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RNA-sequencing (RNA-seq) is a relatively new technology that lacks standardisation. RNA-seq can be

used for Differential Gene Expression (DGE) analysis, however, no consensus exists as to which method-
ology ensures robust and reproducible results. Indeed, it is broadly acknowledged that DGE methods pro-
vide disparate results. Despite obstacles, RNA-seq assays are in advanced development for clinical use but
further optimisation will be needed. Herein, five DGE models (DESeq2, voom + limma, edgeR, EBSeq,
NOISeq) for gene-level detection were investigated for robustness to sequencing alterations using a con-
trolled analysis of fixed count matrices. Two breast cancer datasets were analysed with full and reduced
sample sizes. DGE model robustness was compared between filtering regimes and for different expres-
sion levels (high, low) using unbiased metrics. Test sensitivity estimated as relative False Discovery
Rate (FDR), concordance between model outputs and comparisons of a 'population’ of slopes of relative
FDRs across different library sizes, generated using linear regressions, were examined. Patterns of relative
DGE model robustness proved dataset-agnostic and reliable for drawing conclusions when sample sizes
were sufficiently large. Overall, the non-parametric method NOISeq was the most robust followed by
edgeR, voom, EBSeq and DESeq2. Our rigorous appraisal provides information for method selection for
molecular diagnostics. Metrics may prove useful towards improving the standardisation of RNA-seq for
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1. Introduction

RNA-sequencing (RNA-seq) is a high-throughput sequencing
(HTS) method that measures cDNA transcripts. Transcripts are
mapped to a gene/isoform and their abundance should correlate
with expression. RNA-seq is a relatively new technology that has
been quickly adopted into clinical research [1]. Despite this, HTS
are not routinely implemented in molecular diagnostics for patient
diagnosis, monitoring and management [2]. A lack of methodolog-
ical standardisation and validation has previously prevented HTS
adoption into the clinic [3,4,5]. Another major obstacle has been
the complex data structure of HTS outputs (e.g. patient transcrip-
tional profiles from RNA-seq) [5]. Regardless, RNA-seq assays are

* Corresponding author at: Bioinformatics Group, Health Sciences Building,
Patrick G Johnson Centre for Cancer Research, Queen’s University Belfast, 97
Lisburn Road, Belfast BT9 7BL, UK.

E-mail address: d.mcart@qub.ac.uk (D.G. McArt).

T Authors contributed equally to this manuscript.

https://doi.org/10.1016/j.csbj.2021.05.040

now in advanced development for precision medicine, but further
optimisation is urgently needed.

RNA-seq is most often analysed to investigate expression levels
of genes/transcripts between two or more conditions (i.e. contrast
groups) in a Differential Gene Expression (DGE) analysis. In cancer
research, DGE has been essential in assessing biological function,
pathogenesis and biomarker discovery [6,7]. To date, standardisa-
tion of RNA-seq has been problematic because results differ
depending on experimental parameters used for data collection,
such as HTS platform, sample loading, multiplexing and laboratory.
The US FDA Sequencing Quality Control project (SEQC/MAQC-III)
assessed RNA-seq performance and found that filtering DGE results
improved inter-site and between-platform reproducibility [8].
Standardisation of RNA-seq for DGE is further complicated by the
number and variety of analytical procedures available. DGE tools
include voom + limma [9,10], edgeR [11], Cuffdiff2 [12], EBSeq
[13], SAMseq [14], Bayseq [15], NOISeq [16], rSeqNP [17], DESeq2
[18] and Sleuth [19] etc.

DGE pipelines analyse RNA-seq data with a series of steps. Ini-
tially, raw reads are aligned to a reference using popular aligners
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such as BWA [20], Bowtie2 [21] or STAR [22]. Aligned reads are
assigned to genes from a given genome/transcriptome annotation
and summarised using tools such as Cufflinks [23], HTSeq [24] or
featureCounts [25]. Next, count data is normalised to enable com-
parisons of gene expression between samples. Different normalisa-
tion methods are available to correct for technical biases associated
with gene length, library size, sequencing batches or other
protocol-specific artefacts (see Methods). Normalised count data
is then analysed using either a statistical model or machine learn-
ing (ML) to identify differentially expressed genes (DEGs). Models
that apply parametric methods assume count distributions follow
a particular distribution such as Negative binomial (NB), Log-
Normal or empirical Bayes. Non-parametric methods and ML do
not rely on such assumptions. DEGs are identified from results
using thresholds for expression changes and/or P-value or poste-
rior probability results of the test statistics.

