (age: M = 24.4, SD = 3.16, 
female = 23, male = 19), entered the analyses. All participants were 
German native speakers with normal or corrected to normal vision and 
reported no history of psychiatric or neurological disorders or drug 
abuse. The study was approved by the local Ethics Committee of the 
Medical Faculty of the University of Tübingen. Participants provided 
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written informed consent prior to the study and received monetary 
compensation for their participation. All investigations were carried out 
in accordance with the relevant guidelines and regulations. 

2.2. Study design 

The study employed a 2 × 2 design discerning the factors presenta-
tion format (game-based vs. non-game-based) and content (fractions vs. 
letter pairs) with the letter pair condition serving as a control condition 
(see Fig. 1). Analyses of data focused on feedback episodes (see Fig. 2). 
The study comprised two consecutive scanning sessions for each 
participant, randomly starting with either the game-based (i.e., fractions 
and letter pairs) or the non-game-based (i.e., fractions and letter pairs) 
task version/presentation format. That is, during each scanning session, 
both items from the fraction as well as the letter pair condition were 
presented. However, the control (i.e. letter pairs) items were not 
considered for the current analysis, as these will be primarily used for 
investigating aspects of numerical cognition. Further, we implemented 
an additional baseline level represented by the resting condition. 

The core of our game-based learning scenario is a number line esti-
mation task (Siegler & Booth, 2004). In this task, participants had to 
indicate the spatial position of a target fraction on a number line with 
only its endpoints specified (e.g. “Where goes 11/23 on a number line 
ranging from 0 to 1?“, see also Fig. 2). Hence, our game trains under-
standing of fraction magnitude. Dependent on the accuracy with which 
the fraction is indicated on the number line, the player succeeded or 
failed in solving the task and received positive or negative feedback, 
respectively (see Fig. 2). The threshold for an answer to be correct is a 
maximum deviation of ±10% from the target position (see below for a 
more detailed description). In the current experiment, we used two 
different versions of the fraction number line estimation task. The 
game-based version was a derivate of the fraction learning game 

NumberTrace (based on Semideus with reproduced graphics and 
storyline; see e.g. Kiili et al., 2018 and https://webpages.tuni.fi 
/gamelab/), however, adapted to the requirements of an fMRI experi-
ment. In particular, we discarded most graphical and visual extras as 
well as additional elements not tied to the execution of the task (e.g. the 
possibility to activate supportive features that help to solve the task, 
such as segmentation of the number line). At the same time, we kept 
necessary game elements, including the avatar that is walking on the 
number line and the game’s visual appearance. The latter comprises a 
minimum of textures such as a static background and movement-related 
animations (e.g. walking, indicating the position on the number line, 
and feedback animations). This way, the game-based version was still 
embedded in a narrative with appealing visual aesthetics (see Fig. 1). 

After indicating the estimated position of a given target fraction on 
the number line, positive or negative feedback (happy or sad dog; see 
Fig. 2) was given according to the performance (accuracy) of partici-
pants to increase emotional engagement. Additionally, the game-based 
version provided gradual feedback. Depending on the accuracy of the 
correct response, the dog shows a cheering reaction of different intensity 
from relatively neutral (≥90% accuracy, i.e., neutral facial expression, 
weak tail wagging) to very happy (=100%, i.e., gladdened facial 
expression with tongue hanging out and pronounced tail wagging). 

The non-game-based version was reduced to only the basic mecha-
nisms necessary to perform the number line estimation task and main-
tain comparability to the game-based version (see Fig. 1). All graphic 
elements, textures as well as animations were removed and, for instance, 
replaced by simple geometric figures and mostly scaled to black/grey/ 
white. The result was a conventional number line estimation task that 
comprised none of the game-based aspects. Yet, participants received 
positive/negative feedback according to their performance in the task in 
the form of a green tick or a red cross (positive and negative feedback, 
respectively; see Fig. 2). 

Fig. 1. Illustration of presentation format and content. Top left: game-based | fraction, top right: non-game-based | fraction, bottom left: game-based | letter pair; 
bottom-right: non-game-based | letter pair. 
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In both versions, inputs such as moving the avatar/slider (i.e. left/ 
right button for movements to the left/right) or confirm the position on 
the number line (i.e. middle button) were given one-handed on an MRI- 
compatible button box. A response was considered correct when the 
location of the respective fraction was estimated within ±10% deviation 
from the correct position on the number line. Participants could only 
give one answer per item and in case no answer was provided, the button 
for solving the task was triggered automatically after 12 s to ensure 
progress of the task. 

In addition to the fraction (estimation) condition where actual 
fractions needed to be estimated, we introduced a control condition for 
both task versions/presentation formats, in which a position on the 
number line had still to be indicated, but the correct positions were 
shown on the screen and numerator/denominator of the fraction were 
replaced by letters (two-digit pairs were matched to letter pairs). This 
means that in the control condition no fraction/magnitude estimation 
had to be performed whereas the mechanics of the game remained un-
affected. Specifically, the solutions given for the items in the control 
condition matched the correct positions of the items from the game/non- 
game-based task of the corresponding session. However, the control 
condition (i.e. game-based and non-game-based letter pair trials) was 
not part of the current analyses as it was intended to analyse the neural 
correlates of fraction processing rather than the differentiation between 
game- and non-game-based learning. 

