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ABSTRACT

Iaroslav Gridin: Software for Advanced Execution Path Inspection
Master of Science Thesis
Tampere University
Information Technology, MSc
August 2020

Execution path is a subset of code that gets executed during operation of software. Inspection
of the execution path is often required when analysing software for vulnerabilities. This thesis
describes Triggerflow, a tool for tracking execution paths, that can be used to facilitate such in-
spection. Triggerflow works by leveraging debugger to dynamically analyze code execution and
filtering results using source code annotations. The thesis describes the tool interface, engineering
choices made during its development, techniques it uses, and supporting software and methodol-
ogy of deploying continuous integration using this software. Triggerflow was originally developed
for detecting side-channel vulnerabilities in OpenSSL. The work on Triggerflow led to a conference
publication at DIMVA 2019, main author being the author of this thesis. The conference paper is
included as appendix A.
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1 INTRODUCTION

1.1 Motivation

Researchers investigating cryptographic software for side-channel vulnerabilities often

know the vulnerable operations, for example, from another library, or from research done

on the operation itself, but do not know if these operations are being run on sensitive

data. The problem is to detect certain areas of code, known to be vulnerable, being

executed as a result of operation on a specific value, known to be sensitive. Thus the

researchers need a tool, which, given a code area, allows the user to trace its invocations

and filter only those that involve a sensitive input. While there are many options for this

developed for similar purposes, examples given in chapter 3, none provided advanced

filtering features that Triggerflow implements.

1.2 Goals

The goals of the thesis are:

• To summarize the prior research in detecting side-channel vulnerabilities, describ-

ing tools already made for similar tasks and history of vulnerabilities they need to

detect.

• To demonstrate the demand for better software that can facilitate the search for

vulnerabilities.

• To produce the new tool, capable for advanced execution path inspection and suit-

able for automatic continuous testing of cryptographic software.

• To describe an example of the automated continuous testing process for finding

side-channel vulnerabilities in cryptographic software using the tool.

1.3 Contributions

The contributions of the thesis are

• The Triggerflow software, open source, allowing researchers to use it to find side-

channel vulnerabilities.
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• Review of the prior research.

• The methodology to organize continuous automated testing of cryptographic li-

braries.

1.4 Structure

The chapter 2 presents the demand for Triggerflow and situation it needs to help. The

chapter 3 contains the approach taken during development of Triggerflow and reasoning

behind engineering choices. The chapter 4 describes Triggerflow interface and features.

Finally, chapter 5 suggests some patterns of Triggerflow use and describes an exam-

ple of automatic testing setup using Triggerflow and GitLab. In Appendix A, the original

conference paper describing the Triggerflow is included.
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2 BACKGROUND

This chapter presents the demand for Triggerflow and situation it needs to help.

2.1 Side Channel Attacks

Side Channel Attack, or SCA, in the context of cryptographic software, is an attack that

utilizes information leaked during code execution [1]. Successful SCAs on cryptographic

systems can lead to leaking data that must be kept secret from third parties but has to

be involved in an operation. Timing attack is a type of a side-channel attack based on

observing time taken by a program and deriving characteristics of a secret value based

on observations [2]. Timing attacks are becoming more and more common, in part, due

to popularity of web-based applications, which are fundamentally vulnerable to timing

attacks due to their architecture [3].

2.2 Challenges in Defense Against Side Channel Attacks

To protect against SCAs, when working with secret values, software engineers make

software perform in constant time, for example, by padding or batching computations,

so that operation timing does not depend on properties of private values. While it is often

reasonably easy to make such computations in constant time, such measures usually

lower the software performance [4], so cryptographic libraries typically don’t use these

special versions of routines when operating on public values. The challenge here is to

make sure the choice of constant-time/non-constant-time operation is made correctly in

all cases, otherwise either security or speed is sacrificed.

2.3 Verifying Constant-time Functions

Once code that does not run in constant time is located, either by locating well-known

non-constant-time operations manually, or by tools like DATA [5], the researcher needs to

track if this code is being executed with sensitive input, thus creating a SCA vulnerability.

Detection can be performed simply by using GDB (see chapter 3 for information on it and

similar tools) to stop execution and inform the user in vulnerable code points. However, in
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practice this straightforward approach is not enough, since during a cryptographic opera-

tion multiple calls to the vulnerable code might be made, and this would lead to multiple

false positives. Advanced filtering can solve this issue, for example excluding completely

the code path that only happens with non-sensitive data (like a function call with only the

public key as a parameter). Sometimes it is necessary to perform even more complicated

filtering to exclude false positives, excluding a code path if it includes several code points

at once.

These requirements led to development of Triggerflow, the tool to perform advanced exe-

cution path inspection.

2.4 OpenSSL

OpenSSL is a cryptographic library written in C, providing implementations of popular

cryptographic protocol TLS as well as numerous cryptographic primitives. OpenSSL is

very popular, to the point of its many [6] vulnerabilities, like in case of HeartBleed, caus-

ing wide efforts to limit the impact. For example, the widespread adoption of OpenSSL

warranted using machine learning to detect vulnerable installations [7]. Thus, problems in

OpenSSL have great impact on information networks, and the software is a prime target

for security analysis.

2.5 Constant-time Functions in OpenSSL

BN_FLG_CONSTTIME is a Boolean property set on big numbers in OpenSSL code, and

functions decide to run constant time or high performance code based on

BN_FLG_CONSTTIME presence. By default, BN_FLG_CONSTTIME is set to false, and

operations are performed not in constant time. The OpenSSL developers chose this

approach because it requires minimal code changes and prioritizes performance, but it

poses a security risk since all private values must be explicitly marked.

BN_FLG_CONSTTIME was introduced in 2005 as a result of RSA cache-timing attack

[8].

2.6 Attacks on BN_FLG_CONSTTIME

However, BN_FLG_CONSTTIME turned out to be vulnerable to mishandling and to have

bugs of its own. In 2007, Aciiçmez et al. [9] described several side-channel vulnerabilities

in OpenSSL and suggested modifications to algorithms that eliminated the leaks. The

vulnerabilities included calls to modular inversion function, which timing is known to be

sensitive to the input.

In 2016 Pereida García et al. [10] have discovered that mechanism itself does not work
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properly: if a number marked with BN_FLG_CONSTTIME is copied, the flag is lost and

the result is handled as public. More issues with flag being mishandled were discov-

ered over time [11] [12], with comprehensive overview available in section 2.2 of the

Appendix A.

2.7 Inspecting OpenSSL With Triggerflow

To detect such issues, Gridin et al. [13] have added annotations to OpenSSL that mark the

vulnerable areas and filter out the known false negatives. This method led to discovery of

more OpenSSL issues over time, the process is documented in more detail in the paper

attached to the thesis as Appendix A.
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3 METHODOLOGY

This chapter contains the approach taken during development of Triggerflow and reason-

ing behind engineering choices.

3.1 Tool Demand

Analysing the OpenSSL code for side-channel vulnerabilities required a tool that can

produce a call graph, filter it, present the results to user and output it in machine-readable

form.

First, the tool needs to produce a call graph: a graph of function calls, that leads to code

sections known to be vulnerable. The graph is required for further processing, and by

itself contains useful information about the execution flow.

Second, the tool needs to filter the call graph to remove inputs that are known to be

not private. This serves to remove the false positives and has been described above in

chapter 1.

Third, the tool needs to present the results in visual form. The user needs to be able to

quickly assess the output and share the data further in easily-understandable graph.

Finally, the tool needs to output machine-readable results, to serve either as input to

further processing, or as part of an automatic testing setup, as shown in chapter 5.

3.2 Related Work

Numerous solutions for similar problems exist, but none quite combined the formulated

requirements. Listed next are the prominent existing tools.

3.2.1 Dynamic Analysis

Callgrind [14] is an addon to Valgrind [15], debugging and profiling software suite, that

records function call history. It allows to see call graph, but does not support filtering the

code paths to exclude uninteresting data, so it is not useful for our purposes.

Gprof [16] is a tool that determines the amount of CPU time spent processing different



8

functions. Similar to Callgrind, it allows to output the call graph, but lacks any sophisti-

cated filtering features.

DATA [17] is a framework for detecting side-channel leaks. Side-channel leak detection is

the original application of Triggerflow, but DATA occupies a different niche: it is a statistical

analysis tool, which discovers the leakage-prone code areas, then Triggerflow can be

applied to trace all code paths that lead to the areas. Additionally, while DATA produces

extensive information about the codebase, statistical analysis requires a lot of resources,

so application of DATA to automatic monitoring is unfeasible.

3.3 Programming Language

Initially, the set of scripts to detect known side-channel vulnerabilities was written in Bash

[18]. While portable and easy to write, Bash scripts are hard to maintain and extend.

Project was small, but not clearly defined and scope was likely to change, so Ruby [19]

was chosen as a programming language. Ruby is a weakly typed, dynamic programming

language with advanced object model. Roman et al. in [20] reports that Ruby features a

very relaxed and English-like syntax. These characteristics make development of small

scale projects easy, but may lead to problems with development of complex software.

3.4 Code Analysis Strategies

There are two main types of code analysis: dynamic and static. Both approaches have

different pros, cons and usage cases.

Static analysis works with binary or source code, and attempts to determine potential

execution flows without executing the code. Since basic static analysis is generally easy

to set up and effective, as many as 30 percent of open source projects [21] use it to detect

code problems. However, static analysis often suffers from over-estimation, producing

many false positives [17], making it unsuitable for fully automatic testing.