Results of a DGE analysis are heavily influenced by the statisti-
cal model [26-29]. Despite this, there is still no consensus as to
which DGE methodology provides reproducibility and whether
gene expression strength matters. This information is required
for validation of DGE-based applications, such as molecular diag-
nostics. Comparing DGE pipeline robustness has been hampered
by a lack of ‘Gold Standard’ datasets with known expression pat-
terns. Such datasets are required for estimating False Discovery
Rates (FDR) to assess a DGE pipeline’s performance. Instead, stud-
ies have utilised highly purified reference RNAs samples, cell lines
or synthetic reads derived in silico. These datasets can exhibit
extreme differences in gene expression between samples, hence
they are unrepresentative of ‘real’ samples. Moreover, they lack
the inter-sample variability in sequencing depth and quality, typi-
cally found in clinical samples. Comparing DGE pipelines has also
been hampered by a lack of unbiased quantitative criteria. Studies
have considered that models returning the most DEGs were best
because they produced the most information [30]. This approach
fails to consider that some results will be False Positives (FP) and
provides no information on FDR. Another approach ranked a DGE
method’s performance based on concordance of its outputs with
other pipelines, examined using Venn diagrams, concordance met-
rics and/or hierarchical clustering dendrograms [27,31]. This
approach also does not consider FDR and software tools may clus-
ter results only due to their model assumptions. Alternatively, sim-
ulated RNA-seq data has been used to evaluate a DGE method’s
performance. Simulated datasets are advantageous for analyses
because specific transcripts can be set to be differentially
expressed, thereby allowing FDR estimation [31,32]. Tools for
RNA-seq simulation, such as polyester, assume that the number
of reads for each transcript follow NB [33], the proposed distribu-
tion for RNA-seq counts [11,34]. However, as ‘real data’ may not
exactly follow NB, comparing DGE models utilising simulated data-
sets may give different results depending on data structure. For
example, in a study to compare DGE method stability, ranks dif-
fered between the real and datasets simulated using a mixed dis-
tribution [29].

DGE method’s performance has also been compared by vali-
dating the expression of true positive results using real-time
quantitative PCR (RT-qPCR) [26,32]. This approach allows FDR
to be estimated, but is limited in its utility because validation
of all genes would be laborious and expensive. For RNA-seq, suf-
ficient sequencing quality and depth has been shown to be
required for DGE test recall and sensitivity [26,30,35]. Studies
examining these parameters have not analysed clinically relevant
datasets, therefore they are unable to provide a real-world test
of a DGE pipeline’s performance. Lastly, computational efficiency
has also been examined to compare DGE methods’ performance
[31] but these metrics provide no information on the quality of a
DGE model outputs.
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It is essential that HTS including RNA-seq have sufficient detec-
tion power and can control FDR under variable conditions. Improv-
ing the reproducibility of HTS is necessary for the standardisation
of molecular diagnostics, as well as improving the output from
RNA-seq based downstream applications that require accurate
gene signatures [36]. Herein, five DGE pipelines for gene-level
analysis were investigated for robustness. Two clinically relevant
breast cancer datasets were analysed using fixed count matrices.
Results were compared with differing filtering regimes, sample
sizes (full vs subset) and for genes of different expression strength
using unbiased quantitative metrics. Test sensitivity estimated as
relative FDR and concordance between model outputs were com-
pared. Comparisons of a 'population’ of slopes of relative FDRs
across different library sizes were also examined.

2. Material and methods
2.1. DGE pipeline normalisation methods and statistical models

Five software widely-used to determine DGE from RNA-seq
data were investigated, DESeq2 v1.10.0 [18], voom + limma
v3.26.0 [9,10], edgeR 3.10.5 [11], EBSeq v1.10.0 [13] and NOISeq
v2.16.0 [16]. Software differed in their normalization methods
and statistical assumptions for modelling count distributions but
each measured DGE at the gene-level. Normalisation is necessary
because samples differ in their total numbers of sequenced reads
due to technical biases. Normalisation methods to correct for larger
genes having higher read counts include Transcripts per million
(TPM) and Reads/Fragments Per Kilo-base per Million mapped
reads (RPKM/FPKM) [37]. EBSeq applies median or quantile nor-
malisation and NOISeq applies RPKM, TMM or upper quartile nor-
malisation to read count data. Herein, median and upper quartile
normalisation were implemented for EBSeq and NOISeq, respec-
tively. Normalisation methods to correct for library size estimate
scaling factors (based on the total number of mapped reads) and
apply these globally to normalise gene expression across samples;
methods include Relative Log Expression (RLE) from DESeq [34]
and Trimmed Mean of M-values (TMM) [38]. edgeR applies TMM
and DESeq2 applies DESeq size factors to normalise data [11,18].
voom + limma (further referred to as 'voom’) uses an abundance
gene-based method for normalization [9]. Voom determines the
relationship trend of fitted log-counts per million to predict the
variance of each observation and estimates a precision weight for
normalisation, while taking library sizes into account. Herein,
voom was applied using quantile normalisation. For each DGE
pipeline, the normalisation method applied was the procedure rec-
ommended by the user’s manual.

The DGE software tested included parametric and non-
parametric statistical models. edgeR and DESeq2 are parametric
approaches that model count distributions using NB, but differ in
their estimation of dispersion factors for characterising the
mean-variance relationship (see Discussion). edgeR was imple-
mented with the Exact test. EBSeq implements an empirical Baye-
sian approach for identifying DEGs that also assumes that counts
are distributed according to NB [13]. Voom also adopts a paramet-
ric approach for DGE analysis; precision weights are incorporated
into the Log-Normal linear model of count distributions and then
an empirical Bayes statistical procedure is applied by limma
[9,10]. NOISeq adopts a non-parametric approach for DGE analysis
that creates a reference distribution of the data noise by comparing
the number of reads of each gene in samples in the same condition
[16]. Count numbers between two conditions are then assessed
against the reference distribution to determine whether they rep-
resent true differential expression or are likely to be noise.
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2.2. RNA-seq data and TNBC and ER+ contrasts for DGE analysis

Published RNA-seq datasets were downloaded from the NCBI
Gene Expression Omnibus (GEO Accession: GSE58135) [39]. Reads
had been sequenced on an Illumina HiSeq 2000 using a 50 bp
paired-end strategy and had ~ 50 million reads per library. Data
was assembled into two independent contrasts: i) Triple Negative
Breast Cancer (TNBC) primary tumours (n = 42) and their matched
uninvolved breast tissue (n = 21) and ii) Estrogen Receptor Positive
(ER+) Breast Cancer primary tumours (n = 42) and their matched
uninvolved breast tissue (n = 30; see Table S1). TNBC and ER+ con-
trasts were analysed separately to determine whether observed
trends were universal or dataset-dependent.

