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ABSTRACT With technology evolving rapidly and proliferating, it is imperative to pay attention to mobile
devices’ security being currently responsible for various sensitive data processing. This phase is essential as
an intermediate before the cloud or distributed ledger storage delivery and should be considered additional
care due to its inevitability. This paper analyzes the security mechanisms applied for internal use in the
Android OS and the communication between the Android OS and the remote server. Presented work
aims to examine these mechanisms and evaluate which cryptographic methods and procedures are most
advantageous in terms of energy efficiency derived from execution time. Nonetheless, the dataset with
the measurements collected from 17 mobile devices and the code for reproducibility is also provided.
After analyzing the collected data, specific cryptographic algorithms are recommended to implement an
application that utilizes native cryptographic operations on modern Android devices. In particular, selected
algorithms for symmetric encryption are AES256 / GCM / No Padding; for digital signature – SHA512 with
RSA2048 / PSS, and for asymmetric encryption – RSA3072 / OAEP with SHA512 and MGF1 Padding.

INDEX TERMS Cryptographic protocols, software measurement, information security, cellular phones,
wearable computers.

I. INTRODUCTION
The evolution of the modern Information and Communica-
tion Technology (ICT) ecosystem has paved the way for one
of the smallest form factor devices, smartphones, and wear-
ables, in various areas of our life [1]. These are computing
devices that can function independently and are small enough
to be held in the hand [2]. Mobile devices typically connect
to the Internet or communicate with other devices in close
proximity, forming personal clouds within the new Internet
of Wearable Things (IoWT) paradigm [3].

Indeed, the connectivity and flexible interaction are essen-
tial since most of those devices process personal data and
manage access to it if stored remotely, centrally, or dis-
tributed [4], [5]. To comply with current security stan-
dards, mobile devices may include biometric sensors and
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specialized cryptographic primitives [6] and provide a num-
ber of primitives for the data processing.

Smartphones and smartwatches are some of the fastest-
growing and most widely available personal devices [7].
With the rapid growth in the number of users and hard-
ware/software features, security issues become more press-
ing [8]. Today, people are more likely to use smartphones for
everyday tasks such as browsing, emails, internet banking,
and mobile payments but still want to have fast response
times as well as the assurance of the security guarantees.
Said devices also collect and process their unique vital signs
for a variety of purposes. All of these tasks require sensitive
user data stored directly on the smartphone (for example, for
preprocessing) or uploaded to remote/distributed storage, and
the system security levels are shown in Fig. 1.

With a device that comes where the user goes and contains
sensitive data, security must go beyond its current level.
To ensure a smooth experience for all users (even those who
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are not security savvy or do not want to interact directly with
it), mobile device manufacturers and app developers must
implement security measures that protect user data, even if
the smartphone is stolen.

FIGURE 1. The future wearable-oriented security ecosystem.

As a representative example, this paper focuses on the
Android ecosystem as it is easier to develop and evaluate this
market segment than other vendors.1 The Android ecosys-
tem must keep user data safe, and various techniques are
integrated it. In particular, the authentication mechanisms
are used to provide this kind of guarantee and deny access
to unauthenticated users. Android uses the concept of user
authentication cryptographic keys, which require a crypto-
graphic key store, a cryptographic key service provider, and
a user authenticator [9]. Although the ongoing research is not
explicitly targeted at distributed ledger technology applica-
tions, the results obtained can also be used to develop appro-
priate [10] applications. Understanding latency for mobile
devices serving as part of a distributed infrastructure with dif-
ferent consensusmechanisms is an integral part of application
design, considering the trade-offs between different system
characteristics.

This paper is the result of a research project that resulted
in the successful defense of the thesis [11]. The presented
text is intended to explain the security model on sixteen
smartphones and one smartwatch using the Android OS and
compare existing cryptographic protocols and the resulting
run time as a direct translation to battery life. Unfortunately,
providing the actual power consumption of the cryptographic
primitives’ execution becomes close to impossible due to
the present devices’ manufacturing concept of irremovable
battery, but we also supplement the data with the battery prop-
erties that, along with the execution time, allows for better
qualitative analysis of the results, similarly to [12], [10].