In contrast, dynamic analysis runs the code and analyzes the flow. This way, the analyzing

software doesn’t have to interpret the source code by itself, and works with existing tools

to observe. With diverse inputs there can be a high probability of encountering information

leaks [17], thus dynamic analysis can be relied to produce no false positives and accurate

results in automated way.

Triggerflow uses dynamic analysis because of this ease of application, and its general

sufficiency for Triggerflow targets.
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3.5 Debugger

GDB [22] is the most popular and universal software debugging tool. It works under var-

ious UNIX systems, Mac OS X and Windows. GDB supports a variety of programming

languages, with focus on C. GDB includes GDB/MI, machine-readable interface, which is

instrumental to implementing Triggerflow. These characteristics are basically unique to

GDB, so it was chosen to inspect the execution path. GDB supports breakpoints, loca-

tions in code in which execution should stop and context become available for inspection.

Breakpoints can be conditional: only triggering when certain expression evaluates to

true. Breakpoints are the main feature of GDB used by Triggerflow.

3.6 Unit Testing

The project uses sharness [23] for unit testing. Sharness is a small shell library which runs

shell-based tests. Since Triggerflow is a single application with easily-parseable output,

Sharness is perfect for testing it. While full code coverage is not required due to small

project scale, unit tests are present to ensure basic workflows produce correct results.

Triggerflow test suite includes testcases for all general use cases (all kinds of annota-

tions ans their combinations, patching), as well as some corner cases to ensure specific

features work (segmentation fault in the program, program not terminating normally).



10

4 SOFTWARE DESCRIPTION

This chapter describes Triggerflow interface and features.

4.1 Triggerflow At A Glance

1. The inputs to Triggerflow are: a directory with annotated source code, instructions

to build it, commands to run and debug, and optionally patches to apply before

building.

2. Triggerflow scans the source code for special keywords, which are typically placed

in comments near related lines of code, and builds a database of annotations. An-

notations include points of interest, or POIs, marking parts of code that should be

reported if executed, and ignore annotations, which cause certain points of interest

to be ignored.

3. Triggerflow commences the build, then runs the given commands (triggers) under

the debugger (GDB), instructed to set breakpoints at all points of interest.

4. When GDB reports hitting a breakpoint, Triggerflow inspects the backtrace supplied

by GDB, makes decisions based on the backtrace and stored annotations, and

possibly logs the code path that led to it.

4.2 GDB

GDB includes GDB/MI, a machine interface for interacting with running GDB instance.

While full GDB library for Ruby did not exist at the moment, there already was a GDB/MI
parser [24] available. The parser, available under MIT license, was incorporated into

gdb-ruby library, which supports GDB functions required by Triggerflow. The library has

been released along with other Triggerflow code, also under MIT license.

4.3 Annotations

GDB allows breakpoints to be set by a line number in source code. While line numbers

of points of interest can be stored and used to batch-set breakpoints, if code is modified

(by the researcher or the upstream source), these numbers will have to be changed. To
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address this, Triggerflow uses annotations: special words in code, used by Triggerflow

as anchors.

1 /* code before */
2 if(a % 2 == 0) // TRIGGERFLOW_POI
3 /* code after */

The annotation above means this line is a point of interest: if execution hits that code,

path that leads to it is logged.

Breakpoint hit at math_function() test.c:9
#0 math_function() test.c:9
#1 crypto_function() test.c:17
#2 main() test.c:23

Sometimes it is necessary to ignore certain code paths which are known to produce false

positives (i.e. they call cryptographic functions but only handle public data). Triggerflow

uses annotation TRIGGERFLOW_IGNORE for that.

1 /* code before */
2 sensitive_op(public_key); // TRIGGERFLOW_IGNORE
3 /* code after */

In this example, all code paths that that particular invocation of sensitive_op() triggers

will be ignored.

If even more specific code paths need to be ignored, ignoring can be further restricted to

group ignoring with TRIGGERFLOW_IGNORE_GROUP. Such annotations only ignore POI if

all TRIGGERFLOW_IGNORE_GROUP annotations with that group name present in code are

included in code path.

1 /* code before */
2 // conditionally sensitive operation
3 void c_s_op(public_key) {
4 /* code */
5 c_s_op2(public_key); // TRIGGERFLOW_IGNORE_GROUP S_OPS
6 /* code */
7 }
8 /* code */
9 c_s_op(public_key); // TRIGGERFLOW_IGNORE_GROUP S_OPS

10 /* code after */

In this example, only code paths that invoke conditionally_sensitive_op2() through

this particular invocation of conditionally_sensitive_op() will be ignored.

If ignoring needs to depend on program state, TRIGGERFLOW_IGNORE_IF provides condi-
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tional ignore that checks condition expressed in code expression in runtime, and ignores

the path if the condition evaluates to true.

1 /* code before */
2 sensitive_op(key); // TRIGGERFLOW_IGNORE_IF key.is_private
3 /* code after */

In that case, when a code path invokes sensitive_op() in that line and key.is_private
evaluates to true, path will be ignored.

Because annotations are dependant on the code structure beyond their line, it is best

when annotations are maintained in the original codebase, and updated by the author

of related changes. However, if the software being analyzed includes the system that

protects against wrong codepaths, like OpenSSL’s BN_FLG_CONSTTIME mentioned in

chapter 2, then annotations are basically doing the same job, and would be useful only,

for example, if they were maintained by separate teams, like in pair programming [25].

This way, two systems would verify each other. For the purposes of code analysis by a

third party, Triggerflow also supports storing annotations separately, in form of patches

that define annotation context. Context makes it usually trivial to adapt the patches to

changed code, but manual inspection still has to be performed sometimes and compli-

cated changes will require manual intervention.

4.4 Triggers

After building an internal database of annotations, Triggerflow builds the program being

analyzed using user-supplied command from configuration file and starts running trig-

gers file, a text file that contains commands that can possibly trigger the annotated code.

If debug is prepended to a command, it is launched under GDB with breakpoints set ac-

cording to annotations, and Triggerflow analyzes the output. Otherwise, it is interpreted

as maintenance command and just runs in shell. These commands can be used to

prepare the environment for launching triggers, or to clean up.

4.5 Output

Triggerflow supports simple console output, shown above, as well as outputting a diagram

of observed execution paths. Graph is output in dot format [26], which can be visualized

to popular formats like PDF with tools like dot. While console output is more compact

and sometimes easier to read, graph form can visualize the structure and help to quickly

grasp the call graph structure. A small test application example can be seen in Figure 4.1.

Graph output allows to visually quickly determine main flow directions, identify threat

sources and false positives.
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 testapp verify

main()
test.c:23

crypto_function()
test.c:17

math_function()
test.c:9

 testapp sign

main()
test.c:25

Figure 4.1. Example of Triggerflow output in graph form
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5 APPLICATION

This chapter suggests some patterns of Triggerflow use and describes an example of

automatic testing setup using Triggerflow and GitLab.

5.1 Auditing OpenSSL For Side-Channel Vulnerabilities

The section 3.1 of paper in Appendix A gives several detailed examples of detecting and

monitoring OpenSSL Vulnerabilities with Triggerflow.

The current set of annotations started with known vulnerable areas in OpenSSL’s imple-

mentation of big number division, exponentiation and finding a greatest common divisor,

as well as elliptic curve multiplication. The POIs were filtered with ignore annotations in

points that led to vulnerable areas, but only concerned public parts of initial data.

Over the time, the annotations were automatically adapted, as well as manually. Changes

in OpenSSL internal APIs required researchers to edit the annotations in a way that could

not be inferred by algorithm, and add new ignore points and move POIs.

Basically, the process to establish the set of annotations is as follows:

• Mark well-known vulnerable places with TRIGGERFLOW_POI .

• Runs operations using secret data under Triggerflow.

• Inspect the output. If there are paths known to be secure (e.g. the input is not

secret, or it is transformed to a safe form in constant time before), mark them with

TRIGGERFLOW_IGNORE or in complicated cases with TRIGGERFLOW_IGNORE_GROUP.

• Repeat the previous steps until only vulnerabilities are left.

5.2 Coupling With Statistical Analysis

Triggerflow can trace the execution of known vulnerable code, but finding the code is

outside the scope. Thus, a researcher can apply a statistical analysis tool like DATA [17]

to detect the vulnerable areas automatically and then use Triggerflow annotations to trace

references to them.
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 openssl dgst -sha512
-sign private_key.pem