2.3. RNA-seq alignment and subsampling of mapped reads into count
vectors

All preliminary analytical steps and parameters, such as aligner,
reference genome, gene annotation and summarising approach
were consistently applied in analyses. Reads were aligned using
Bowtie2 [21], allowing one mismatch against the human genome
version hg38 [40]. Whilst Bowtie2 is not a splice-aware aligner,
reads located in splice-affected regions do not impact on transcript
abundance quantification [41]. Aligned pairs of reads were mapped
to genes from the Homo sapiens GRCh38.81 Ensembl annotation
[42] using samExploreR [43]. Mapped reads were subsampled to
simulate cDNA libraries with lower sequencing depth. Seventeen
different fractions (f = 1, 0.99, 0.95, 0.9, 0.85, 0.8, 0.7, 0.6, 0.5, 0.4,
0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01) were randomly extracted from
the Sequence Alignment |/ Map file with 25 iterations using samEx-
ploreR [43]. For each sample, a diverse range of library sizes, rang-
ing from no sub-sampling and ~ 50 M reads (f = 1) to only 1% of
reads (f = 0.01) were simulated (n = 425). Reads were assigned to
genes and summarised into count vectors for each dataset using
featureCounts 1.4.6.p5 [25]. Count matrices that provided the
numerical data to be analysed by each of the DGE models were
fixed, thereby facilitating a controlled analysis.

2.4. Count-based DGE and gene ontology analysis

Count matrices for TNBC and ER+ were analysed in a DGE anal-
ysis using each pipeline. The significance threshold (P-value < 0.05)
applied to identify DEGs was adjusted using the Benjamini-
Hochberg method to correct for multiple hypothesis testing. Gene
lists of significant DEGs for each contrast, simulation (each value f)
and iteration (each value R = 1,...,25) were compiled. For EBSeq,
results are provided as posterior probabilities including FDRs;
DEGs were determined using the threshold FDR = 0.05. Gene lists
of two-fold filtered significant DEGs with Log, fold change gene
expression ratios greater than two (i.e. |Log,FC|>2) were also com-
piled. A functional enrichment analysis was carried out for two-
fold filtered DEGs to identify their associated gene ontology (GO)
terms using GOseq v1.24.0 [44].

2.5. Robustness, reproducibility and concordance of DEG pipeline
outputs

DGE pipelines were compared for their predictions and perfor-
mance for unfiltered (no-fold) and two-fold filtered DEGs, GO terms
and FDRs. Results from full versus subsampled datasets
facilitated the estimation of test sensitivity estimated as False Dis-
covery Rate (FDR). FDR measures the proportion of positives that
are correctly identified i.e. ‘True’ Positives (TP). In this study, results
obtained for the full dataset (f = 1.0) are TP, while results obtained
for the subsampled datasets not found by the full dataset are con-
sidered FP. FDR was computed as FP divided by the sum of FP and
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TP (i.e. FP/FP + TP). Herein, this FDR measured the relative false dis-
covery rate assuming the full dataset analysed by a given method is
“True”. As this measure is not FDR in the traditional sense, the mea-
sure is referred to as relative FDR throughout the text.

Results were compared using notched geometric boxplots plot-
ted with ggplot2 [45]. Visualisation of the confidence intervals
around the mean permitted assessment of the reproducibility of
DGE model outputs between simulation iterations for different
library sizes. Concordance between DEG pipeline outputs (DEGs,
GO terms) was assessed for TNBC and ER+. Overlap in the identity
of no-fold filtered and two-fold filtered DEGs and GO terms was
examined using VennDiagram [46]. In addition, the concordance
of two-fold filtered DEGs for low vs highly expressed genes were
also compared between software. Initially genes were categorised
as having low or high gene expression and compiled as a list for
the TNBC and ER+ datasets separately. Using the normalised
expression matrix for the control samples for each contrast (i.e.
Uninvolved Breast Tissue Adjacent), mean values of the expression
of genes across samples in the control samples were estimated.
Using the mean expression for every gene, the median expression
was then estimated. Genes were then split into low and highly
expressed categories based on whether their mean expression
was below or above the median threshold cut-off. Results of the
differential gene expression analysis for each software were com-
pared to the previously defined gene lists for low and high expres-
sion genes for each contrast and concordance between software for
DEGs was examined using Venn diagrams.