The main goals of this work are2:

• To provide the list of information security primitives
available on modern Android devices;

1This paper is a continuation of the work done by the authors on previous
generation smartphones, which could be found at [8].

2The main practical contribution in compassion to [11] are extended
measurements campaign, open access to the public dataset, and open access
to the main source code (both under CC-BY 4.0).

• To give an example (in Kotlin language) of the primitives
execution for the ease of other developers attempting to
repeat this trial in the future;

• To visualize the comparison of the execution time of the
same primitive on different mobile devices;

• To allow other researchers to reuse the collected mea-
surement data by providing a complete dataset (available
in IEEE DataPort [13]);

• To facilitate the assumptions on the primitives’ exe-
cutability compared to real-life measurements.

Broadly, we attempt to provide a toolbox and a dataset
to be used by the researchers/integrators while selecting an
appropriate configuration of one selected system, e.g., Rivest-
Shamir-Adleman (RSA), depending on the execution time vs.
key size trade-off rather than compare different types of the
primitives between each other, which is a well-studied topic
with expected outcomes.

The rest of the paper is organized as follows. The next
section details what parts the Android security model com-
prises, their purpose, and how those work with other system
components to provide sophisticated security for user data.
The third section provides the description of the dataset as
well as visualizes and summarizes the results obtained from
the created benchmark application. Finally, the last section
concludes this work.

II. BACKGROUND INFORMATION
This section outlines the main cryptographic primitives avail-
able on modern Android devices and provides sample imple-
mentation listings.

A. SUPPORTED CRYPTOGRAPHIC PRIMITIVES
Cryptographic primitives are well-established low-level cryp-
tographic constructs [14]. The Android OS supports vari-
ous categories of cryptographic primitives recommended by
the National Institute of Standards and Technology (NIST)
through its Keystore,3 including:
• Hashing functions convert the data of different sizes
to data of a fixed size that makes it irreversible, for
example, the family of secure hashing algorithms (SHA)
(including HMAC-SHA) [15].

• Symmetric key cryptography is an encryption scheme
that allows the use of the same key to encrypt and
decrypt messages (for example, Advanced Encryption
Standard (AES)) [16].

• Asymmetric key cryptography (or sometimes Public
Key Cryptography (PKI) is a scheme in which a pub-
lic key for encryption and a private key for decryp-
tion is used for each node, i.e., user A can encrypt
a message addressed to user B with PKB, and only
user B can decrypt this message with his own SKB.
Therefore, it becomes possible not only to establish an
asymmetric communication environment for securely

3Note, Android OS is designed in such a way so that the develop-
ment/integration of new primitives becomes close to impossible or extremely
resource consuming, thus, it is recommended to utilize the integrated primi-
tives assuring the interoperability with other systems.

54626 VOLUME 9, 2021



A. Ometov et al.: Comprehensive and Reproducible Comparison of Cryptographic Primitives Execution

exchanging symmetric keys in the future by securely
exchanging public keys between two users. This group
includes, for example, RSA [17], Digital Signature
Algorithm (DSA) [18] and various approaches to Ellip-
tic Curve cryptography (EC) [19].

