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Abstract: Radar imaging has many advantages. Meanwhile, SAR images suffer from a noise-like
phenomenon called speckle. Many despeckling methods have been proposed to date but there is
still no common opinion as to what the best filter is and/or what are its parameters (window or
block size, thresholds, etc.). The local statistic Lee filter is one of the most popular and best-known
despeckling techniques in radar image processing. Using this filter and Sentinel-1 images as a case
study, we show how filter parameters, namely scanning window size, can be selected for a given
image based on filter efficiency prediction. Such a prediction can be carried out using a set of input
parameters that can be easily and quickly calculated and employing a trained neural network that
allows determining one or several criteria of filtering efficiency with high accuracy. The statistical
analysis of the obtained results is carried out. This characterizes improvements due to the adaptive
selection of the filter window size, both potential and based on prediction. We also analyzed what
happens if, due to prediction errors, erroneous decisions are undertaken. Examples for simulated
and real-life images are presented.

Keywords: image quality assessment; visual quality metrics; neural networks; despeckling; Sentinel-1

1. Introduction

Radar remote sensing (RS) has found numerous applications in ecological monitoring,
agriculture, forestry, hydrology, etc. [1–5]. This can be explained by the following rea-
sons [2,3]. First, radar sensors can be used in all-weather conditions during day and night.
Second, modern radars (mostly synthetic aperture radars (SARs)) provide high spatial reso-
lution and data (image) acquisition for large territories, often with high periodicity—many
existing systems perform the frequent observations (monitoring) of terrains under interest.
Third, modern SARs produce valuable information content especially if they operate in
multichannel (multi-polarization or multi-temporal) mode [2–4,6,7]. Fourth, SAR images
are often provided after their pre-processing that includes co-registration, geometric and
radiometric correction, and calibration. This is convenient for their further processing and
interpretation.

The main problem with SAR images is that they are corrupted by a noise-like phe-
nomenon called speckle [2,8–11]. This problem was considered more than 40 years ago
in the papers by J.-S. Lee, V. Frost and others [12–14]. Since then, a great number of de-
speckling filters based on different principles has been proposed [14–20]. The “oldest”
despeckling methods [10–13] employ scanning windows and soft local adaptation. Many
of them have been later modified and improved [19,21]. Special attention was paid to SAR
image despeckling based on orthogonal transforms about 15–20 years ago [14,18]. Different
transforms, such as wavelets, discrete cosine transform and others have been applied.
Later, nonlocal denoising methods have attracted the main interest of researchers [8,17,20].
Bilateral filtering [22], anisotropic diffusion [23] and other approaches have been tested in
recent years. Deep learning-based techniques have become popular as well [24].
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Despite all these advancements and achievements in improving the despeckling
performance, there is still no common opinion as to what is the best filter and what are its
parameters. In this respect, we present the following observations:

1. Filter performance depends upon many factors, including the parameter settings used.
Parameters can be varied and set depending on the filter type. These parameters
include scanning window size [12,13], thresholds [17,18,25], a block size [25], parame-
ters of variance stabilizing transforms [17,18], and the number of blocks processed
jointly within nonlocal despeckling approaches [17,20].

2. Despeckling (denoising) performance considerably depends on image properties.
For simpler structure images (that contain large homogeneous regions), a better
performance is usually achieved compared to complex structure images (which
contain a lot of edges, small-sized objects and textures) [26–28].

3. Speckle properties also influence a filter performance. There are filters applicable to
speckle with a probability density function (PDF) close to Gaussian but there is no
such restriction for some other filters. The spatial correlation of the speckle (and noise
in general) plays a key role in the efficiency of its suppression [29,30]. This means that
the spatial correlation of the speckle should be known in advance or pre-estimated [31]
and then taken into account in filter and/or its parameters’ selection.

4. Filter performance can be assessed using different quantitative criteria; for SAR image
denoising, it is common to use peak signal-to-noise ratio (PSNR) and an efficient
number of looks [11,17–20], although other criteria are applicable as well. In particular,
it has become popular to use visual quality metrics [32–34]. Despeckling methods
can be also characterized from the viewpoint of the efficiency of image classification
after processing [35–38]. The SSIM metric [39] has become popular in remote sensing
applications but this metric is clearly not the best visual quality metric [40–42] among
those designed due to the current moment.

Due to these difficulties, the available tools for SAR image processing usually have a
limited set of applicable filters. For example, such software packages as ESA SNAP toolbox,
ENVI, etc., have a set of filters such as Frost, Lee, refined Lee and some others [10,43,44]. A
common feature of these filters is that they have a limited number of parameters that must
be set. These are the scanning window size, multiplicative noise variance and/or some
other parameters. Even in this case, a user should either have a knowledge (experience)
concerning a parameter setting or try the available options before getting the final results.