-out lsb-release.sig
data

main()
apps/openssl.c:181

do_cmd()
apps/openssl.c:476

dgst_main()
apps/dgst.c:384

rsautl_main()
apps/rsautl.c:250

genpkey_main()
apps/genpkey.c:102

genpkey_main()
apps/genpkey.c:163

dgst_main()
apps/dgst.c:242

genpkey_main()
apps/genpkey.c:152

ec_main()
apps/ec.c:199

req_main()
apps/req.c:451

cms_main()
apps/cms.c:522

cms_main()
apps/cms.c:708

cms_main()
apps/cms.c:733

do_fp()
apps/dgst.c:443

EVP_DigestSignFinal()
crypto/evp/m_sigver.c:127

EVP_PKEY_sign()
crypto/evp/pmeth_fn.c:66

pkey_rsa_sign()
crypto/rsa/rsa_pmeth.c:147

pkey_ec_sign()
crypto/ec/ec_pmeth.c:119

pkey_dsa_sign()
crypto/dsa/dsa_pmeth.c:82

RSA_sign()
crypto/rsa/rsa_sign.c:103

RSA_private_encrypt()
crypto/rsa/rsa_crpt.c:37

rsa_ossl_private_encrypt()
crypto/rsa/rsa_ossl.c:285

rsa_ossl_private_encrypt()
crypto/rsa/rsa_ossl.c:310

BN_MONT_CTX_set_locked()
crypto/bn/bn_mont.c:448

BN_MONT_CTX_set()
crypto/bn/bn_mont.c:349

BN_mod_inverse()
crypto/bn/bn_gcd.c:129

int_bn_mod_inverse()
crypto/bn/bn_gcd.c:161

rsa_ossl_mod_exp()
crypto/rsa/rsa_ossl.c:770

BN_mod_exp_mont()
crypto/bn/bn_exp.c:327

 openssl rsautl -decrypt
-inkey private_key.pem
-in lsb-release.bin -out

lsb-release

RSA_private_decrypt()
crypto/rsa/rsa_crpt.c:43

rsa_ossl_private_decrypt()
crypto/rsa/rsa_ossl.c:426

rsa_ossl_mod_exp()
crypto/rsa/rsa_ossl.c:624

 openssl genpkey -algorithm
EC -out prime192v1.pem

-pkeyopt ec_paramgen_curve:prime192v1

pkey_ctrl_string()
apps/apps.c:1847

EVP_PKEY_CTX_ctrl_str()
crypto/evp/pmeth_lib.c:352

pkey_ec_ctrl_str()
crypto/ec/ec_pmeth.c:359

EVP_PKEY_CTX_ctrl()
crypto/evp/pmeth_lib.c:328

pkey_ec_ctrl()
crypto/ec/ec_pmeth.c:223

EC_GROUP_new_by_curve_name()
crypto/ec/ec_curve.c:3097

ec_group_new_from_data()
crypto/ec/ec_curve.c:3023

ec_group_new_from_data()
crypto/ec/ec_curve.c:3060

ec_group_new_from_data()
crypto/ec/ec_curve.c:3018

EC_GROUP_new_curve_GFp()
crypto/ec/ec_cvt.c:67

EC_GROUP_set_curve_GFp()
crypto/ec/ec_lib.c:416

ec_GFp_mont_group_set_curve()
crypto/ec/ecp_mont.c:158

EC_GROUP_set_generator()
crypto/ec/ec_lib.c:294

ec_precompute_mont_data()
crypto/ec/ec_lib.c:990

PEM_write_bio_PrivateKey()
crypto/pem/pem_pkey.c:99

PEM_write_bio_PKCS8PrivateKey()
crypto/pem/pem_pk8.c:46

do_pk8pkey()
crypto/pem/pem_pk8.c:72

EVP_PKEY2PKCS8()
crypto/evp/evp_pkey.c:71

eckey_priv_encode()
crypto/ec/ec_ameth.c:240

eckey_priv_encode()
crypto/ec/ec_ameth.c:251

i2d_ECPrivateKey()
crypto/ec/ec_asn1.c:1044

EC_KEY_key2buf()
crypto/ec/ec_key.c:523

EC_POINT_point2buf()
crypto/ec/ec_oct.c:158

EC_POINT_point2oct()
crypto/ec/ec_oct.c:102

ec_GFp_simple_point2oct()
crypto/ec/ecp_oct.c:214

EC_POINT_get_affine_coordinates_GFp()
crypto/ec/ec_lib.c:764

ec_GFp_simple_point_get_affine_coordinates()
crypto/ec/ecp_smpl.c:558

ec_GFp_mont_field_inv()
crypto/ec/ecp_mont.c:242

 openssl dgst -sha512
-sign prime192v1.pem

-out lsb-release.sig
data

load_key()
apps/apps.c:711

PEM_read_bio_PrivateKey()
crypto/pem/pem_pkey.c:44

PEM_read_bio_PrivateKey()
crypto/pem/pem_pkey.c:83

EVP_PKCS82PKEY()
crypto/evp/evp_pkey.c:43

eckey_priv_decode()
crypto/ec/ec_ameth.c:197

dsa_priv_decode()
crypto/dsa/dsa_ameth.c:183

eckey_type2param()
crypto/ec/ec_ameth.c:116

ECDSA_sign()
crypto/ec/ecdsa_sign.c:32

ECDSA_sign_ex()
crypto/ec/ecdsa_sign.c:40

ossl_ecdsa_sign()
crypto/ec/ecdsa_ossl.c:23

ECDSA_do_sign_ex()
crypto/ec/ecdsa_sign.c:24

ossl_ecdsa_sign_sig()
crypto/ec/ecdsa_ossl.c:261

ecdsa_sign_setup()
crypto/ec/ecdsa_ossl.c:126

 openssl genpkey -algorithm
EC -out secp224r1.pem

-pkeyopt ec_paramgen_curve:secp224r1

 openssl dgst -sha512
-sign secp224r1.pem -out

lsb-release.sig data

 openssl genpkey -algorithm
EC -out prime256v1.pem

-pkeyopt ec_paramgen_curve:prime256v1

 openssl dgst -sha512
-sign prime256v1.pem

-out lsb-release.sig
data

 openssl genpkey -algorithm
EC -out secp384r1.pem

-pkeyopt ec_paramgen_curve:secp384r1

 openssl dgst -sha512
-sign secp384r1.pem -out

lsb-release.sig data

 openssl genpkey -algorithm
EC -out secp521r1.pem

-pkeyopt ec_paramgen_curve:secp521r1

 openssl dgst -sha512
-sign secp521r1.pem -out

lsb-release.sig data

 openssl genpkey -algorithm
EC -out secp256k1.pem

-pkeyopt ec_paramgen_curve:secp256k1

 openssl dgst -sha512
-sign secp256k1.pem -out

lsb-release.sig data

 openssl genpkey -algorithm
EC -out sect233r1.pem

-pkeyopt ec_paramgen_curve:sect233r1

 openssl dgst -sha512
-sign sect233r1.pem -out

lsb-release.sig data

 openssl genpkey -paramfile
dsa.params -out dsa.pkey

EVP_PKEY_keygen()
crypto/evp/pmeth_gn.c:107

pkey_dsa_keygen()
crypto/dsa/dsa_pmeth.c:235

DSA_generate_key()
crypto/dsa/dsa_key.c:22

dsa_builtin_keygen()
crypto/dsa/dsa_key.c:58

BN_mod_exp()
crypto/bn/bn_exp.c:154

BN_mod_exp_mont()
crypto/bn/bn_exp.c:320

BN_mod_exp_mont_consttime()
crypto/bn/bn_exp.c:664

 openssl dgst -sha512
-sign dsa.pem -out lsb-release.sig

data

DSA_sign()
crypto/dsa/dsa_asn1.c:115

DSA_do_sign()
crypto/dsa/dsa_sign.c:18

dsa_do_sign()
crypto/dsa/dsa_ossl.c:97

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:231

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:262

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:270

dsa_mod_inverse_fermat()
crypto/dsa/dsa_ossl.c:424

BN_mod_exp_mont()
crypto/bn/bn_exp.c:359

 openssl ec -in ec.params
-pubout -out ec.pkey

PEM_read_bio_ECPrivateKey()
crypto/pem/pem_all.c:152

d2i_PrivateKey()
crypto/asn1/d2i_pr.c:46

old_ec_priv_decode()
crypto/ec/ec_ameth.c:446

d2i_ECPrivateKey()
crypto/ec/ec_asn1.c:939

EC_GROUP_new_from_ecpkparameters()
crypto/ec/ec_asn1.c:845

 openssl req -x509 -new
-key ec.key -subj '/C=FI/ST=Uusimaa/L=Helsinki/CN=localhost'

-config openssl.cnf -out
cert.pem

 openssl cms -aes128
-encrypt -in data -binary

-out lsb-release.pem
-outform PEM -recip cert.pem
-keyopt ecdh_kdf_md:sha256

load_cert()
apps/apps.c:616

PEM_read_bio_X509_AUX()
crypto/pem/pem_xaux.c:18

PEM_ASN1_read_bio()
crypto/pem/pem_oth.c:31

d2i_X509_AUX()
crypto/x509/x_x509.c:118

d2i_X509()
crypto/x509/x_x509.c:86

ASN1_item_d2i()
crypto/asn1/tasn_dec.c:113

ASN1_item_ex_d2i()
crypto/asn1/tasn_dec.c:123

asn1_item_embed_d2i()
crypto/asn1/tasn_dec.c:362

asn1_template_ex_d2i()
crypto/asn1/tasn_dec.c:498

asn1_template_noexp_d2i()
crypto/asn1/tasn_dec.c:623

asn1_item_embed_d2i()
crypto/asn1/tasn_dec.c:412

pubkey_cb()
crypto/x509/x_pubkey.c:46

x509_pubkey_decode()
crypto/x509/x_pubkey.c:124

eckey_pub_decode()
crypto/ec/ec_ameth.c:148

 openssl cms -decrypt
-inkey ec.key -in lsb-release.pem

-inform PEM -out lsb-release
-recip cert.pem

Figure 5.1. Output of performing vulnerable OpenSSL operation under Triggerflow, be-
fore filtering

 openssl dgst -sha512
-sign dsa.pem -out lsb-release.sig

data

main()
apps/openssl.c:181

do_cmd()
apps/openssl.c:476

dgst_main()
apps/dgst.c:384

do_fp()
apps/dgst.c:443

EVP_DigestSignFinal()
crypto/evp/m_sigver.c:127

EVP_PKEY_sign()
crypto/evp/pmeth_fn.c:66

pkey_dsa_sign()
crypto/dsa/dsa_pmeth.c:82

DSA_sign()
crypto/dsa/dsa_asn1.c:115

DSA_do_sign()
crypto/dsa/dsa_sign.c:18

dsa_do_sign()
crypto/dsa/dsa_ossl.c:97

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:262

BN_mod_exp_mont()
crypto/bn/bn_exp.c:327

Figure 5.2. Output of performing vulnerable OpenSSL operation under Triggerflow, after
filtering

5.3 Automatic Testing

Triggerflow code annotations are easy to maintain in updating codebase. If stored as

patches [27], format for description of changes to text which includes context, annotations
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can be automatically adapted to changed code. This lends itself to creating a system that

can monitor code for known issues. Here we describe an automatic testing system built

for monitoring OpenSSL code.