2.3. Items and stimulus set 

The item sets comprised fractions with a numerator as well as de-
nominator ranging from 2 to 29. From all possible fractions, two 
balanced (equally distributed between 0 and 1) sets of fractions con-
taining 48 fraction items each were created. Both presentation formats 
(i.e. variants of the task – game-based and non-game-based) used each 

item sets in a counterbalanced way across participants to avoid that 
found effects can be attributed to the selected itemset. The same frac-
tions of the two item sets were used to create another 2 sets of control 
items, in which fractions were replaced by letter pairs. Furthermore, 
matching sets of fraction and letter pair items were used within a ses-
sion. During scanning, the game engine randomly drew a block of either 
4 fraction or letter pair items from the respective pool. This way, both 
item order as well as the sequence of conditions within each session have 
been randomized. Each block of 4 items (either fractions or letter pairs) 
was followed by a 23s resting period in this fixed order. After each 
resting period, the game engine again randomly chose 4 new items from 
either the fraction or the letter pair condition until all items were pre-
sented once, resulting in 12 blocks of 4 fraction items and 12 blocks of 4 
letter pair items (see Fig. 3). This results in 48 fraction items and 48 
letter pair (control) items per session (96 in total) and one participant 
being presented with 192 items in total across the two scanning sessions 
(game-based and non-game-based). Again, the current work focussed on 
fraction items exclusively. 

With respect to the procedure, one session contained 12 blocks of 4 
fraction items and 12 blocks of 4 letter pair items each. A baseline (rest) 
condition was accomplished by including pauses between the blocks. 
Therefore, 24 blocks intermediated by 23 s resting periods totaled in 9 
min and 12 s resting time per session. Thus, there was 18 min and 24 s of 
rest for each participant throughout the experiment. 

The average duration of a trial (duration of one trial refers to the time 
interval between the onset of one item until the start of the next item) 
was 6.96 s. One scanning session lasted approximately 21 min 
(excluding i.e. structural brain scans) depending on the task perfor-
mance of the participants. 

Fig. 2. Illustration of feedback in the fraction condition. Top (positive feedback) left: game-based | positive feedback (dog displaying a happy face), top right: non- 
game-based | positive feedback (green tick), bottom (negative feedback) left: game-based | negative feedback (dog displaying a sad face); bottom-right: non-game- 
based | negative feedback (red cross). 
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2.4. Measures 

After each scanning session, participants had to fill in the User 
Experience Questionnaire (UEQ) (Laugwitz et al., 2006) to assess basic 
experiential qualities of both task versions on six subscales. With bipolar 
ratings from 1 to 7, the UEQ evaluates pragmatic usability aspects with 
three subscales [i.e., efficiency (4 items), e.g. “quick vs. slow”; perspi-
cuity (4 items), e.g. “complicated – simple”; dependability (3 items), e.g. 
“predictable – unpredictable”], hedonic aspects of user experience with 
2 subscales [i.e., novelty (3 items), e.g. “creative – unimaginative”; 
stimulation (3 items), e.g. “boring – thrilling”], and attractiveness with 
one subscale (6 items; e.g. “pleasant – unpleasant”). 

2.5. MRI and fMRI data acquisition 

A high-resolution T1-weighted anatomical scan was acquired using a 
3T Siemens Magnetom Prisma MRI system (Siemens AG; Erlangen, 
Germany) equipped with a 64-channel head-neck matrix coil (TR =
2400 s, matrix = 256 × 256, 176 slices, voxel size = 1.0 × 1.0 × 1.0 
mm3; FOV = 256 mm, TE = 2.92 ms; flip angle = 8◦). The anatomical 
scan was always performed at the end of each session. 

Functional T2*-weighted images were obtained using a multiband 
gradient-echo echo planar imaging sequence (EPI; TR = 792 ms; TE =
30 ms; flip angle = 58◦; FOV = 192 mm, 64 × 64 matrix; 48 slices, voxel 
size = 3.0 × 3.0 × 3.0 mm3). Total scanning time was approximately 
55–65 min. 

2.6. Analyses 

2.6.1. Behavioural analysis 
We evaluated basic performance measures (i.e., error rate and re-

action times) for the two task versions (i.e., game-based vs. non-game- 
based). In particular, we compared the percentage of error (relative 
frequency of correctly solved items; ≥90% accuracy), item completion 
time (stimulus onset till button press) and estimation accuracy of all 
items for each participant. We used paired sample t-tests for compari-
sons across task versions. In addition, we evaluated differences between 
conditions along the six subscales of the UEQ (efficiency, perspicuity, 

dependability, novelty, stimulation, attractiveness). FDR correction 
(Benjamini & Hochberg, 1995) was applied to correct for multiple 
testing. 

2.6.2. Imaging analysis 
Our analyses approach comprised three levels involving univariate 

and multivariate procedures. In the univariate analyses we compared 
the average activation level in a voxel/brain region between the game- 
based and non-game-based condition for fraction items. Our multivar-
iate approach then looked for differences in distributed patterns of ac-
tivity over multiple voxels related to these varying task conditions 
(Popov et al., 2018), usually referred to as multi-voxel pattern analysis 
(MVPA). Both scenarios used the presentation format/task version 
(game-based vs. non-game-based) as independent variable. In the uni-
variate analysis, the average BOLD signal of single voxels or a set of 
voxel was the dependent variable used to estimate beta regressors, 
which were subsequently used as the dependent variables in the 
multivariate analysis. 