Note that the “optimal” parameter setting, even for a given filter type, depends
on image and noise properties [21,45–47]. For images with a more complex structure
and/or less intensive noise, more attention at the parameter setting stage should be paid
to edge/detail/texture preservation, and vice versa, for images with a simpler structure
and/or more intensive noise, noise suppression efficiency is of prime importance. Two
approaches of realizing this “strategy” automatically or semi-automatically are possible.
One can be treated as a global adaptation where properties of a considered image to
be filtered are briefly analyzed and parameters (e.g., thresholds [47]) of a filter are set
accordingly (with respect to some rules or algorithms). Another approach [21,46] relates to
a local adaptation where parameters (e.g., scanning window size [21] or thresholds [46])
vary according to some algorithm. Note that in both cases, some simple preliminary
analysis is carried out either globally or locally. Decisions are performed based on some
predictions of filtering efficiency, either global or local [27,28,46–49].

In this paper, we consider the local statistic Lee filter and set its scanning window
globally (for an entire image or, at least, its large fragments). We have three main hypothe-
ses. First, due to a proper setting of the filter window size, a sufficient improvement of
despeckling efficiency can be often achieved compared to the case of “average” setting
(for example, 7 × 7 pixels for all cases). Second, filter performance prediction for different
scanning window sizes can be easily and accurately done to undertake a decision on
optimal size. Third, the approach designed based on two previous hypotheses has to be
partly adapted to the properties of a considered class of SAR images, in this case, Sentinel-1



Remote Sens. 2021, 13, 1887 3 of 28

images with the number of looks approximately equal to five. Meanwhile, we believe that
the proposed approach is general, and after modifications, can be applied to other types of
SAR images and despeckling filters.

We already discussed why we consider the local statistic Lee filter—it is a well-known
filter which can be efficiently computed and is widely used in SAR image processing.
Sentinel-1 images are considered in this study since these data are openly available and are
acquired with high periodicity.

One more peculiarity of our study is that we rely on the results obtained in our earlier
papers [28,47,49]. It was shown in [28] that filter performance (according to several criteria)
in the despeckling of Sentinel-1 SAR images can be accurately predicted using a trained
neural network (NN). In [47], it was demonstrated that the global optimization of filter
parameters based on filtering efficiency prediction is possible. Finally, following from the
results given in [49], the filtering efficiency prediction for a 5x5 local statistic Lee filter is
possible with high accuracy.

This paper concentrates on the development of our method for perceptual quality-
driven image denoising based on the preliminary visual metrics of prediction and sub-
sequent analysis. The basic concept and common methodology have been developed
since our previous works [27,28] and as extension of our recent paper [49]. In [49], we
demonstrated that the efficiency of the Lee filter can be accurately predicted. The main
contributions of this paper are the following. First, we show that filtering efficiency can be
predicted for various window sizes of Lee filter with an appropriate accuracy. Second, we
demonstrate that, based on such a prediction, it is possible to undertake a correct decision
on the optimal window size with a high probability.

The methodology of our study includes the analysis of image/noise properties for
Sentinel SAR images, the statistical analysis of optimal window sizes depending upon a
used metric of filtering efficiency, NN design and its testing for simulated data with an
analysis of prediction accuracy, the verification of the proposed approach for real-life SAR
images.

The paper is structured as follows. Section 2 describes the image/noise model, the
considered filter, and the analyzed quality metrics. Some preliminary examples are given.
The NN input features, its structure and images used for learning are considered in
Section 3. NN training results are presented in Section 4. The proposed approach and
its applicability are discussed in Section 5, also presenting examples for Sentinel-1 data.
Finally, the conclusions follow.

2. Image/Noise Model and Filter Efficiency Criteria

The image/noise model relies on general information about SAR image/speckle
properties [2,8,10–13] and on available information concerning speckle characteristics in
Sentinel-1 images [50,51]. A common assumption is that speckle is purely multiplicative.
Experiments have proven that this assumption is correct for both VV (vertical–vertical) and
VH (vertical–horizontal) polarizations of Sentinel-1 radar data [28,50]. A relative variance
of speckle σ2

µ is approximately equal to 0.05 for both VV and VH polarizations [51]. A
speckle PDF is not “strictly” Gaussian, but it is quite close to it. Thus, we can present an
observed image as

In
ij = Itrue

ij µij, (1)

where Itrue
ij , i = 1, . . . , IIm, j = 1, . . . , JIm denotes the true or noise-free image, µij is a

speckle in the ij-th pixel (it has a mean value equal to unity and a variance equal to σ2
µ),

and IIm and JIm define size of a considered image.
Another important property is that speckle in Sentinel-1 images is spatially correlated.

This has been proven by experiments performed in [28,50,51] for both polarizations. Exam-
ples of image fragments of size 512 × 512 pixels for the same terrain region are given in
Figure 1.
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Figure 1. Here, 512 × 512 pixel fragments of Sentinel-1 SAR images with VV (a) and VH (b) polarizations with manually
selected quasi-homogeneous regions marked by red squares.

Spatial correlation can be detected and characterized in different ways: (a) by visual-
ization and analysis of the 2D spatial auto-correlation function or its main cross-sections;
(b) by analysis of the Fourier power spectrum; and (c) by analysis of the spatial spectra for
other orthogonal transforms; all determined in the homogeneous image regions or esti-
mated using some robust techniques able to eliminate or minimize the negative influence
of image information content on the obtained estimates. Such an analysis was carried out,
with results presented in [28,50,51]. It has been proven that speckle is spatially correlated,
and the possibility of simulating speckle with the same characteristics as in Sentinel-1
images has been demonstrated [28].

