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Summary

In this thesis a range of lattice	based spatially explicit models of ecosystems are presented

and their applicability to various ecological situations is demonstrated� with emphasis on plant

communities� These mechanistic and individual	based models� which include coupled map

lattices and cellular automata� aim to produce ecological insights and testable results� Models

of both short and long term systems are developed� with the former being potentially testable

in the �eld and the latter promoting understanding where experimentation is not feasible�

A range of graphical and numerical techniques were developed to investigate both plant and

animal model ecosystems�

The starting point is a short term single species coupled map lattice� which investigates popula	

tion structure arising from local competitive interactions� The model concludes that increase of

size variation with increasing density indicates the presence of competitive intraspeci�c asymme	

try� This idea is applied to crop data� where considerable asymmetry is identi�ed� emphasising

the need for balancing crop yield and size consistency�

Multispecies extensions to this model focus on spatial patterning arising from biotic interac	

tions and various numerical techniques underline the asymmetrical relationship between long	

and short	lived species� Environmental heterogeneity is imposed on the plant species in a third

version of the model via the incorporation of an explicit resource base� The complex inter	

dependence of community and environment is highlighted and illustrated by a model of the

evolution of seed sizes�

Through the application of cellular automata to forest and epidemiological systems� the concept

of memory� such as age	 or stage	structuring� is shown to be vital in the generation of spatial

structure in long term ecological systems� Analytical investigations generate further insights and

again emphasise the crucial role played by spatial extensiveness in the wide range of ecological

situations considered here�

In conclusion� lattice models are ideally suited to the study of ecosystems�
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�� Introduction to Ecosystem Modelling�

Chapter Summary

A brief historical overview is given of theoretical ecology and modelling in the

twentieth century� which leads into a discussion on the subjects of scale� dynamics�

nonlinearity and complexity� These are all considered to be fundamental features

of ecological systems� A summary of modelling approaches used in the thesis is set

out� which in particular addresses the importance of generality in modelling� the

importance of individuals in ecology and the importance of the spatial dimension

in ecology� A preference is stated for simple mechanistic models that promote

understanding as opposed to detailed phenomenological models that are restricted

to narrow predictive uses� A brief description is given of the models in chapters

� to � and suitable theoretical approaches are outlined� in conjunction with a

discussion on relevant spatial and temporal scales�

���� Overview of Descriptive Ecology�

�The aim of science is general statements� � Wissel ����b

Ecology� as the study of the relationship of living organisms and their associated environments�

has largely been dominated by descriptive techniques� empirical data collection and the classi�

�cation of species and processes� As speculative hypotheses lacking support by extensive data

were largely seen as controversial� most studies have demanded intensive experimental work�

but the last few decades have witnessed the rise of theoretical ecology � recognition that mod�

els can be used to suggest fruitful empirical investigations� This contrasts with the classical

ecological approach� where a model is purely phenomenological� constructed from pre�existing

data� mathematical approaches being largely restricted to statistics�

�



The main focus in both empirical and theoretical ecology has been on the dynamics of single

and multi�species populations and� more recently� as indicated in this thesis� of individual or�

ganisms� The original theoretical description of population growth was the logistic equation� by

Pearl in ���	 
Kingsland� ������ which described constrained exponential growth� This simple

approximation of the development of single populations has remained central to theoretical

ecology� despite being acknowledged as having restricted direct applicability� In particular it

initiated a major revolution in scienti�c thought in the ���	s 
section ������� following May
s


����� observation of complex behaviour or chaos arising from the logistic equation�

Multi�species population interactions were described quantitatively in the ���	s by Lotka 
���	�

and Volterra 
������ Both authors described predator�prey interactions which exhibited cycling


the Lotka�Volterra system� and Volterra also considered two�species competition� This system

provided the basis for a large proportion of subsequent theoretical ecology and has over many

years been endlessly re�ned and extended�

However� the constraints of such simple approaches have been increasingly pointed out in more

recent years and the importance of spatial dimension has been highlighted� together with the

associated issues of patterns and scaling��

Most organisms are profoundly in�uenced by the heterogeneity of the biotic and physical envi�

ronment� especially in terrestrial ecosystems 
Hanski� ����a�� Environmental heterogeneity is

seen at all scales from microscopic to global so that any organisms have to respond to patterns

over a range of scales�

Although many features vary gradually and boundaries between di�erent regions are often

highly di�use� the heuristic term patch is usefully employed to describe an area of space that is

di�erent from the surrounding areas in some speci�ed way� As discussed later in more detail in

section ������ adequate spatial representation of patchiness� pattern and scale is now a central

�Clark � Evans� ����� Levin � Segel� ����� Huston et al	� ����� Wiens� ����� Levin� ���
� Menge � Olson�

���
� Kolasa � Pickett� ����� Bradshaw � Spies� ����� Levin� ����� Garcia�Moliner et al	� ���
� Levin et al	�

���
� Moloney et al	� ����� Hanski� ����a� Steele � Henderson� ����	

�



theme in ecological modelling research� Patchiness may be seen at any scale and assumptions

concerning distributions and their underlying causal mechanisms cannot be inferred between

scales� A system must therefore be studied across an entire range of scales before a complete

understanding of its functioning can be obtained 
Breckling� ������ A region may� for example�

be relatively homogeneous at an intermediate scale� yet simultaneously demonstrate �ne scale

patchiness and form one patch of a broad scale distribution of patches� Therefore assumptions

must not be made about the behaviour of a system simply by noting the homogeneity or

heterogeneity at one particular scale�

Ecological scale is a perceptual concept that is in�uenced by observation� by an ecologist or

by any organism within an ecosystem 
Levin� ������ The response of an organism to environ�

mental heterogeneity depends both on its size and behavioural repertoire� The relative sizes of

organisms and environmental scales is termed grain or resolution and is the key to understand�

ing the interaction of individuals with physical factors� The scales in�uencing species may vary

within its life cycle� For example� some animals forage within small areas of relative homogene�

ity but move over large patchy landscapes to breed� In contrast� obtaining su�cient nutrition

may depend on moving between isolated fertile patches scattered within hostile terrain� Even

plant species operate over various scales� the sessile nature restricts adults to a single position�

but dispersal of propagules and clonal spread may both integrate resources over patchy regions


chapter ���

There is a complex interwoven relationship between organisms and environmental patterns�

with animals and plants interacting with the environment to create or enhance patterns 
Levin

� Segel� ������ ecological processes determine pattern and patterns determine process� Pat�

terns can be generated from pure heterogeneity through biotic interactions � pattern or non�

randomness is an emergent phenomenon 
sections ��� and ������� Pattern is seen to emerge

from a balance of ordering mechanisms with randomising processes 
chapter ���

There is also a two�way interaction between di�erent scales� local mechanisms can produce

emergent patterns at a broader scale� despite apparent microscale randomness 
McCauley et

�



al�� ������ On the one hand� coarse�grained heterogeneity can impose constraints which cascade

down to �ne�scale processes� Alternatively� processes may act directly over a range of scales


Bak � Chen� ���	�� which again highlights the need for multi�level analysis of ecosystems


Ricklefs� ���	� Moloney� ������

Temporal and spatial variation are hard to separate� so temporal scales must be also considered�

Although patchy structures� especially at the landscape scale� may persist for centuries� many

features at a variety of scales are ephemeral� Species are often adapted to compensate for

temporal �uctuation of habitat quality by dispersal over spatially heterogeneous areas 
section

����� Thus the environment and behaviour of organisms are strongly in�uenced by temporal as

well as spatial variation and all of these factors are interdependent in a complex way�

The major challenge in theoretical ecology is the assessment and interpretation of the conse�

quences of spatial and temporal variation on the distributions of resources and organisms� This

has led to the developments of new methodologies� both experimental and analytical� which

can address the issues of spatiotemporal heterogeneity and scaling� Such techniques are de�

scribed and applied in chapters � to �� Spatial heterogeneity is studied using the clumping

index 
section ������ which gives a dynamic quanti�cation of the patchiness in a system� A

second approach employs multifractal theory to identify complex scaling relationships within

spatial distributions� Spatial scales are studied using the coherence length scale� which indi�

cates the scale at which the dynamics in a model progress� These methods are all combined to

described the patterns in communities and to elucidate the interactions between species�

In summary� there are two complementary challenges in ecology� the extraction of mechanisms

from observed patterns and the prediction of patterns from known processes� Much classical

ecology has tackled one or other of these aspects� but it is now recognised that pattern and

function are so tightly coupled that they must be considered together�

�



���� Dynamics of Ecological Systems�

����nonlinear systems are surely the rule� not the exception� outside the physical sciences� � May

����

The traditional view of ecological systems was essentially static� in spite of the long history

of �population dynamics
� Most systems were assumed to either be at equilibrium or moving

towards equilibrium� �uctuations were largely disregarded as being noise or measurement error


Turchin � Taylor� ������ Dynamical aspects of theoretical ecology were primarily concerned

with the speed of approach to equilibrium or the rate of recovery after disturbance� Species

were assumed to grow until resource limitation set in or external perturbations took place�

These sweeping assumptions held regardless of the long�standing empirical evidence of persistent

�uctuations in population densities 
such as lemmings 
Finerty� ���	� or red grouse 
Moss �

Watson� ������� since these were viewed as anomalies by most ecologists�

Ecosystems possess a rich array of possible dynamical behaviours� ranging from the simplicity

of a stable equilibrium to the complexity of quasiperiodic and chaotic behaviour� Now that it

is generally held that nonlinearity or density�dependence is widespread in ecological systems� it

is no longer assumed that ecosystems must be approaching stationary equilibria occurs�

This has important consequences for the analysis of real and model data� especially the assump�

tion that populations always tend to stationary equilibria� The interpretation of apparently

random dynamics must now be re�examined� because disorder is not necessarily the results

of random processes such as environmental noise� but may arise from a mixture containing a

signi�cant deterministic component� Thus the traditional belief that all ecological processes

may be predicted � given su�cient understanding of a system � has been destroyed� in fact� the

behaviour of many ecosystems is unlikely to be predictable� even in principle�

this is typical of a chaotic system� which is characterised by limited predictability� an appearance

of disorder and intricate geometric structures� A range of situations have been highlighted by

theoretical studies which are particularly likely to lead to chaos and nonlinearity� many of which

�



apply to ecological systems and are discussed in section ������ Chaos is now a popular concept

across a broad range of disciplines 
Stewart� ����a�� However� in ecology� chaos theory has

some of its harshest critics� as well as some of its most dogmatic sceptics and many enthusiasts


May� ������

The new theory has also had a profound impact on ecologists
 view of complexity� Ecosys�

tems have always been seen as complicated� often in the extreme� but complex outcomes have

traditionally been attributed to complex causes 
Procaccia� ������ External in�uences have

been sought to explain complicated dynamics� such as time lags� environmental stochasticity�

population structure and interspeci�c interactions� Now the reverse is seen� very simple chaotic

systems produce intrinsically complex and intricate dynamics and geometries 
Green� ������

There has been increasing recognition that complex mechanisms can produce simple ordered

structures at a larger scale� which contrasts with the complexity that is seen emerging from

simple processes� Investigation of such emergence has recently become popular� as attempts are

made to describe the development of simplicity from disorder� Thus observed simplicity and

complexity can both arise from either simple or complex mechanisms � as Cohen � Stewart


����� state� �complexity is one of the least conserved properties in the universe��

���� Modelling Approaches Applied in this Thesis�

�The choice is always the same� You can make your model more complex and more faithful to

reality� or you can make it simpler and easier to handle� Only the most naive scientist believes

that the perfect model is the one that perfectly represents reality� � Gleick ����

������ Introduction�

Before an ecological system is translated into a theoretical model or arti�cial system� an analysis

of known system features must be carried out� along with the questions to be investigated

The need for a spatial approach should also be assessed and� as with empirical studies� the

relevant scales � both spatial and temporal � determined before a model can be constructed� In

conjunction with identi�cation of the scales of the system� the level of aggregation of organisms
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in the model must also be chosen� such as individuals or populations� In all respects� the level

of detail should be decided�

These issues are summarised in the following sections along with their impact upon individual

models and� more broadly� on the �eld of theoretical ecology�

������ The Importance of Generality�

�Di�erences of opinion are obviously possible on the degree to which admittedly over�simpli�ed

theoretical models can explain some of the complex observational phenomena to be found in

nature� � Bartlett ����

�Whereas a good simulation should include as much detail as possible� a good model should

include as little as possible� � Maynard Smith ����

The optimal degree of generality in ecological modelling is a subject of considerable controversy�

In general there are two possible approaches which are here termed simulation and modelling


May� ������ A simulation involves condensing data to provide parameters for a detailed model

of a speci�c situation� The results of the simulation are usually tested against experimental

data and may then be used to predict future behaviour or examine other similar scenarios� In

contrast� a model is more general and has the aim of investigating mechanisms behind empirical

observations and providing a deeper understanding of the ecology�

Many terms are used to describe these alternative approaches� Simulation has been applied to

both types of study� the terms strategic� predictive and descriptive modelling and calculation

tools have been used for simulation� while modelling has been termed tactical� simple� abstract�

conceptual and general ��

There has been much discussion in the literature about the existence of generality in biology�


There have in fact been disputes about whether any search for generality in ecological studies

is a valid enterprise 
Bullock� ����� Judson� ����b��� The physical sciences are largely based

�Maynard Smith� ����� Carter � Prince� ����� Murdoch et al	� ����� Wissel� ����b� Judson� ����a� Weiner�

����	
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on general laws and the past few hundred years of modern science have involved the search

for general and unifying concepts� The great physical laws of the seventeenth to nineteenth

centuries� such as Newton
s laws of motion and the gas laws� have all been succeeded by more

detailed laws 
relativity� quantum mechanics and statistical physics�� However� they still hold

as valid approximations under a wide range of circumstances�

It is not� however� immediately obvious that there are similar general laws governing ecological

systems� Ecology is based on living entities� there is still a limited knowledge of the physiology

of individual biological organisms� their behaviour and interactions with the biotic and abiotic

environment�

Thus detailed mechanistic understanding is fundamentally harder to achieve in biological sys�

tems than in physics and chemistry� Nonetheless� the success of large scale physical approxi�

mations� such as Newton
s laws� despite exclusion of microscopic details� leads to some hope

that the equivalent holistic ecological laws� holding under �normal
 conditions and under certain

approximations� might be discovered�

The existence of general concepts � at least as approximations � must be assumed� otherwise

science itself is simply reduced to a colossal cataloguing endeavour� It is undeniable that some

basic and precise rules do exist� for example as Judson 
����a� states� �individuals always arise

from individuals
� but since there are more species and interactions than could ever be studied

and catalogued� there is a overwhelming need for information about the best general rules that

can be given�

There are many reasons for encouraging research into general ecological models� A general

model can be simple and comprehensible� so that its results are applicable over a wide do�

main and provide deep understanding 
Weiner� ������ Models may can be used to investigate

the factors causing systems to di�er in their behaviours and impossible mechanisms can be

quickly eliminated� Models sometimes produce counter�intuitive results and the subsequent

investigations can often lead to novel insights into systems� Also� general models are usually

straightforward to extend to alternative scenarios� as preliminary results provide new ideas and
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insights�

Simulations� on the other hand� tend to be phenomenological with little reference to mechanisms�

The inclusion of too many details may obscure understanding and restrict applicability to

a narrow range of systems 
Tilman� ���	� Wissel� ����b�� Thus the value of quantitative

predictions from complex simulations must be questioned� highly�parameterised models are not

powerful or reliable predictors 
Levin� ������ indeed a few dozen parameters 
as is commonly

found in ecology� can allow a mathematical prediction to be precisely �tted to almost any data�

Thus the overwhelming enthusiasm of many theoretical ecologists for quantitative precision is

often misplaced�

Detail in models is often confused with testability� Although �tting complicated equations to a

data set may appear to be a rigorous methodology� it often only demonstrates the applicability

of the mathematical representation� while providing no further biological insights and simple

model is often highly testable� Much can be learned from the qualitative patterns produced

by basic models 
Bence � Nisbet� ����� and it can sometimes be easier to validate a model in

qualitative terms� that is� it is often easier to see that a pattern is intuitively incorrect� compared

to assessing a certain error level� because the errors in a quantitative result vary continuously�

Accurate prediction by a simulation should not� however� be undervalued� it tends to be clear

when a simulation is providing a good description of a particular situation�

In spite of the fact that a model is simple� it may nonetheless capture a large proportion of the

biological behaviour underlying an observed dynamic� A basic rule�based approach may o�er

a more direct and enlightening description of the essential functioning of a biological system

than a complex equation�based representation which may be overly dependent on functional

form and parametric detail�

On the mathematical side� it is certainly common for models to become highly detailed and

involved in mathematical formalities� Although such cases may often have mathematical im�

portance� the relevance to ecology is likely to be minimal 
May� ������ Indeed many of the

criticisms of biological simulations also apply to the more mathematical end of the spectrum of
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modelling�

Criticisms are also made of abstract biological modelling� Many experimentalists reject models

because they have not been 
or cannot be� tested in any satisfactory way or because param�

eters may not have been derived from data 
Cousens� ������ In some cases the variables or

parameters of models are not properly de�ned and may be di�cult to relate to actual ecological

systems� A lot of the problems primarily arise from inadequate research and communication

skills of theoreticians and lack of rigour of written publications� There is also frequent misun�

derstanding of the purpose of models� which often aim to investigate the impact of fundamental

mechanisms� For example� values of certain parameters may not be signi�cant if they do not

critically a�ect dynamical behaviour� Models must not� however� be overly simplistic� as vital

heterogeneities may not be observed� such as in the many model systems which change their

behaviours substantially when spatial dimensions are added 
as seen for example in chapter ���

A balance must therefore be sought between simplicity and complexity in a model 
Albrecht�

����� Mauchamp et al�� ������ There is a role for detailed simulations in areas such as agricul�

ture and conservation� where predictions to guide environmental intervention and management

procedures are needed in the relatively short term� However� there is still a great need for

deeper understanding of ecological principles� so that conceptual and abstract modelling has

an important place in ecological research�

������ The Role of Individuals�

�Individual organisms hold� as basic units of ecological systems� more historical and biological

relevance than ��� more abstract entities� � Villa ����

It has already been noted that it is possible to describe ecological structure and functioning on

many levels� from individuals to the biosphere� Ecologists must select the scale and resolution

most appropriate to the questions being asked of their observations and models� Classical

ecological theory describes populations and� to a limited extent� multi�species communities�

Structure� such as age or size and spatial dimensions has been incorporated in later work
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section ����� but the essential uniqueness of the individual is still not recognised fully�

Through theoretical and� more importantly� technological advances there has been an increase

in the popularity of individual�based approaches and individual�based models 
IBM� 
DeAngelis

� Gross� ������ which allow the fate of individual organisms to be monitored over various time

scales� The individuals may have a range of phenotypic and genotypic parameters and variables

associated with them� such as age or size� behaviour and spatial location� Thus systems where

the uniqueness of the characters of individuals may be important may be described in this

explicit way�

The individual is an appropriate level for modelling for fundamental biological reasons� in�

dependent of technical arguments� Biologists know a lot about individual organisms� their

behaviours and characteristics� In a simplistic way� the empirical study of individuals is more

straightforward than populations and requires fewer initial assumptions prior to experimenta�

tion or observation� The advantages and disadvantages of the IBM approach are discussed in

more detail later 
section �����

������ The Spatial Dimension�

�diversity in space is often overlooked by ecologists� � Gleason ����

�most fundamental elements of ecology ��� exhibit spatial variation� � Holmes et al� ����

The overwhelming importance of space in ecology has long been recognised� The fundamental

role of space in ecological interactions was �rst noted in plant ecology� as plants are most

easily seen to in�uence the survival and growth of other nearby plants 
Pielou� ���	� Kareiva

� Andersen� ����� Ford � Sorrensen� ������ Gleason 
������ in a paper much ahead of its

time� focused on the importance of both the individual plant and the signi�cance of spatial

interaction in plant communities�

Although spatial studies of plants have been carried out for many decades� the emphasis was

long restricted to the classi�cation of spatial distributions at �xed times as regular� random
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or aggregated�� More wide�ranging experimental work and theoretical studies of plant popula�

tions eventually appeared� once suitable techniques� and in particular the computational power�

became available�� The advances towards spatial treatment of plant ecology were followed by

similar applications in other areas of ecology 
Kareiva� ���	� Tilman� ����� Kareiva� ����� such

as predator�prey systems�� host�parasite systems� and various competition scenarios�� as well

as other areas of biology� notably physiology and development��

The ecological basis for spatial modelling is very strong� The spatial heterogeneity of the

terrestrial environment is apparent to a casual observer on almost any scale 
Kareiva� ������

�Thomas� ����� Clark � Evans� ����� Pielou� ���
� Mead� ����� Diggle� ����� Ripley� ����� Simberlo�� �����

Ford � Diggle� ����� Galiano� ����� Heltshe � Ritchey� ����� Sinclair� ����� Sterner et al	� ����� Legendre �

Fortin� ����� Davis� ���
	
�Mead� ����� ����� Fischer � Miles� ���
� Ford� ����� Diggle� ����� Mack � Harper� ����� Gates et al	� �����

Aikman � Watkinson� ���
� Gates� ���
a� ���
b� Ford � Diggle� ����� Gates � Westcott� ����� Waller� �����

Weiner � Conte� ����� Barkham � Hance� ����� Gates� ����a� Liddle at al	� ����� Weiner� ����� Watkinson

et al	� ���
� Wixley� ���
� Cannell et al	� ����� Fowler� ����� Mithen et al	� ����� Renshaw� ����� Slatkin �

Anderson� ����� Weiner� ����� Firbank � Watkinson� ����� Hartnett � Bazzaz� ����� Holsinger � Roughgarden�

����� Pacala � Silander� ����� Peart� ����� Silander� Pacala� ����� Weiner� ����� Wu et al	� ����� Huston� �����

Pacala� ����� Penridge � Walker� ����� Smith � Goodman� ����� Schmid� ����� Crawley � May� ����� Firbank

� Watkinson� ����� Goldberg � Fleetwood� ����� Hobbs � Hobbs� ����� Lep�s � Kindlmann� ����� Mitchell�

Olds� ����� Bonan� ����� Co�n � Lauenroth� ����� Hara� ����� Kenkel� ����� Moloney� ����� Robertson et al	�

����� Inghe� ����� Kenkel et al	� ����a� Miller � Weiner� ����� Crawley� ���
a� Galitsky� ���
� Gurevitch et al	�

���
� Pacala � Silander� ���
� Weiner et al	� ���
a� Bonan� ����� Durrett � Swindle� ����� Iwasa et al	� �����

Pacala � Weiner� ����� Wissel� ����� Cz�ar�an � Bartha� ����� Ford � Sorrensen� ����� Moloney et al	� �����

Silvertown et al	� ����� Armstrong et al	� ���
� Bonan� ���
� Durrett� ���
b� Hochberg et al	� ����� Pacala �

Tilman� ����	
�Segel � Jackson� ����� Comins � Blatt� ����� Rothe� ����� Hastings� ����� Zeigler� ����� Leung� �����

Mimura � Murray� ����� Kishimoto� ����� Kareiva� ����� Kareiva � Andersen� ����� DeRoos et al	� ����� Sol�e

� Valls� ����� McCauley et al	� ���
� Wilson et al	� ���
	
�Hastings� ����a� Ludwig et al	� ����� Pacala et al	� ���
� Reeve� ���
� Sieburg et al	� ���
� Hassell et al	�

����� Sol�e et al	� ����a� Kretzschmar � Adler� ���
� Hassell et al	� ����� May� ����	
�Horn � MacArthur� ����� Cli�ord � Sudbury� ���
� Slatkin� ����� Shigesada et al	� ����� Mimura �

Kawasaki� ���
� Kishimoto� ����� Pacala � Roughgarden� ����� Hanski� ���
� Sol�e � Valls� ����a� Holmes et

al	� ����� Pacala � Tilman� ����	
�Lindenmayer ����a� ����b� Waddington � Cowe� ����� Murray� ����� Murray � Oster� ����� Smith et al	�

����� Wolfram� ����b� Cocho et al	� ����� Grindod et al	� ����	
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The various classi�cations of ensembles of ecological entities� such as populations� communities

and species� all frequently display heterogeneous distributions� on a range of scales 
Moloney�

������ The discrete character of individual organisms� together with their interactions� leads

to a natural spatial of habitats and resources 
Levin� ����� Tilman� ������ However� spatial

e�ects extend beyond the biological world� to include geophysical features such as landscape

topography� climatic variation and distribution of inorganic resources� These factors� while

being essentially physical� are integral components of any ecosystem and are found to interact

strongly with the living organisms in communities�

There are two facets of spatial heterogeneity in ecosystems� �rstly patchiness or gradients of the

external environment and secondly structure generated by intrinsic dynamics� �Environment


usually refers to physical factors� but in some scenarios biotic features are treated externally� as

when vegetation provides a background environment for animal communities� Intrinsic dynam�

ics are concerned with interactions of species and behaviour of individual organisms 
Ehrlich�

������ The two types of spatial heterogeneity have been referred to respectively as reactive and

interactive 
Davis� ������ or as exogeneous and endogeneous 
Clark� ������ Although the two

categories involve di�erent mechanisms� their development is highly interdependent� as shown

in the relation of tree species� water distribution and fauna in the forest system described in

chapter �� Thus any ecosystem will be structured by a complex dynamical interweaving of

environmental heterogeneity and intrinsic biotic heterogeneity 
Ives� ����� Jetschke� ������

The classi�cation into exogeneous and endogeneous mechanisms helps to underline the inade�

quacies of much spatial ecology� Most ecological studies that claim to tackle space explicitly do

so in a very restrictive way 
Kareiva� ���	� and only emergent biotic patterns are considered�

In a few examples environmental structure is imposed on communities� to study the e�ects

of heterogeneity on the behaviour of organisms� but on the whole there has been negligible

investigation of the inter�relationship of reaction and interaction in ecological space�

Shortcomings in theoretical spatial ecology are however far surpassed by those encountered

in empirical studies� There is a natural obstacle to the collection of meaningful spatial data�

��



the amount of information required in most cases is prohibitively large 
Kareiva � Andersen�

������ However� the use of new techniques� including image processing of satellite data and

a better understanding of sampling sparse or stochastic systems� will eventually improve not

only the availability of data� but also its relevance� The gap between simulated and real data

is highlighted in section ���	�

Through the consideration of space in empirical and theoretical studies� many ecological ideas

have had to be readjusted� One such concept is stability� Explicit inclusion of space in model

systems has frequently been demonstrated to in�uence stability 
Bascompte � Sol�e� ������ For

example� space has been shown to stabilise host�parasite and predator�prey systems 
Pacala

et al�� ���	� Tilman� ������ Although stability is a wide�ranging concept with a myriad of

de�nitions 
section ������� it is used here heuristically� in the sense of the ecological stability

of real systems� Other concepts are also a�ected by considering explicitly spatial e�ects� for

example� persistence is facilitated by spatial extensiveness� for example in insect populations�

likewise the time to extinction of ultimately unsuccessful species is increased 
Huston et al��

����� May� ������

A second commonly�cited result of the addition of explicit spatial variation to models concerns

coexistence� In Gause
s exclusion principle it is stated that two species competing for the same

resource cannot both persist� some degree of di�erential resource usage � niche or resource

partitioning � is necessary for two species to occupy the same habitat� The superior competitor

in a particular ecological niche will drive all others to extinction� Through spatial modelling�

however� it has been demonstrated that coexistence is easily achieved in a spatially extensive

situation	� A weaker species can persist by early colonisation in� or by superior migration

across� a spatial domain� spatiotemporal heterogeneity can therefore be considered an e�ective

strategy for survival 
M�uller et al�� ������ Thus space promotes competitive coexistence and

hence diversity 
Levin� ������ However� if space is regarded as a limiting resource 
Sol�e � Valls�

����a�� then coexistence in space is simply an extension of resource partitioning�

	Horn � MacArthur� ����� Slatkin� ����� Mimura � Kawasaki� ���
� Crawley � May� ����� Chesson� �����

Shorrocks� ����� Nee � May� ����� Pacala � Crawley� ����� Sol�e et al	� ����b� ����c	
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In section ���� the di�erent ways in which space may be represented in models in both the

biological and physical sciences is considered in detail� Various labels and classi�cations of

these models have been given in the literature� here the primary subdivision is into implicit

and explicitmodels� In implicit or patch models� space is represented by subdivision of ecological

systems as a representation of di�erent regions of space� In contrast� in explicit models� �xed

spatial locations are ascribed to individuals or populations� Explicit spatial models may be split

into two subclasses� continuous and discrete models� Space is treated as a continuum in explicit

continuous models and thus a partial di�erential equation representation is used� whereas in

discrete models space is dealt with in discrete units� A further division of discrete models may

be made into cellular automata 
CA� and coupled map lattices 
CML�� in which discrete and

continuous state variables 
such as population size� are respectively used� The background and

applications of implicit� explicit continuous and explicit discrete spatial models are described

in chapter ��

������ Summary�

�Knowledge is one� Its division into subjects is a concession to human weakness�� � Sir Halford