First, we used Statistical Parametric Mapping software (SPM12, 
Wellcome Center for Human Neuroimaging; http://www.fil.ion.ucl.ac. 
uk/spm) for preprocessing and intrasubject modelling (first-level anal-
ysis). Second, we performed percent-signal extraction using MarsBar 
(http://marsbar.sourceforge.net) for the ROIs described below. Here, 
BOLD signal change parameters were obtained separately for each ROI 
and participant. These parameters were subsequently compared on a 
group level using t-tests. For instance, participants’ signal change pa-
rameters for the amygdala were compared between the game-based and 
non-game-based condition. Third, we used intra-subject single-trial 
based pattern recognition in the same ROIs to complement the univar-
iate analyses with more sensitive multivariate models to further validate 
our results. A single trial refers to (the reception of feedback by) 
completing one fraction item. Whenever required, correction for mul-
tiple comparison using the FDR-method (Benjamini & Hochberg, 1995) 
was applied. These analysis steps are described in more detail below. 

2.6.2.1. Preprocessing. First, we applied artifact correction using 
ArtRepair (Mazaika et al., 2007), identifying bad slices and eliminating 
false activations outside the head. Bad slices were repaired using a 

Fig. 3. Illustration of the scanning procedure and timings. Every subject played both the game-based (game) and non-game-based (non) version in separate sessions. 
Sessions were intermediated by a structural scan. Solid arrows indicate fixed orders, whereas dotted arrows indicate randomization across sample/items. 

S. Greipl et al.                                                                                                                                                                                                                                   

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://marsbar.sourceforge.net


Computers in Human Behavior 125 (2021) 106946

6

liberal outlier threshold value of 18 and linear interpolation of the 
before and after volumes. Out of 84 data sets (one dataset represents a 
scanning session from one participant, therefore 42 participants x 2 
sessions), 82 had at least one bad slice repaired. On average, around 5% 
of the slices were repaired per participant. Next, we used the FieldMap 
toolbox to calculate field maps of magnetic field inhomogeneities. These 
field maps were then used to unwarp fMRI data according to field dis-
tortions. Subsequently, EPI images were realigned and transformed into 
the Montreal Neurological Institute (MNI) standard space. No slice time 
correction was performed. The resulting functional mean image was 
used to co-register previously segmented structural images. Structural 
and functional images were interpolated using 4th-degree B-Spline with 
3 mm (EPI) and 1 mm (T1) voxel sizes. Smoothing was performed using 
a 5 mm full width at half maximum (FWHM) of the Gaussian smoothing 
kernel. Data were high-pass filtered (128 s) to remove low-frequency 
noise components and corrected for autocorrelation assuming an AR 
(1) process. Brain activity was convolved over all trials with the ca-
nonical hemodynamic response function (HRF) and its first time 
derivative. 

2.6.2.2. First level analysis. After preprocessing, a general linear model 
(GLM) over all trials was defined using the canonical HRF and its first 
time derivative. Inclusion of all trials has several advantages: First, the 
number of trials is completely balanced and constant across participants. 
This is especially useful for later MVPA-analysis, where balancing 
training and test data is highly recommended (e.g. Weiss & Provost, 
2001). Another reason is that by far most trials were solved successfully 
(>90%). Thus, negative feedback only accounts for a small portion of 
trials overall. The negative to positive trial ratio was approximately 
equal for both sessions (see behavioural results). 

Feedback episodes of all game-based items, all non-game-based 
items, rest sequences, the onset of a new item, and button presses 
(left/right direction) were modeled separately. Thus, the GLM had 5 
regressors in total [feedback episodes (reception of feedback) in the 
game-based condition, feedback episodes (reception of feedback) in the 
non-game-based condition, rest, item onset, left/right button presses] 
along with 6 movement parameters from preprocessing to capture signal 
variations due to head motion for each of the two sessions. Critically, 
feedback episodes lasted exactly 2 s across conditions. 

2.6.2.3. First-level modeling. ROI analyses: We defined a set of brain 
areas as regions of interest (ROIs) that were previously reported to be 
critically involved in either emotion or reward processing. In addition, 
we examined strongly interconnected areas, sometimes called hubs, that 
specifically integrate cognitive and emotional information, which could 
further be interesting with respect to the formation of memory repre-
sentations. Following the suggestion by Poldrack (2007) we used 
meta-analytic results for ROI definition and extraction where applicable. 
This was the case for the amygdala (AMY), for which we used the 
connectivity-based parcellation (CBP) of the whole bilateral amygdala 
from Bzdok and colleagues’ (2013) meta-analysis, and for the anterior 
insula (aINS), for which we extracted the corresponding regional in-
formation from Kurth et al. (2010). In all other cases, we extracted ROI 
masks from probabilistic atlases. In particular, we extracted the ROI 
masks for hippocampus (HIP), anterior cingulate cortex (aCC), posterior 
cingulate cortex (pCC), frontal medial cortex (fmC), and frontal orbital 
cortex (foC) from the Harvard-Oxford cortical and subcortical structural 
atlas as distributed with FSL (FMRIB Software Library, 2016, Atlases 
Overview; available at: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). 
Positional information for caudate nucleus (CAU), nucleus accumbens 
(NAC), putamen (PUT), substantia nigra pars reticulata (SNr) and 
ventral tegmental area (VTA) was extracted from the probabilistic high 
resolution atlas of human subcortical brain nuclei by Pauli et al. (2018). 