For the quantitative analysis of the filtering efficiency, we used three types of metrics
determined for simulated images. First, we determine metrics’ values for noisy images that
were obtained by artificially introducing speckle with the aforementioned properties to
noise-free images. Second, we calculate full-reference metrics’ values after filtering. Third,
we estimate metrics’ “improvements” due to despeckling determined as IM = M f −Minp,
where M f and Minp are metric values for denoised and true images, respectively.

For further analysis, we decided to use three metrics: conventional peak signal-to-
noise ratio (PSNR), PSNR-HVS-M [52] (peak signal-to-noise ratio taking into account
human vision system (HVS) and masking (M)), and the grayscale version of feature sim-
ilarity index (FSIM) [53]. PSNR is the standard metric often used in analysis. The other
two metrics are visual quality metrics that are among the best for characterizing grayscale
(single-channel) image quality. As there are currently no universal visual quality metrics,
we prefer using and analyzing two visual quality metrics based on different principles
simultaneously. Moreover, the properties of these metrics are well studied. For example,
PSNR and PSNR-HVS-M are both expressed in dB and their larger values are supposed
to correspond to better quality. Distortion visibility thresholds for these metrics are estab-
lished in [54]. It is also known that the difference in the quality of processed images of
about 0.5 dB or larger can be noticed. Improvements of PSNR greater than 6 dB and of
PSNR-HVS-M greater than 4 dB are needed to state with a high probability that SAR image
visual quality has been improved due to filtering. The metric FSIM varies in the limits from
0 to 1 and it should be larger than 0.99 to show that noise or distortions are invisible [54].
This very rarely happens for SAR images, both original (noisy) and despeckled. Due to
nonlinearity of FSIM, it is difficult to say what should be its improvement due to filtering
to guarantee that a processed image has a better visual quality than the corresponding
original one.

As it is known, the Lee filter output is expressed as

ILee
ij = Iij +

σ2
ij

I2
ijσ

2
µ + σ2

ij

(
Iij − Iij

)
, (2)
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where ILee
ij is the output image, Iij denotes the local mean in the scanning window centered

on the ij-th pixel, Iij denotes the central element in the window, σ2
ij is the variance of the

pixel values in the current window.
Below we present some examples of Lee filter outputs. Since there are no commonly

accepted noise-free and noisy SAR test images, a common practice is either to create
some artificial noise-free images or to use some practically noise-free images acquired by
other sensors. In [28], we used component images from channels #5 and #11 of Sentinel-2
multispectral imager. Figures 2–4 present some examples. Note that we consider four
scanning window sizes: 5 × 5, 7 × 7, 9 × 9, and 11 × 11 pixels.
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Figure 2 gives an example of the situation when the processed image is of a middle
complexity. The Lee filters with all four scanning window sizes produce improvements
of all three considered metrics (compared to the noisy image, metrics’ values are placed
below the corresponding images). The best (the largest) PSNR is provided by the 9 × 9
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pixel scanning window, although the PSNRs for the 7 × 7 and 11 × 11 pixel windows
are very close. The same holds for the metric PSNR-HVS-M, although the results for the
7 × 7 and 5 × 5 windows are very close. For FSIM, the best window size is 7 × 7 pixels.
The results for the 5 × 5 window are the worst according to all criteria and indeed, speckle
suppression is not enough. Concerning other the three output images, the opinions on
their quality can differ from one expert to another.

Figure 3 presents a “marginal” case when the image is almost homogeneous. In this
case, the metrics’ values steadily grow (improve) if the scanning window size increases.
The largest improvements are observed for the 11 × 11 pixel window, while for PSNR
and PSNR-HVS-M they reach almost 14 and 12 dB, respectively, clearly showing that the
11 × 11 window is the best choice. This is in good agreement with intuitive expectations
since just efficient speckle suppression is the main requirement to image denoising in
homogeneous image regions and such a property is achieved for filters with large scanning
windows.

Another “marginal” case is demonstrated in Figure 4. The test image has a complex
structure (is textural). Due to this, the best results are provided by the 5 × 5 scanning
window according to all analyzed metrics. However, it is difficult to judge whether the
visual quality has improved due to filtering or not, although metrics’ improvements are
positive. If the scanning window size increases, the output image quality decreases. This is
because edge/detail/texture preservation is the main property of the filter in the considered
case, and as it is known, a larger scanning window usually results in less preservation of
image features, and therefore, worse visual quality.

The presented examples confirm that the optimal window size strongly depends on
image content and the quality metric used. General tendencies are the following. First,
a smaller window should be applied for complex structure images. Second, for visual
quality metrics, optimal scanning window size is either the same as the optimal size
according to PSNR or slightly smaller. This is explained by two facts: (a) for visual quality
metrics, edge/detail/texture preservation is “more important” than noise suppression in
homogeneous regions; (b) a better edge/detail/texture preservation is usually provided
by filters with smaller window sizes (for the same filter type). Third, differences in metric
values for filters with different scanning windows can be sufficient. For example, FSIM
in example 1 varies from 0.87 to 0.84, PSNR in example 2 varies from 27.4 dB to 33.4 dB,
PSNR-HVS-M in example 3 varies from 32.7 dB to 29.1 dB. This shows that it can be
reasonable to apply the optimal window size.