2.6. Comparing sample size dependence of DGE pipeline
reproducibility

DGE pipeline reproducibility was tested for sample-size depen-
dence. Subsets of TNBC and ER+ were created by randomly select-
ing ten samples per contrast group (5 + 5). Subsets were analysed
for DGE as previously outlined and results compared to those
obtained for the full data. Performance of DGE models for larger
versus smaller subsets was compared using the slopes of the
regression lines of relative FDRs. This quantitative measure incor-
porated information on the variability of test sensitivity (i.e. FDR)
with library size. To enable relative FDR estimation from results,
it was necessary initially to generate a 'population’ of comparative
datasets for TNBC and ER+. Ten large datasets were generated by
randomly removing one sample from the original sample group-
ings ten times. Similarly, ten subsets were generated afresh by ran-
domly removing one sample from the original subset (5 + 4) ten
times. Datasets were then subsampled (f = 0.8, 0.85, 0.9, 0.95,
0.99), analysed for DGE as previously outlined and results for
two-fold filtered DEGs and relative FDRs estimated. A linear regres-
sion was then fitted to the relative FDR results for decreasing
library sizes for each comparison and the slope of the regression
line of relative FDRs estimated. For each DGE model, the slopes
of 11 regression lines (ten generated datasets plus the initial full
dataset) were estimated for large and subsets of each contrast.
Slopes had negative values due to the inverse relationship between
library size and relative FDR, such that as library sizes decrease,
relative FDR increases. Hence, slopes with values close to zero
would be indicative of a robust DGE method that undergoes mini-
mal information loss following decreasing library size. By contrast,
slopes with large negative values would be indicative of a DGE
method that is impacted by large information loss following
decreasing library size. A Friedman test was used to statistically
compare the slopes of the regression lines of relative FDRs across
differing library sizes (f = 0.8, 0.85, 0.9, 0.95, 0.99) between the
population of comparative datasets and DGE models. The Friedman
test is a non-parametric test analogous to two-way ANOVA, which
tested the null hypothesis that mean ranks between groups were
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equal. The Friedman test was implemented using the R package
PMCMR [47]. For significant Friedman tests, post-hoc analyses
were carried out to calculate pairwise comparisons of mean rank
sums using Conover and Nemenyi tests. These tests are similar
but differ in the distributions they compare their test statistics to
(Student’s-t vs upper quantiles of the studentized range distribu-
tion). All computations were performed on a high performance
compute cluster using R 3.2.2. Scripts utilised in this paper are
hosted at https://github.com/alexstu/DGEDepth.

3. Results
3.1. Robustness and reproducibility of DGE pipelines for DEG outputs

Total number of DEGs detected differed between DGE models
for both filtering regimes and data contrasts (Figs. 1 and 2). The
order of the DGE models that detected the greatest to the fewest
DEGs also differed between filtering regimes and contrasts. For
example, for TNBC with no-fold filtering and the full dataset anal-
ysed (f = 1), the most DEGs were detected by DESeq2 (~18,500) fol-
lowed by edgeR, voom, EBSeq and NOIseq (~11,500; Fig. 1a). For
TNBC after two-fold filtering and the full dataset analysed, the
greatest number of DEGs was detected by EBSeq (~4,000) followed
by edgeR, DESeq2, voom and NOIseq (~650; Fig. 1b). Similarly, the
order of DGE models that detected the greatest to the fewest DEGs
differed between filtering regimes for ER+ (Fig. 2a, b).

Patterns of test sensitivity of DGE models for no-fold and two-
fold filtering were similar for both TNBC and ER+ (Figs. 1c, d;
Fig. 2c, d). Across all DGE models and subsampling analyses
(f=1-0.01), observed relative FDRs were in similar ranges in both
filtering regime comparisons, for TNBC (0 - ~0.08; 0 - ~0.16) and
ER+ (0 - ~0.07; 0 — ~0.15), respectively. Test sensitivity was greater
for no-fold filtering compared to two-fold filtering results in each
contrast. Larger confidence intervals around relative FDRs were
observed for two-fold filtering results, indicating greater instability
for DGE model outputs. NOISeq appears to be the most stable
method with consistently low relative FDR values for decreasing
library sizes with both filtering regimes (Figs. 1 and 2). edgeR also
performed well for test sensitivity when library sizes decreased.
Compared to edgeR and NOISeq, DESeq2, EBSeq and voom had rel-
atively larger relative FDRs and confidence intervals. Thus, when
library sizes decreased, test sensitivity decreased at the fastest
rates for DESeq2, EBSeq and voom and their outputs were less
stable compared to edgeR and NOISeq. Results were mirrored
between the two independent TNBC and ER+ datasets.

3.2. Concordance of DGE model outputs for no-fold and two-fold
filtered DEGs

Comparison of no-fold filtered DEGs detected from TNBC and ER
+ revealed concordance between all models (Figs. 3a and 4a), how-
ever, following two-fold filtering there was no concordance
between DEGs (Figs. 3b and 4b). When fewer DGE models were
considered, concordance between two-fold filtered outputs was
observed, however, trends differed slightly between datasets
(Figs. 3b and 4b). For TNBC, EBseq and voom had the highest num-
ber of overlapping DEGs (n = 773) followed by DESeq2, edgeR,
EBSeq and NOISeq (n = 696). For ER+, the opposite was the case
with DESeq_2, edgeR, EBSeq and NOISeq having the highest number
of overlapping DEGs (n = 557) followed by EBseq and voom
(n=397).