John Mackinder ����

The development of an ecological model depends on its purpose� the degree of generality must

be assessed and the suitability of approach 
such as individual�based� judged according to the

system� The need for implicit or explicit spatial dimensions in a model must also be evaluated

and the particular type of model chosen in line with its aims and the scales involved� For

example� the scales involved in a boreal forest are represented in �gure �a� which is adapted

from Schindler � Holling 
������ Di�erent models will be needed to describe the key processes

and phenomena� depending on the particular scales involved in the ecological problem being

addressed�

In the case of an annual plant monoculture� described in chapter � the model operates over a

single growing season� so that the relevant time scales lie between one day and one year� The

sessile nature of terrestrial plants and the consequent locality of interactions� together with the
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Figure �� Representation of the spatial and temporal scales� 
a� The key scales in a boreal

forest ecosystem� adapted from Schindler � Holling 
������ 
b� The key scales in the models

presented here� The scope of these scales are indicated in 
a� 
� � ���
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Chapter System Spatial Time Species IBM Model Computation

scale scale mobility type intensity

� plant small small sessile yes CML moderate

monoculture

� two species small large sessile yes CML high

plant

mixture

� plant small small � sessile yes CML moderate �

monoculture� large high

mixture

with explicit

resource

heterogeneity

� red grouse medium large motile yes arti�cial high

population ecology


extended

CA�

� forest large large sessile no CA moderate

mosaic

cycle

Appendix A genetical small large sessile yes CA moderate

plant

model

Table �� Summary of the key features of the model systems presented here�
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aim of the model to explore the population structure� point to a spatial IBM� A CML allows

the size of each individual to be found via a local mapping and the population structure thus

quanti�ed�

The annual monoculture model is extended to multiple seasons and two species in chapter ��

The computation is pushed to the limit of the available power by the extension of the time

scale� but use of the CML does allow insights into spatial structure to be gained�

An explicit resource base is then added to the plant CML model in chapter � and the implica�

tions of resource heterogeneity is investigated for the system� The CML is again particularly

suited to this� because of both its explicit and discrete treatment of space� which allows straight�

forward incorporation of environmental heterogeneity� Extension of the model to multiple years

again relies on highly intense computation� illustrating the current limit of such modelling� The

model is used to examine the correlation of seed size and nutrient availability and is shown to

produce clear results in this controversial area�

Other more complex problems can be addressed using CA and their extensions� for example

arti�cial ecologies 
AE�� This latter approach is used to study the territorial behaviour and

resulting population dynamics of the red grouse 
Lagopus lagopus scoticus� and is described in

chapter �� It has been strongly indicated by empirical observation that the spatial distribution

of grouse territories is in�uential on population dynamics� so the grouse system is ideal for a

spatial models� Also� since the purpose of the model is to study the territoriality of individual

grouse� an IBM is required� The motile nature of grouse� however� requires more than a CA with

simple static transition rules� the lattice cells contain individual birds� which can� naturally�

move around�

A CA is also used to explore another phenomenon � a forest mosaic cycle� described in chapter

�� The mosaic cycle has local succession events� which point to a spatial model� This system

involves far greater spatial and temporal scales than the other models presented here and

therefore much less intensive computation per unit space and time is demanded� A CA is thus

suggested which involves less computation given su�ciently simple rules� The large spatial
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scales rule out an IBM� so the lattice cells of the CA represent particular local communities

rather than individual trees�

A model of a plant community incorporating simple genetics is presented in appendix A� which

aims to investigate selection operating at di�erent stages of the life cycle� Although some results

are spurious� the model provides good illustrations of some aspects of spatial modelling� For

example� an AE is needed to enable the long time scales to be simulated� which are needed to

allow the observation of the selection of di�erent genotypes� However� the small spatial scales

and simple rules allow the model to be an IBM�

The systems and their models are illustrated in �gure �b and are also summarised in table ��

Figure �b is equivalent to the diagram of scales of Schindler � Holling 
����� 
�gure �a� and

illustrates the key scales involved in the models presented in this thesis�

The line separating CA and CML provides a good measure of computational intensity� with

CML near the line being very intensive� a similar e�ect is seen for the IBM�non�IBM line� A

CML can be used for the plant models of chapter � to res because the spatiotemporal scales

are relatively short � these are situated near the origin of �gure �� In contrast� the large scales

of the forest model of chapter �and the genetic model of appendix A� which are situated well

away from the origin of �gure �� mean that a simpler model must be used� In the case of the

forest model� with its large spatial scales� it is not possible to use an IBM�

��



�� Techniques in Spatial and Nonlinear Ecological

Modelling�

Chapter Summary

In this chapter� implicit and explicit models are discussed in more detail and

applications of these types of models in ecology and other biological disciplines

are reviewed�

The importance of spatial scales is addressed and the coherence length scale in�

troduced� which provides the optimal scale for a lattice model� where maximum

information is obtained about the dynamics� Various techniques for the quanti��

cation of spatial pattern are described� including the clumping index� a joint�count

statistic� introduced as a dynamic measure of patchiness and multifractal theory�

which provides a full quanti�cation of complex geometric scaling relationships�

An overview is presented of chaos and nonlinearity theory applied to ecology

and a method is described for measuring predictability in a chaotic system by

identifying the maximum Lyapunov exponent�

Finally� it is argued that individuals ful�ll a unique role in ecological systems and

individual�based models are asserted to be important for overcoming unsuitable

assumptions� such as perfect mixing in populations� Advantages and disadvan�

tages of the individual�based approach are presented and the conclusion drawn

that individuals should be modelled for a wide range of ecological situations�

���� Spatial Modelling in Ecology�

������ Introduction�

�spatial variation is as great or greater than temporal variation in most studies for which suitable

��



data are available� � Crawley ����a

In chapter � the importance of space was discussed from an ecological perspective and some of

the implications of incorporating spatial dimension into theoretical ecology were investigated�

The vital role played by space in modelling can be highlighted mathematically� A non�spatial

model possessing a single globally stable equilibrium is clearly unlikely to produce any more in�

teresting results in a spatial context than in the mean �eld� Once su�cient complexity is added

to produce at least two equilibria in the mean �eld	 a model is capable of intricate behaviour

when it is extended spatially
 the dynamics cannow have a range of possible outcomes	 includ�

ing uniform behaviour involving only one of the equilibria	 a stationary pattern combining two

or more equilibria and complex cyclic or chaotic spatiotemporal patterns of several equilibria�

The existence of multiple equilibria gives an indication that a model should be extended and

investigated over a spatial domain� Explicit spatial models exhibit an array of emergent phe�

nomena	 unattainable by classical mean �eld models �Durrett � Levin	 ���
a�� For example	

increasing the spatial domain a�ects the rates of di�usion and as di�usion can be shown to be

a bifurcation parameter	 space itself can be viewed as a bifurcation parameter� Increasing the

spatial extent of a model can produce bifurcations leading to chaos �Bascompte � Sol�e	 ���
��

The construction and applications of the di�erent types of spatial model introduced in section

����
 are now discussed�

������ Implicit Space � Patch Models�

�space must be taken into account in all fundamental aspects of ecological organisation� � Sol�e �

Valls ����a

Patch	 metapopulation or island models are an example of an early technique for representing

a spatially extensive species or community��� This class of models contains no explicit spatial

dimension	 but rather consists of identical coupled patches within which subpopulations or

subcommunities exist for majority of the time� The patches are linked by a pool of dispersers	

��Gadgil� ����� Hanski� ����� Hanski � Gilpin� ����� Hanski� ���	b� Moilanen � Hanski� ���	
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which are extracted from the patches at a speci�ed life stage ��gure �a�� Spatial subdivision

is thus implicit in the models� The models are based on the assumptions of total mixing and

equal accessibility of all patches
 fractions rather than distances of dispersal are monitored�

In basic patch models	 simple maps or di�erential equations are applied to the subpopulations	

describing average local birth and death rates	 plus given levels of dispersal between all patches�

Patch models represent ensembles of interacting populations	 where global behaviour is governed

by the balance between local extinction and establishment �Mangel � Tier	 ������ Dispersal acts

to prevent extinction	 initiate recolonisation of empty patches and damp global �uctuations�

A huge variety of extensions of the basic scheme have been developed	 for example where

intricate details of local interactions �Hastings � Wolin	 ����
 Chesson	 ����� and sophisticated

mechanisms of dispersal are modelled �Levin et al�	 ���

 Cohen � Levin	 ����
 Ludwig � Levin	

������

Although they can be criticised for being overly simplistic	 patch models o�er the advantage

of being analytically tractable in general� Ecologically signi�cant results have been obtained

from patch models in a number of areas of interest	 such as the stability of communities� Sub�

division has been shown to have various e�ects on stability in di�erent situations	 for example�

increased stability in patches��	 decreased stability�� and stabilisation or destabilisation de�

pending on system parameters �Vance	 ����� have been shown in many studies� For example	

a subdivided system stabilises predator�prey interactions �Crowley	 ����� but patches need to

�uctuate asynchronously	 which requires avoiding very severe coupling� There must be high

enough dispersal of both species	 but not too high predator dispersal	 as stability relies on the

prey species avoiding predation when it is rare�

Persistence of species has also been studied with patch models �DeAngelis et al�	 ����
 Adler �

Nuernberger	 ���
�� Su�ciently large patches are required for persistence �Hanski	 ���
a�	 with

enough migration between patches �Reeve	 �����	 but not too much �Hanski � Zhang	 ����� �

��Crowley� ����� Zeigler� ����� Hastings� ����b� Chesson� ����� Hastings � Wolin� ����� Gonzales�Andujar

� Perry� ���



��Hastings� ����� Kareiva� ����� Reeve� ����� Hastings� ����� Wilson� ����
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Figure �� Representation of di�erent types of spatial model� �a� Implicit or �patch� model with

global dispersal between local subpopulations� �b� Explicit continuous or �reaction�di�usion�

model with local interactions and dispersal� �c� and �d� Explicit discrete models� �c� Cellular

automaton with local probabilistic transitions of the local unit type	 which may be an individual	

subpopulation or local community� �d� Coupled map lattice with a mapping of local interaction

and dispersal and possible global dispersal�
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corresponding to conservationists� intuition that spatial restriction leads to fragility in ecosys�

tems� The greater tendency of laboratory populations to die while natural populations survive

can also be explained by global stability arising through loosely�coupled replicate populations

�Taylor	 ������

Good examples of natural systems which have patchy distributions	 such as the white�footed

mouse of Fahrig � Merriam ������	 are often studied by conservation biology� this is probably

because fragmented habitats � such as ponds and rock pools �Bengtsson	 �����	 hill tops	 islands

�Holt	 ����� and patchy vegetation �Fahrig � Merriam	 ����
 Kareiva	 ����� � provide particular

challenges in conservation	 as demographic stochasticity has a greater impact in subdivided

populations and 	 as has been suggested	 the low genetic variability in small populations might

lead to greater risk of extinction �Caro � Laurenson	 ���
�� Patch models have also been used

to show that lower collective risk of subdivided populations can in fact lead to more stable

communities �Fahrig � Merriam	 ����
 Doak et al�	 ������

Following on from the stability of communities is the subject of stable competitive coexistence	

which is a popular application of patch models� It has been demonstrated in many spatial

studies that an inferior competitor can survive if it is also a good colonisor �Hastings	 ������

Coexistence is allowed by subdivision of the population together with su�cient disturbance

of the superior competitor and dispersal of the inferior competitor� It has been shown by

single�species patch models that a non�zero proportion of patches may be vacant because of

demographic stochasticity� Empty patches or refuges are then available for other species that

are able to exploit them� Thus subdivision promotes coexistence	 or can allow more species

to coexist �Hastings	 ����
 Wilson	 ������ Models that have been studied include those for

predator�prey systems �Hastings	 ����
 Leung	 �����	 host�parasitoid systems �Pacala et al�	

����
 Kretzschmar � Adler	 �����	 fungi �Armstrong	 �����	 plant systems �Elderkin	 ����


Motro	 ����a
 ����b
 Kadmon � Schmida	 �����	 competition with coexistence promoted by

predation �Slatkin	 ���

 Hastings	 ����a�	 competition with coexistence promoted by environ�

mental heterogeneity �Horn � MacArthur	 ����
 Chesson	 ����
 Pacala � Tilman	 ���
� and

competition with coexistence promoted by spatial	 temporal and spatiotemporal environmental

��



variation �Chesson	 ����� or disturbance �Levin � Paine	 ���
��

A signi�cant limitation of the patch model concerns scale e�ects� The construction of a patch

model imposes a scale on the system	 rather than allowing characteristic scales to emerge as

an intrinsic feature �McCauley et al�	 ������ The imposed scale may not be appropriate to

the system so that intermediate scale e�ects may not be represented �Caswell � Etter	 ������

By using explicitly spatial models	 heterogeneities can arise naturally and the scale of patchy

phenomena is determined by the dynamics rather than by being speci�ed�

������ Explicit Continuous Space � Reaction�Di�usion Models�

�space has a key e�ect in controlling the dynamics of the populations that di�use in it� � Bas�

compte � Sole�e ���


While certain ecological systems are inherently patchy	 others	 especially marine systems	 exist

in relatively homogeneous environments or display continuous environmental gradients� Such

situations motivate explicit treatment of spatial dimensions� Space as a continuum is mod�

elled by partial di�erential equations	 which are often referred to as reaction�di�usion �RD�

systems �Levin � Segel	 ����
 Holmes et al�	 ���
�� In ecological terms	 the reaction is the

local population dynamic and the di�usion is the regional or global dispersal of populations

��gure �b��

The key result of RD theory is the emergence of spatiotemporal patterns by the mechanism

of dispersive or di�usive instability� If a stable uniform equilibrium exists in the absence of

di�usion	 then spatially inhomogeneous patterns may arise through instabilities driven by

di�usion��� The necessary conditions for the existence of non�uniform patterns have been

addressed in many studies� A class of systems admitting such heterogeneities involve activator�

inhibitors �Tsonis et al�	 �����	 which contain appropriate feedback mechanisms	 where the

activators and inhibitors are	 for example	 chemicals or competing species� The original paper

addressing this phenomenon concerns morphogenesis �Turing	 ����� and much further work

��Segel � Jackson� ����� Evans� ����� Cohen � Murray� ����� Murray� ����� McLaughlin � Roughgarden�

����� Maini� ���
a
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with spatial di�erential equations in developmental biology has subsequently been done���

Further applications in physiology include development of feather	 shell and scale patterns