As we only considered "marginal" cases for which the necessity to choose (determine)
the optimal window size is obvious, we also carried out additional study. First, we
determined the “statistics” of each window size to be optimal. For this purpose, 8100 test
images of size 512 × 512 pixels were employed. After adding speckle, filtering with four
scanning window sizes was applied and the metrics’ values were calculated. For each
metric, we determined how many times each window size provided the best results. Data
obtained for all three considered metrics are given in Figures 5–7. The plot in Figure 5
shows that, according to PSNR, the 5 × 5 and 11 × 11 windows more frequently appear
than the 7 × 7 and 9 × 9 pixel windows.

Meanwhile, the analysis of the plots in Figure 6; Figure 7 demonstrates that, according
to PSNR-HVS-M and FSIM, the 5 × 5 and 7 × 7 windows are better more often than the
9 × 9 and 11 × 11 windows. The reasons why this happens have been explained earlier.
Note that, quite probably, the 3 × 3 or 13 × 13 windows can be optimal in some cases.
However, our goal here is to prove that different window sizes can be optimal depending
on image/noise properties and filtering efficiency criteria.
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A global adaptation of window size is worth carrying out if the provided benefit is
high. A benefit can be determined differently. We calculated the two following parameters:

∆PSNR = MaxPSNR − (PSNR5 + PSNR7 + PSNR9 + PSNR11)/4, (3)

∆PSNR-HVS-M = MaxPSNR-HVS-M − (PSNR-HVS-M5 + PSNR-HVS-M7 +
+ PSNR-HVS-M9 + PSNR-HVS-M11)/4,

(4)

where MaxPSNR and MaxPSNR-HVS-M are the maximal values (among four available) of
output PSNR and PSNR-HVS-M, respectively, and the subscript relates to the scanning
window size (PSNR5 means PSNR for 5 × 5 window).

The histogram of ∆PSNR is presented in Figure 8. It has the mode for ∆PSNR of about
0.4 dB. The minimal value is about 0.1 dB and the maximal value is about 3.7 dB. This
means that a benefit due to the proper selection of optimal window size can be quite large.
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Similarly, Figure 9 represents the histogram of ∆PSNR-HVS-M. The distribution mode
is about 0.5 dB, the minimal benefit is about 0.2 dB and the maximal one reaches almost
5 dB.
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Thus, the first hypothesis put forward in Introduction is proven and it is worth
selecting the optimal window size. To show that it is possible, we study how to predict
filtering efficiency.

3. Filtering Efficiency Prediction Using Trained Neural Network
3.1. Proposed Approach

It was mentioned above that our approach is based on the prediction of filtering
efficiency. We assume that there is a method and/or a tool that allows predicting filter
efficiency in terms of some criteria (e.g., using a metric or several metrics). Then, filter
efficiency can be evaluated (predicted) for a set of filter parameter values (e.g., window
size for the local statistic Lee filter). Based on this prediction, it is possible to undertake a
decision as to what value of the considered parameter to set in order to obtain an “optimal
result” for a given image. The core of this approach is a neural network-based predictor
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trained off-line for test images that have approximately the same image and noise properties
as real-life images to be further processed.

We briefly explain what this means and the requirements for such a prediction. Our
first assumption is that there is at least one parameter able to adequately characterize
filtering efficiency. This aspect has already been discussed and we will further suppose
that improvements in PSNR, PSNR-HVS-M and FSIM (denoted as IPSNR, IPHVSM, IFSIM,
respectively) can be considered as adequate metrics. Then, we assume that there are one
or several parameters that are able to characterize image and noise properties. In general,
these can be different parameters [27,28,48,49], with the main requirements as follows: (a)
the parameters have to be informative, (b) they should be calculated easily and quickly.
Finally, there should be a connection between the chosen output parameter(s) (predicted
metric or metrics) and input parameter(s). This connection should allow estimating output
parameter(s) using input one(s). A connection can be realized in different ways—as an
analytic expression, as a regressor, or as a more complex tool, such as a support vector
machine (SVM) or a neural network (NN).

Our previous experience in the design and analysis of filter efficiency
prediction [27,28,48,49] has demonstrated the following:

• Even one input parameter (if it is informative and takes into account noise statistics
or spectrum) is able to provide an accurate prediction of filtering efficiency for many
different denoising techniques and criteria (metrics) [27,48];

• A joint use of several input parameters realized as a multi-parameter regression [48] or
trained NN [28,49] usually leads to the sufficient improvement of prediction accuracy
at the expense of the extra calculations needed.