Trends in the number of unique DEGs detected differed consid-
erably between DGE models and between filtering regimes (Figs. 3
and 4). For two-fold filtered results, no unique DEGs were identi-
fied by NOISeq for both TNBC and ER+ (Figs. 3b and 4b). By con-
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trast, EBSeq consistently identified the greatest number of unique
DEGs for TNBC (n = 2,151; Fig. 3b) and ER+ (n = 769; Fig. 4b). Com-
pared to EBSeq, voom, DESeq2 and edgeR identified much fewer
unique DEGs. Interestingly, DEGs identified by voom were only
common to EBseq and no other DGE model for TNBC, while just
one overlapping DEG was also recorded for NOISeq for the ER+
contrast.

3.3. Comparison of two-fold filtered DGE outputs for all, and high
versus lowly expressed genes

The number of DEGs detected in the all genes and highly
expressed comparisons for both datasets were the same for voom
(Figs. 3 and 4). Thus, for both datasets no DEGs detected by voom
fell below the low expression threshold. Similarly, the majority of
the DEGs detected by NOISeq were those that were highly
expressed with just three and two DEGs detected with low expres-
sion. DESeq2, EBSeq and EdgeR were more sensitive to detecting
DEGs with low level expression and there was relatively high con-
cordance between the genes identified by these models for both
TNBC (n = 148; Fig. 3d) and ER+ (n = 100; Fig. 4d).

3.4. Robustness and reproducibility of DGE pipelines for GO terms

Total number of GO terms detected differed between DGE mod-
els for both TNBC and ER+ (Fig. 5). The order of the DGE models
that detected the greatest to the fewest GO terms also differed
between contrasts. For TNBC, the greatest number of GO terms
was detected by edgeR (~300), followed by NOIseq, DESeq2, voom
and EBSeq (~140; f = 1; Fig. 5a). However for ER+, the greatest num-
ber of GO terms was detected by edgeR (~520), followed by NOIseq,
EBSeq, DESeq2 and voom (~50; f = 1; Fig. 5b). The number of GO
terms detected decreased with decreasing library sizes for three
DGE models. However, more GO terms were detected at smaller
library sizes (f = 0.01 - 0.4) by voom and NOISeq, respectively, in
TNBC and ER+. This finding was not mirrored for voom and NOISeq
in both data contrasts.

Test sensitivity for GO term detection was much lower com-
pared to results for two-fold filtered DEGs (Figs. 1 and 5). For
example, when 50% of reads were analysed (f = 0.5) relative FDRs
were approximately double the size for GO terms, compared to
DEGs, for both TNBC (<0.13) and ER+ (<0.15; Fig. 5¢, d). For GO out-
puts, NOISeq consistently had the greatest test sensitivity as indi-
cated by the smallest relative FDRs at most library sizes; this result
was observed in both contrasts. Compared to the other DGE mod-
els, EBseq and voom displayed less stability and test sensitivity as
evidenced by their larger relative FDRs, confidence intervals and
number of outliers. This was particularly evident in ER+ for voom
(see Fig. 5d).

3.5. Concordance of DGE models for GO terms

There was little concordance in GO terms detected by all DGE
models from TNBC (n = 3) and ER+ (n = 4; Fig. 6). Once voom
was excluded, a relatively high number of GO terms were consis-
tently identified between DESeq2, edgeR, EBSeq and NOISeq for
TNBC (n = 64). Overall, the greatest concordance was observed
between DESeq2, edgeR and NOISeq; their results had the highest
number of overlapping GO terms (f= 1; n = 179). For ER+ the great-
est concordance was observed between DESeq2, edgeR, EBSeq and
NOISeq (n = 154). It was interesting to note that voom consistently
identified the most unique GO terms for both contrasts. With the
exception of the GO terms common to all software, voom GO terms
were only common with EBSeq for both contrasts, mirroring find-
ings for DEGs. Results indicate that the majority of GO terms iden-
tified are method-specific.
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Fig. 1. Number of DEGs detected from the TNBC dataset with differing filtering regimes - A comparison of the effect of decreased cDNA library sequencing depth on the
number of DEGs detected after no-fold or two-fold filtering (a, b) from the TNBC dataset using DESeq2, edgeR, voom + limma, EBSeq and NOISeq and their associated relative

FDRs (c, d).

3.6. Robustness and reproducibility of DGE pipelines comparing
relative FDRs

Comparison of results for DEG detection between full and sub-
set (5 + 5) datasets revealed different trends in DGE model stability
and robustness (see Fig. 1 vs S1; Fig. 2 vs S2). Relative FDRs were
much larger for subset results compared to full datasets, indicating
lower test sensitivity. Test sensitivity differed between filtering
regimes for the full datasets but not for the subsets. DGE models
exhibited a lack of robustness for subsets as test sensitivity pat-
terns differed between contrasts. Patterns of relative DGE model
robustness were found to be dataset-dependent for reduced sam-
ple sizes. By contrast, when sample sizes were sufficiently large,
results were dataset-agnostic and reliable for accurately assessing
DGE model robustness to library and sample size perturbations.
The figures clearly demonstrate that the robustness and repro-
ducibility analysis outcome tends to be more dataset-dependent
with sample size reduction.

Slopes of the regression lines of relative FDRs across library
sizes (f = 0.8 — 1) differed significantly between DGE models for
large and subset comparisons for both TNBC and ER+ (P-
values < 0.001; see Tables 1 and 2, S4, Fig. 7). When datasets were
large, approximately the same pattern in slopes was detected
between DGE models for both TNBC and ER+. NOISeq had a mean
slope close to zero for both TNBC (-0.00133) and ER+
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(—0.00017). Thus, NOISeq was the least impacted by library size
reduction and hence the most robust DGE model. Conversely,
DESeq2 had the largest negative slope in both TNBC (—0.00523)
and ER+ (—0.00846) indicating it was the least robust model.
Results for ER+ indicated that edgeR performed almost as well as
NOISeq, followed by voom and EBSeq. By contrast, results for TNBC
revealed that edgeR and voom performed equally well, as did
EBseq with DESeq?2.