Mean percent signal change (PSC) relative to baseline within each 
ROI for each game-based and non-game-based fraction trial/item (i.e. 

feedback episodes to letter pair items were omitted from the analysis) 
was extracted using the MarsBar toolbox (http://marsbar.sourceforge. 
net). 

MVPA analysis: Unsmoothed images were used for multivariate 
analysis to preserve maximal spatial information. We extracted beta- 
images for every trial of relevant regressors (e.g. feedback episodes) 
for the ROIs to perform pattern analysis based on single trials within 
single subjects. Based on the same first-level model as before, we fol-
lowed a multi-regressor approach, similar to what was described by 
Rissman et al. (2004), that estimates a single model with all trials rep-
resented by individual regressors. The resulting beta-images were used 
to perform a binary classification with cross-validation using The 
Decoding Toolbox (Hebart et al., 2015). Classification was performed 
using the popular support vector machine algorithm (SVM) that sepa-
rates data points into two classes using a hyperplane with the largest 
amount of margin. As all 96 fraction trials (48 per condition game-based 
vs. non-game-based) were included, classification was validated by a 
leave-one-block-per-class-out cross validation procedure with 12 folds. 
That means that every fold was trained on a balanced set of 88 items (44 
per condition) and tested on 8 items, a block of 4 items per condition. 
Subsequently, permutation tests based on 1000 permutations were 
performed to obtain statistical estimates (p-/z-values) about the ach-
ieved classification accuracy. This procedure was repeated for each 
subject and each ROI. 

Gained z-values from testing for individual significance of classifi-
cation accuracy were used to generate summary statistics. One-sided t- 
tests for each ROI were applied to evaluate whether the sample mean of 
z-scores significantly exceeds a threshold of z = 1.65. Thus, z = 1.65 is 
the significance threshold for a one-tailed test at an alpha level of p <
.05). 

3. Results 

3.1. Behavioural results 

Analysis of performance differences indicated no significant differ-
ences between the game-based and the non-game-based version of the 
task regarding the number of correctly positioned fractions (game- 
based: M = 43.6, SD = 3.36; non-game-based: M = 44.38, SD = 2.5; t 
(41) = 1.85, MD = − 0.79, CI [-1.64, 0.07], p = .07, d = 0.29). Moreover, 
there was no significant difference in terms of how much time partici-
pants needed to solve the items (game-based: M = 5.41, SD = 1.14; non- 
game-based: M = 5.40, SD = 1.10, t(41) = 0.11, MD = 0.01, CI [-0.20, 
0.22], p = .91, d = 0.02). However, there was a significant difference for 
the accuracy of the number line estimations (t(41) = -2.99, MD = − 0.54, 
CI [-0.91, − 0.18], p < .01, d = 0.46). Fractions were estimated more 
accurately in the non-game-based version (M = 96.50, SD = 0.46) as 
compared to the game-based version of the task (M = 95.95, SD = 1.06; 
see Fig. 4 for illustrations of performance differences). 

Significant differences for subjective ratings (see Fig. 5) were 
observed for four out of six subscales. The game-based version was rated 
more attractive (game-based: M = 1.89, SD = 0.79, Cronbach’s α = 0.71; 
non-game-based: M = − 0.04, SD = 1.02, Cronbach’s α = 0.54; t(41) =
9.84, MD = 1.93, CI [1.54, 2.33], p < .001, d = 1.52), more novel (game- 
based: M = 1.55, SD = 0.68, Cronbach’s α = 0.79; non-game-based: M =
− 1.55, SD = 0.95, Cronbach’s α = 0.79; t(41) = 16.01, MD = 3.10, CI 
[2.71, 3.49], p < .001, d = 2.47), and stimulating (game-based: M =
1.21, SD = 0.90, Cronbach’s α = 0.75; non-game-based: M = − 0.51, SD 
= 0.90, Cronbach’s α = 0.59; t(41) = 9.78, MD = 1.72, CI [1.37, 2.08], p 
< .001, d = 1.51). However, on a more pragmatic level, the non-game- 
based version was rated to be more efficient (game-based: M = 0.95, SD 
= 0.71, Cronbach’s α = 0.80; non-game-based: M = 1.54, SD = 0.70, 
Cronbach’s α = 0.68; t(41) = -4.08, MD = − 0.59, CI [-0.89, − 0.30], p <
.001, d = 0.63; see Fig. 5). No significant differences were found for 
perspicuity (game-based: M = 2.19, SD = 0.67, Cronbach’s α = 0.79; 
non-game-based: M = 2.30, SD = 0.65, Cronbach’s α = 0.65; t(41) =
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-1.04, MD = − 0.11, CI [-0.35, 0.11], p = .303, d = 0.16) and depend-
ability (game-based: M = 1.09, SD = 0.81, Cronbach’s α = 0.77; non- 
game-based: M = 1.21, SD = 0.81, Cronbach’s α = 0.66; t(41) =
-0.96, MD = − 0.12, CI [-0.39, 0.14], p = .343, d = 0.15). 