3.2. Neural Network Input Parameters

It has been shown [49] that the improvements of many metrics can be accurately
predicted for the 5x5 local statistic Lee filter using the trained NN. Recall here that the
performance of any NN depends on many factors regardless of what functions are carried
out by an NN (approximation, classification, recognition, etc.). These factors are the
following: (a) NN structure and parameters (e.g., the number of hidden layers); (b) input
parameters used and their number, (c) activation function type and parameters; (d) a
methodology of NN training.

It is difficult to analyze the influence of all these factors within one paper. Due to this,
we incorporated some knowledge and experience obtained in our previous works [33,48,49].
In particular, the different sets of input parameters have been considered in [48]. Originally,
four groups of input parameters have been proposed.

The first group includes sixteen parameters, all calculated in the discrete cosine
transform (DCT) domain. A normalized spectral power was determined in four spectral
areas of 8 × 8 pixel blocks marked by digits from 1 to 4 in Figure 10. Zero relates to the DC
coefficient not used in the calculations.
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Four energy allocation parameters are expressed as

Wm =
∑kl∈Am D2

kl

∑8
k=1 ∑8

l=1 D2
kl − D2

11
. (5)

Here, k and l denote indices of DCT coefficients in a block (k = 1, . . . , 8, l = 1, . . . , 8),
m (m = 1, . . . , 4) is an index of the m-th spectral area Am (see Figure 10). In fact, the
parameters Wm characterize the distribution of energy between areas and they all are in
the limits from 0 to 1. Having a set of Wm determined for a certain number of blocks,
four statistical parameters were calculated for each area: mean, variance, skewness, and
kurtosis. Then, sixteen parameters (denoted as MS1,...,4, VS1,...,4, SS1,...,4, KS1,...,4) that take
into account the spectral characteristics of both the true image and speckle are obtained.

The second group includes four input parameters. They all relate to image statistics
in 8 × 8 pixel blocks. We denote them as MBM, VBM, SBM, KBM (the mean, variance,
skewness, and kurtosis of block means, respectively). They partly describe the image
histogram.

The third group of input parameters has come from our previous experience in
designing simple predictors [27]. The parameters are also based on data processing in
8 × 8 blocks. Let us estimate the probabilities Pσ(q), q = 1, . . . , Q in a q-th block (where Q
defined the total number of the considered blocks), where magnitudes of DCT coefficients
are smaller than the corresponding frequency and signal-dependent thresholds:

Tq kl = σµ Iq

√
Dpn(k, l), (6)

where Dpn(k, l) is the DCT normalized power spectrum, and Iq denotes the q-th block mean.
After estimating Pσ(q), q = 1, . . . , Q, four statistical parameters (mean, variance, skewness
and kurtosis) of these probabilities were calculated. We denote them as MP, VP, SP, KP,
respectively.

It was also supposed [48,49] that general image statistics can be useful. Due to this,
four other parameters have been calculated: image mean, variance, skewness, and kurtosis
(denoted as MI , VI , SI , KI , respectively).

All 28 parameters that can be potentially employed as NN inputs can be calculated
easily and quickly. DCT in 8 × 8 blocks is a fast operation; other operations are either
simple arithmetic or logic operations. A part of them can be calculated in parallel or in a
pipeline manner. The essential acceleration of calculations also stems from the fact [27] that
usually one can process data only in 1000 blocks placed randomly to obtain the required
statistics with appropriate accuracy.

Numerous NN structures can be used. The multilayer perceptron (MLP) structure
presented in Figure 11 is well recommended [28,49]. Studies carried out in [28] have
shown that, without losing prediction accuracy, it is enough to use 13 input parameters,
thus simplifying the NN-based predictor. These 13 input parameters are the following:
MS1, MS2, MS3, MS4, MBM, VBM, SBM, MP, VP, SP, KP, MI and VI (see the description
above).

Examples of images used in NN training are given in Figures 2–4. Preparing 8100
test images sized 512 × 512 pixels, we aimed at “covering” different types of terrains of
different complexity to represent a wide range of possible practical situations.
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4. NN Training Results

The MLP-based predictors were trained separately for each of three metrics (IPSNR,
IPVHSM, IFSIM). As seen in Figure 11, the NN has three hidden layers. For all of them,
hyperbolic tangent (tanh) activation function is used. The linear activation function is
employed for the output layer. The MLP has 13 inputs introduced above. These input
parameters must be calculated for each SAR image for which the prediction of filtering
efficiency has to be done. The NN-based predictor has been trained by means of Bayesian
regularization backpropagation.

The process of NN training and verification consists of four stages. The goals of the
first two stages that concern self-dataset validation are to determine the final architecture
and the number of training epochs. In turn, stages 3 and 4 relate to cross-dataset evaluation
and checking the accuracy of the obtained predictors using data not exploited in the
training process. One hundred high-quality cloudless images having total sizes of about
5500 × 5500 pixels have been obtained from components with a high SNR of multispectral
RS data acquired by Sentinel-2. They were taken from channel #5 with the wavelength of
about 700 nm and channel #11 with the wavelength of about 1600 nm. Using such large
size fragments, images of the size 512 × 512 pixels were obtained (8100 images for each
channel). These 512 × 512 pixel images were used as noise-free (true) images for which
speckle distorted images were simulated.