After determining sensitive areas, researcher marks them up with TRIGGERFLOW_POI
annotations and annotates paths that lead to known false positives. Then, using quilt

[28], they extract annotations to patch files, where line numbers are stored, along with

context. Context is needed for automatic patch updates. Analyst also writes Triggerflow

configuration file that describes steps to build software and possibly other options, and

trigger file(s).

All these files, along with original code as git [29] submodule is added to git repository.

Additionally, a CI description file (in our case, Gitlab’s .gitlab-ci.yml) is added to

define CI operations. CI system reads the repository, runs Triggerflow as described and,

since no POIs are triggered, build is passed.

Separate system runs special program, repatcher. Repatcher regularly checks original

code repository for updates. When a newer version of software is available, repatcher

checks patches for compatibility and updates them if necessary. If patches cannot be

automatically updated, repatcher pauses work and signals human operator to resolve

situation. If patches apply cleanly, repatcher pushes code to repository handled by CI.

CI runs Triggerflow on patched code. If any points of interest are hit, build is marked as

broken.

This system relies on upstream software to build on every commit: if software fails to

build, resulting build is also broken in CI and appears as false positive. However, it is

generally accepted good practice to only commit code that builds and passes tests, since

that assumption facilitates many kinds of code analysis.

One notable limitation is that since Triggerflow uses a debugger, under widely used

Docker containerization tool [30] it needs extra permission SYS_PTRACE which allows to

receive info about other host processes, and thus Triggerflow is not suitable for typical

public automatic testing setups.



17

6 CONCLUSION

6.1 Impact

Timing attacks on cryptographic software, while well-known and largely mitigated, are still

widespread. OpenSSL includes a non-perfect measure to ensure all sensitive values are

handled in non-vulnerable fashion, but it is possible to verify its performance automatically

using external tools. Gridin et al. developed such tool, called Triggerflow, first successfully

applied in continuous testing of OpenSSL [13]. Triggerflow helped track down deficiencies

in OpenSSL handling of sensitive values in asymmetric cryptography code and provided

testing system to ensure security in the future. The authors established an automated

testing system to monitor three major branches of OpenSSL for vulnerabilities.

Building on that, Pereida García et al. used Triggerflow to find several vulnerabilities in

OpenSSL and MbedTLS [31]:

• Wrong handling of certain ECDSA certificates caused a timing vulnerability in sig-

nature code. Attackers managed to remotely recover the secret key, both via the

network and by capturing EM traces. The vulnerability has been assigned CVE-

2019-1547 [32].

• Vulnerable algorithm used when handling certain certificate formats endangered

secret keys using RSA and DSA algorithms.

• Researchers found algorithm used for RSA operations in MbedTLS to be vulner-

able, allowing for side-channel attack endangering services using MbedTLS and

RSA certificates, such as the once issued by popular Let’s Encrypt [33] organiza-

tion.

In 2020 Hassan et al. used Triggerflow to analyze the cryptographic library NSS, used in

Mozilla web browser. In that work, researchers combined Triggerflow with DATA [17] to be

able to find the possible vulnerable places using DATA’s statistical analysis and then trace

their execution using Triggerflow. This new combined approach resulted in discovery of

three new vulnerabilities:

• CVE-2020-12399 [34]: DSA signature code did not include the countermeasure

used by other vendors, exposing secret key to the timing attacks. The vulnerability
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was remotely exploited over network.

• CVE-2020-12402 [35]: Using vulnerable functions in RSA key generation has lead

to recovery of the secret key. The vulnerability was remotely exploited via EM

traces.

• CVE-2020-6829 [36]: ECDSA nonce padding was found to be ineffective, leaking

nonce size through timing attacks and facilitating nonce recovery. The vulnerability

was remotely exploited via EM traces.

Additionally, Triggerflow testing setup discovered some non-security issues due to testing

more wide and deep than OpenSSL testing suite:

• https://github.com/openssl/openssl/issues/12102 breakage of a specific

feature used by testing setup

• https://github.com/openssl/openssl/issues/10114 regression not caught

by OpenSSL testcases

These results demonstrate that Triggerflow is useful for finding side-channel vulnerabili-

ties, especially when combined with statistic analysis to assist in locating potential vulner-

able locations.

Triggerflow can be applied to any cryptographic library or any other program that would

benefit from execution path inspection, in any language supported by GDB.

The obvious candidates for analysis might be other popular cryptographic libraries, like

MbedTLS https://github.com/ARMmbed/mbedtls, NSS https://wiki.mozilla.
org/NSS, BoringSSL https://boringssl.googlesource.com/boringssl/, or de-

facto standards in other languages, like ring https://github.com/briansmith/ring.

6.2 Future Work

Since Triggerflow only performs non-negligible computations when building annotation

database, its own performance of Triggerflow is generally not a bottleneck in practice.

Nevertheless, it might benefit from reimplementation in a statically-typed programming

language if used in a project with a lot of filters and points of interest. Strict typing, as well

as tighter interface with GDB, might increase reliability of the program as well.

One other possible future direction is development of embedded Triggerflow version that

can be compiled into the program being researched, thus allowing to avoid the require-

ment of a debugger described in chapter 5. Such a library could work by expanding

annotations to function calls that monitor execution path from inside the program itself.

However, the code would need to be written in every language, a considerable drawback

versus the current language-agnostic leveraging of GDB.

https://github.com/openssl/openssl/issues/12102
https://github.com/openssl/openssl/issues/10114
https://github.com/ARMmbed/mbedtls
https://wiki.mozilla.org/NSS
https://wiki.mozilla.org/NSS
https://boringssl.googlesource.com/boringssl/
https://github.com/briansmith/ring
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The automatic testing setup, currently implemented with minimal footprint over the Git-

Lab’s CI framework, could be expanded with better interface and notification, enabling

researchers to filter through problems, solve them in easier way and to monitor the past

status of the testing system with relation to the state of software being monitored, for

example, to be able to quickly see the analysis for a specific commit.
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Abstract. Cryptographic libraries often feature multiple implementa-
tions of primitives to meet both the security needs of handling private
information and the performance requirements of modern services when
the handled information is public. OpenSSL, the de-facto standard free
and open source cryptographic library, includes mechanisms to differen-
tiate the confidential data and its control flow, including run-time flags,
designed for hardening against timing side-channels, but repeatedly acci-
dentally mishandled in the past. To analyze and prevent these accidents,
we introduce Triggerflow, a tool for tracking execution paths that, as-
sisted by source annotations, dynamically analyzes the binary through
the debugger. We validate this approach with case studies demonstrat-
ing how adopting our method in the development pipeline would have
promptly detected such accidents. We further show-case the value of the
tooling by presenting two novel discoveries facilitated by Triggerflow: one
leak and one defect.

Keywords: software testing · regression testing · continuous integration
· dynamic program analysis · applied cryptography · side-channel analysis
· OpenSSL

1 Introduction

Attacks based on Side-Channel Analysis (SCA) are ubiquitous in microarchitec-
tures and recent research [22, 20] suggest that they are much harder to mitigate
than originally believed due to flawed system microarchitectures. Constant-time
programming techniques are arguably the most effective and cheapest counter-
measure against SCA. Functions implemented following this approach, execute
and compute results time-independent from the secret inputs, thus avoiding in-
formation leakage.

Implementing constant-time code requires a highly specialized and ever grow-
ing skill set such as SCA techniques, operating systems, compilers, signal pro-
cessing, and even hardware architecture; thus it is a difficult and error-prone
task. Unfortunately, code is not always easily testable for SCA flaws due to code
complexity and the difficulty of creating the tests themselves. Moreover, cryp-
tography libraries tend to offer several versions of a single algorithm to be used
in particular cases depending on the users’ needs, thus amplifying the confusion
and the possibility of using SCA vulnerable functions.
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To that end, we present Triggerflow, a tool that allows to selectively track
code paths during program execution. The approach used by Triggerflow is ele-
gant in its simplicity: it reports code paths taken by a given program according
to the annotations defined by the user. This enables designing simple regres-
sion tests to track control flow skew. Moreover, the tool is extendable and can
be integrated in the Continuous Integration (CI) development pipeline, to au-
tomatically test code paths in new builds. Triggerflow can be used both as a
stand-alone tool to continuously test for known flaws, and as a support tool for
other SCA tools when the source code is available. It easily allows examining
code execution paths to pinpoint code flaws and regressions.

We motivate our work and demonstrate Triggerflow’s effectiveness by adapt-
ing it to work with OpenSSL due to its rich history of known SCA attacks,
its wide usage in the Internet, and its rapid and constant development stage.
We start by back-testing OpenSSL’s previously known and exploited code flaws,
where our tool is able to easily find and corroborate the vulnerabilities. Addition-
ally, using Triggerflow we identify new bugs and SCA vulnerabilities affecting
the most recent OpenSSL 1.1.1a version.