Cryptographic primitives are often used to build crypto-
graphic protocols. On Android, the Keystore system uses
cryptographic primitives to provide multifunctional crypto-
graphic operations, which include but are not limited to:
• Key generation;
• Import and export of asymmetric keys;
• Import of raw symmetric keys;
• Asymmetric encryption and decryption with appropriate
padding modes;

• Digital signature, and verification;
• Symmetric encryption and decryption in appropriate
modes, including an Authenticated encryption (AEAD)
mode;

• Generation and verification of symmetric message
authentication codes;

• Random number generation.
The key target, padding, access control restrictions, or any

other protocol element is defined when generating or import-
ing a key and is permanently bound to the key. The protocol
elements associated with the key ensure that the key cannot
be used in any other way. Random number generation is
not exposed to the public Application Programming Inter-
face (API). It is used internally to generate keys, initializa-
tion vectors, random padding, and other security protocol
elements that require randomness. KeyStore can be used as
a provider and with supported algorithms that operate in their
respective classes:
• Cipher allows for encryption and decryption;
• KeyGenerator allows for the generation of secret keys
for symmetric algorithms;

• KeyPairGenerator allows for the generation of key-pairs
for asymmetric algorithms;

• Signature provides support for the cryptographic digital
signature algorithms;

• KeyFactory allows for interoperability of cryptographic
keys and providing the key specifications;

• SecretKeyFactory has a similar functionality as the one
above but operating solely with symmetric keys.

Indeed, the Android security system provides a wide range
of next-generation information security systems’ support.
The following implementation options are presented detailing
the supported OS versions for the above primitives.

B. PRIMITIVES IMPLEMENTATION EXAMPLES
The following framework will include all available imple-
mentation algorithms in Android KeyStore, including snap-
shots of source code to facilitate testing by other developers.

1) KEY GENERATION
To generate a key, one can use the KeyGenerator or KeyPair-
Generator class. KeyGenerator provides the functionality of

TABLE 1. Supported KeyGenerator algorithms with AndroidKeyStore
provider. SHA sizes must be multiple of 8.

a symmetric key generator. KeyPairGenerator provides the
functionality of an asymmetric key generator.

a: KeyGenerator
There are two approaches to generate a key using KeyGener-
ator: an algorithm-independent and an algorithm-dependent
way. The difference between them is generator initialization.
Listing 1 lists all of the KeyGenerator initialization methods.
The Initmethods that do not use theAlgorithmParameterSpec
are independent of the algorithm. The AlgorithmParameter-
Spec Init method is used in situations where a set of parame-
ters for a particular algorithm already exists. In case the user
does not utilize any of the available Initmethods, the provider
specified during creationmust provide a default initialization.

LISTING 1. KeyGenerator init methods supported algorithms of
KeyGenerator are listed in Table 1.

b: EXAMPLE OF THE KEY GENERATION WITH KeyGenerator
Listing 2 shows the AES symmetric key generation procedure
in Galois / Counter Mode (GCM) [20], which aims to encrypt
and decrypt without padding encryption. AndroidKeyStore is
defined as the KeyGenerator provider, so the key is gener-
ated in the Keystore hardware key store. Other restrictions
may apply to the KeyGenParameterSpec builder. SetUser-
AuthenticationRequired and SetUserAuthenticationValidity-
DurationSeconds can be applied to the builder to condition
the receipt of the key to a time window starting from the last
unlocking of the phone, or the user can be prompted to log in
directly into the application via Lockscreen.

The key can be obtained from AndroidKeyStore, as shown
in Listing 3. AndroidKeyStore is run through a static function
in the Keystore object. In contrast, AndroidKeyStore is passed
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LISTING 2. AES Key generation.

TABLE 2. Supported KeyPairGenerator algorithms with AndroidKeyStore
provider.

as a type after the method load() is called for the KeyStore
object being initialized. The load()method loads theKeystore
using the given LoadStoreParameter, which can be null. After
KeyStore is initialized, the key can be obtained by calling the
getKey()method. The key alias passed to getKey()mustmatch
the alias during key creation.

LISTING 3. Retrieve AES key from keystore.

c: KeyPairGenerator
As with KeyGenerator, there are two ways to create a key
pair: algorithm-independent or algorithm-dependent meth-
ods. The difference between the two is explained in sub-
section II-B1 and the supported algorithms are provided
in Table 2.

d: EXAMPLE OF KEY PAIR GENERATION WITH
KeyPairGenerator
Listing 4 depicts the procedure of an EC key pair generation
for encryption and decryption. An authenticated user can only
use the key within 5 minutes from the last successful authen-
tication. AndroidKeyStore is defined as theKeyPairGenerator
provider, so the key pair is generated in the hardware key
storage Keystore.