�Murray et al�	 ����
 Murray � Oster	 ���

 Meinhardt � Klingler	 ����
 Cruywagen et al�	

���
�	 animal coat markings��	 cell chemotaxis �Grindod et al�	 ����
 Murray	 ����a�	 modelling

of the nervous system �Swindale	 ����� and tumour growth �Chaplain	 ����
 ���
�� Wound

healing is also an interesting and highly applicable example of RD modelling� Understanding of

the biochemical mechanisms by which wounds are dealt with by an animal has been increased

and the optimal geometries for surgical incisions for minimal scarring have been explored with

these approaches �Murray � Oster	 ���

 Murray	 ����b��

Following on from the studies of spatiotemporal RD patterns in physiology have come ecolog�

ical RD systems��	 where applications have included predator�prey	 plant�herbivore and host�

parasite systems��� As with patch models	 continuum models have produced many results on

competitive communities and in particular the promotion of coexistence and stability by spatial

extensiveness�	 	 with results being sensitive to the size of spatial domains� Another example

from physiology illustrates this domain dependence well� Pattern formation in mammalian

coats has been shown to re�ect the size of the animal� As the size increases a transition is seen

between uniform colours and spots �Murray	 ����a�� Similarly	 postulated mechanochemical

processes in the model explain the existence of animals with spotted bodies but striped tails	

with the need for only a single mechanism acting in the di�erent geometries �Murray	 ����c��

A second phenomenon concerns the existence of spatial wave solutions� These are of two

types� travelling waves and kinematic waves �Murray	 ������ Travelling waves result from

��Maginu� ����� Murray� ����� Murray � Oster� ���	� Murray� ����� Maini� ���
b� ���	


��Bard� ����� Murray� ����� Murray � Oster� ���	� Murray� ����� Savi�c� ����

��Levin � Segel� ����� Rothe� ����� Mimura � Murray� ����� Shigesada et al
� ����� Evans� ����� Mimura �

Kawasaki� ����� Cohen � Murray� ����� Kishimoto� ����� ����� McLaughlin � Roughgarden� ����

��Segel � Jackson� ����� Comins � Blatt� ���	� Levin � Segel� ����� Rothe� ����� Mimura � Murray� �����

Ludwig et al
� ����� Kishimoto� ����� McLaughlin � Roughgarden� ����

�	Levin� ���	� Hastings� ����b� Ludwig et al
� ����� Shigesada et al
� ����� Mimura � Kawasaki� ����� Namba�

����� Kishimoto� ����� ����� Shigesada � Roughgarden� ����� Murray � Sperb� ���
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the transition between two stable equilibria of a non�spatial model	 which occurs as di�usion

or convection is added
 kinematic waves arise from coupling of oscillators� A travelling wave

moves through space without changing shape	 whereas a kinematic wave deforms through space

and time� While simple di�usion leads to wave propagation at extremely slow speeds	 which do

not allow the level of information transfer observed in ecological or physiological systems	 the

addition of coupled local reaction dynamics increases wave speeds by many orders of magnitude	

to realistic biological levels�

A wide range of wave solutions in spatial biological systems have been studied�
� ecological

applications generally concern waves of invasion of species or waves of pursuit and evasion in

predator�prey systems	 while epidemiology considers waves of disease or pathogens� The stan�

dard example of an oscillating system with spatial wave patterns is the Belousov�Zhabotinsky

�BZ� reaction	 a relatively straightforward chemical reaction which displays intricate spiral wave

patterns �Zaikin � Zhabotinsky	 ����
 Winfree	 ���

 Hagan	 ����
 Roux et al�	 ������ Speci�c

ecological examples include the spread of the grey squirrel �Okubo et al�	 �����	 the spread

of rabies in foxes �Murray et al�	 �����	waves of herbivores �Lewis	 ���
�� and the activities

of colonies of social amoebae	 such as the slime mold Dictyostelium discoideium	 that exhibit

spiral waves via chemotactic mechanisms���

While most models here involve the emergence of spatial patterns and other phenomena in

homogeneous environments	 a few studies have considered heterogeneous environments �Mc�

Laughlin � Roughgarden	 ����
 Shigesada et al�	 ����� and environmental gradients �Comins

� Blatt	 ���
�� In addition to its role in the production of patterns in uniform environments	

di�usion has been shown to be an ampli�er of pre�existing heterogeneities �McLaughlin �

Roughgarden	 ������

�
Skellam� ����� Maginu� ����� Murray� ����� Britton� ����a� Dunbar� ���
� Nagai � Mimura� ���
� Murray�

����

��Keller � Segel� ����� Britton� ����a� Hagan� ����� Monk � Othmer� ����� Goldbeter� ���
� Martiel� ���
�

H�ofer et al
� ����
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������ Explicit Discrete Space � Lattice Models�

�Knowledge of cellular automaton behavior may then yield rather general results on the behavior

of complex natural systems� � Wolfram ���
b

RD techniques do	 however	 have some inadequacies	 as local demographic stochasticity is ig�

nored and densities are considered rather than individual organisms and their local spatial

correlations� Also	 although di�erential equation techniques can provide precise and sometimes

analytically tractable descriptions of ecological systems	 non�analytical cases can be compu�

tationally intensive� Environmental heterogeneities may be di�cult to incorporate in models	

even in purely numerical simulations� Often a discrete treatment of space is more appropriate�

Any simulation using a digital computer naturally involves the discretisation of all variables	

but solutions to a di�erential equation system aim to minimise e�ects of discretisation� An

alternative approach is to treat discretisation as an intrinsic part of the model	 enabling larger

systems to be simulated at higher speeds�

As described in section ����
	 there are two main classes of such models� cellular automata �CA�

where space	 time and state variables are all discrete and coupled map lattices �CML� which have

discrete space and time but continuous states� Each consists of a grid or lattice of cells �usually

rectilinear	 but occasionally triangular or hexagonal��� in one	 two or more dimensions �Vicsek

� Szalay	 ����
 Langton	 ����
 Sol�e et al�	 ����b�	 with each cell having a speci�ed state� The

cells can represent any level in the hierarchy of biological organisation	 from genes �Kau�man	

����� and cells �Bignone	 ����� through individual organisms �Inghe	 ����� to communities and

ecosystems �Wissel	 ������ The states change over discrete time steps	 according to the local

and global cell state con�gurations� Thus CML models are basically equivalent to CA models

with an in�nite number of states� However	 the motivation behind the two types of model arise

from di�erent sources�

CA are fundamentally rule�based	 with certain con�gurations of neighbouring cell types causing

particular transitions of the focal cell state ��gure �c�� Early CA were deterministic �Wolfram	

��Mead� ����� Othmer � Scriven� ����� Kitagawa� ���	� Diggle� ����� Weiner � Conte� ����
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�����	 with all state transitions depending rigidly on the state space con�guration� Later models

have tended to be probabilistic	 incorporating the demographic and environmental stochastic�

ities of the natural world� Stochasticity in the dynamics is needed to give realistic modelling

of ecological systems	 but the required generation of random numbers is computationally in�

tensive	 so that probabilistic CA are intrinsically slower than their deterministic counterparts�

CA rules may be abstractions from more complex mathematical models	 via discretisation and

aggregation	 or alternatively	 the rules may be a formalisation of verbal �or linguistic �Salski	

������ statements of mechanisms�

In contrast to CA	 CML consist of local maps	 relating a cell state at a given time step to the

state of itself and neighbours �and perhaps the state of the whole lattice� at the previous time

step ��gure �d�� Such maps often arise as a discretisation of ordinary di�erential equations plus

di�usive terms� Early examples of CML consist of small grids of ordinary di�erential equations

or �reaction and transport processes in groups of intercommunicating cells� �Othmer � Scriven	

������

Another source of discrete spatial models is the extension of patch models� In these cases

subpopulations are given �xed coordinates in space and local exchanges of populations take

place between nearby groups	 in contrast to the global dynamics of the implicit patch models�

Such models have been termed stepping stone models in various papers �Kareiva	 ����
 Sawyer	

�����	 but these are essentially CML� The state variables of the CML are generally the numbers

or frequencies of certain species or other groups at each location� Thus CML are either spatially

discrete versions of continuum systems or spatially explicit patch models	 whereas CA can be

often considered heuristic �Ermentrout � Edelstein�Keshet	 �����	 being based on a few simple

rules and a �nite set of states�

Although in some respects lattice models are less precise than RD systems and are largely non�

analytical �Caswell � Etter	 �����	 they o�er many advantages and have many uses� A simple

lattice can be used	 for example	 to rule out impossible mechanisms
 this is because a change

in CA rules or CML maps may lead to signi�cantly di�erent spatial patterns� Such qualitative

��



di�erences may be su�ciently clear to allow identi�cation of essential mechanisms and rejection

of incorrect hypotheses� Similarly lattice models may be used for parameter testing	 for quick

identi�cation of qualitative changes in system behaviour over a range of parameter values �Iwasa

et al�	 ����
 Thi��e�ry et al�	 ������ In the words of Caswell � Etter ������ this type of model

�lays bare the factors determining the dynamics��

Thus these models are important because they are easy to implement and fast to run	 provid�

ing rapid feedback� Some authors	 however	 prefer to view CA and CML as the �rst stage in

simulating complicated natural systems �Ermentrout � Edelstein�Keshet	 ������ Early use of

lattices in modelling the physical world did indeed view the discretisation as a rapid approxi�

mation for continuum systems� Now lattices are seen as models in their own right and are used

both to model speci�c systems and to promote general understanding �the paradigm systems

of Hogeweg ��������

�a� Cellular Automata�

CA were originally conceived in the ��
�s by Von Neumann and Ulam as idealisations of biolog�

ical systems �Wolfram	 ������ Alternative terms for these models have included cellular spaces

�Kitagawa	 ���
�	 tessellation automata	 cellular structures	 iterative arrays	 and automata the�

oretical models �Herman	 ������ Early research was focused on the possibility of the existence

of self�reproduction and universal computation �Gardner	 ������

The late ����s saw the development of the automata game Life by Conway �Gardner	 ������

This simple CA consisted of only two states �on�o�� and a small set of rules governing the

birth and death of on states	 but intricate patterns and complex dynamics were easily observed�

These tied in with the concept of self�organisation	 with simple local components resulting in

the emergence of complex global structures �Wolfram	 ���
b��

The popularity of automata models shadowed the increased accessibility of computing power�

The personal computer revolution was accompanied by widespread interest by individuals in

simple models such as Life	 while the more recent development of supercomputers directed

��



research into massive CA with many states and complex rules�

By the ����s the properties of general CA had been described and classi�ed	 chie�y by Wolfram

and co�workers	 �rst in one �Wolfram	 ���
a� and later in two and more dimensions �Packard �

Wolfram	 ���

 Chat�e � Manneville	 ����
 Wolfram	 ������ Four universality classes were iden�

ti�ed for one�dimensional CA� spatial homogeneity �independent of initial conditions�	 stable or

periodic heterogeneous patterns �strongly dependent on initial conditions�	 chaotic �aperiodic�

patterns and complicated localised patterns �Wolfram	 ���
a
 ���
b�� Similar classi�cations

applied in two dimensions �Packard � Wolfram	 ���
��

The fourth universality class is particularly interesting� Also termed crystal lattice patterns

�Hassell et al�	 ����� or simply complexity �Judson	 ���
a�	 this type of CA represents sophis�

ticated self�organisation	 where regular structures emerge from random initial conditions and

complex patterns arise from simple rules� The realisation that CA can generate a �rich array of

complex spatiotemporally organized behaviors� �DeAngelis � Gross	 ����� or �dramatic global

spatiotemporal patterns� �Caswell � Etter	 ����� has led to a gradual increase of interest in

CA for both abstract research and detailed ecological simulations�

Nowak and May have emphasised the aesthetic appeal of such lattice models� �the patterns

show every lace doily	 rose window or Persian carpet you can imagine� �Nowak � May	 ����


May	 ������ Although undue enthusiasm for aesthetics should be avoided	 it is perhaps the

similarity of biological and computational patterns that may yet reconcile theory and simulation

with empiricism and the natural world� The attraction to the �eld ecologist of patterns and

intricacies in nature must surely arise from instincts similar to those causing geometric patterns

in an arti�cial world to appeal to the theoretician�

The rules of CA are based on a cell neighbourhood	 which consists of the neighbouring cells of

a given focal cell� The simplest class of CA have rules which depend only on the sum of the

states of the neighbourhood
 such totalistic CA include Life� More complicated systems can

involve directional rules	 where transitions between states of the focal cell depend on the states

of neighbours in speci�c directions �chapter �and �gure ����

�




The neighbourhood used in a CA varies in shape and size� In a two�dimensional square lattice

the basic Von Neumann neighbourhood consists of the four nearest neighbours �Cocho et al�	

����
 Silvertown et al�	 ����
 �gure ��� Several models use the extended Moore neighbourhood

which contains the eight nearest neighbours �Gardner	 ����
 Wissel	 ����
 Sol�e � Bascompte	

����
 Hochberg et al�	 ���

 �gure ���� More sophisticated models have used neighbourhoods

with twelve or more cells �Inghe	 ����
 Takahashi	 ����
 Iwasa et al�	 ����
 Thi�ery et al�	 �����	

or may even have random neighbourhoods �Keeling � Sheppard	 ���
��

A generalisation of CA allows each lattice cell to represent an individual organism free to

move around the lattice	 interacting with other individuals� Such a model has been termed an

interacting particle system �Durrett	 �����	 a lattice gas model �Ermentrout � Edelstein�Keshet	

����� or an arti	cial ecology �McGlade	 ����
 McGlade et al�	 ���

 Rand � Wilson	 ������

Arti�cial ecologies are ideally suited to studies in behavioural ecology	 for example foraging

behaviours and insect movements �Rohlf � Davenport	 ����
 Ermentrout � Edelstein�Keshet	

����
 Keeling	 ������

Most CA have synchronous updating	 which means that all lattice states are iterated at the

same time	 as functions of the previous time step�s state� It should however be noted that

a few systems are asynchronous	 where the cells change at varying �perhaps random� times

�Kitagawa	 ���

 Gunji	 ����
 Sieburg et al�	 �����	 but most systems are little a�ected by the

method of updating �Keeling	 ������

Except for a few simple analytical studies	 most CA are run on �nite lattices� This means

that treatment of the lattice edges must be speci�ed� There are several alternative scenarios

�Haefner et al�	 ������

With zero 
ux boundary conditions	 complete isolation of the system in a vacuum is assumed� no

organisms	 energy or information can �ow across the boundaries� Such conditions are frequently

used in plant studies	 often with a bu�er zone around the edge of the lattice �Davis	 ������

Dynamics and statistics are studied using the centre portion of the grid and a band of cells

around the edge is excluded from consideration� However	 it is sometimes of interest to study

��



explicitly the e�ects of edges and so the outer cells are intentionally included in all measurements

of the grid�

A second possibility is re
ecting boundaries �Mitchison	 �����	 which assumes that the same

states are present outside the grid as inside	 as if re�ected in each edge� These conditions are

unlikely to be realistic in situations which involve either imposed or emergent heterogeneities	

which will be most systems to which lattice models are applied�

A third and increasingly popular option is periodic or toroidal boundary conditions �Cox �

Gri�eath	 ����
 Crawley � May	 ����
 Inghe	 ������ Here the lattice forms a torus	 with

�in two dimensions� the left and right sides being joined and likewise the top and bottom�

Edge e�ects can thus be eliminated	 but only if the lattice is su�ciently large	 This issue is

investigated by the use of characteristic length scales in section ������ Toroidal boundaries are

used here throughout�

In this thesis CA have been used to re�examine problems where other spatial modelling tech�

niques have been previously employed	 for example plant growth and competition��	 forest

systems�� and fungal communities �Halley et al�	 ���
�� To help understand further the ef�

fects of space in ecological systems	 various population dynamics have been modelled using

CA �Molofsky	 ���
�	 including predator�prey and host�parasite interactions��	 invasion dy�

namics �Cli�ord � Sudbury	 �����	 Drosophila populations �Dytham � Shorrocks	 ����� and

epidemics �Durrett	 ����
 Yakowitz et al�	 ����
 Durrett	 ����a
 ����b�� Other biological ap�

plications have included physiological pattern development such as mollusc patterns	 genetics

and immunology��� The topics of coexistence	 stability and persistence all appear in many of

��Barkham � Hance� ����� van Tongeren � Prentice� ����� Crawley � May� ����� Co�n � Lauenroth�

����� Inghe� ����� Durrett � Swindle� ����� Silvertown et al
� ����� Colasanti � Grime� ���
� Dytham� ���	�

Hochberg et al
� ���	� Thi�ery et al
� ����

��Hogeweg� ����� Bak � Chen� ����� Iwasa et al
� ����� Wissel� ����� Armstrong� ���
� Durrett � Levin�

���	b� Sol�e et al
� ���	� Sol�e � Manrubia� ����

��DeRoos et al
� ����� Hassell et al
� ����� McCauley et al
� ���
� Wilson et al
� ���
� Sat�o et al
� ���	�

Keeling� ����

��Lindenmayer� ����a� ����b� Kau�man� ����� Waddington� Cowe� ����� Mitchinson� ����� Burks� Farmer�

���	� Smith et al
� ���	� Cocho et al
� ����� Coniglio et al
� ����� Gunji� ����� Kougias � Schulte� ����� Sieburg

��



the studies	 as with the other types of spatial models�

In many CA studies the emphasis has been on the identi�cation of patterns and qualitative

behaviours �Wolfram	 ���
b
 DeRoos et al�	 ����
 Silvertown et al�	 ����
 Sol�e et al�	 ���
�	

including clustering e�ects��	 wave phenomena �Iwasa et al�	 ����
 Halley et al�	 ���
� and

chaotic behaviour �Hassell et al�	 ������ Responses to disturbances have been particularly

widely studied in plant communities and in systems subject to �re or pest outbreaks���

�b� Coupled Map Lattices�

CML evolved in a much more gradual way than automata models	 as they were not so much

a new concept as a spatial extension of patch models� Small networks of ordinary di�erential

equations were used in the ����s and ����s �Mead	 ����
 Othmer � Scriven	 ����
 ���
�� In

the ����s the theory of �nite and in�nite lattices was developed	 largely by Kaneko ����



����
 ����
 ����� for simple examples such as the logistic map in one and two dimensions�

In particular the existence of spatiotemporal chaos and other complex patterns in CML was

demonstrated and the correspondence of such phenomena with structures in CA was shown in

several studies �Kaneko	 ����
 Hassell et al�	 ����
 Chat�e � Manneville	 ������

The geometric structure of CML is similar to that of CA and neighbourhoods of various sizes

have been used	 including Von Neumann �Chat�e � Manneville	 ����� and Moore neighbour�

hoods �Sol�e � Bascompte	 ������ Some CML also involve global dynamics	 for example organ�

isms may sometimes disperse evenly over the entire grid� The same boundary conditions can

be applied to CML as to CA
 both periodic boundaries �Othmer � Scriven	 ����
 Diggle	 ����


Kaneko	 ���

 Sol�e � Valls	 ����b� and zero �ux conditions �Mead	 ����
 Kaneko	 ����
 Sol�e

� Valls	 ����
 ����a� are commonly used�

The sessile nature of plants	 trees	 algae and corals have made these communities suitable and

et al
� ����� Stau�er� ����� Qi et al
� ���



��Barkham� Hance� ����� Weiner � Conte� ����� Cox � Gri�eath� ����� Wissel� ����� Hochberg et al
� ���	

��Co�n � Lauenroth� ����� Bak � Chen� ����� Inghe� ����� Wissel� ����� Hochberg et al
� ���	� Rand et al
�

����
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popular subjects for CML techniques�		 but motile organisms have also been modelled	 including

Lotka�Volterra and host�parasitoid systems�
� As with implicit and continuous models	 CML

results have been used to demonstrate spatial promotion of coexistence and stability��� Many

CML studies have been focused on the formation of spatiotemporal patterns in the lattices	

including spirals and chaotic structures�� �

����	� Spatial Scales in Ecological Models � The Coherence Length Scale�

�Man masters nature not by force but by understanding� � Jacob Bronowski ����

�a� Introduction�

Ecological processes in a �nite region take place on many di�erent spatial scales �section �����

The construction of discrete explicitly spatial models brings the issues of scaling to the forefront	

as various scales are necessarily imposed on the system by the implementation of the model�

Three imposed length scales arise from a discrete lattice� The smallest of these is the cell size	

which may be related to the size	 or area of direct in�uence of a sessile organism	 or the space

covered by a motile individual in a small time interval� Secondly	 the neighbourhood size	 usually

de�ned in terms of the cell size	 is the range over which biological interactions occur
 this often

consists of four or eight cells� The largest imposed scale is the system length	 N 	 so that the

total number of cells is N��

In addition to the imposed scales	 there is an emergent length scale	 at which the dynamics aris�

ing from the system progress� This is usually approximated by the classical correlation length	

which is the separation distance at which any two sites are uncorrelated� Several techniques

exist for determining correlation lengths	 but these tend to be di�cult and de�nite results are

�	Mead� ����� Diggle� ����� Auld � Coote� ����� Karlson � Jackson� ����� Weiner � Conte� ����� Gates�

����� Hobbs � Hobbs� ����� Green� ����� Moloney et al
� ����� Pacala � Tilman� ���	

�
Hassell et al
� ����� Sol�e � Valls� ����� Comins et al
� ����� Sol�e � Valls� ����a� Sol�e et al
� ����a� ����c�

Sol�e � Bascompte� ���
� Hassell et al
� ���	� Keeling� ����

��Karlson � Jackson� ����� Hassell et al
� ����� Sol�e et al
� ����a� Sol�e � Bascompte� ���
� Bascompte �

Sol�e� ���	� Hassell et al
� ���	

��Othmer � Scriven� ����� ���	� Kaneko� ����� ����� Hassell et al
� ����� Sol�e � Valls� ����� Moloney et al
�

����� Sol�e et al
� ����b� Bignone� ���
� Hassell et al
� ���	� Bascompte � Sol�e� ���	� Sol�e � Bascompte� ���	
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not always forthcoming� Here a new length called the coherence length scale	 nc	 is introduced�

Within regions �or subgrids� of length signi�cantly below nc	 the states of individual cells are

strongly correlated� Disjoint regions of a size much larger than nc are statistically independent�

It is usually desirable to perform computations using grids of around the coherence length

for two reasons� Firstly	 if the system is smaller than nc	 strong coupling obscures the true

dynamics	 particularly in a toroidal system
 if a larger system is used	 any dynamics will be

averaged out and so more di�cult to detect� Secondly very large grids will also inevitably be

accompanied by excessive computational times� The length scale problem has been addressed

by a few authors�� but a widely applicable and robust technique has yet to be developed�

A method is presented here for determining the coherence length scale of a lattice�based model	

using the analysis of errors arising from locally�coupled interactions�

�b� Mathematical Theory�

The identi�cation of the coherence length scale	 nc	 can be approached by analysing the errors

arising from spatial aspects of a model� It is assumed here that the model is such that the

dynamics tend towards a statistically stationary distribution� This means that on any subgrid

of size n there is a time independent probability ���� that the con�guration � will occur	 after

time t� when transients have passed� The state xi��� of cell i can be mapped by an observable

function F to a real number F�xi����� For any con�guration � the spatial average of the

observable on the subgrid	 �Fn���	 is calculated at time t as�

�Fn���t�� �
�

n�

X
cells i

F�xi���t����

Assuming statistical stationarity	 the long term time average h �Fi is given by�

��Wiens� ����� DeRoos et al
 ����� Wissel ����� Levin ����� Rand � Wilson ����


��



h �Fi �
X
�

�Fn������� � lim
T��

�

T

t��TX
t���

�Fn���t���

The in�nite limit must	 of course	 be approximated	 but a value of several thousand is usually

su�cient for T � If an insu�cient number of iterations is used then the error function	 de�ned

below	 will not tend to zero as n tends to in�nity� The error function	 En	 is de�ned in terms

of the �uctuations of �Fn about h �Fi �equation �����

E�n �
�

T

t��TX
t�t���

�
�Fn���t�� � h �Fi

��
���

It is postulated that En satis�es the central limit theorem �CLT� for large n� The CLT �Rosanov	

����� is a fundamental theorem of probability theory and may be expressed as follows� Given

� random variables �i �i � �� �� � � � � �� with �nite means and variances	 the sum�

S� �
�X

i��

�i�

may be normalised to give the sum in equation ���	 where E��� and var��� are respectively the

mean and variance of random variable ��

S�� �
S� � E�S� �p

var�S��
���

Then the random variables satisfy the CLT if�

lim
���

S�� � N ��� ���

that is	 S�� approaches a standard normal distribution with mean � and variance � as � becomes

large� This may now be applied to En by identifying �i with the scaled observable function�


�



Sn� �
n�X
i��

F�xi�

n�
�

The mean E�Sn� � of the sum Sn� may be approximated by h �Fi� Thus�

E�n �
D
�Sn� � E�Sn� ���

E
�

which from equation ��� gives�

E�n �
D
var�Sn�� S

�
n�

�
E
�

Two simple lemmas give that var�a�� � a�var��� for constant a and var�� � �� � var��� �

var��� for independent random variables � and �� From these results�

var�Sn� � � var

�
� n�X

i��

F�xi�

n�

�
A �

�

n�
var

�
� n�X

i��

F�xi�

�
A �

If the observables	 F�xi�	 are taken to be identical independent random variables with variance

	�	 then�

var�Sn�� �
�

n�

n�X
i��

var�F�xi�� �
�

n�
n�	� � �

n�
�

This arrives at the conclusion that�

E�n �
�
	�

n�
S�n�

�

�

and hence�


�



En � �

n
N ��� ���

Given that the expected deviation from � of a N ��� �� normal distribution is �	 the error varies

as the inverse of the length scale	 n �the size of the subgrid�� This result can only be derived

from the CLT by assuming n �and hence N � is large� However	 the proof of the CLT depends

on Stirling�s formula�

z� �
p
�
zzze�z as z ���

Through the examination of the higher order terms of Stirling�s series for the factorial function

�Arfken	 ����� the degree of inaccuracy for smaller z may be estimated �equation ����� The

derivation of the variation of En uses the CLT in terms of n�� Putting z � n� in equation ���

shows that the inaccuracy is well below �� for a subgrid as small as �� �� Hence the error can

be assumed to vary as �
n
at all but the very smallest scales� This theoretical error for random

variables with given variance may now be denoted by E �n�

z� �
p
�
zzze�z

	
� �

�

��z
�

�

���z�
� � � �



���

The error	 E �n	 applies to random variables with a distribution given by an in�nite lattice� On

small subgrids �� � n � nc�	 the absolute error En will be smaller or larger than E �n	 but at

large scales �n � nc� the error will approach E �n asymptotically� Thus	 by �tting a k
n
curve to

En �where k is a constant� for n � N 	 the coherence length scale nc can be estimated as the

value of n where En �rst meets the �tted curve�

If En � E �n for n � nc there is a greater error that that expected for the distribution on

the in�nite lattice	 so there is aggregation of mass or individuals � positive spatial coherence�

If En � E �n there is less aggregation
 this situation is termed negative spatial coherence here�

Further information is obtainable from the gradients of the error curve� If En does not decrease


�



as fast with n as does E �n	 that is�

� �

En

n

�

E �n

n

� ���

then there is a aggregating tendency	 as mass or individuals accumulate in clumps� In contrast	

if the interactions are such that mass or similar individuals tend to move apart �disaggregation�	

then�

�� �

E �n

n

�

En

n

�

Thus positive or negative coherence may be identi�ed at scales below nc	 as well as aggregating

or disaggregating tendencies as the scale of observation is varied� The error may alternatively

be represented by a plot of nEn against n ��gures ��	 �
 and ���� In these cases aggregating

and disaggregating tendencies are represented respectively by�





n
�nEn� � �

and





n
�nEn� � �

and the �tted line will simply be a constant k� Detailed proofs of these results may be found

in Keeling et al� �������
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����
� Measures of Spatial Pattern�

�spatial pattern is a conspicuous characteristic of any ecosystem� � Garcia�Moliner et al� ����

�a� The Clumping Index�

A vital aspect of spatial heterogeneity is pattern	 which can be de�ned as a departure from

randomness �Galiano	 ����
 Addicott et al�	 ������ The character of the distribution of species

and habitats is of fundamental ecological and sociobiological importance� The geometric shape

of the constituents of an ecosystem	 may	 for example	 a�ect the response to disease or para�

sites� For example a complex of small habitats will provide a physical barrier to the spread of an

epidemic �Jetschke	 ����� and the destruction of �ne�scale vegetational mosaics by �re manage�

ment programs has created large patches through which �res spread rapidly �Minnich	 ������

Larger patches are	 however	 bene�cial under other circumstances� predators are able to remove

aphid clusters if they can move over su�ciently large areas	 whereas a patchy environment in�

hibits predator movements and leads to pest outbreaks �Kareiva � Andersen	 ������ Thus the

levels of clumping or aggregation of species	 resources or features in the physical environment

are important for understanding the functioning of systems and the response of individuals�

Many measures of aggregation have been developed in the biological and physical sciences �Leg�

endre � Fortin	 ������ Biometricians have concentrated on statistical tests for distinguishing

aggregated	 random and regular patterns �Thomas	 ����
 Diggle	 ����
 Galiano	 ����
 Perry	

������ Many spatial models clearly produce clumped patterns	 so that a statistical test to

prove the presence of aggregation does not provide signi�cant new information� More useful

is the dynamical approach to the variation in the level of clumping which is developed here

for discrete spatial models	 which is also highly relevant to other lattice�based data	 such as

satellite images�

A simple parameter	 the clumping index is based on the traditional joint�count statistics of

Moran and others �Moran	 ��
�
 Krishna Iyer	 ��
�
 ����
 Ford � Diggle	 ������ The index

Ci is de�ned for state i in a rectilinear grid by equation �
�� nij is the number of interfaces







between a cell of type i and a cell of type j� Here the state variable i is discrete	 such as a CA

state� However	 the state may be an aggregation of automata states �chapter ��	 or a �nite or

in�nite set of CML states �chapter 
��

Ci �
niiP
j ��i nij

�
�

The signi�cance of the value of Ci is now discussed� If the distribution of state i is random with

density �	 then the probability of two neighbouring cells being in state i is ��� The probability

that a state i cell has a neighbour in a di�erent state is ����� ��� Thus the clumping index for

a random distribution of density � is�

C� �
�

���� ��
�

A relative clumping index	 CR
i can now be de�ned �equation ����� This is greater or less than �

according to whether the pattern is more or less clumped than a random distribution of density

�� If Ni is the number of cells of type i and N is the grid size	 then the density is Ni

N
� Thus

the clumping index for a distribution	 relative to a random distribution of the same density	 is

given by equation ����

CR
i �

���� ��nii
�
P

j ��i nij
���

CR
i �

��N� � Ni�nii
Ni

P
j ��i nij

���

The standard and relative indices both have their uses� The clumping index can be plotted as a

path through time as a function of density	 with the random clumping curve	 C�	 displayed on

the same graph for comparison� In this way	 increases and decreases in the degree of clumping

over time can be displayed� Alternatively	 the relative clumping index can be plotted as a


�



function of time� The e�ect of di�erent mechanisms on spatial structure can be observed using

either of the indices
 the standard index plot allows density �uctuations to be observed at

the same time� A second use of the indices is in the identi�cation of transience	 that is the

dynamical behaviour of a system before it has �settled down� �chapter ���

Figure � shows the results of computing the clumping index Ci for random distributions of a

particular cell state on a coupled map lattice	 at di�erent densities between � and �	 �tted to the

curve C�� These results verify the assumptions behind the derivation of the relative clumping

index CR
i � Additionally	 the method can be used to indicate the e�ectiveness of the random

number generator used	 as the clumping indices should lie as near as possible to the curve C��

Regular m �m square clumps will have a clumping index of m��
� and an n � m rectangular

clump will have index n
m����m
n���
�
m�n� � Therefore an index of value C is equivalent to regular

square blocks of size ��C � �� � ��C � ��� This does not	 however	 indicate how much space

there is between the clumps and illustrates the importance of the relative index CR�

�b� Multifractal Theory Applied to Lattice Models�

Application of the theory of fractals provides another approach to the spatial structure of a

lattice model� In particular	 the recently�developed theory of multifractals can be used to

consider the scales present in a spatial con�guration� Multifractal theory was introduced in the

basic form of an uncountably in�nite number of generalised fractal dimensions by Hentschel �

Procaccia ������ and Grassberger ������ and extended by Halsey et al� ������ and Pawelzik �

Schuster ������� In recent years the theory has been developed further and applied to many

areas of physics� Applications include percolation and random networks��	 clustering processes

�Coniglio et al�	 ����
 Coniglio � Zannetti	 ����
 Vicsek	 �����	 wave phenomena �Shalev et

al�	 ����
 Du � Ott	 ����
 Grussbach � Schreiber	 �����	 mechanics �Silberschmidt	 ����� and

turbulence �Mandelbrot	 ���

 Levi	 ����
 Argoul et al�	 ������

Although there has been simple fractal analysis of vegetation and other spatial distributions in

��DeArcangelis et al
� ����� Blumenfeld et al
� ����� Coniglio et al
� ����� Aharony� ����� Nagatani� ���
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Figure �� The clumping index for generated random distributions of cells at a range of densities

�red ��� The �tted curve �� � �� is C��
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ecology �Burrough	 ����
 Morse et al�	 �����	 multifractals have yet to be applied in ecology�

Multifractal analysis investigates distributions of measures on a geometric support and it is

therefore easily applied to the square grid of a CML or CA� �While the �nite nature of the

lattice means that it is not fractal	 it can be considered to be a �truncated fractal���

The standard technique of box counting �Liebovitch � Toth	 ����
 Block et al�	 ����
 Meisel

et al�	 ����� is used to determine a spectrum of fractal dimensions �Jensen et al�	 �����	 which

provides a complete characterisation of the structure of the distribution� The grid is partitioned

into boxes of length �	 where � is here de�ned as the length divided by the grid size� Hence

� 	 �� The average mass in a ��box de�nes a measure �� A method of box counting is used

which is weighted according to the measure of the boxes� A d�measure	 Md�q� ��	 is de�ned as

in equation ���	 where the variables are as follows� D� is the set of boxes of size � in the grid


�i is the measure on the box �i which is of size �
 Z�q� �� is a partition function with moment

of order q�

Md�q� �� �
X
�i�D�

�
q
i �

d � Z�q� ���d ���

A set of mass exponents f� �q�g is de�ned such that Md�q� �� remains �nite and non�zero as

� � � where Z�q� �� � ���
q�� Hence � �q� is given by equation ���� By analogy with statistical

physics	 � �q� is sometimes referred to in the literature as a fractal pressure and may be denoted

by P �q��

� �q� � lim
���

logZ�q� ��

� log �
���

The Lipschitz�H�older exponent is de�ned such that the measure in a box scales with the ��

power of the box size �equation ����� Then the function f��� is de�ned such that the number	

N ��� ��	 of ��boxes where the measure scales in this way	 scales with � �equation ������

�i � �� ���


�



N ��� �� � ��f
�� ����

A relationship can now be found between �q� � �q�� and ��� f����� A detailed proof may be

found in	 for example	 Feder ������ or Falconer ������� The result can be quickly justi�ed as

follows� If ���� is the density of ��boxes	 then ����d� is the number of boxes with measures

scaling between �� and ���d�� Then	 substituting �i � ��	 the following expression for the

d�measure is obtained�

Md�q� �� �

Z
�f
����q�d����d�

which can be approximated by�

Md � ��q�
�q��f
�
�q���d�

where  q maximises q��q�� f���� This occurs where�

d

dq
�q��q� � f���� � ��q�

which is when�

df

d�
���q�� � q�

By comparison with the previous expressions for Md�q� �� �equation ���� and Z�q� ��	 the pair

of equations ���� and ���� are obtained�

f���q�� � � �q� � q��q� ����


�



��q� � �d� �q�

dq
����

Thus values for � �q� can be found for speci�c ranges of q 
 R using equation ��� and the

de�nition of Z�q� ��� Then the exponents	 ��q�	 can be found from ���� and the spectrum f���

from ����� Heuristically	 f��� can be considered to be the fractal dimension of fractal subsets

S� of the geometric support S� These subsets can be thought of as having the same densities or

measures �of order ��� and they cover the support �S � ��S��� Thus the size of the measure

determines the scaling of the corresponding boxes�

A distribution is multifractal when there is a range of values of � and f���� This can easily

be seen from a graph of the pressure � �q� against q �chapter 
�� The gradient of the graph for

any value of q is minus the value of � at that point� Hence a multifractal will have a nonlinear

plot of � �q�	 whereas it will be a straight line for a simple fractal� It is also generally observed

that � approaches a �nite constant as q�� and as q ���	 which leads to a �nite range for

� and for f���� f��� is expected to be a concave curve within the �nite range of � �chapter


�� The maximum of this spectrum corresponds to a sharp peak in the number of boxes in the

fractal set S�� In this way the scaling structure of a distribution on a grid can be analysed in

a �fully quantitative fashion� �Stanley � Meakin	 ������

������ Singular Value Decomposition as a Test for Robustness of Models�

�Wisdom is the principle thing� therefore get wisdom� and with all thy getting get understanding�

� Proverbs 
��

�a� Introduction�

It is important in non�chaotic situations that the robustness of numerical models of ecological

systems is determined over repeated runs
 the same results should be produced for di�erent

simulations of the same dynamical system� Although a spatial model with local stochasticity

will vary in its details	 the statistically�averaged spatial structures and population compositions

should usually remain constant� A simple technique is presented for assessing the robustness

��



of models in this context� The method is based on singular value decomposition �SVD� of a

matrix containing model output data and involves comparison with white or Gaussian noise�

�b� Method�

This method relies on the generation of a replication matrix X from repeated runs of the model

that is to be tested� Suitable model output must be chosen� It is important that a su�cient

number of output variables is available	 of the order of ten or more	 so that a substantial matrix

X can be formed� If n denotes the number of variables	 then n replicated simulations should

be carried out� If xi � fx
i�� � � � � � x
i�n g denotes the output vector for the model	 with x

i�
j being

the ith replicate of the jth variable	 then the replication matrix is constructed as follows�

X �

�
BBBB�

x�

���

xn

�
CCCCA �

The output vectors may correspond to the proportions of the state variables in a system�

Alternatively	 the vector may be a characterisation of the spatial structure of a system	 such

as a distribution of patch sizes� This allows the robustness of an emergent spatial pattern in a

model to be assessed�

The standard technique of SVD is used to �nd the singular values of the replication matrixX�

The matrix is decomposed into the form�

X � U �S�V T �

where U and V are orthogonal matrices and S is diagonal	 with�

S �

�
BBBB�

e�

� � �

en

�
CCCCA �

��



where feig are the singular values of X � Standard computer algebra packages	 such as Matlab

�The Maths Works Inc�	 ����� produce the singular values in descending order of magnitude�

ke�k � ke�k � � � � � kenk�

If the replicated runs are identical then rank�X� � � and hence e� � e� � � � � � en 
 �� A

stochastic model will always have some error in all of the output variables and thus rank�X�

� n� However	 if the replicates are accurate	 then the vectors fxig will be similar and rank�X�

will be nearly �� This will be indicated by the presence of one dominant singular value	 that

is� ke�k � ke�k � ke�k � � � � � kenk� The following section quanti�es this singular value

di�erence	 characterised by ke�k
ke�k

	 for di�erent levels of noise�

�c� Application to Gaussian Noise�

Sample data can be generated to test the response of the singular value spectrum to varying

levels of white �Gaussian� noise� A vector x is produced by assigning random values in the

interval !�	���" to the elements fxig� Replicated �output� values fxig are produced by adding

Gaussian random variables of mean zero and speci�ed standard deviation 	 to x�

xi � x� � �i � �� � � � � n�

where�

� � ���� � � � � �n�

and�

�j � N ��� 	��

The singular value spectrum may be found for a range of standard deviations 	� Here results are

shown for 	 � f�� �� � � � � ���g� Figure 
 shows sample replication matrices for 	 
 f�� �� ��� ��g

��



and n � ��� There is a clear dominant singular value in all cases	 but the dominance decreases as

noise increases� Figures �a � b illustrate the relation between the Gaussian standard deviation 	

and the ratio of the �rst two singular values� This demonstrates a linear relationship	 although

with increasing �uctuations at high 	� A standard linear regression ��gure �a� and a weighted

regression ��gure �b� yield similar results� Weighting is achieved by using a factor of �
�x in the

regression sums	 which causes the linear �t to be biased towards the smaller noise levels�

The ratio of the �rst two singular values for the output from a model can be compared to the

Gaussian results	 speci�cally the gradient g of the �tted line	 to obtain an estimate of the level

of noise in the model� g represents the amount by which the ratio of the �rst two singular values

increases for each �� of noise� Therefore	 the percentage Gaussian noise p� corresponding to a

set of output data is given by�

p� �
ke�k
gke�k �

The e�ect of matrix size n must now be taken into consideration	 as g may depend on n� The

variation of ke�kke�k
with 	 was found for a range of matrix sizes from ����� to ������ Figure �a

shows the plots of ke�kke�k
against 	 aggregated to form a surface� The surface roughly takes the

form of a �at plane� The important feature is the variation in the slope of lines in the plane as

the matrix size varies	 that is	 the form of the function g�n�� The plane can be approximated

by taking the slopes of the lines �tted for all of the sizes of matrix and �tting a line to these

slopes ��gure �b�� This demonstrates that g is linear in n� Thus the percentage of noise can be

found by estimating g�n� from �gure �b and using�

p� �
ke�k

g�n�ke�k �

��



���� Chaos and Nonlinearity�

������ Introduction�

����a rich variety of behaviour
 some of it very bizarre���� � Cartwright � Littlewood ��
�

�In view of the inevitable inaccuracy and incompleteness of weather observations
 precise very�

long�range forecasting would seem to be non�existent� � Lorenz ����

Anomalies in the behaviour of nonlinear systems were noted in the last century by Poincar�e	

Kovalevskaya and Lyapunov �Percival	 ����� and later by Cartwright � Littlewood ���
��� It

was not until ���� and the early days of digital computers	 that Lorenz produced the �rst small

illustration of a strange attractor	 the �nely�structured geometric shape on which the dynamics

of a nonlinear system move in phase space �Lorenz	 ������ Working in a restricted area of

meteorology	 there was little attention given to the Lorenz system	 until it was rediscovered in

the ����s� Early mathematical treatment of chaotic nonlinearity was brought to the attention

of the general scienti�c community by May	 using examples from population biology �May	 ���



����
 May � Oster	 ������ Since then the study of chaos has become a scienti�c discipline in

its own right and is used throughout the physical and biological sciences�

The most in�uential feature of chaotic dynamics is the sensitivity to initial conditions �SIC�	

popularly known as the butter
y e�ect �Markus	 ������ In a non�chaotic system	 trajectories

starting at nearby initial points will remain close together inde�nitely� This underpins classical

science	 which assumes that small starting errors will remain small� However	 chaotic trajecto�

ries that start close will rapidly diverge	 so that perturbations are ampli�ed �McGlade	 ���
��

The SIC of chaotic systems means that predictability is limited� Although chaos is determinis�

tic	 an initial condition can never be determined precisely	 so the long term future of the system

cannot be described�

This has produced two di�erent reactions in ecologists� while some despair of predicting the

future of any non�trivial ecological systems	 others reject chaos as a natural phenomenon because

they believe that prediction must be possible� There are	 however	 some clear compatibilities