At the preliminary stage, using noisy and corresponding true images, the metrics
values were determined. Using noisy images, the input parameters considered in the
previous section were determined and saved for all images. The filtered images were
obtained and the quality metrics values for them were calculated. After obtaining all these
data, the following actions to obtain and verify the NN performance were made. At the
stage of the self-dataset validation, the optimal number of training epochs was established
at 30. For the used architecture, it occurred to be equal to 30. The dataset was divided into
two non-equal parts, 80% of test images have been employed for training and 20% of the
remaining images for validation. The obtained training results are random. To overcome
this pitfall, the validation was repeated 1000 times using the full permutation of the dataset.
This allowed root mean square error (RMSE) and adjusted R2 [55] to be obtained after
averaging to decide NN parameters. Smaller RMSE and larger adjusted R2 correspond to
better solutions.

Self-dataset validation results are presented in Table 1, where test images for channel
#11 are used. As one can see, the prediction results are very good. IPSNR and IPHVSM are
predicted with RMSE about 0.3 dB; adjusted R2 have practically identical values and they
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are in the limits from 0.976 to 0.989 showing that fitting carried out by the trained NN is
excellent.

Table 1. Self-dataset validation on the same Sentinel-2 data, channel #11.

Predicted Metric Scanning Window Size RMSE Adjusted R2

IPSNR 5 × 5 0.234 0.976
IPSNR 7 × 7 0.289 0.986
IPSNR 9 × 9 0.319 0.989
IPSNR 11 × 11 0.355 0.990

IPHVSM 5 × 5 0.208 0.966
IPHVSM 7 × 7 0.303 0.983
IPHVSM 9 × 9 0.351 0.988
IPHVSM 11 × 11 0.396 0.989

IFSIM 5 × 5 0.007 0.984
IFSIM 7 × 7 0.011 0.987
IFSIM 9 × 9 0.016 0.986
IFSIM 11 × 11 0.019 0.985

If an NN is trained for one set of data and then applied to another set, the NN
performance might radically worsen. To check this point, we performed cross-validations.
Training was carried out for 6480 test images and parameters that characterize accuracy
were estimated for another 1620 images. The obtained results are given in Table 2.

Table 2. Cross-dataset evaluation for the same Sentinel-2 data, channel #11.

Predicted Metric Scanning Window Size RMSE Adjusted R2

IPSNR 5 × 5 0.263 0.966
IPSNR 7 × 7 0.328 0.98
IPSNR 9 × 9 0.361 0.985
IPSNR 11 × 11 0.399 0.986

IPHVSM 5 × 5 0.229 0.951
IPHVSM 7 × 7 0.338 0.975
IPHVSM 9 × 9 0.396 0.983
IPHVSM 11 × 11 0.446 0.985

IFSIM 5 × 5 0.008 0.981
IFSIM 7 × 7 0.013 0.983
IFSIM 9 × 9 0.017 0.982
IFSIM 11 × 11 0.021 0.980

Cross dataset evaluation has been done for the same Sentinel-2 data from channel
#11. Analysis shows that the RMSE values have slightly increased and the adjusted R2

has slightly decreased compared to the corresponding data in Table 1. Meanwhile, the
prediction accuracy remains very good. Usually, it is even more difficult for an NN to
perform data processing if the sets used in training and verification differ sufficiently. In
our case, this might happen if the NN is trained for test images composed of data in one
channel of Sentinel-2 images and then applied to the test images composed of data in
another channel. To check this case, we carried out the NN training on a Sentinel-2 dataset
in channel #5 and then carried out cross-dataset evaluation on the dataset from Sentinel-2
channel #11. The obtained results are presented in Table 3.

The analysis of obtained results shows that the RMSE values are almost identical to
the corresponding values in Table 2. The values of adjusted R2 have slightly decreased
compared to the corresponding data in Table 2. Nevertheless, the prediction is accurate
enough. It is sufficiently better than that for predictors based on a single input parame-
ter [27] and two input parameters [48]. We associate this benefit with two factors. First, the
NN uses more input parameters that employ information on image statistics. Second, the
NN exploits information about speckle spectral properties by means of input parameters
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MP, VP, SP and KP. The main parameters that characterize prediction accuracy for the Lee
filter versions with different scanning window sizes are approximately the same as for the
DCT-based filter analyzed in the paper [28]. Thus, we can conclude that there is a certain
generality to the approach to filter efficiency prediction considered in this paper.

Table 3. Cross-dataset evaluation for Sentinel-2 data, channel #11 with training for Sentinel-2 data,
channel #5.

Predicted Metric Scanning Window Size RMSE Adjusted R2

IPSNR 5 × 5 0.326 0.946
IPSNR 7 × 7 0.412 0.967
IPSNR 9 × 9 0.466 0.974
IPSNR 11 × 11 0.512 0.977

IPHVSM 5 × 5 0.279 0.929
IPHVSM 7 × 7 0.431 0.961
IPHVSM 9 × 9 0.513 0.971
IPHVSM 11 × 11 0.573 0.974

IFSIM 5 × 5 0.01 0.969
IFSIM 7 × 7 0.016 0.973
IFSIM 9 × 9 0.023 0.969
IFSIM 11 × 11 0.028 0.964

Hence, the second and the third hypotheses given in the Introduction are also proven.
The high accuracy of prediction is provided compared to the simpler approach to predic-
tion [27]. This is particularly due to taking into account the speckle statistical and spectral
properties incorporated by input parameters MP, VP, SP, KP that are among the most
informative.