2) IMPORT AND EXPORT OF ASYMMETRIC KEYS
Keystore supports importing PKCS8 standard Distin-
guished Encoding Rules (DER) [22] key pairs without

LISTING 4. EC Key pair generation.

password-based encryption. According to the X.509 [23],
export is only supported for public keys. Two different origin
tags are used to distinguish imported keys from reliably
generated keys. Here, imported keys use the imported tag,
and secure keys use the generated tag.

a: EXAMPLE OF RSA PRIVATE KEY IMPORT
In order to import the private key into KeyStore, the Pri-
vateKey instance and X.509 certificate for the public
key corresponding to the private key represented as the
X509Certificate are needed. It is mainly because theKeyStore
abstraction does not support storing private keys without a
certificate. Listing 5 shows how to generate a DER-formatted
RSA private key and an X.509 certificate or public key.

LISTING 5. RSA key and certificate generation.

For demonstration purposes, the key and certificate files
directly import raw application resources. Listing 6 shows
the way how to convert a DER-encoded private key with an
X.509 public-key certificate in the PrivateKey andCertificate
instances that are used to import the private key into the Key-
Store. Although it is possible to import externally generated
keys into Keystore, it is not recommended. The private key
accesses the main memory and can, therefore, be exploited
by an attacker.

b: EXAMPLE OF PUBLIC KEY EXPORT
Exporting a public key is a straightforward procedure. List-
ing 7 shows how to obtain the private record the correspond-
ing certificate fromKeystore. The certificate can be converted
to a byte array or base64 string and sent to the recipient. Note
that the private key record contains a private key field that
refers to the private key. No sensitive information that could
lead to key abuse is present in the private key record.

3) ENCRYPTION AND DECRYPTION USING
AN ASYMMETRIC KEY
RSA in various modes and padding settings is the only asym-
metric algorithm available on Android to encrypt and decrypt
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LISTING 6. Import of RSA private key.

LISTING 7. Export of EC public key.

data securely. As of this writing, no other asymmetric algo-
rithm is supported. Table 3 lists all combinations of encryp-
tion and paddingmodes. In addition, all combinations support
all RSA key sizes thatKeyPairGenerator generates (512, 768,
1024, 2048, 3072, 4096 bits). Listing 8 shows how to generate
an RSA key for RSA / ECB / PKCS1 Padding, where ECB
stands for encrypting unlinked blocks of text into the next
block, the transformation used in Cipher.

LISTING 8. Generate RSA Key for encryption and decryption.

a: EXAMPLE OF RSA DATA ENCRYPTION AND DECRYPTION
Listing 9 shows the process to encrypt data using an RSA key
in ECBmode with PKCS1 padding.Cipher is initialized with
an RSA / ECB / PKCS1 padding transformation that matches
the RSA key. The encryption mode is set, and the encryption
key is the RSA public key. Data input is in a byte array format.

TABLE 3. Supported RSA variants for encryption and decryption.

For simplicity, the doFinal(1)method is called to encrypt the
data. The result is a byte array of encrypted data.

LISTING 9. Encrypt data with RSA.

Evidently, the RSA private key is used to decrypt the data.
Listing 10 shows an approach to decryption. The Cipher
instance is initialized with the same transformation as the
encrypted data. Decryption mode is set, and the decryption
key is the RSA private key.

LISTING 10. Decrypt data with RSA.