3.2. Imaging results 

3.2.1. Univariate analysis 
Subcortical areas that showed a significant difference in BOLD signal 

change, as well as increased relative activation during feedback episodes 
in the game-based as compared to the non-game-based version of the 
task, were amygdala (AMY), putamen (PUT), substantia nigra (pars 
reticulata, SNr) and ventral tegmental area (VTA). Cortical areas with 
significant activation differences in the same direction were anterior 

Insula (aINS) and posterior cingulate cortex (pCC). The only area that 
showed a statistically not significant tendency in the opposite direction 
(i.e., higher activation for the non-game-based than the game-based 
task) was the frontal medial cortex (fmC) (please refer to Table 1 for 
statistical details on the results described in this paragraph; see also 
Fig. 6 upper panel). 

3.2.2. Multivariate pattern analysis 
Results from multivariate analysis (see Fig. 6 lower panel) were 

largely consistent with those of the univariate analysis. Subcortical areas 
for which there was a significant difference between activation patterns 
for feedback episodes of the game-based and non-game-based version of 
the task were the amygdala (AMY), hippocampus (HIP), caudate nucleus 
(CAU), putamen (PUT) and substantia nigra (pars reticulata, SNr). 

Fig. 4. (a): The number of (maximal 48) fractions that were solved with ≥90% accuracy (left axis: absolute averaged number of items, right axis: average percentage 
of correctly solved items). (b): The average time in seconds subjects needed to estimate one fraction along the number line. (c): The average accuracy of estimations 
from all fractions presented during playing. 

Fig. 5. Mean ratings from the user experience questionnaire (UEQ).  
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Table 1 
Complete table of group statistics results of all ROIs in activation estimates and decoding results. Mean difference refers to the absolute difference in group means. 
Chance level (50%) was subtracted from mean accuracy values. Please note, results did not change substantially when only trials with positive feedback were 
considered for the analyses of neurofunctional data..  

2nd-level statistics (N = 42) Percent signal change, paired t-tests MVPA, z-scores (p-values) evaluated by single subject 
permutation tests, subsequent t-tests (z-scores against 1.65, one- 
sided test) 

ROI p-value (FDR-corrected) p-value (uncorrected) mean difference mean(acc) mean (z) sd(z) p-value (H0 = z ≤ 1.65) 

Amygdala (AMY) .032 .014 0.035 14.112 2.359 0.694 <.001 
Anterior Insula (aINS) <.001 <.001 0.053 15.724 2.440 0.702 <.001 
Hippocampus (HIP) .092 .072 0.018 17.411 2.648 0.564 <.001 
Anterior Cingulate Cortex (aCC) .068 .041 0.022 18.824 2.856 0.388 <.001 
Posterior Cingulate Cortex (pCC) .032 .016 0.028 16.667 2.615 0.691 <.001 
Frontal medial Cortex (fmC) .068 .044 − 0.027 16.840 2.571 0.641 <.001 
Frontal orbital Cortex (foC) .075 .054 0.022 18.452 2.753 0.534 <.001 
Caudate Nucleus (CAU) .196 .196 0.014 15.749 2.499 0.608 <.001 
Nucleus Accumbens (NAC) .159 .148 0.035 10.640 1.803 0.923 .145 
Putamen (PUT) .002 <.001 0.043 15.551 2.608 0.507 <.001 
Substantia Nigra, pars reticulata (SNr) .006 .002 0.051 11.682 1.964 0.814 .008 
Ventral Pallidum (VeP) .126 .108 0.030 6.920 1.351 0.827 .988 
Ventral tegmental area (VTA) .001 <.001 0.048 9.251 1.662 0.864 .465  

Fig. 6. Top: Univariate Analysis. Bottom: Multivoxel Pattern Analysis. Value “0” on the y-axis represents classification at chance level (50% chance level for binary 
classification were subtracted from percentage values). ROI abbreviations: AMY - Amygdala; aINS - anterior Insula; HIP – Hippo-campus; aCC - anterior Cingulate 
Cortex; pCC - posterior Cingulate Cortex; fmC - frontal medial Cortex; foC – frontal orbital Cortex; CAU – Caudate nucleus; NAC – nucleus accumbens; PUT – Putamen; 
SNr – substantia nigra pars reticulata; VeP – ventral pallidum; VTA – ventral tegmental area. 
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Cortical areas for which we observed significant differences in activation 
patterns were the anterior insula (aINS), anterior cingulate cortex (aCC), 
posterior cingulate cortex (pCC), frontal medial cortex (fmC) and frontal 
orbital cortex (foC, please refer to Table 1 for statistical details). It is 
worth noting that the frontal medial cortex (fmC) was the only region 
that revealed a statistically not significant trend in the opposite direc-
tion, meaning it showed descriptively higher activation for the non- 
game-based as compared to the game-based version of the task. 

Due to the more complex multivariate model and the higher sensi-
tivity of this analysis approach, additional regions compared to the 
univariate analysis were identified for which there were significant 
differences in activation patterns such as the hippocampus (HIP), 
anterior cingulate cortex (aCC), frontal medial/orbital cortex (fmC, foC) 
and caudate nucleus (CAU). 