In summary, Section 2 discusses previous problems and pitfalls in OpenSSL
that led to side-channel attacks. Section 3 describes the Triggerflow tool and
Section 4 its application in a CI setting. We analyze in Section 5 the new bugs
and vulnerabilities affecting OpenSSL, and in Section 6 we back-test known
OpenSSL SCA vulnerabilities to validate the tool’s effectiveness. Section 7 looks
at related work. In Section 8 we discuss the limitations of our tool, and finally
we conclude in Section 9.

2 Background

2.1 The OpenSSL BN_FLG_CONSTTIME Flag

In 2005, OpenSSL started considering SCA in their threat model, introducing
code changes in OpenSSL version 0.9.7. The (then new) RSA cache-timing at-
tack by Percival [25] allowed an attacker to recover secret exponent bits during
the sliding-window exponentiation algorithm on systems supporting simultane-
ous multi-threading (SMT). As a countermeasure to this attack, the OpenSSL
team adopted two important changes: Commit 3 introduced the constant-time
exponentiation flag and BN_mod_exp_mont_consttime, a fixed-window modu-
lar exponentiation function; and Commit 4 implemented exponent padding. By
combining these countermeasures, OpenSSL aimed for SCA resistant code path
execution when performing secret key operations during DSA, RSA, and Diffie-
Hellman (DH) key exchange, with the goal of performing exponentiation reason-
ably independent of the exponent weight or length.

The concept is to set the BN_FLG_EXP_CONSTTIME flag on BIGNUM variables
containing secret information: e.g. private keys, secret prime values, nonces, and
integer scalars. Once set, the flag drives access to the constant-time security crit-
ical modular exponentiation function supporting the flag. Due to performance
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reasons, OpenSSL kept both functions: the constant-time version and the non
constant-time version of the modular exponentiation operation. The library de-
faults to the non constant-time function since it assumes most operations are
not secure critical, thus they can be done faster, but upon entry to the non
constant-time function the input BN variables are checked for the flag and if
the program detects the flag is set, it takes an early exit to the constant-time
function, otherwise it continues the insecure code path.

As research and attacks on SCA improved, Acıiçmez et al. [1] demonstrated
new SCA vulnerabilities in OpenSSL. More precisely, the authors showed that
the default BN division function, and the Binary Extended Euclidean algorithm
(BEEA) function—used in OpenSSL to perform modular inversion operations—
are highly dependent on their input values, therefore they leak enough informa-
tion to perform a cache-timing attack. This discovery forced the introduction
of Commit 14, implementing the BN_div_no_branch and BN_mod_inverse_no-
_branch functions, offering a constant-time implementation for the respective
operations. Moreover, BN_FLG_EXP_CONSTTIME was renamed to BN_FLG_CONST-
TIME to reflect the fact that it offered protection not only to the modular expo-
nentiation function, but to other functions as well.

2.2 Flag Exploitation

During the last three years, the BN_FLG_CONSTTIME flag has received a fair
amount of attention due to its flawed effectiveness as an SCA countermeasure
in OpenSSL. Pereida García et al. [27] showed the issues of having an insecure-
by-default approach in OpenSSL by exploiting a flaw during DSA signature
generation due to a flag propagation issue. Performing a Flush+Reload [39]
attack, the authors fully recover DSA private keys.

Following the previous work, Pereida García and Brumley [26] identified yet
another flaw in OpenSSL, this time involving the BN_mod_inverse function.
Failure to set the flag allowed the authors to successfully perform a cache-timing
attack using Flush+Reload to recover secret keys during ECDSA P-256 sig-
nature generation in SSH and TLS protocols.

Building on top of the previous works, two research teams [35, 3] discovered
independently several SCA flaws in OpenSSL. On the one hand, Aldaya et al. [3]
developed and used a simple but effective methodology to find vulnerable code
paths in OpenSSL. The authors tracked SCA vulnerable functions in OpenSSL
using GDB by placing breakpoints on them. They executed the RSA key gen-
eration command, hitting the breakpoints and thus reveling flaws in OpenSSL’s
RSA key generation implementation. On the other hand, [35] analyzed the RSA
key generation implementation and also discovered calls to the SCA vulnerable
GCD function. In both cases, the authors noticed a combination of non constant-
time functions in use, failure to set flags, and flags not propagated to BIGNUM
variables caused OpenSSL to leak key bits. Moreover, both works demonstrate
that it is possible to retrieve enough key bits to fully recover an RSA key after a
single SCA trace using different cache techniques and threat models (page-level
or Flush+Reload).
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The previous works highlight a clear and serious issue surrounding the constant-
time flag. The developers need to identify all the possible security critical cases in
OpenSSL where the flag must be set in order to prevent SCA attacks, which has
proven to be a laborious and clearly error-prone task. Even if done thoroughly
and correctly, the developers must still ensure code changes do no introduce
regressions surrounding the flag.

3 Tracking Execution Paths with Triggerflow

OpenSSL’s regression-testing framework has significantly improved over time,
notably following the HeartBleed vulnerability. Nevertheless, the framework has
its limitations, with real-world constraints largely imposed by portability require-
ments weighed against engineering effort. With respect to the BN_FLG_CONST-
TIME flag, the testing framework does not provide a mechanism to track function
calls or examine the call stack. This largely contributes to the root cause of the
previously discussed vulnerabilities surrounding the BN_FLG_CONSTTIME flag: the
testing framework cannot accommodate a reasonable regression test in these in-
stances.

With this motivation, our work began by designing Triggerflow1: a tool for
tracking execution paths. After marking up the source code with special com-
ments, its purpose is to detect when code hits paths of interest. We wrote Trig-
gerflow in Ruby2 and it uses GDB3 for inspecting code execution. In support of
Open Science [18], Triggerflow is free and open source, distributed under MIT
license.

We chose GDB since it provides all the required functionality: an established
interface for choosing trace points and inspecting the program execution, as well
as a machine-readable interface4. Additionally, GDB supports a wide variety of
platforms, architectures, and languages.

Architecture. The high level concept of Triggerflow is as follows.

1. The inputs to Triggerflow are: a directory with annotated source code, in-
structions to build it, commands to run and debug, and optionally patches
to apply before building.

2. Triggerflow scans the source code for special keywords, which are typically
placed in comments near related lines of code, and builds a database of
annotations.

3. Triggerflow commences the build, then runs the given commands (triggers)
under GDB, instructed to set breakpoints at all points of interest.

4. When GDB reports hitting a breakpoint, Triggerflow inspects the backtrace
supplied by GDB, makes decisions based on the backtrace and stored anno-
tations, and possibly logs the code path that led to it.

1 https://gitlab.com/nisec/triggerflow
2 https://www.ruby-lang.org/en/
3 https://www.gnu.org/software/gdb/
4 https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
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In addition to verbose raw logging, Triggerflow provides output in Graphviz
DOT format, allowing easy conversion to PDF, image, and other formats.

Annotations. Using marked up source code allows leveraging existing tools
for merging code changes to (semi)automatically update annotations to reflect
codebase changes. It is best when annotations are maintained in the original
code, and updated by the author of related changes, but for the purposes of
code analysis by a third party, Triggerflow also supports storing annotations
separately, in form of patches that define annotation context. Our tool currently
supports four different annotations, described below and illustrated in Figure 1.

1. TRIGGERFLOW_POI is a point of interest and it is always tracked. The Trig-
gerflow tool reports back every time the executing code steps into it.

2. TRIGGERFLOW_POI_IF is a conditional point of interest, thus it is condition-
ally tracked. The Triggerflow tool reports back every time the code annotated
is stepped into and the given expression evaluates to true.

3. TRIGGERFLOW_IGNORE is an ignore annotation that allows to safely ignore
specific code lines resulting in code execution paths that are not interesting
(false positives).

4. TRIGGERFLOW_IGNORE_GROUP is a group ignore annotation that allows to
safely ignore a specific code execution path if and only if every line marked
with the same group ID is stepped into.

1 /* code before */
2 if(a % 2 == 0) // TRIGGERFLOW_POI
3 /* code after */

1 if(something) {
2 a = publickey; //

TRIGGERFLOW_IGNORE_GROUP
ec_publickey

↪→
↪→

3 }
4 call_suspicious_code(a) //

TRIGGERFLOW_IGNORE_GROUP
ec_publickey

↪→
↪→

1 /* code before */
2 call_suspicious_code(a) //

TRIGGERFLOW_POI_IF a.private()↪→
3 /* code after */

1 int call_suspicious_code(int a) {
2 // TRIGGERFLOW_POI
3 /* something interesting with a */
4 }
5 call_suspicious_code(public_key) //

TRIGGERFLOW_IGNORE↪→

Fig. 1. Annotations currently supported by Triggerflow.

3.1 Annotating OpenSSL

Using the known vulnerable code paths previously discussed in Section 2.2, we
created a set of annotations for OpenSSL with the intention to track potential
leakage during secure critical operations in different public key cryptosystems
such as DSA, ECDSA, RSA, as well as high-level CMS routines.

Following a direct approach, as Figure 2 illustrates we placed TRIGGERFLOW-
_POI annotations to track the code path execution of the most prominent infor-
mation-leaking functions previously exploited. We placed an annotation in the
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BN_mod_exp_mont function immediately after the early exit to its constant-time
counterpart. In the BN_mod_inverse function, we placed a similar annotation
after the early exit. We added an annotation at the top of the non constant-
time BN_gcd function since it is known for being previously used during security
critical operations but this function does not have an exit to a constant-time
implementation, i.e., it is oblivious to the BN_FLG_CONSTTIME.