When datasets were smaller, the pattern in slopes detected
between DGE models was not conserved between TNBC and ER+.
Voom had the largest negative slope for both TNBC (—0.00895)
and ER+ (—0.04083) and relatively large confidence intervals indi-
cating it was the least robust DGE model with unstable outputs. By
contrast the other DGE models all had much smaller confidence
intervals suggestive of more stable outputs. For TNBC, DGE models
in descending order of robustness were NOISeq (—0.00142), edgeR
(—0.00192), DESeq2 (—0.00261) and EBSeq (—0.00511). Conversely
for ER+, DGE models in descending order of robustness were edgeR
(—0.00356), NOISeq (—0.00594), EBSeq (—0.00781) and DESeq2
(—0.01021). Post-hoc analyses revealed a large number of pairwise
comparisons were significant for both the Conover and Nemenyi
tests, confirming disparity between DGE models (Tables 3 and
S2). Trends differed between contrasts for both the large and sub-
set datasets. For example, Conover test results for the large TNBC
dataset indicated that EBSeq and DESeq2 did not differ signifi-
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Fig. 2. Number of DEGs detected from the ER+ dataset with differing filtering regimes - A comparison of the effect of decreased cDNA library sequencing depth on the
number of DEGs detected after no-fold or two-fold filtering (a, b) from the ER+ dataset using DESeq2, edgeR, voom + limma, EBSeq and NOISeq and their associated relative

FDRs (c, d).

cantly, as voom did not with either edgeR or NOIseq. However, for
the ER+ contrast these three pairwise comparisons were signifi-
cantly different. Trends also differed between the large and the
subset datasets for the same contrast. For example, for TNBC, mean
ranks differed significantly between EBSeq and DESeq2 and
between voom with both edgeR and NOIseq for the subset but
not for the large dataset. For ER+, mean ranks differed significantly
between EBSeq and voom for the subset but not for the large
dataset.

4. Discussion

This study provides a comprehensive and in-depth comparison
of five DGE pipelines for RNA-seq using a controlled quantitative
approach. The DGE models tested were count-based and examined
expression at the gene level. The analytical method used fixed
count matrices as input, thus the complexity of read mapping
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uncertainty was excluded, as was depth of coverage to quantifica-
tion of expression levels. Utilising the list of true positive DEGs
from the full dataset as a reference for the estimation of relative
FDR provided a relatively objective measure to compare a DGE
model’s performance. Results were examined with power simula-
tions using a range of library sizes from ~50 M (f = 1) to ~0.5 M
(f=0.01) reads per sample. These covered the minimum threshold
library size of 20 M reads per sample required for an effective DE
analysis [48]. Thus, test sensitivity (FDR) of a DGE method was
evaluated by perturbing a real RNAseq dataset using sub-
sampling and then comparing the list of DGEs obtained for the
sub-sampled dataset to the full dataset (i.e. TPs). This definition
of test sensitivity does not consider the DGEs obtained by full data-
set, but not obtained by sub-sampled dataset (i.e. Miss-detected,
MD). An alternative approach might have been to characterise test
sensitivity as percentage change (PC), whereby PC = 100*(FPs +
MDs) [ TPs. This would have also allowed an estimation of the miss
detection rate MDR = MDs [ TPs = 0.99.



A. Stupnikov, CE. McInerney, K.I. Savage et al.

A No fold filtering, f = 1

Computational and Structural Biotechnology Journal 19 (2021) 3470-3481

2-fold filtering, f = 1 B

EBSeq

Fig. 3. a-d. Overlap in DEGs detected from the TNBC dataset using DESeq2, edgeR, voom + limma, EBSeq and NOISeq. Results display A) no fold filtered DEGs, B) two fold
filtered DEGs, C) two fold filtered DEGs with high expression, D) two fold filtered DEGs with low expression.

Previous studies found that filtering DGE results reduced FDR
between findings from different laboratories and HTS platforms
[8]. In this study, relative FDR was higher for two-fold filtered
results, indicating that filtering results increased the disparity
between DGE model outputs. Herein, findings were discordant
across DGE methods similar to previous studies. This trend can
worsen when replicate numbers are reduced or are more heteroge-
neous [28]. Results revealed that patterns of DGE model robustness
were data-dependent at lower but not at larger samples sizes.
Thus, comparisons of DGE model robustness were only reliable at
larger library sizes, allowing conclusions to be drawn. Amongst
the DGE models tested, NOISeq was the most robust, followed by
edgeR, voom, EBSeq and DESeq2. NOISeq outperformed the other
pipelines under differing filtering regimes and at most library sizes.
However, reducing sample size notably reduced the number of
DEGs detected by NOISeq and voom compared to the other pipeli-
nes and relative FDR was slightly elevated. Greatest concordance
was observed between either EBSeq and voom, or DESeq2, edgeR,
EBSeq and NOISeq. Both EBSeq and voom implement an empirical
Bayesian approach for identifying DEGs, although the statistical
distributions they use to model count data differs (NB vs Log-
Normal). EBSeq identified large numbers of unique DEGs compared
to the other pipelines, which identified few and NOISeq hardly any.