Only for the ventral tegmental area (VTA), the reverse was true: 
univariate analysis indicated a significant difference in mean activation, 
but multivariate analysis did not substantiate this pattern. However, 
there are at least two reasons why this finding should be treated with 
caution. First, the ventral tegmental area (VTA) is a comparably small 
area, thus, the classifier had to rely on less features to find a pattern. 
Second, our statistical threshold is quite conservative because mean 
decoding accuracy of the ventral tegmental area (VTA) is still over 59% 
(which is equivalent to a mean z-score of 1.66). This means that there 
may still be a non-neglectable proportion of participants for whom a 
meaningful pattern was found in this respective brain area (please refer 
to Table 1 for the statistical details). 

4. Discussion 

In the present study, we aimed at investigating the neural correlates 
of emotional engagement through game elements added to a numerical 
learning task. Overall, the results of this study suggest that, measured by 
the feedback episode of the game, interacting with the game-based 
version of the task indeed led to increased neural response in brain 
areas associated with emotion and reward processing. While these brain 
areas may all contribute to a closely integrated network, neurofunc-
tional responses to the game-based version were strongest in amygdala 
(AMY) and anterior insula (aINS, significant across analyses methods) 
and may most likely indicate emotional processes. More closely related 
to reward processing, we found differential involvement of the ventral 
tegmental (VTA) area and the substantia nigra (SNr) when comparing 
the game-based and the non-game-based task. In the following, we 
discuss these findings in more detail, starting with subcortical and then 
proceeding to cortical areas. 

4.1. Subcortical processing of emotions and reward in game-based 
learning 

In the MVPA, we observed neural activation patterns in the amyg-
dala (AMY) to successfully (~64% accuracy) differentiate between 
feedback episodes in the game-based and non-game-based version of the 
learning task. This substantiated relatively stronger neural activation for 
game-based feedback compared to non-game-based feedback observed 
in our univariate analysis and indicates differential emotional process-
ing for the two task versions within the same participants. Similarly, we 
found significantly distinguishable activation patterns along with strong 
activation differences in the anterior insula (aINS). For both brain areas, 
these findings are well in line with the literature on their involvement in 
emotional processing, such as their responsiveness to emotional stimuli 
(Phan et al., 2002), the experience of emotions (Vartanian & Skov, 
2014) or reward (amygdala (AMY) only; Oldham et al., 2018). Stronger 
activation of the anterior insula (aINS) for the game-based task version 
might also be attributed to the experience of social emotions elicited, for 
instance, by the (e.g. joyful or crying) dog-avatar. We consider the 
observed systematic differences in the involvement of both the amyg-
dala (AMY) and the anterior insula (aINS) as critical indicators, because 

both structures are assumed highly interconnected hubs and may pro-
mote the integration of information across several domains in the brain. 
The amygdala (AMY) system has been associated with the evaluative 
and expression dimension of emotions (Pessoa, 2017). The insula (INS) 
integrates perceptions, emotions, thoughts and plans (Kurth et al., 
2010). Potential motor responses in subcortical regions (e.g. with the 
amygdala (AMY) as part of the basal ganglia), cannot explain these re-
sults because motor properties of both tasks were comparable and we 
controlled for button presses in the analyses. 

Activation patterns for the putamen (PUT), a striatal area, also 
indicated stronger activation in the game-based version of the learning 
task compared with the non-game-based version. In line with previous 
evidence, we suggest that this reflects putamen’s general involvement in 
reward processes (Silverman et al., 2015) or even more specifically, its 
role in learning reward-action correspondences (Cox & Witten, 2019). 
Another more content-wise interpretation assumes activation of striatal 
areas to be suppressed during winning and losing situations in active 
gaming (Kätsyri et al., 2013). However, this would be contrary to our 
results as observed for the putamen (PUT). Previous studies also sug-
gested that the ventral striatopallidum (VSP), to which the putamen 
(PUT) belongs, links motivation to behavior (Waraczynski, 2006). 

Unfortunately, results from other brain areas considered in our 
analysis and part of the striatum/VSP, such as the caudate nucleus 
(CAU), nucleus accumbens (NAC) and the ventral pallidum cannot 
dissolve this contradiction. While the MVPA indicated very well 
distinguishable activation patterns for the caudate nucleus (CAU), no 
significant activation differences were observed in the univariate anal-
ysis. In addition, neither significant activation differences nor differen-
tial activation patterns were decoded for the nucleus accumbens (NAC) 
and the ventral pallidum (VeP). In conclusion, neither the motivation-to- 
behavior link assumption nor the suppression during active gaming 
suggestion was corroborated by our results. 

Another possible explanation might be that on the neurofunctional 
level, ‘liking’ reactions (e.g. experiences of pleasure) are specifically 
associated with only a few subcortical regions, so called hedonic hot-
spots, such as the nucleus accumbens (NAC) and ventral pallidum (VeP) 
(Berridge & Kringelbach, 2013). Although differential MVPA results for 
nucleus accumbens (NAC) and ventral pallidum (VeP) were not signif-
icant against the final z-threshold, the game/non-game-based version 
was identified with over 60% accuracy and a z-score of 1.88 on average. 
This indicates that at least a non-neglectable proportion of participants 
showed systematic differences in activation patterns for the game-based 
vs. non-game-based version of the task in this brain area. This inter-
pretation also matches the significant advantage for the game-based task 
with respect to higher stimulation, novelty, and attractiveness, as re-
ported in the UEQ. Statistical insignificance for the neurofunctional 
results in this case may rather be the consequence of our conservative 
group-level analysis. 