On the ECC code we annotated the ec_wNAF_mul function. This function
implements wNAF scalar multiplication, a known SCA vulnerable function ex-
ploited several times in the past [12, 8, 28, 4, 2]. Similar to the previous cases,
upon entry to this function, an early exit is available to a more SCA secure Mont-
gomery ladder scalar multiplication ec_scalar_mul_ladder, thus we added the
annotation immediately after the early exit.

The strategy to annotate BN_div varies depending on the OpenSSL branch.
For branches up to and including 1.1.0, the function checks the flag on BN
operands and assigns no_branch = 1 if it detects the flag. Hence we annotate
with a no_branch != 1 conditional breakpoint. The master and 1.1.1 branches
recently applied SCA hardening to its callee bn_div_fixed_top to make it obliv-
ious to the flag. The corner case is when the number of words in BN operands
are not equal, and inside the resulting data-dependent control flow we add an
unconditional point of interest annotation.

Ideally, the previous annotations should never be reached, since we assume
OpenSSL follows a constant-time code path during the execution of these secure
critical operations. Yet one of the most security-critical parts of the process is
marking false positive annotations. To give an idea of the scope of such marking,
with the above described point of interest annotations applied to the OpenSSL
1.1.0 branch, and no ignore annotations, Triggerflow identifies 84 potentially
errant code paths, provided with only a basic set of 25 triggers.

4 Continuous Integration

As previously discussed, our main motivation for Triggerflow is the need to test
for regressions in OpenSSL surrounding the BN_FLG_CONSTTIME flag. From the
software quality perspective, and given the previously exploited vulnerabilities
discussed later in Section 6, there is a clear need for an automated approach
that accounts for the time dimension and a rapidly changing codebase. Seem-
ingly small and insignificant changes can suddenly shift codepaths, and when
PRs are proposed and merged we want to be automatically informed. Using
code marked up for Triggerflow allows establishing CI, automatically testing
code for introducing unsafe codepaths. We propose (and deploy) the following
approach to establish an automatic CI pipeline using Triggerflow and GitLab’s
infrastructure, illustrated in Figure 3.

– Create a special Git repository containing Triggerflow configuration, trigger
list, annotations in form of Quilt5 patch queue, and a submodule containing

5 https://savannah.nongnu.org/projects/quilt
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1 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar,↪→

2 size_t num, const EC_POINT *points[],
const BIGNUM *scalars[],↪→

3 BN_CTX *ctx)
4 {
5 /* ... */
6 if ((scalar == NULL) && (num == 1)) {
7 return ec_scalar_mul_ladder(group, r,

scalars[0], points[0], ctx);↪→
8 }
9 }

10
11 if (scalar != NULL) { /* TRIGGERFLOW_POI */

1 int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const
BIGNUM *num,↪→

2 const BIGNUM *divisor, BN_CTX *ctc
x)

3 {
4 /* ... */
5 div_n = sdiv->top;
6 num_n = snum->top;
7
8 if (num_n <= div_n) {
9 /* TRIGGERFLOW_POI */

10 /* caller didn't pad dividend -> no
constant-time guarantee... */↪→

1 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM
*in_b, BN_CTX *ctx)↪→

2 {
3 BIGNUM *a, *b, *t; /* TRIGGERFLOW_POI */

1 BIGNUM *BN_mod_inverse(BIGNUM *in,
2 const BIGNUM *a, const BIGNUM

*n, BN_CTX *ctx)↪→
3 {
4 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
5 BIGNUM *ret = NULL;
6 int sign;
7
8 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
9 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {

10 return BN_mod_inverse_no_branch(in, a, n, ctx);
11 }
12
13 bn_check_top(a); /* TRIGGERFLOW_POI */

1 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const
BIGNUM *p,↪→

2 const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *in_mont)↪→

3 {
4 /* ... */
5 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
6 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
7 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)

{
8 return BN_mod_exp_mont_consttime(rr, a, p, m,

ctx, in_mont);↪→
9 }

10
11 bn_check_top(a); /* TRIGGERFLOW_POI */

Fig. 2. Top left: a TRIGGERFLOW_POI annotation in the wNAF scalar multiplication
function after the early exit. Middle left: a TRIGGERFLOW_POI annotation during BN_div
execution. Bottom left: a TRIGGERFLOW_POI annotation in OpenSSL’s insecure BN_gcd
function. Top right: a TRIGGERFLOW_POI annotation in OpenSSL’s BN_mod_inverse
function after the early exit. Bottom right: a TRIGGERFLOW_POI annotation in BN_mod-
_exp_mont after the early exit.

Get next unrebased commit

Rebase CI repo on it

Conflicts?Await manual intervention

OpenSSL upstream

CI repo

Push to CI repo, trigger build
Yes No

Fig. 3. CI flow illustrated.
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code to test (in our case, OpenSSL). This repository is hosted on a GitLab
instance and includes the description of the testing process in GitLab format,
.gitlab.yml.

– Two runners are established on separate machines, connected to the GitLab
instance. A runner is automated testing software which creates a container
and runs testing routines according to rules in .gitlab.yml. We maintain
two runners with different architectures, x86_64 and aarch64. The runners
are based in our infrastructure. When new code is pushed into the GitLab
repository and .gitlab.yml is present, runners execute the tests and report
status back to GitLab, where results are then reviewed.

– A separate software (repatcher) is continuously monitoring main OpenSSL
code repository for updates and adapting annotations to changed code. If
changes can be applied automatically, repatcher6 pushes updated code to
GitLab where it is tested. Otherwise, a human is notified to resolve conflicts
and update the patches manually. After that, repatcher’s work automatically
continues. Repatcher is based in our infrastructure.

This process is independent of any support from the original developers. Of
course, a better approach is to have developers themselves integrate and maintain
Triggerflow annotations upstream, or potentially enforce them at compile time.

Unfortunately, successful deployment of such a CI pipeline depends on code
being buildable on every upstream commit, which is sometimes not the case
with OpenSSL. Still, with minimal manual inspection it makes a great automatic
testing setup: Figure 4 illustrates our CI testing OpenSSL’s master branch us-
ing Triggerflow. The results of our CI system instance are public7, monitoring
master, 1.1.1 and 1.1.0 branches of OpenSSL.

Average build of OpenSSL on our runners takes 85 s on x86_64 (440 s on
aarch64), and Triggerflow takes average of 26 s to run our set of triggers on
x86_64 (92 s on aarch64).

Status Pipeline Commit Stages

 00:07:42
  1 hour ago

 00:07:52
  1 hour ago

 00:07:46
  1 hour ago

 
 passed  

patched/mas…   f3b5c690
[master:c8147d37ccaaf28c…

 passed #1494 by 
 patched/mas…   81d96fbd

[master:fe16ae5f95fa86ddb…

 passed #1493 by 
 patched/mas…   9fb8e7df

[master:0b76ce99aaa5678b…

 

 

#1495 by
latest

Fig. 4. GitLab CI running: Triggerflow testing OpenSSL code.

6 https://gitlab.com/nisec/repatcher
7 https://gitlab.com/nisec/openssl-triggerflow-ci
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5 New Bugs and Vulnerabilities

With the tooling in place, our first task was to examine functionality issues that
could arise with applying the annotation patches to a shifting codebase. The EC
module recently underwent a quite heavy overhaul regarding SCA security [33].
We used that as a case study, and in this section we present two discoveries
facilitated by Triggerflow: one leak and one software defect.

5.1 A New Leak

We started from Commit 1 and the Triggerflow unit test in question is ECDSA
signing in ecdsa_ossl.c. The test passed at that commit, hence the tooling
proceeded with subsequent commits. They all passed unit testing, until reaching
Commit 2. The purpose of said commit was to fix a regression in the padding
of secret scalar inputs in the timing-resistant elliptic curve scalar multiplication,
using the group cardinality rather than the generator order, supporting cryp-
tosystems where the distinction is relevant (e.g., ECDH and cofactor variants).
Figure 5 illustrates the failed unit test.

openssl dgst -sha512
-sign key.pem -out

data.sig data

ecdsa_sign_setup()
crypto/ec/ecdsa_ossl.c:115

EC_POINT_get_aff-
ine_coordinates_GFp()
crypto/ec/ec_lib.c:768

int_bn_mod_inverse()
crypto/bn/bn_gcd.c:161

Fig. 5. Insecure flow: projective to affine point conversion (abridged).

The fix. In this case, what the tooling is telling us is that the code is travers-
ing the insecure modular inversion path when converting from projective to
affine coordinates. Examining this function, it has always been oblivious to the
constant-time flag, yet academic results suggest that said conversion should be
protected [24, 23]. Put another way, Commit 2 is not the culprit—the function
is insecure by design. Instead of simply enabling the flag, we chose8 to add a
field_inv function pointer inside the EC_METHOD structure, alongside existing
pointers for other finite field operations such as field_mul and field_sqr. This
allowed us to unify the finite field inversion across the EC module, instead of
each function meticulously enabling the constant-time flag when calling BN_mod-
_inverse. Once unified, we can ensure default SCA hardening through a single
interface. We provided three different implementations for this pointer for three
different EC_METHOD instances:

1. EC_GFp_mont_method is the default for prime curves and pre-computes a
Montgomery arithmetic structure for finite field arithmetic. This is conve-
nient for inversion via FLT, which is modular exponentiation with a fixed
exponent and variable base—benefiting generously from the Montgomery

8 https://github.com/openssl/openssl/pull/8254
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arithmetic. Hence our field_inv implementation is a straightforward ver-
sion of FLT in this case.

2. EC_GFp_simple_method is a fallback method that contains much of the boil-
erplate code pointed to by several other EC_METHOD implementations. For
example, those that implement their own custom arithmetic, such as NIST
curves that use Mersenne-like primes. Here, no Montgomery structure is
guaranteed to exist. Hence our field_inv implementation is blinding, com-
puting a−1 = b/(ab) with b chosen uniformly at random and the ab term
inverted via BN_mod_inverse.