Observed differences in DGE method performance was more
than likely in part due to the fact that pipelines implemented vari-
able normalisation methods. NOISeq implemented using upper
quartile normalisation outperformed the other methods. Con-
versely, Assefa et al. found that most normalisation methods for
DE analysis performed equally well, with the exception of quantile
normalization [28]. In another study, Li et al. found no difference
between TMM, DESeq2 and Raw Count normalisations [49].
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Robustness probably differed between DGE pipelines due to how
software handle filtering out input data prior to analysis and its
impact on FDR. Filtering low-abundance data has been considered
necessary because supposedly these data provide little evidence
for differential expression and may interfere with statistical
approximations [11]. edgeR filters out genes with very low counts
across all libraries [11]. Similarly, DESeq2 applies independent fil-
tering of low-abundance genes prior to calculating FDR as its
default approach [18]. Voom filters genes with less than ten reads
across all samples and those that fail to achieve a Counts Per Mil-
lion (CPM) > 1 in libraries [9]. NOISeq filters out low count features
using CPM, proportion test or Wilcoxon test [16]. Unlike other
methods, NOISeq takes into account the experimental design and
applies the filtering criterion to remove those features that fall
below the threshold from every experimental condition in the
dataset. NOISeq also has a batch effect correction feature. EBseq
does not filter input data [13].

Nevertheless, the greatest impact on DGE results and FDR will
be linked to the model assumptions for testing DEGs, including dis-
persion factors for characterising mean-variance relationships. It
was interesting to note that the non-parametric model NOISeq out-
performed all other parametric models. Parametric models such as
edgeR and DESeq2 assume that count data distributions follow a
proposed distribution, usually NB. This approach tries to account
for the variance in gene expression across replicates being larger
than mean expression values due to over-dispersion. The alterna-
tive non-parametric DGE analytical approach of NOISeq models
data noise from the samples themselves and creates a reference
distribution for testing whether count numbers between two con-
ditions represent true differential expression or noise [16]. NOISeq
provided results with lower relative FDR compared to parametric
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Fig. 4. a-d. Overlap in DEGs detected from the ER+ dataset using DESeq2, edgeR, voom + limma, EBSeq and NOISeq. Results display A) no-fold filtered DEGs, B) two-fold
filtered DEGs, C) two-fold filtered DEGs with high expression, D) two-fold filtered DEGs with low expression.

approaches. Thus, modelling count data using a statistical distribu-
tion provided a less accurate representation of ‘real’ data distribu-
tions. NOISeq consistently outperformed other pipelines at
different library sizes. This was not surprising as NOISeq was
specifically designed to be robust to sequencing depth alterations
[16]. It has been suggested that non-parametric DGE methods,
such as NOISeq require a higher replicate number to perform
equally well as other models [27]. Certainly, NOISeq performed less
well for the subset data, particularly at lower library sizes, but in
general it outperformed the other methods. Findings drawn from
this study are considered against sample size; larger sample sizes
may obviously draw alternate reflective conclusions. Nevertheless,
results from the online tool of Assefa et al. provided further valida-
tion for our findings that NOISeq outperformed all other software
[28]. For both mRNA and IncRNA, FDR with NOISeq was lowest
amongst the software tested using each of their three simulation
studies (cancer tissues, cultured cell lines, normal tissues) with
variable sample sizes. The Assefa et al. online tool utilises
RNA-seq expression data that has been simulated using a non-
parametric approach that makes presumptions on data distribu-
tion. By contrast our subsampling method to create samples with
lower library sizes made no such assumptions. Results of this study
indicated that DGE outputs from voom were notably different to
other pipelines. Voom consistently identified the greatest number
of unique GO terms for different library sizes. Hence, DEGs
identified by voom were very heterogeneous compared to those
identified by the other pipelines. Nevertheless, some concordance
was identified between voom and EBSeq, perhaps because both
software apply Bayesian analyses and therefore have similar model
assumptions. Few DEGs identified by NOISeq and voom had low
expression levels, while it seemed that the other models were

3477

more sensitive to these genes. Assefa et al. found that FDR was
not controlled well by many DE pipelines but improvements in
sensitivity were attained for most DE tools with increasing number
of replicates [28].

Generally normalisation of count data should assist with the
removal of data outliers. Failing that, some DGE pipelines have
an integrated method for identifying and treating outliers when
testing for DEGs. This methodological difference probably
accounted for some of the observed differences in DGE pipeline
robustness. For example, edgeR can implement the likelihood ratio
test using a ‘robustified’ approach against potential outliers (iden-
tified from the mean-NB dispersion trend) using the function
gImLRT(). Similarly, voom + limma can be adjusted against outliers
and hypervariable genes using the robust empirical Bayes options,
which allow that a minority of the variances are sampled from an
alternative more diffuse prior [50]. DESeq2 flags samples as out-
liers for each gene if their Cook’s distance is greater than the
0.99 quantile of the F-distribution. Depending on the frequency
of the outlier in replicates, DESeq2 either removes the gene or
replaces it with imputed values [18]. NOISeq initially applies a
quality control step to examine RNA “Biotype distribution”. Out-
liers can be identified from QC diagnostic plots of count distribu-
tions across RNA biotypes and it is suggested to remove these
data points prior to analysis. EBseq does not treat outliers during
DEG testing.