Importantly, the ventral striatum was observed to respond selec-
tively to positive vs negative feedback in game-based contexts 
(Howard-Jones et al., 2016). As our paradigm did not compare positive 
and negative feedback but included both in a joint analysis, this might 
contribute to the near threshold results for nucleus accumbens (NAC). 
While by far most items (>90%) were solved correctly, rare negative 
feedback may have introduced additional variance. Furthermore, nu-
cleus accumbens (NAC) may be particularly sensitive to rewards during 
reward anticipation (Knutson et al., 2001), which was not considered in 
this study. This might have reduced discriminability of our results for 
this particular area. 

Additionally, neuronal correlates of experiencing pleasure should be 
distinguished for causation (associated with subcortical areas) and 
representation (associated with prefrontal areas) which reflect to some 
degree separate neuropsychological functions (Berridge & Kringelbach, 
2013). Specifically, only on a representation level, neuronal correlates of 
experiencing pleasure were observed for the game-based task version 
(see next paragraph). 

S. Greipl et al.                                                                                                                                                                                                                                   



Computers in Human Behavior 125 (2021) 106946

10

4.2. Cortical processing of emotions and motivation in game-based 
learning 

Important cortical areas contributing to the emotional processing 
such as the frontal orbital cortex (foC) (Pessoa, 2008) showed signifi-
cantly different activation patterns for the game-based as compared to 
the non-game-based version of the learning task for the majority of our 
participants. In fact, the frontal orbital cortex (foC) showed one of the 
most differential patterns within our selection of ROIs (~68% classifi-
cation accuracy). Importantly, this validated tendencies towards stron-
ger activation for the game-based version as observed in the univariate 
analysis. This is well in line with the literature, as the frontal orbital 
cortex (foC) has been associated with reward outcome (X. Liu et al., 
2011), in particular related to secondary rewards (Kätsyri et al., 2013). 
Moreover, representation of pleasure experiences seems to imply a 
major involvement of the frontal orbital cortex (foC) (Berridge & Krin-
gelbach, 2013) whereas more medial subregions might be involved in 
monitoring learning as well as memory of reward values (Kringelbach & 
Rolls, 2004). 

There were also significantly different patterns of activation for the 
frontal medial cortex (fmC). Importantly, however, this was the only 
ROI for which we observed a tendency towards increased activation for 
the non-game-based task version. This seems intriguing because limbic 
areas such as the frontal orbital cortex (foC) and frontal medial cortex 
(fmC) share their involvement in emotion processing and long-term 
memory (Barbas, 2000) and, together with the amygdala (AMY), were 
suggested to mediate stimulus-reward learning (Rudebeck et al., 2017). 
Conversely, medial prefrontal areas tend to show stronger activation 
during resting states (e.g. associated with mind-wandering) while 
decreasing activation in these areas may reflect cognitive processing 
coupled with a participant’s emotional state (Raichle et al., 2001). 
Another perspective on the frontal medial cortex (fmC) is its potential 
role in motivational control, the flexible adaptation of resources to, for 
instance, a particularly challenging task (Summerfield & Koechlin, 
2009). Under the premise that the non-game-based version is by default 
the more tedious and less engaging version of the task, maintaining 
adequate performance requires more effort in terms of motivational 
control and may thus lead to a stronger response of frontal medial cortex 
(fmC) compared to more intrinsic motivational states in the game based 
environment (Loderer et al., 2020). Extrinsically motivated situations, 
as suspected in the non-game-based environment, may in turn lead to an 
increase of effort to avoid failure (Loderer et al., 2018). 

While learning stays largely intact, memory is traded for higher 
precision of single unit processing (Spachtholz et al., 2014). Eventually, 
such an effect may be reflected by the small but systematically higher 
estimation accuracy of participants solving the non-game-based version 
of the task. However, another explanation might be that the game-based 
version and the used game elements caused reduced estimation accuracy 
by distracting learners. In particular, in the domain of multimedia 
learning it has been argued that additional irrelevant elements included 
to instructional material may distract learners’ attention away from 
central features of a task. This effect is often referred to as the seductive 
details effect (for a review see Rey, 2012; but see also Ninaus et al., 
2020). One may also speculate, that the avatar in the game-based 
version (i.e. the dog) changed response behavior slightly. Maybe some 
participants placed the dog with his (front) paws or even the face on the 
estimated location rather than relying on the vertical indication line 
placed under the dog’s centre (see Fig. 1). Eventually, we cannot exclude 
the possibility of a potential seductive details effect in our study or that 
in game-based learning, increased enjoyment might be traded for less 
accurate responses (Greipl et al., 2019), which need to be studied more 
systematically in the future. 

4.3. Emotion and reward processing across the brain 

MVPA indicated differential activation for both tasks in the anterior 

cingulate cortex (aCC), however only marginally increased relative 
activation for the game-based version of the task. In addition to its 
critical involvement in reward (Silverman et al., 2015) and emotion 
processing (Pessoa, 2008) in general, the anterior cingulate cortex (aCC) 
makes up a vital part of the so-called incentive motivational system 
(Berridge, 2004). Its recruitment during feedback episodes is therefore 
largely concordant with previous studies. 