Now, the question is the following: is the attained accuracy of filter efficiency predic-
tion enough for the adaptive selection of the Lee filter scanning window size?

5. Adaptive Selection of Window Size

There are several ways to adapt the filter window for a given image to its content
based on prediction:

• To perform prediction for only one parameter, e.g., IPSNR, for all possible scanning
window sizes, and to choose the window size for which the predicted metric (e.g.,
IPSNR) is the largest.

• To jointly analyze two or three metrics (e.g., IPSNR and IPHVSM or IPSNR, IPHVSM,
and IFSIM) and undertake a decision (there probably are many algorithms to do this).

• To obtain three decisions based on the separate analysis of IPSNR, IPHVSM, and
IFSIM as in the first item and then to apply the majority vote algorithm of some other
decision rule.

Below, we concentrate on the way described in item 1 as the simplest solution, leaving
other options for the future.

Decisions can be characterized in various ways. We are mainly interested in two
aspects—what is the probability of a correct decision for our approach and what happens if
the undertaken decision is wrong, i.e., if an incorrect scanning window size is decided to be
used. The probabilities of correct decisions have been determined for self-dataset validation
and cross-dataset evaluation. For the self-dataset validation stage, the probability of a
correct decision is approximately equal to 0.9 for IPSNR, 0.918 for IPHVSM, and 0.907 for
IFSIM. Thus, a high probability of correct decisions has been reached.

For the cross-dataset evaluation in channel (#11), the probability is equal to 0.898 for
IPSNR, 0.916 for IPHVSM, and 0.901 for IFSIM. For cross-dataset evaluation with channel
(#5), the probability of a correct decision is 0.857 for IPSNR, 0.899 for IPHVSM, and 0.877 for
IFSIM. For cross-dataset evaluation with another channel (#5), the probability of a correct
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decision for IPSNR equals to 0.857; for IPHVSM—to 0.899, and for IFSIM—to 0.877. All
probabilities are high enough.

Let us now see what happens if a wrong decision is undertaken. Clearly, this must
lead to a reduction in filtering efficiency. Hence, we estimated the differences in metrics
values for the optimal (maximally attainable) metric value and the one produced in the
case of wrong decision. The distribution of such differences for IPSNR is presented in
Figure 12. Most differences are very small (less than 0.2 dB), so erroneous decision is not a
problem. Meanwhile, there a few (six) cases where differences exceed 0.5 dB.
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decisions.

Similarly, Figure 13 represents the distribution for differences between the optimal
IPHVSM and the corresponding values produced in the cases of wrong decisions. Again,
most differences are very small and do not exceed 0.2 dB. There are only two test images
for which the differences are larger than 0.5 dB. Figure 14 shows the differences for IFSIM.
Mostly, the differences are very small (less than 0.005). There are only three cases when the
differences exceed 0.01.

Let us present some examples of undertaking correct decisions (according to any
considered metric). Figure 15 shows the true image (a); the speckled image (b); the optimal
filter output for the 11 × 11 scanning window (c); and the filter output for the 5 × 5
scanning window that is surely not the best choice. In addition, we give all true and
all predicted metric values. In this example, all true and the corresponding predicted
values are close to each other. Meanwhile, all predicted values are slightly larger than the
corresponding true values.



Remote Sens. 2021, 13, 1887 17 of 28Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 27 
 

 

 
Figure 13. Histogram of differences between the optimal and produced IPHVM in cases of wrong 
decisions. 

 
Figure 14. Histogram of differences between the optimal and produced IFSIM in cases of wrong 
decisions. 

Let us present some examples of undertaking correct decisions (according to any con-
sidered metric). Figure 15 shows the true image (a); the speckled image (b); the optimal 
filter output for the 11 × 11 scanning window (c); and the filter output for the 5 × 5 scanning 
window that is surely not the best choice. In addition, we give all true and all predicted 
metric values. In this example, all true and the corresponding predicted values are close 
to each other. Meanwhile, all predicted values are slightly larger than the corresponding 
true values. 

Note that for the examples given in Figures 2–4, the optimal and the recommended 
window sizes coincide. 

Figure 13. Histogram of differences between the optimal and produced IPHVM in cases of wrong
decisions.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 27 
 

 

 
Figure 13. Histogram of differences between the optimal and produced IPHVM in cases of wrong 
decisions. 

 
Figure 14. Histogram of differences between the optimal and produced IFSIM in cases of wrong 
decisions. 