4) DIGITAL SIGNATURE AND VERIFICATION OF SIGNATURE
RSA, EC, DSA can be used in different modes and padding
settings. Table 4 shows all the different configurations that
can be used for signing and verification. Listing 11 shows
how to generate an elliptic curve key pair with SHA512 digest
for signing and verification.

a: EXAMPLE OF ECDSA DATA SIGNING AND VERIFICATION
Listing 12 shows how to sign data with an EC key using the
SHA512. The signature is initialized with the SHA512 with
ECDSA transformation. The signing key is the EC private
key. The data to be signed is passed to the update(1) method,
and the sign() method is called to sign the data. The result is
a byte array.

The EC public key certificate is used to verify the signature
and Listing 13 shows the corresponding procedure. The Sig-
nature instance is initialized with the same transformation as
for data signing. The verify(1) method is called to verify the
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TABLE 4. Supported algorithms for signing and verification.

LISTING 11. Generate EC Key for sign and verify.

LISTING 12. Sign data with ECDSA.

signature passed to the method. The data is then passed to the
update(1) method. The result is a Boolean value indicating
whether the signature is valid.

5) IMPORT OF ‘RAW’ SYMMETRIC KEYS
Importing symmetric keys is much easier than import-
ing asymmetric keys. The symmetric key is placed
in SecretKeyEntry and imported directly into KeyStore.

LISTING 13. Verify data with ECDSA.

Listing 14 shows an example of the AES key import with
additional key properties defined.

LISTING 14. Import of AES key.

6) ENCRYPTION AND DECRYPTION USING A SYMMETRIC
KEY
AES in various modes and padding settings is the only
symmetric algorithm used in Android, no other symmetric
algorithm is supported. Table 3 lists all combinations of
encryption and padding modes. In addition, all combinations
support all AES key sizes that KeyGenerator generates (128,
192, 256 bits). Listing 15 shows how to encrypt data using an
AES key in GCM mode without padding.

The Cipher is initialized with the AES / GRCM / No
Padding transformation, which corresponds to AES’s key
purpose. Data input is in a byte array format. The doFinal(1)
method is called to encrypt the data. The result is a byte array
of encrypted data. To decrypt the cryptogram, the Cipher
initialization vector must be saved for later use.

LISTING 15. Encrypt data with AES.

Listing 16 shows the decryption process. The Cipher
instance is initialized with the same transformation as the
encrypted data. Decryption mode is set, and GCMParam-
eterSpec is initialized with an initialization vector and an
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authorization tag. The doFinal(1) method is called with the
passed cryptogram as a parameter. The result is an array of
bytes that can be converted to string format.

LISTING 16. Decrypt data with AES.

To summarize, the Android OS already has rich func-
tionality to perform symmetric, asymmetric encryption,
block cipher operations, signing, and verification, among
others, however, many primitives are still missing, e.g.,
the post-quantum candidates already highlighted in the
NIST final selection round. The examples of the avail-
able primitives show that their use is relatively straight-
forward, and the examples of code can be found in the
repository. The next section compares the primitives on
flagship and legacy mobile devices and discusses some of
the interesting observations made during this benchmarking
campaign.

III. CRYPTOGRAPHIC ALGORITHMS COMPARISON
This section uses information from the previous one to
execute the tests for the listed cryptographic algorithms.
The measurements campaign contained 280 tests each
that measure the running time of cryptographic algorithms
on 16 smartphones and 1 smartwatch, shown in Fig. 2.
We attempted to cover such a broad variety of devices to
cover both different hardware characteristics as well as dif-
ferent operating systems, which allows to understand which
execution could be expected on a particular generation of
devices. This section presents the results of the analysis of
the measurements.

A. DATASET DESCRIPTOR
The dataset for the oncoming results is currently available at
IEEE DataPort [13]. The primary data related to the collected
data is located in folderMeasurement and subfolder with the
measurement file.

The developed application was designed to gather the data
and then generate the dataset. The dataset consists of JSON
files, each containing measurements of available devices’
security primitives execution times. The data was gathered
in a span of multiple 250 iterations. Each measurement
was taken with a 50 repetitions interval for every primi-
tive. We define the main components of the dataset in the
following:

1) context[] – provides the details about the device andOS
including device name, model, battery-related informa-
tion, Software Development Kit (SDK) version, and
basic technical specification.