In precision medicine, gene signatures can assist with patient
stratification for treatment decision-making. Hence, accurate DGE
is very important to guide patient management. Most clinically
validated prognostic panels are using targeted approaches with
RT-qPCR. Examples include panels for breast (MammaPrint, Onco-
type DX, Prosigna), lung (GeneDx), prostate (Prolaris) and colon
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ER+ dataset, f= 1

TNBC dataset, f= 1

Fig. 6. a, b. Overlap of GO terms detected from the TNBC and ER+ datasets using DESeq2, edgeR, voom + limma, EBSeq and NOISeq.

Table 1

Results of the Friedman test to compare the slopes of the regression lines of relative FDRs between DGE models for analysis with large (All-1) and subset (5 + 5-1) comparative
datasets in the TNBC and ER+ contrasts. P-values are two-sided according to the Student’s t-distribution.

Dataset Contrast Chi-squared Test statistic Degrees of Freedom P-value

Large TNBC 34.545 4 5.76E-07
Subset TNBC 32.218 4 1.73E-06
Large ER+ 35.782 4 3.21E-07
Subset ER+ 37.018 4 1.79E-07
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Table 2
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Results of the post-hoc analysis with the Conover test for the pairwise comparisons of mean ranks between DGE models for large and subset comparative datasets.

Large Datasets

Subset Datasets

i) TNBC DESeq2 EBSeq voom edgeR DESeq2 EBSeq voom edgeR
EBSeq NS - - - EBSeq o - - -
voom . . _ _ voom . NS _ _
edgeR skt . NS _ edgeR ok . skt _
NOISeq P, ok NS * NOISeq ok ok P, NS

ii) ER+ DESeq2 EBSeq voom edgeR DESeq2 EBSeq voom edgeR
EBSeq . - - - EBSeq o - - -
voom . NS _ _ voom sk . _ _
edgeR . . -, _ edgeR . . sk _
NOISeq . sk sk NS NOISeq . . P, NS

Two-sided P-values *<0.05; **<0.01; ***<0.005; ****<0.001.
ER data -1 slopes ER data -1 slopes for 5+5 samples, 2-fold filtering
for f values: 0.8, 0.85, 0.9, 0.95, 0.99 for f values: 0.8, 0.85, 0.9, 0.95, 0.99
0.010- 0.000-
= e———
- !
0.005 5 -0.025-
u;: 0000 % * % 00501
0.005 -0.075-
0.010- -0.100-
DESeR2 £BSeq i R NOISeq DESeq2 EBSeq voom edgeR NOISeq
Software Software
TNBC data -1 slopes i
. TNBC data -1 slopes for 5+5 samples, 2-fold filtering
for fvalues: 0.8, 0.55,0.9, 0.95,0.99 for f values: 0.8, 0.85, 0.9, 0.95, 0.99
c 010 0.000-

0.000-

Slope

-

voom edgeR NOISeq

Software

DESeq2 EBSeq

— ——— &

-0.025-

Slope

-0.100-

voom edgeR NOlSeq

Software

DESeq2 EBSeq

Fig. 7. Slopes of the regression lines of the relative FDRs - A comparison of the slopes of the regression lines of the relative FDRs across differing library sizes (f= 0.8, 0.85, 0.9,
0.95, 0.99) obtained for analysis with DESeq2, edgeR, voom + limma, EBSeq and NOISeq for the large (All-1) and subset (5 + 5-1) comparative datasets in the ER+ (a, b) and

TNBC (c, d) contrasts.

(ColoPrint). However, clinics are switching to whole-transcriptome
sequencing in new RNA-seq assays. It isn’t yet clear what DGE
methods should be implemented in diagnostics to determine clin-
ically relevant gene signatures. The analytical procedure imple-
mented herein provided a real-world test of DGE pipelines for
RNA-seq including a test of a model’s sensitivity to expression
levels. This framework should assist with benchmarking future
developments for improving software and protocols for DGE and
the standardisation of RNA-seq. Results identified reliable work-
flows at different library sizes and for genes of variable expression
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levels, information important for guiding DGE method selection for
molecular diagnostics. Knowledge of software performance is
informative for determining the most appropriate DGE model to
apply to obtain results with the lowest FDR. This is useful in partic-
ular scenarios, such as small library or sample sizes that can impact
upon molecular detection (e.g. low abundance genes, long non-
coding RNAs) [28,51]. This study focussed on alignment
count-based DGE models that provide results at the gene level,
alternative approaches available include assembly-based tech-
niques that perform DGE on alignment-free quantifications
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[12,19] and ML [52]. Both alignment-free and ML approaches can
provide high-quality predictions [52,53]. Indeed ML methods such
as InfoGain feature selection and Logistic Regression classification
are powerful and robust for DEG prediction [52]. However, often-
times ML results consist of novel DEGs (70%) including a propor-
tion of true positives (60%) [52]. Such findings are perhaps more
useful in an exploratory context for biomarker development, rather
than molecular diagnostics that require consistency. Also com-
pared to assembly-based approaches, alignment count-based
methods are more computationally efficient [53]. Thus, quicker
turnaround times for molecular diagnostics could be achieved with
alignment compared to other DGE approaches. Future studies
should compare different approaches to determine which would
be the most reliable method for molecular diagnostics to guide
patient management.
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