Let us present some examples of undertaking correct decisions (according to any con-
sidered metric). Figure 15 shows the true image (a); the speckled image (b); the optimal 
filter output for the 11 × 11 scanning window (c); and the filter output for the 5 × 5 scanning 
window that is surely not the best choice. In addition, we give all true and all predicted 
metric values. In this example, all true and the corresponding predicted values are close 
to each other. Meanwhile, all predicted values are slightly larger than the corresponding 
true values. 

Note that for the examples given in Figures 2–4, the optimal and the recommended 
window sizes coincide. 

Figure 14. Histogram of differences between the optimal and produced IFSIM in cases of wrong
decisions.

Note that for the examples given in Figures 2–4, the optimal and the recommended
window sizes coincide.
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Figure 15. The true image (a); the speckled image (b); the optimal filter output for the 11 × 11 scanning window (c); and the
filter output for the 5 × 5 scanning window (d).

Figures 16 and 17 show two more examples. For the image in Figure 16, the 7 × 7
window is the best choice according to both the true and predicted values of all three
metrics, although the 9 × 9 window produces good outcomes as well. For the image in
Figure 17, the 5 × 5 window is the best choice according to all three metrics, both true and
predicted. The use of the 9 × 9 window leads to oversmoothed output. Note that IFSIM
can be negative, indicating image quality degradation due to filtering.
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filter output for the 9 × 9 scanning window (d).

Figure 18 shows an example of a wrong decision. According to the predicted IPSNR,
one must use the 9× 9 window. Meanwhile, according to the true IPSNR, the 7× 7 window
is the best choice (the predicted IPHVSM and IFSIM are in favor of the 7 × 7 window too).
However, in this case, the use of the 9 × 9 window does not lead to a considerably negative
effect.
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Figure 19 demonstrates one more interesting case. Obviously, the 5 × 5 window is the
best choice. Meanwhile, for the 9 × 9 window, both true and predicted PSNR are close to
zero while IPHVS and IFSIM are negative. In this case, when filtering by 9 × 9, the Lee
filter is useless.
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Let us give three real-life examples. Figure 20 shows an example for a real-life Sentinel-
1 image of size 512 × 512 pixels. Since we do not have the true image in this case, we can
demonstrate the results only visually and analyze them. The original (noisy) image was
processed by the Lee filter with scanning window sizes of 5 × 5 (b); 7 × 7 (c); and 9 × 9 (d)
pixels. The predicted metric values are given under the corresponding outputs. According
to these, the 7 × 7 window size is the best and, in our opinion, this correlates with a visual
analysis.
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Figure 20. The original Sentinel-1 image (a); and the outputs of the 5 × 5 (b); 7 × 7 (c); and 9 × 9 (d) Lee filters.

Another example is given in Figure 21. In this case, the image contains a lot of small-
sized details. According to IPSNR, the despeckling produces a small improvement for the
scanning windows of 5 × 5 and 7 × 7 pixels. However, according to visual quality metrics,
the despeckling leads to image degradation for all three considered window sizes and this,
in our opinion, is in agreement with visual inspection. Maybe, the use of the 3 × 3 pixel
window can be a compromise.
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Finally, Figure 22 shows an image with large homogeneous regions. According to
IPSNR and IFSIM, the 11 × 11 window is the best, but according to IPHVSM, the 7 × 7
pixel window is better. We prefer to agree with the latter variant.
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6. Conclusions

The local statistic Lee filter is considered as a representative of the known de-speckling
methods used in SAR image processing. It was shown that the scanning window size
sufficiently influences the quality of output images. Thus, its adaptive setting seems
expedient. We show how this size can be defined for a given image using filter efficiency
prediction realized by a neural network. Many aspects of the neural network design and
training are considered. A high prediction accuracy was demonstrated for three quality
metrics. It was shown that the correct decisions can be undertaken with high probability
(exceeding 0.85). The cases of undertaking wrong decisions are studied as well. It is shown
that, in most situations, the negative outcomes of such decisions are negligible. Examples
of simulated and real-life images are presented to explain the problem and give details
concerning the proposed solutions (see data in Supplementary Materials Section).

We empirically proved all three hypotheses stated in the Introduction. Due to the
optimal setting of the filter window size, a considerable improvement of despeckling
efficiency can be reached compared to the case of fixed setting. The optimal window size
can be chosen based on efficiency prediction performed by the trained NN. The proposed
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approach presumes that the training must be carried out, taking into account statistical and
spectral properties of speckle for the considered class of SAR images.

If so, the question of universality of the proposed approach arises. The speckle
statistical properties influence input signal-to-noise ratios of acquired images that, in
turn, impact filtering efficiency [27] and other performance characteristics of RS image
processing [56]. We adapted our NN predictor to the statistical and spectral characteristics
of the speckle for five-look Sentinel SAR images and this is one reason why the high
accuracy of prediction was provided. Therefore, we can currently talk about the universality
of our approach in the sense that the same preliminary study and training can be carried
out for other types of SAR images, e.g., for single-look TerraSAR-X images. Meanwhile,
it is also possible to find such input parameters for a trained network that can be quite
insensitive to the possible changes of speckle statistics and spatial spectrum.

Supplementary Materials: All materials and supplementary visualization will be available online at
https://github.com/asrubel/Lee_filter_pred.
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