FIGURE 2. Mobile devices used for the measurements campaign
(technical details are listed in Table 5).

2) benchmarks[] – provides entries per primitive, such as:
• name – the overall identification title of the primi-
tive, including paddung and other optional fields;

• params – additional parameters unilized for the
execution if any;

• totalRunTimeNs – the overall time of the primi-
tive’s execution time;

• metrics[] – provides entries per execution, such as:
a) timeNs[] – the collected/processed information

of the collected data inluding entries per exe-
cution in runs[] and statistical parameters in
maximum, minimum and median.

b) warmupIterations – number of iterations of
warmup before measurements started;

c) repeatIterations – the number of iterations;
d) thermalThrottleSleepSeconds – the duration of

sleep due to thermal throttling.
An example of the dataset entry is provided further in

Listing 17.
The following subsections provide a discussion on the

obtained results.

B. CREATION OF ASYMMETRIC KEY
Asymmetric key generation testing measurement data shows
the time it takes to generate an asymmetric key. Themeasured
key types are RSA and EC with different key size options.
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LISTING 17. Example dataset entry.

Evidently, as the key size increases, the algorithm’s com-
putational complexity also increases. Thus, a larger key size
is expected to have a longer execution time than a smaller
key size. The heatmap 3 shows the results of the asymmetric
key generation. The results of the RSA algorithm support this
assumption on all devices.

Using the EC-based algorithm, if we compare the run-
times of EC224 and EC256 on different devices, the results
unexpectedly show that a larger key size on six devices
results in shorter runtimes, which contradicts the assumption.
This could be caused by a small difference between the key
size used in the algorithms.

C. ENCRYPTION/DECRYPTION USING
AN ASYMMETRIC KEY
Asymmetric key encryption is currently only supported for
RSA, as mentioned in subsection II-B3. RSA for encryption
can be used in eight different ways. The difference between
the two is in the fill mode used. Android Keystore and
generic java Keystore do not implement ECB mode for RSA,
so encryption / decryption can only be used for data smaller
than the key size. Interestingly, the encryption modes have
ECB in their name, although it is not implemented.

The heatmaps 4 and 6 show that the most consistent
runtimes across devices are achieved with the RSA with
PKCS1 padding option. PKCS1 Padding adds the least over-
head of all padding schemes supported (at least 11 bytes).
Completing the OAEP adds even more overhead. The OAEP
padding scheme requires two hash functions with different
properties to work. One hash function must map an arbitrary
size input to a fixed size output. Another hash function maps
an arbitrary size input to an arbitrary size output.

Such a hash function is called the Mask Generation Func-
tion (MFG). OAEP adds at least 42 bytes, which is 31 bytes
more than the minimum PKCS1 padding. The results support
the assumptions, and the overall execution time for schemes
using OAEP padding is longer than for PKCS1 schemes.
Based on the measurements, we can conclude that the Sam-
sung Galaxy S6 shows significantly slower encryption with
a key size of 4096 bits on all encryption schemes. Huawei
P9 Lite and Asus Zenphone 3 MAX, when used with OAEP
padding, result in slower performance than other devices.
From a security point of view, the OAEP padding scheme is
recommended [12]. Comparing the algorithms’ results using
the OAEP padding scheme shows that RSA3072 / OAEPwith
SHA-512 and MGF1 padding yields the best result.

As far as decryption is concerned, the inevitable statement
is that it should be slower. The advantage of encryption is
that the public figure is usually relatively small. The private
metric, decryption, is more extensive, so decrypting data is a
slower operation. The results in heatmap 5 and 7 summarize
the results of the assumption that data decryption in most
RSA implementations is slower than encryption. Same algo-
rithm for best overall execution time as encryption, RSA /
ECB / PKCS1 Padding.