3. EC_GF2m_simple_method is the only method for binary curves present in the
OpenSSL codebase. Here field_inv is a simple wrapper around BN_GF2m-
_mod_inv, which is already SCA-hardened with blinding.

With these SCA-hardened field_inv function pointers in place, we then
transitioned all finite field inversions in the EC module from BN_mod_inverse
and BN_GF2m_mod_inv to our new pointer, including that of the projective to
affine conversion. After these changes, Triggerflow unit tests were successful.

5.2 A New Defect

The previous unit test failure is curious in the sense that Commit 2 was essen-
tially unrelated to projective to affine conversion. As stated above, that conver-
sion has always been oblivious to the constant-time flag. We were left with the
question of how such a change could trigger an insecure behavior in an unrelated
function.

Using the debugger to compare the internal state when executing EC_POINT-
_get_affine_coordinates_GFp in Commit 2 and its parent, we discovered that,
until the latter, a temporary variable storing one of the inputs to BN_mod-
_inverse was flagged as constant-time even if the flag was not explicitly set
with the dedicated function. The temporary variable in question was obtained
through a BN_CTX object, a buffer shared among various functions that sim-
ulates a hardware stack to store BIGNUM variables, minimizing costly memory
allocations—we defer to [13] for more details on the internals of the BN_CTX
object.

In this case, the BN_CTX object is created in the top level function implement-
ing signature generation for the ECDSA cryptosystem, and is shared among most
of its callees and descendants; the analysis led to discover that the BN_CTX buffer
retained the state of BN_FLG_CONSTTIME for each stored BIGNUM variable, allow-
ing functions to alter the value of BN_FLG_CONSTTIME, and thus occasionally the
execution flow, of subsequently called functions sharing the same BN_CTX.

The fix. This long-standing defect raises several concerns:

– as in the case that led to its discovery, retrieving a BIGNUM variable from
the BN_CTX with BN_FLG_CONSTTIME unexpectedly set, might lead to unin-
tentional execution of a timing-resistant code-path. This could be perceived
as a benign effect, but hides unexpected risks as it generates false negatives
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during security analysis. Moreover, changes as trivial as getting one more
temporary variable from the shared BN_CTX—or even just changing the or-
der by which temporary variables are retrieved—can influence the execution
flow of seemingly unrelated functions, eluding manual analysis and defying
developer expectations;

– a BIGNUM variable with BN_FLG_CONSTTIME unexpectedly set could reach
function implementations that execute in variable time and should never
be called with confidential inputs marked with BN_FLG_CONSTTIME. Such
functions diligently check for API abuse and raise exceptions at run time:
this defect can then result in unexpected application crashes or potentially
expose to bug attacks;

– automated testing is made fragile, in part for the false negatives already
mentioned, but additionally because the test suite becomes not representa-
tive of external application usage of the library, as different usage patterns
of a shared BN_CTX in unrelated functions lead to different execution paths.
Finally, the generated failure reports could be misleading as changes in un-
related functions might end up triggering errors in other modules.

The fix itself was relatively straightforward, and consisted in unconditionally
clearing BN_FLG_CONSTTIME every time a BIGNUM variable is retrieved from a
BN_CTX9.

What is remarkable is how Triggerflow assisted in the discovery of a defect
that had been unnoticed for over a decade, automating the interaction with the
debugger to pinpoint which revisions triggered the anomalous behavior.

6 Validation

In order to validate our work, we present next a study of the known flaws briefly
discussed in Section 2.2 that led to several SCA attacks, security advisories,
and significant manpower downstream to address these issues. We present these
flaws as case studies, briefly discussing the root cause, security implications, and
the results of running our tooling against an annotated OpenSSL. We separate
the cases by cryptosystem and at the same we (mostly) follow the chronological
discovery of these flaws.

As part of the validation, we used the same OpenSSL versions as in the
original attacks. To that end, we forked OpenSSL branches on the respective
versions and then, we applied the set of annotations previously discussed in
Section 3.1. This approach allowed us to quickly back test and validate the
effectiveness of our tooling to detect potential leakage in OpenSSL.

The list of cases presented here is not exhaustive but serves three purposes:

1. it gives insight to the types of flaws that our Triggerflow is able to find;
2. it shows it is not a trivial task to do, let alone automate; and

9 https://github.com/openssl/openssl/pull/8253
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3. it demonstrates the fragility of the BN_FLG_CONSTTIME countermeasure in-
troduced 14 years ago and the need of a secure-by-default approach in cryp-
tography libraries such as OpenSSL.

Moreover, the flaws and vulnerabilities presented in this section and in Sec-
tion 5 demonstrate the effectiveness and efficiency of integrating Triggerflow to
the development pipeline. Maintaining annotations, either as separate patches
or integrated in the code base, might be seen as tedious or error-prone but the
automation benefits outweigh the disadvantages. On the one hand, maintaining
annotations does not require deep and specialized understanding of the code,
compared to manually finding and triggering all the possible vulnerable code
paths across several platforms, CPUs, and versions. On the other hand, a mis-
placed annotation does not introduce flaws nor vulnerabilities, since they are
used only for testing and reporting purposes.

6.1 DSA

The DSA signature generation implementation in OpenSSL has arguably the
longest and most troubled history of SCA issues. In 2016, a decade after BN-
_FLG_CONSTTIME and the constant-time exponentiation function countermea-
sures were introduced, Pereida García et al. [27] discovered that the constant-
time path was not taken due to a flag propagation issue. The authors noticed
that BN_copy effectively copies the content from a BIGNUM variable to another
but it fails to copy the existing flags, thus flags are not propagated and the
constant-time flag must be set again. This issue left the DSA signature genera-
tion vulnerable to cache-timing attacks for more than a decade. To test this issue,
we pointed Triggerflow at our annotated OpenSSL_1_0_2k branch, resulting in
Figure 6 and therefore correctly reporting the flaw.

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
dsa_ossl.c:285

BN_mod_exp_mont()
bn_exp.c:421

Fig. 6. Triggerflow detecting CVE-2016-2178, the flawed CVE-2005-0109 fix
(abridged).

The authors provided a fix for this issue in Commit 5, but at the same time
they introduced a new flaw in the modular inversion operation during DSA sig-
nature generation. This new vulnerability was enabled due to a missing constant-
time flag in one of the input values to the BN_mod_inverse function. At that
time, the flaw was confined to the development branch, subsequently promptly
fixed in Commit 6, thus it did not affect users. Figure 7 shows the result of
pointing Triggerflow to OpenSSL in Commit 5, detecting the flawed fix.

Later in 2018, Weiser et al. [36] found additional SCA vulnerabilities in DSA.
The authors exploited a timing variation due to the BIGNUM structure to re-
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openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
dsa_ossl.c:291

BN_mod_inverse()
bn_gcd.c:241

Fig. 7. Triggerflow detecting the flawed CVE-2016-2178 fix (abridged).

cover DSA private keys, an unrelated issue to the BN_FLG_CONSTTIME flag. How-
ever, the fix provided for this issue in Commit 8 was incomplete, and moreover
it introduced a new SCA flaw, once again due to not setting a flag properly.
Triggerflow detected this flaw (see Figure 8) in the OpenSSL_1_1_1 branch, later
fixed in Commit 9 but again only present briefly in development branches.

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:259

BN_mod_exp_mont()
crypto/bn/bn_exp.c:317

Fig. 8. Triggerflow detecting the flawed CVE-2018-0734 fix (abridged).

In the same work, the authors discovered that every time the library loads
a DSA private key, it calculates the corresponding public key following a non
constant-time code path due to a missing flag, and therefore is also vulnera-
ble to SCA attacks. In fact, Triggerflow previously detected this vulnerability
while back-testing Commit 5, suggesting that this issue was long present in the
codebase and could have been detected earlier. This issue was recently fixed in
Commit 7.

6.2 ECDSA

OpenSSL’s ECDSA implementation has also been affected by SCA leakage.
Pereida García and Brumley [26] discovered that the BN_FLG_CONSTTIME flag
was not set at all during ECDSA P-256 signature generation. More specifically,
the modular inversion operation was performed using the non constant-time path
in the BN_mod_inverse function, thus leaving the scalar k vulnerable to SCA
attacks.

openssl dgst -sha512 -sign
key.pem -out data.sig data

ecdsa_sign_setup()
ecs_ossl.c:182

BN_mod_inverse()
bn_gcd.c:238

Fig. 9. Triggerflow detecting CVE-2016-7056 (abridged).

Similar to the previous case and in order to back-test this issue, we pointed
Triggerflow to the annotated OpenSSL_1_0_1u branch and then we generated
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ECDSA signatures, triggering the breakpoints. The tool reported back an inse-
cure usage of the modular inversion function as shown in Figure 9. The flag was
not set in the nonce k prior to the modular inversion operation. Surprisingly, this
issue is still present in the OpenSSL 1.0.1 branch although the authors provided
a patch for it, mainlined by the vast majority of vendors. It is worth mentioning
the OpenSSL 1.0.1 branch reached EOL around the same time as the work—we
assume that is the reason the OpenSSL team did not integrate it.