For the posterior cingulate cortex (pCC) there was an even clearer 
differential pattern of activations as well as significantly increased 
relative activation for the game as compared to the non-game-based 
version of the task. In addition to reward processing, the posterior 
part of the cingulate cortex (pCC) may reflect experiences of positive 
valence and also was observed to contribute to episodic memory pro-
cesses (Silverman et al., 2015). Results from both anterior and posterior 
cingulate cortices (aCC/pCC) show that a substantial part of the struc-
tures relevant for reward processing in the brain was specifically 
recruited in the game-based tasks. 

Finally, the hippocampus (HIP) showed significantly different pat-
terns of activation for the game and the non-game-based task in the 
MVPA along with relative activations tending to be more pronounced in 
the game-based task. Hippocampus (HIP) belongs to extended parts of 
brain structures involved in emotion processing (Pessoa, 2008), and is 
associated with emotional behavior (Toyoda et al., 2011), mediates the 
encoding of salient stimuli together with the amygdala (Kensinger & 
Corkin, 2004), and is, if emotions are involved, interacting with the 
amygdala during formation of memory representations (Phelps, 2004). 
Although we cannot draw direct inferences on memory processes from 
the current study, the Hippocampus (HIP) is in the line-up of regions that 
showed involvement convergent with expectations. 

4.4. Limitations & considerations 

The challenge of the current study was to find a balance between 
preserving the game-based emotional experience and establishing a 
valid fMRI design. One consideration in this vein was examining more 
specific emotions such as surprise, confusion or boredom. However, 
implementing this in the experiment would have made the gaming 
experience even more difficult to preserve. The procedure would have 
had to be frequently interrupted in order to survey the participants 
about their current affective state. Keeping in mind that the currently 
employed game is set up to provide a genuine, albeit rather short-lived 
experience, an in-depth approach to, for instance, more complex (aca-
demic) emotions (e.g. Pekrun et al., 2002) was beyond the scope of this 
study. Furthermore, identifying such more specific emotional experi-
ence using fMRI would have been challenging given recent results of a 
meta-analysis by Lindquist et al. (2016). 

As a potential limitation of the current study, it should be considered 
that brain areas associated with reward processing seem to be recruited 
differentially during reward anticipation and reward outcome (Oldham 
et al., 2018). Only the latter was addressed specifically in the present 
study. During reward outcome, increased activation was observed in the 
ventral striatum, the foC/ventral medial prefrontal cortex (vmPFC) and 
the posterior cingulate cortex (pCC), whereas striatal areas, insula (INS) 
and amygdala (AMY) may rather be associated with reward anticipation 
(Oldham et al., 2018). Future studies should, where possible, include 
both anticipatory and outcome phases in their analyses, especially when 
learning environments critically rely on feedback mechanisms. Also, 
because of overall good performance of participants on the fraction 
estimation task negative feedback was rare and not sufficiently repre-
sented to be analysed specifically or separately for positive/negative 
feedback. Nevertheless, it would be desirable to address this aspect more 
explicitly in future studies. 

Moreover, we want to note that signal change values indicated an 
overall pattern of negative activations in all our ROIs. Similar phe-
nomena during active gameplay were present in previous studies, for 
instance in which winning and losing situations during active gaming 

S. Greipl et al.                                                                                                                                                                                                                                   



Computers in Human Behavior 125 (2021) 106946

11

lead to similar activation patterns in striatal areas (Kätsyri et al., 2013). 
The authors explained this by the fact that in an active gaming scenario, 
activation of the striatum may be tonic and stays on an elevated level. 
The feedback episode evaluated in the current study may therefore 
represent a break, for instance from being engaged with the task at hand, 
from which neural activation then may come back closer to baseline 
level. However, this is an issue we cannot address directly because the 
raw BOLD signal from two separate scanning sessions is essentially 
arbitrary and only allows interpretation of relative activation 
differences. 

5. Conclusion 

Our results provide clear evidence that neurofunctional correlates of 
emotional, reward and even motivational processing differ significantly 
for the game as compared to the non-game-based version of the task. 
Pattern analysis revealed highly significant differential contributions of 
brain areas including the amygdala (AMY), the anterior insula (aIN), 
posterior cingulate cortex (pCC), putamen (PUT), substantia nigra (pars 
reticulata, SNr), ventral tegmental area (VTA), hippocampus (HIP), 
anterior cingulate cortex (aCC), frontal medial/orbital cortex (fmC/foC) 
and caudate nucleus (CAU). Additionally, for most of these areas there 
also were significant activation differences in terms of increased acti-
vation in the game-based as compared to the non-game-based version of 
the task. The results imply that potential advantages of game-based 
learning may indeed not only be grounded in its more rewarding, but 
also in its emotionally engaging nature. 

Together with the reciprocity between emotion and cognition, our 
data indicate that enriching a learning environment by game elements is 
not inevitably distractive, as proposed in some previous studies (Mayer 
& Moreno, 2003). Instead, the present study demonstrates that 
game-based learning tasks and games for learning in general should not 
be regarded as tasks that have only been injected with fun elements, but 
as dedicated learning tools which can invigorate the learning 
experience. 
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