D. DIGITAL SIGNATURE
Unlike asymmetric key encryption and decryption, digital
signatures are supported by RSA and EC. Benchmarks are
categorized by the hash function that RSA or EC uses.
The dataset provides RSA results without hashing with
MD5, SHA1, SHA224, SHA256, SHA384, and SHA512. All
results demonstrate similar behavior for each device, and,
in order not to overload the reader with repetitive data, this
article provides an example with the most complex of them,
SHA512, shown in the heatmap 8.

Overall, measurement results show that the difference
in runtime between signature algorithms using different
numbers of bits in the SHA function is minimal. Compar-
ing the algorithms’ results using the SHA hash function
shows that SHA512 with RSA2048 / PSS shows the best
results.

A similar procedure was used to verify the digital sig-
nature, see example results for SHA512 in heatmap 9.
The difference in the execution time of the verification algo-
rithms using the SHA hash function is the same as in the
digital signature, i.e., it is minimal. Evidently, the verification
procedure on a smartwatch requires more than an order of
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TABLE 5. Devices used for benchmarking (sorted according to CPU).

FIGURE 3. Asymmetric key creation.

magnitude more time than the same procedure on a smart-
phone when the mouse cursor is hovering over a sufficiently
low level, that is, tens of milliseconds.

More heatmaps for the utilization of MD5, SHA1,
SHA224, SHA256, and SHA384 with RSA are available
along with the dataset.
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FIGURE 4. Encryption using RSA / ECB with Padding.

FIGURE 5. Decryption using RSA / ECB with Padding.

E. CREATION OF SYMMETRIC KEY
The symmetric key generation performance test measures
the time it takes to generate a symmetric key. The measured
key type is AES with different key sizes. As the key size
increases, the computational complexity of the algorithm also
increases. Thus, a larger key size is expected to have a longer
execution time than a smaller key size. The histogram 10
summarizes the results of creating a symmetric key. The dif-
ference in battery life on Google Pixel 3A, Huawei P20 Lite,
LG Nexus 5X, Google Pixel XL is expected in line with
the previous trend. On other devices, the execution time is
equal, or the execution time does not increase with increasing
key size. It could be caused by hardware optimization or
statistical error.

F. ENCRYPTION/DECRYPTION USING AN SYMMETRIC KEY
AES is the only algorithm that supports symmetric encryption
with different key sizes and variations. Heatmaps 11 and 12
show that the runtime on the device remains the same for
all variants and key sizes. Based on results and in terms of
security, AES256 / GCM without padding provides the best
value.

It is assumed that decryption and encryption should be
approximately the same due to the same keys for both

operations. Compared to RSA decryption, AES decryption
should be faster. The results in the heatmap 12 show an
overall slower execution time than the symmetric encryption
execution time, which does not support the assumption of
the same execution time. Compared to the RSA decryption
execution time, the AES decryption execution time is faster,
confirming the assumption.

G. ADDITIONAL DISCUSSION AND LESSONS LEARNED
Interestingly, one may question what are the effects of RAM,
OS version, or CPU (given in Table 5) on the execution
of the primitives. Let us consider Figure 3 as an example.
On the one hand, the OS version does not provide any rep-
resentative information at all, see, e.g., for RSA-512: HTC
One M9 shows 72 ms, Huawei P9 Lite shows 30 ms, and
Asus Zenphone 3 Max has 228 ms – there is no correla-
tion with OS version. RAM impact has a similar pattern.
On the other hand, the execution time is indeed mostly
influenced by the CPU characteristics. However, it seems
rather unfair to compare the execution of various processor
types with different numbers of processors with completely
different clock rates since engineers/researchers would not
have any real knowledge about the processor’s design and
would only face the execution time in the end. Moreover,
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FIGURE 6. Encryption using RSA / ECB / OAEP with SHA and MGF1 Padding.

FIGURE 7. Decryption using RSA / ECB / OAEP with SHA and MGF1 Padding.