6.3 RSA

In 2018, two independent works [35, 3] discovered several SCA flaws during RSA
key generation in OpenSSL. OpenSSL’s RSA key generation is a fairly complex
implementation due to the use of several different algorithms during the process.
It requires the generation of random integers; testing the values for primality;
computing the greatest common divisor and the least common multiple, using
secret values as input. For all of the previous reasons, it is not trivial to implement
a constant-time RSA key generation algorithm. Both research works identified
missing flags, flags set in the wrong variable, and a direct call to the non constant-
time function BN_gcd as the culprits enabling the attacks.

openssl genpkey
-algorithm RSA -out
key.pem -pkeyopt

rsa_keygen_bits:1024

pkey_rsa_keygen()
rsa_pmeth.c:749

BN_MONT_CTX_set()
bn_mont.c:450

witness()
bn_prime.c:356

rsa_builtin_keygen()
rsa_gen.c:154

BN_mod_inverse()
bn_gcd.c:241

BN_mod_exp_mont()
bn_exp.c:422

BN_gcd()
bn_gcd.c:125

Fig. 10. Triggerflow detecting CVE-2018-0737 (abridged).

During back testing we used an annotated OpenSSL_1_0_2k branch, and we
pointed the Triggerflow tool at it. It successfully reported all the vulnerabilities
discovered by the authors. The authors submitted a total of four commits to
OpenSSL codebase to fully mitigate this issue—see Commit 10, Commit 11,
Commit 12, and Commit 13 for more details.

7 Related Work

The Triggerflow framework differs from other existing tools in being a tool to
assist the development process rather than a system for automated detection
and quantification of security vulnerabilities, and aims at being more general
purpose and not restricted to the field of cryptographic applications. As such, it
should be viewed as complementary rather than alternative to the approaches
listed below.
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Programming languages. Various works propose and analyze the option of
using specialized programming languages to achieve constant-time code genera-
tion and verification [10, 14], while others analyze the challenges [7] or opportu-
nities [31] of translating human-readable code into machine instructions through
compilers when dealing with cryptographic software and the need for SCA resis-
tant implementations. They differ from this work in the goal: our evaluation is
not based on a lack of timing-resistant implementations, but rather in assisting
the development process and making sure that insecure paths are not executed,
by mistake, with confidential inputs.

Black box testing. These practices are based on statistical analysis to estimate
the SCA leakage. dudect [29] applies this methodology measuring the timing of
the system under test for different inputs.

Static program analysis. These techniques refers to the analysis of the source
code [5, 38, 30] (building on the capabilities of the LLVM project to perform
the analysis) or annotated machine code [9] of a program to quantify leakages.
An alternative to this approach is represented by CacheAudit [17, 16] based on
symbolic execution, which is usually applied to smaller software or individual
algorithms as it requires more resources. BLAZER [6] and THEMIS [15] employ
static analysis to detect side-channels in Java bytecode programs. BLAZER in-
troduces a decomposition technique associated with taint tracking to discover
timing channels (or prove their absence) in execution branches tainted by se-
cret inputs. THEMIS combines lightweight static taint analysis with precise
relational verification to verify the absence of timing or response size side-
channels. Similar in spirit as it uses lightweight taint tracking, Catalyzr [32]
is a closed-source, commercial tool to detect potential leakage by filtering con-
ditional branches and array accesses after marking sensitive inputs; the authors
apply their tooling to the C-language MbedTLS library. All of these methods
share with Triggerflow the requirement of access to the source code of the tested
software (either direct or reasonably decompiled).

Dynamic program analysis. These techniques detect, measure, and accu-
rately locate microarchitecture leakage during the execution of the code in the
system. ctgrind [21], based on Valgrind memcheck, monitors control flow and
memory accesses for dependencies on secret data. Previous work [37, 36] uses
Dynamic Binary Instrumentation, adding instrumentation at run-time to col-
lect metadata and measurements directly to the binary code without altering
the execution flow of the program, independently providing extensible frame-
works with high accuracy and supporting leakage models for the most relevant
microarchitecture attacks. Relevant recent works employ symbolic execution to
detect side-channel leaks. CacheD [34] is a hybrid approach that combines DBI,
symbolic execution, taint tracking, and constraint solving, while the more re-
cent CaSym [11] employs cache-aware IR symbolic execution; both works then
combine different cache models to detect cache-based timing channels. SPEC-
TECTOR [19] uses similar symbolic execution techniques in combination with
speculative non-interference models to detect speculative execution leaks and
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optimization opportunities in the strategies used by compilers to implement
hardening measures.

Triggerflow is similar to Dynamic Program Analysis techniques with respect
to performing the evaluation when the software is actively running on the target
system. Although limited by requiring access to the source code, Triggerflow can
leverage this property and avoid any instrumentation: the tested binary is exactly
the one generated by the build process of the target, with the only requirement
of not stripping the debug symbols, to aid GDB in mapping function names and
the memory addresses of the routines included in the target software.

8 Limitations

Triggerflow requires access to the sources of the target software, and to annotate
it with markup comments as described in Section 3. Preferably, Triggerflow an-
notations should be maintained directly in the codebase of the upstream target
project, but Triggerflow includes support for versioning of annotation patches
for the analysis of third-party projects. Additionally, it is worth stressing that
Triggerflow does not automatically detect where to annotate the target code—
this goes beyond the tool capabilities. Instead, it relies on developer expertise to
annotate the execution paths of interest. As such, source code access is a limit
only for the analysis of closed-source third-party projects, which fall out of the
immediate scope of Triggerflow as an aid tool for the development process.

Triggerflow depends on the availability of GDB and Ruby on the target plat-
form, and is limited to the executables that can be debugged through GDB. This
is arguably a minor concern, with the only remarkable exception that debugging
through GDB inside a virtualized container usually requires overriding the de-
fault set of system call restrictions that is meant to isolate the supervisor from
the container, raising security concerns when running Triggerflow for third-party
CI and partially limiting the selection of available CI platforms.

The tools developed during this work can also be applied to other software
projects, not just OpenSSL. Triggerflow can work with any language GDB sup-
ports and is useful for analyzing and testing execution paths through any com-
plex project that meets the minimal requirements.

A case study. To substantiate the above claims and demonstrate the flexibility
of Triggerflow, we annotated the ECC portion of golang10. The documentation
states the P384 (pseudo-)class for NIST P-384 curve operations is not constant-
time. Indeed, the ScalarMult method is textbook double-and-add scalar mul-
tiplication. We placed a TRIGGERFLOW_POI annotation inside this method, and
used a golang ECDSA signing application as a trigger. Figure 11 shows the
result, confirming Triggerflow is not restricted to OpenSSL or the C language.

10 https://golang.org/pkg/crypto/elliptic/
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main.main()
harness_ecdsa.go:33

crypto/ecdsa.Sign()
crypto/ecdsa/ecdsa.go:212

crypto/elliptic.(*Curve-
Params).ScalarBaseMult()

crypto/elliptic/elliptic.go:272

crypto/elliptic.(*Curve-
Params).ScalarMult()

crypto/elliptic/elliptic.go:255

Fig. 11. Triggerflow detecting an insecure scalar multiplication path in golang.

9 Conclusion

Triggerflow complements the results offered by any of the analysis techniques
described in Section 7: in large software projects like OpenSSL, pinpointing the
location of a detected leak might not be sufficient. Similarly to other crypto-
graphic libraries, OpenSSL often includes several implementations of the same
primitive, many of which are designed for performance and safe to use only
when all the inputs are public. When a leak is detected in one of these func-
tions, developers are challenged with the task of discovering why and how secret
data reached the insecure code path, rather than altering the location where the
leakage is reported. As demonstrated in Sections 5 and 6, Triggerflow can be suc-
cessfully and efficiently used to aid developers in these situations and, through
CI, prevent regressions in the handling of secret data.

Considering the high number of valid combinations of supported platforms
and build-time options for OpenSSL, and that the available implementations
and control flow depend on these specific combinations, Triggerflow is a good
solution to aid developers by exhaustively automating the BN_FLG_CONSTTIME
tests and prevent future regressions similar to the ones described in this work.

In the context of using Triggerflow with OpenSSL to monitor BN_FLG_CONST-
TIME, it should be mentioned that, security-wise, a secure-by-default approach
would be desirable: i.e., all BIGNUM are considered constant-time unless the pro-
grammer explicitly marks them as public, so that when alternatives exist, the
default implementation of each algorithm is the timing-resistant one, and in-
secure but more efficient ones need to be enabled explicitly and after careful
examination. On the other hand, such change has the potential for being disrup-
tive for existing applications, and is therefore likely to be rejected or implemented
over a long period of time to meet the project release strategy.

Future work. On top of continued development of the tool as discussed, we
plan to expand on this work in the future to widen the coverage of the OpenSSL
library and of the project apps and their options, by setting more triggers and
point of interest across multiple architectures and build-time options. In parallel,
to further demonstrate the capabilities of the tool we plan to apply a similar
methodology to other security libraries and cryptographic software, aiming at
uncovering, fixing, and testing related timing leaks.

Responsible disclosure. All PRs submitted as a result of this work were co-
ordinated with the OpenSSL security team. Following the GitHub PR URLs,
readers will find more extensive discussions of the security implications of the
identified leak and defect. To briefly summarize: (1) the leakage during pro-
jective to affine conversion does not appear to be exploitable with recent SCA
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hardening to the EC module—we speculate it can only be utilized in combina-
tion with some other novel leak, by which time the larger additional leak would
likely be enough independently; (2) while we were able to implement a straw
man application to demonstrate the BN_CTX defect (reaching unintended code
paths and inducing function failures), we were unable to locate a real-world
OpenSSL-linking application matching our PoC characteristics, nor any tech-
nique to exploit the defect within the OpenSSL library itself. We also filed a
report with CERT, summarizing our security findings.

Acknowledgments. This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 804476).
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