FIGURE 8. Signature using RSA with SHA512.

most mobile processors cannot utilize all the cores at once
(usually 4 for ‘‘background task’’ and 4 for ‘‘CPU demanding
tasks’’).

One of the most significant evaluation challenges is
the actual energy consumption evaluation on modern
mass-produced devices. There are two significant limitations.

First, the only way to reliably measure energy consumption
is to connect to the battery connectors physically. We have
attempted to do that and faced two sub-challenges: (i) most
of the devices have irremovable or shielded batteries that
heavily limit the access to the connectors without physically
damaging the device; (ii) even after accessing the connectors,
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FIGURE 9. Verification using RSA with SHA512.

FIGURE 10. Symmetric key creation.

we found out that the impact of the primitives execution on
energy consumption is miserable compared to, e.g., wire-
less transmission module or the display (the primary energy
consumer).

Previously, we also attempted to measure the energy con-
sumption for the execution of various blockchain consensus
algorithms in [24], where we have proven that the impact on
battery is not measurable only if the device is in the satu-
ration of the cryptography-related executions, which is not
real in daily life. Therefore, this paper attempted to highlight
the metric, which is the most accessible for the developers
from a user perspective – the average execution time causing
uncomfortable delays while a human is interacting with the
smartphone. As it could be seen from the collected data, some
devices can produce a few seconds-level delays just for one

execution, which may be unacceptable for close-to-real-time
applications.

Notably, there are approaches how to approach the con-
version of the execution time into relative computational
energy.4 However, those may have relatively low accuracy
since even the comparison of self-discharge rate compared
to one under additional tasks do not provide the necessary
granularity [8].

IV. SUMMARY
The development of modern technologies and the overall
improvements in the computing power are pushing towards
evaluating cryptographic primitives used on devices available
on the market. This article closes this white spot on the
roadmap for information security in the field of Android
devices. Along with this, it provides source code examples
suitable for a future re-evaluation of new devices. Specifi-
cally, it summarizes the results from a benchmark app that
ran 280 tests on 16 smartphones and 1 smartwatch in
terms of execution time (as the most convenient battery life
convention).

The results were further processed and visualized on heat
maps and a histogram. Based on the results, it was concluded
that not all natural assumptions regarding the executions
of primitives were fulfilled. Some older devices with older
processors execute some cryptographic algorithms faster than
newer devices with newer processors. It can be explained by
hardware acceleration for specific cryptographic algorithms.

After analyzing the collected data, specific cryptographic
algorithms were selected to implement an application using
cryptographic operations, see Section III. Selected algo-
rithms: AES256 / GCM / No Padding for symmetric encryp-
tion, SHA512 with RSA2048 / PSS for digital signature and
RSA3072 / OAEP with SHA512 and MGF1 Padding for
asymmetric encryption.

4See ‘‘Monitoring Energy Hotspots in Software’’: https://hal.inria.fr/hal-
01069142/document
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FIGURE 11. AES encryption.

FIGURE 12. AES decryption.

LIST OF ACRONYMS
AEAD Authenticated Encryption
AES Advanced Encryption Standard
API Application Programming Interface
BLE Bluetooth Low Energy
DER Distinguished Encoding Rules
DSA Digital Signature Algorithm
EC Eliptic Curve
ECB Encrypting unlinked blocks
ECDSA Elliptic Curve Digital Signature Algorithm
GCM Galois / Counter Mode
HMAC Keyed-Hashing for Message Authentication
ICT Information and Communication Technology
JSON JavaScript Object Notation
MD Message-Digest algorithm
MGF Mask Generation Function
OAEP Optimal Asymmetric Encryption Padding
OS Operating System
PKCS Public Key Cryptography Standards
PSS Probabilistic Signature Scheme
RSA Rivest-Shamir-Adleman System
SDK Software Development Kit
SHA Secure Hash Algorithm
WLAN Wireless Local Network
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