��



between chaos and modern ecology� SIC shows that the past of a system fundamentally a�ects

its future	 which emphasises the importance of the history of an ecological system �chapter �


Cohen � Stewart	 ������ Such ideas are also seen	 for example	 in community construction

�Robinson � Edgemon	 ����
 Facelli � Pickett	 ����� and succession �Clements	 ����
 Horn	

����
 Clark	 ������ Chaos also has implications for the sampling of real systems� given a certain

amount of data	 the extra data needed to provide more information about the system increases

exponentially�

It is	 however	 premature to abandon all hope of predicting behaviour and formulating general

laws of a chaotic system �May	 ������ There needs to be a shift in the techniques used to

analyse such systems �Stewart	 ������ rather than producing exact trajectories for given initial

conditions	 the type of behaviour should be investigated� Statistical and geometrical methods are

suitable for producing information such as the range of possible dynamics	 the structure of the

underlying attractor and the probabilities of getting di�erent outcomes� Judson ����
a� calls

this the texture of a system� Although chaotic dynamics are locally unstable	 characteristically

there is a global stability� There are also di�erent classes of chaos with di�erent levels of stability	

including fully�developed spatiotemporal chaos	 which is robust to parametric perturbations

�Kaneko	 ������

������ Chaos and Ecology�

�The very simplest nonlinear di�erence equations can possess an extraordinarily rich spectrum

of dynamical behaviour���� � May ����

�Chaos gives us a very di�erent picture of the world in which we live� � Yorke ����

As stated in section ���	 there are various situations which promote chaos and these are fre�

quently applicable to ecological systems� High dimensionality is one such criterion	 so that

ecosystems with many species and interactions may easily be chaotic �May	 ����
 Fielding	

����
 Ferri#ere � Gatto	 ���
�� Similarly	 size	 age or spatial structuring of populations have

been shown to promote chaos �Hastings	 ����
 Sol�e � Valls	 ����a
 Lloyd	 ����
 Ruxton	 ������

��



Chaos is also more likely in the presence of feedback	 either positive �raised growth rates� or

negative �overcompensation	 inducing time lags or delays�	 both of which are common in ecolog�

ical community interactions��� There has recently been a demonstration that noise can cause

transient chaos to become permanent �Rand � Wilson	 ����a�
 the ubiquity of noise in ecology

thus further promotes chaos�

In spite of these points	 there is limited direct evidence of chaos in the natural world� Ecologists

have o�ered various explanations for this� Some consider that chaos is maladaptive and that

natural selection will act against chaotic systems �$Lomnicki	 ����
 Mani	 ������ It is suggested

that the large �uctuations seen in chaotic �and oscillatory� systems will result in susceptibility to

stochastic extinctions �Thomas et al�	 ����
 Mueller � Ayala	 ����
 Fielding	 ������ Dispersal

has been cited as a mechanism to promote non�chaotic dynamics �Hastings	 ������ A more

controversial idea is that natural selection has excluded chaos in nature	 but that anthropogenic

intervention has increased the tendency of systems to be chaotic �Berryman � Millstein	 ����a


Pool	 ����b��

The revolutionary articles of May ����

 ����
 ����� introduced the concept of chaos in in�

vertebrate population ecology using the logistic map and simple two�dimensional competition

models� There has since been a deluge of ecological models which exhibit chaotic dynam�

ics �Renshaw	 ���
�	 including predator�prey models �Beddington et al�	 ����
 Hanski et al�	

�����	 resource�predator�prey models �Rand et al�	 ���
� and Leslie matrices �Guckenheimer

et al�	 ������ There has also been considerable interest about chaos in epidemiology �Bartlett	

�����	 since the SEIR equations	 which model the spread of diseases such as measles	 were

suggested to show chaotic dynamics ���

Spatially�extended models have provided several cases of chaos	 both in forced continuum sys�

tems �Tsonis et al�	 ����� and discrete lattices of logistic and other one�dimensional maps

��Pimm � Hyman� ����� Berryman � Millstein� ����b� Allen� ����� Hunter � Price� ����� Power� �����

McGlade et al
� ���	

��Scha�er � Kot� ����� Pool� ����a� Rand � Wilson� ����a� Grenfell� ����� Sidorowich� ����� Bolker �

Grenfell� ���
� Grenfell et al
� ����


��



�Kaneko	 ����
 ����
 ����
 Sol�e � Valls	 ����a
 Bascompte � Sol�e	 ���
�	 the Nicholson�Bailey

equation for host�parasite equations �Hassell et al�	 ����
 ���
� and Lotka�Volterra systems

�Sol�e � Valls	 ����
 Sol�e et al�	 ����b�� Two�species CML have produced a new class of spatial

dynamics	 chaotic Turing structures	 which consist of patches which have chaotic dynamics

within them	 but stable boundaries �Sol�e et al�	 ����a
 Sol�e � Bascompte	 ������

There has been less conclusive identi�cation of chaos in empirical data	 because of methodolog�

ical problems	 caused by the tendency of ecological time series to be short and noisy �Lloyd	

���
�� Phase space reconstruction produced some evidence of chaos in lynx populations �Schaf�

fer	 ���

 ����a
 Godfray � Blythe	 ����� and measles epidemics �Scha�er	 ����b�� Forecasting

techniques �Sugihara � May	 ����
 Sugihara et al�	 �����	 �tting to the SEIR equation �Olsen

� Scha�er	 ����
 Grenfell	 ����� and spectral analysis �Olsen et al�	 ����� have all claimed to

prove that measles epidemics are chaotic� Some of these techniques have however been ques�

tioned	 in particular the forecasting techniques �Rand � Wilson	 ����b�� The dynamics of voles

�Hanski et al�	 ����� and ant trails �Cole	 ����� are also potentially chaotic	 while little clear

evidence of cycles or chaos in plant population data has been found �Thrall et al�	 ����
 Rees

� Crawley	 ����
 Tilman � Wedin	 ����b��

Many ecologists have focused on detecting chaos by �tting simple maps to experimental data�

Frequently a one�dimensional map has its parameters estimated from a time series	 then chaos

is accepted or rejected for the natural or laboratory system depending on whether the map is

chaotic for the estimated parameters� In the ����s studies based on such techniques were used

to suggest that insect populations rarely exhibited chaos or cycles� The key paper by Hassell et

al� ������ led most ecologists to reject any relevance of chaos to the natural world and to view

it as a mathematical artefact of certain models �Pool	 ����b�� More recent studies of two� and

higher�dimensional maps have been much more suggestive of chaos �one�dimensional systems

are inherently unlikely to be oscillatory or chaotic �Gatto	 ������� This has produced various

criticisms of the whole use of model �tting in the detection of chaos	 as the procedure is too

sensitive both to the dimension and form of the selected map and the method of parameter

estimation used �Nisbet et al�	 ����
 Morris	 ����
 Bascompte � Sol�e	 ���
��

��



The key to identifying chaos in time series depends on distinguishing it from genuinely random

noise� A natural system certainly has some noise � environmental stochasticity � to which some

measurement error is inevitably added� At �rst it was thought that determinism and stochas�

ticity were indistinguishable �May	 �����	 but in recent years much e�ort has been put into their

separation� In natural systems this is equivalent to identifying density�dependent �nonlinear�

and density�independent �noise� e�ects �May	 ����
 McGlade	 ���

 Ellner � Turchin	 ������

In mathematical terms	 the di�erence between noise and chaos is dimensional� deterministic

dynamics can be reduced to a �nite�	 often low�dimensional attractor	 whereas uncorrelated

noise is of in�nite dimension �chapter �
 Casdagli	 ������ In natural systems there will always

be a balance between the two extremes of pure determinism and pure stochasticity�

������ Quantifying Chaotic Behaviour�

�Data indicating complicated population 
uctuations do not necessarily testify to environmental

stochasticity
 nor to random experimental error
 but can arise from simple and rigidly deter�

ministic density�dependent mechanisms� � May � Oster ����

����order disguised as disorder���� � Pool ����a

A fundamental character which varies between chaotic systems is the degree of predictability�

sometimes a reasonably long term prediction is accurate	 other times there is no predictability

even on very short time scales� The most basic and useful measure of chaotic dynamics is the

Lyapunov exponent	 which gives the rate of exponential divergence of initially close trajectories

�Zeng et al�	 ������ The Lyapunov exponent has had various interpretations� a measure of long

term unpredictability
 the rate of growth of errors �Markus	 �����
 the time scale over which

dynamics become unpredictable
 the rate of creation or destruction of information �Wolf et al�	

������ A recent observation is that exponents are not constant for a given system	 but can vary

substantially over the dynamical attractor �Palmer et al�	 ���

 Smith	 ���
�	 in part explaining

the variable success of forecasting�

A multi�dimensional system has several Lyapunov exponents	 one for each degree of freedom�

��



The maximum exponent characterises the dynamics� if it is positive there is SIC and hence

chaos� Thus determining the maximum exponent is the �rst step in analysing a nonlinear

system that may be chaotic�

In a one�dimensional system	 the exponent �� is easily approximated by evaluating the ratio

in equation ����	 where xt represents the state of the system at time t� However	 in a higher

order system with several exponents	 the stretching and folding involved in a chaotic regime

will generally lead to converging orbits in at least one direction and diverging orbits in other

directions� Hence equation ���� produces an exponent	 ��	 averaged over the attractor� This

provides preliminary information about the dynamics	 as it indicates the average predictability

of the system� If �� � � then certainly the maximum positive exponent	 ��	 will be positive	

which means that the system is chaotic� If �� � � then �� could be of either sign	 so it is not

possible to say whether or not there is chaos� However	 in this case	 it can be stated that the

dynamics are	 on average	 predictable to some extent over the long term�

�� � log�

���xt�� � xu����
kxt � xuk



����

For data where the average exponent is found to be negative	 the sign of the maximumpositive

exponent must be found� This requires the rate of divergence of the trajectories to be evaluated

in the direction of maximum divergence� This can be achieved by using a method of Wilson �

Rand ������	 which is a development of Wolf et al� �������

The nearest trajectory point xu
�

to a given point xt is found	 with the separation of these

points being denoted by �� The divergence of the two points is followed for several steps	 until

the separation has increased �or decreased� by a given factor	 denoted by k� Then the second

point xu
�

is replaced by a point xu
�

in the same direction	 but only a distance � away� This

procedure is repeated until all the available data points are used� The use of multiple iterations

ensure that the maximally�expanding trajectory direction is used and the resetting of the points

avoids nonlinearities a�ecting the results� The Lyapunov exponent ��� is then evaluated for a

range of values of initial separation � using equation ��
�	 where � i is the number of steps used

��



between resettings i and i� � and there are a total of I resettings�

��� �
�

I

IX
i��

Di ��
�

where�

Di �
�

� i
log�

���xt��i
j��

�j � xui��i
������xt��i��

j��
�j � xui

���
A graph of ��� against � can then be plotted� For small � �� � �noise� the dynamics are

overwhelmed by noise and for large � �� � �nonlinear� nonlinearities dominate the dynamics� At

intermediate values ��noise � � � �nonlinear� �
�
� is constant and provides the value for ��� This

assumes that �noise � �nonlinear	 which is not always true� This condition fails if the system is

so noisy that nonlinearities set in at scales at which there is substantial noise �Wilson	 ���
��

The maximum exponent cannot be estimated in this situation	 as there is no �at section of the

curve�

Implementation of an extension to this method by Keeling ������ does allow an estimate of ��

to be made� This relies on the fact that ��� will depend on k in the very noisy and nonlinear

ranges of �	 but at intermediate values the same �� should be predicted by all values of k�

Therefore	 the graphs of ��� against � should be plotted for several values of k� Then �� can be

estimated by the point at which the di�erent k�curves meet� The value obtained in this way is

not particularly accurate	 but it provides a good indication of the presence or absence of chaos

in the underlying dynamics�

The main way of detecting chaos in real or arti�cial systems is through the estimation of

Lyapunov exponents� Accurate estimation unfortunately requires very long time series� the

number of data points needed rises exponentially with the system dimension �Eckmann �

Ruelle	 ����
 Rapp	 ����� and as described in chapter �	 unknown dimensionality of systems

adds to the technical di�culties of exponent estimation� Another	 rather crude	 technique for

��



identifying chaos is phase space reconstruction� The dimension of the system underlying an

empirical time series is estimated and the attractor is reconstructed by embedding techniques

�Packard et al�	 ������ The appearance of the �typical� geometry of a strange attractor is taken

to indicate of the presence of chaos�

���� Individual�Based Models in Ecology�

�The ultimate parts of the community are the individual plants
 but a description of it in terms

of the characters of these units and their spatial relations to each other is impracticable at the

individual level� � Watt ��
��

�The individual organism is the logical basic unit for the modelling of ecological phenomena� �

Huston et al� ����

The new generation of individual�based ecological models that has recently appeared and be�

come widespread �Judson	 ���
a� is discussed in section ������ This revolution has been largely

driven by the development of computing power over the past thirty years� In the early days of

ecological modelling	 the explicit representation of individual organisms was not feasible and

therefore rarely considered� As computers have become more widely available and more pow�

erful	 it has become possible to track the fate of individual ecological entities� The rise of the

IBM has demonstrated the dependence of scienti�c development of technology � the comments

of Watt ���
�� illustrate the fact that the desire to consider individuals has long existed�

Individual organisms have a unique role in ecological systems �$Lomnicki	 ������ They are gen�

erally considered to be the unit of selection	 as higher biological levels have di�erent genotypes

and lower levels have identical genes� Individuals are in many cases more easily de�ned than	

for example	 populations or communities	 generally being seen as discrete units and although

clonal species do highlight some problems	 it is possible even in these cases to de�ne basic units

such as modules or ramets�

The key feature of individuals is that they are all di�erent
 such di�erences can only be explic�

itly dealt with by an IBM� Uniqueness of physical	 behavioural and genetic characters can be

��



modelled	 as well as the occupation by an individual of a unique spatial location�

Another fundamental but questionable assumption of many ecological models is that of perfect

mixing� In population and community models it is necessarily assumed that all individuals

interact with all other individuals	 this assumption generally lies somewhere between inaccu�

rate and totally false� This is particularly true of plants and sessile animals	 for which a lot of

experimental data show that the extent of interactions are limited��� Mixing is also limited in

many motile species	 such as territorial animals	 where interactions are restricted to neighbour�

ing territory holders and sparse populations where mixing is limited� Using an IBM embedded

in space allows individuals to interact with neighbours within a de�ned region	 thus overcoming

the assumption of mixing �Caswell � John	 ������

There are many other	 mainly technical	 advantages of IBM� They are simple to implement

and are generally explicit and mechanistic rather than phenomenological �Murdoch et al�	 ����


section ������	 enabling greater insights to be gained and new ideas generated� Large stochas�

ticities	 discontinuities	 dominance by a few particular individuals and important rare events

can easily be incorporated� An IBM can be based in heterogeneous space	 which is sometimes

di�cult to treat in classical models� The uniqueness of the history of an individual	 such as

the record of interactions with other individuals	 can also be tracked� Small populations are

particularly suitable for IBM treatment	 as they are easy to handle and are particularly likely

to break various assumptions of population level systems �DeAngelis � Rose	 ������

Multiple spatiotemporal scales can also be incorporated more easily in IBM than in traditional

models� Events can be modelled on two or more time scales	 such as daily and annual �chapters


 and �� as well as sequentially or concurrently �McCauley et al�	 ����� and a hierarchy of

spatial scales can be studied	 from local to global�

There are	 however	 various valid criticisms made of IBM� They are generally non�analytical

and hence rely on the quality of the computational methodology	 which is hard to judge as

��Mead� ����� Mack � Harper� ����� Ford � Diggle� ����� Watkinson et al
� ���
� Weiner� ���	� Silander �

Pacala� ����� Firbank � Watkinson� ����� Goldberg� ����


�




publications rarely give either computer code or su�ciently�detailed descriptions� The macro�

scopic dynamics and patterns which emerge from an IBM are often very complicated and their

interpretation can be challenging	 although techniques are being developed to deal with these

complexities� Intensive computation is often needed for modelling su�cient numbers of individ�

uals	 which restricts use to large computer systems or small ecological systems� This problem

is decreasing as computer power is becoming rapidly cheaper and more widely available�

There is however one signi�cant restriction in the applicability of IBM� the numbers of indi�

viduals cannot vary very much� Each individual organisms must be labelled and tracked	 so

that there cannot practically be variation in numbers over more than a couple of orders of

magnitude� Thus situations where marked population explosions or declines are expected are

less suitable for these techniques� Overall	 an IBM provides an elegant and intuitive represen�

tation	 which can be simple or complicated	 speci�c or general	 covering a range of temporal

and spatial scales�

��



�� A Coupled Map Lattice Model for a Plant

Monoculture�

Chapter Summary

An overview of plant population ecology is presented� which explores empirical

and theoretical approaches to the role of neighbourhood e�ects� plasticity and

the formation of size hierarchies in plant communities�

The terms absolute asymmetry� relative asymmetry� relative symmetry and ab�

solute symmetry are introduced as representatives of the spectrum of possible

pairwise competitive interactions of individual plants� Two hypotheses concern�

ing the underlying mechanistic causes of size variation are summarised� attributed

respectively to Bonan and Weiner�

� the increase in size variation at high stand densities is evidence solely for

local neighbourhood e�ects�

� the increase in size variation at high stand densities occurs only when com�

petition interactions are asymmetric�

An individual�based coupled map lattice model of a plant monoculture is intro�

duced with local mappings based on a model of Aikman � Watkinson� Measures

of size variation in the model population increase signi	cantly with density un�

der asymmetric competition� supporting the hypothesis of Weiner that variation

provides evidence for distinguishing between symmetric and asymmetric compe�

tition�

The coupled map lattice is adapted to mimic a 	eld experiment carried out on

carrot plants� The presence of a signi	cant degree of asymmetry within the stand

is indicated by a comparison of empirical and model data� this has implications

for crop management�

��



�What is a weed� A plant whose virtues have not been discovered�� � Ralph Waldo Emerson

���� Introduction�

Spatial models of single and multiple species plant communities are presented in the following

three chapters� It is established that the derivation of quantitatively testable dynamic models

of plant species is di�cult and that empirical validation is problematic� The di�culties are

compounded by the frequent sensitivity of communities to initial conditions of the biotic and

physical environments� which are not easily controlled in experiments to a su�ciently high

precision� It is therefore useful to construct arti�cial ecological systems to model dynamics

of real systems under a range of assumptions and to assess whether qualitatively di�erent

behaviours arise�

It may then be possible to perform discriminatory experiments to identify the actual mech�

anisms operating in the real system� This approach is especially suitable for studying the

spatiotemporal dynamics of plant communities� as the feasibility of conducting experiments

on large spatial scales or over long time scales is limited� especially when an individual�based

approach is taken� Di�erent mechanisms and processes can be analysed and the role of spatial

e�ects assessed� In some cases fair approximations of observed behaviour are provided by non�

spatial or mean �eld models� but many important features arise directly from spatial processes�

In this chapter the interdependence of competitive interactions between individuals and spatial

processes in a single species is considered� before multiple species and extended time scales are

considered in the subsequent chapters�

���� Overview of Plant Population Ecology�

Plant population modelling began in the �	
�s in Japan� with mean �eld representations of

yields and self�thinning �or progressive stand mortality
� Various yield� allometric and density

relationships were presented during the following years and compared to �eld and greenhouse

data� The major breakthrough came in the late �	��s when data were �rst gathered on spatial

e�ects in plant communities� Many studies followed� in which the extent to which plant size is

��



attributable to number� distance� size and angular dispersion of neighbours was investigated�

Considerable importance was placed on the e�ect of neighbours in determining population

structure of experimental plant communities��� A wide variety of species were used� including

carrots �Mead� �	��� Benjamin � Sutherland� �		�
� pine trees �Weiner� �	��
 and grasses

�Liddle et al�� �	��
� Experiments also studied the e�ects of neighbourhood interactions on

other plant features� such as allocation �Goldberg� �	��
 and growth form �Weiner et al��

�		�a
� However� a few experiments failed to support neighbourhood e�ects�� � Apart from

inadequate experimental and analytical methodology� these anomalous result may have arisen

via dominance by factors such as variable germination time� interdependence of clonal modules

and high seed dispersal levels�

A popular technique for quantifying neighbourhood e�ects has been Dirichlet� Thiessen or

Voronoi polygon analysis��� The area controlled by an individual plant is determined by creat�

ing a polygon around it� using the perpendicular bisectors of lines to the nearest neighbours�

Thus a plant with few neighbours occupies a large polygon and competitive interactions are

represented by the polygon area� In other studies� spatial interactions have been represented

by pseudospatial models� where plant weights are related to a combination of number� size

and aggregation of plants in speci�ed neighbourhoods��� Both techniques have been used to

identify the extent to which population structure can be attributed to the distribution� and

other features� of neighbouring plants�

A new generation of plant models followed the increase in data con�rming the importance of lo�

cal neighbourhood interactions in plant dynamics� The emphasis on local e�ects� in association

��Ford� ����� Mack � Harper� ����� Phillips � MacMahon� ��	�� Gates� ��	
b� Weiner� ��	
� Wixley� ��	��

Fowler� ��	�� Mithen et al
� ��	�� Renshaw� ��	�� Silander � Pacala� ��	�� Penridge � Walker� ��	�� Smith

� Goodman� ��	�� Mitchell�Olds� ��	�� Pacala � Silander� ��	�� Gurevitch et al
� ����� Weiner et al
� ����b�

Bergelson� ����� Sutherland � Benjamin� ����


��Waller� ��	�� Watkinson et al
� ��	�� Weiner� ��	�� Firbank � Watkinson� ��	�� Pacala � Silander� ����

��Mead� ����� Fischer � Miles� ����� Liddle et al
� ��	
� Watkinson et al
� ��	�� Mithen et al
� ��	�� Kenkel

et al
� ��	�a� ��	�b� Miller � Weiner� ��	�� Galitsky� ����

��Mack � Harper� ����� Weiner� ��	
� ��	�� Silander � Pacala� ��	�� Penridge � Walker� ��	�� Weiner �

Thomas� ��	�� Firbank � Watkinson� ��	�� Thomas � Weiner� ��	�a


��



with the sessile nature of plants� encouraged modelling using spatially�explicit individual�based

models �sections ���and ���
� These largely used zone of in�uence �ZOI
 methods� where the

area available for resource utilisation was represented by a region around each plant��� This

was often a circle� although squares �Gates� �	��
� ellipses �Wixley� �	��
 and cones �Ford �

Diggle� �	��
 were also used� with the size of the ZOI related to sizes of plants and types of

interactions� Models have been simulated on computers and treated analytically by mean �eld

approximations� The earliest ZOI model� however� used pencil and paper� with circles of given

radii being drawn with compasses �Pielou� �	��
�

Plant ZOI interactions were treated in two di�erent ways �Benjamin� �		�
� Non�overlapping

domain models allowed the ZOI to grow outwards through time until neighbouring zones touch�

at which point the plants stopped growing or else died� Overlapping domain models o�ered

greater �exibility in their representation of local interference� as the zones grew continually and

many overlap� The intersecting regions corresponded to areas of contested resources� which

were allocated to the competing plants according to the type of competition� perhaps by size�

The studies of spatial e�ects in plant populations focus on size distributions� A fundamental

characteristic of plants is their plasticity� which means that genetically identical individuals

can respond strongly through their phenotypes to di�erences in their physical and biotic en�

vironments� resulting in wide variation of size and growth forms �Levin� �	��
� There also

exist feedback loops where plants modify their environments �Raynal � Bazzaz� �	�
� Silander

� Pacala� �		�
 and hence alter their phenotypes� Since most populations show great size

variability� there has been much interest in the determinants of size variation��� With a few

notable exceptions �Turner � Rabinowitz� �	��� Ellison� �	��
� populations of plants grown at

higher densities show greater size inequality than populations grown at lower densities��� Many

��Gates et al
� ����� Aikman � Watkinson� ��	�� Gates� ��	�a� ��	�b� ��	
a� Slatkin � Anderson� ��	��

Firbank � Watkinson� ��	�� Pacala � Silander� ��	�� Pacala� ��	�� Lep�s � Kindlmann� ��	�� Bonan� ��		�

Ellison et al
� ����

��Rabinowitz� ����� Burdon � Harper� ��	�� Mithen et al
� ��	�� Weiner � Solbrig� ��	�� Benjamin �

Hardwick� ��	�� Weiner� ��	�� Dixon et al
� ��	�� Hara� ��		� Weiner� ��		� Weiner � Whigham� ��		� Geber�

��	�� Crawley � Weiner� ����� Bonan� ����� Weiner� ����� Stoll et al
� ����

��Watkinson� ��	�b� Waller� ��	�� Weiner� ��	�� Schmitt et al
� ��	�� Weiner � Thomas� ��	�� Schmitt et

�	



factors have been suggested as being in�uential on the sizes of individuals� including microen�

vironmental heterogeneity� density� competition� morphology� herbivores� parasites� pathogens�

genetics and germination characteristics �Weiner� �	�
� Weiner� �	��
� Focusing on a plant

monoculture in a homogeneous environment� protected from herbivory and disease� the main

in�uential factor remaining is intraspeci�c competition�

Two alternative views of how competition contributes to the generation of size distributions

have been advanced� One view holds that competition among plants is usually asymmetric

�Weiner� �		�
� �Symmetry of competition is considered in detail below�
 An opposing view

emphasises the role of spatial e�ects� Plants do not grow in uniform patterns� so they experience

variable degrees of crowding� The di�erences in local neighbourhood conditions lead to variation

in growth rates and hence to size di�erences or hierarchies �Bonan� �	��� �		�
�

The degree of symmetry of competition describes the outcome of the interaction between a

smaller plant and a larger plant� There is a complete spectrum of possible behaviours� from

purely symmetric� where both plants have equal resource uptake� through to total asymmetry

where the large plant takes all of the contested resources� Some degree of asymmetry has been

noted in large numbers of studies �Weiner � Thomas� �	��
� where it has also been termed

dominance and suppression� Populations often consist of a canopy of large dominant individuals

with smaller suppressed individuals below �McMurtrie� �	��� Knox et al�� �	�	
�

Suppression has implications beyond size� suppressed plants typically have di�erent morpholo�

gies� with a tendency to have thinners stems and less branching �Thomas � Weiner� �	�	b�

Ballar�e et al�� �		�� Weiner � Fishman� �		�
� This is a two way e�ect� di�erent degrees of

asymmetry arise from di�erences in morphologies between species��� While large plants clearly

shade nearby small plants� smaller plants can a�ect larger ones by shading their lower branches�

This observation �rstly suggests that asymmetry may be moderate and secondly con�rms the

e�ect of morphology on asymmetry �Ford � Sorrensen� �		�
�

al
� ��	�� Ellison � Rabinowitz� ��	�� Knox et al
� ��	�� Firbank � Watkinson� ����

��Berntson � Weiner� ����� Ellison � Rabinowitz� ��	�� Geber� ��	�� Holbrook � Putz� ��	�� Weiner �

Thomas� ���


��



An important implication of asymmetry is sensitivity to initial conditions �Silvertown� �	��
�

Slight di�erences in sizes at the onset of competition� whether arising from germination� genetics

or other factors� will be ampli�ed through time� as those individuals with even a slight size

advantage gain proportionately more resources�

Symmetry is critically dependent on which resource�s
 are limiting in a given situation �Schmitt

et al�� �	��
� It is generally agreed that competition for light is asymmetric� because of shading

e�ects �Weiner� �	��� Lie�ers � Titus� �	�	
� In contrast� soil nutrients are thought to be more

evenly divided� For example� root competition with the arti�cial exclusion of light competi�

tion minimises the importance of initial size �Wilson� �	��
� Light and soil competition have

also been described as one� and two�sided competition respectively� also contest and scramble

�Watkinson� �	��a
� In an interesting experiment with morning glory vines� Weiner ��	��


showed that higher size variation develops under shoot competition than under root competi�

tion� It has further been suggested that early interference is for nutrients� followed by one�sided

competition for light after canopy closure �Huston� �	��� Kenkel� �	��
� Various models have

addressed one� and two�sided interactions�	� In particular� overlapping ZOI models have in�

vestigated di�erent methods of allocation of resources in the overlap�
� These models have

highlighted the e�ects of di�erent interference mechanisms on resulting population structure�

The results are presented here of two di�erent models� aimed at �i
 examining the e�ects of

space and competition on individual plant growth and �ii
 generating testable results on the

relationships between size variability� density dependence and self�thinning for further �eld

studies� Both models use an individual approach and in particular test�

� Bonan�s ��	��� �		�
 assertion that a positive relationship between density and size in�

equality is evidence for neighbourhood e�ects and does not indicate the presence of com�

petitive asymmetry�

� Miller � Weiner�s ��	�	
 claim that neighbourhood e�ects without asymmetry can only

�	Diggle� ����� Britton� ��	
b� Miller � Weiner� ��	�� Thomas � Weiner� ��	�a� Tollenaar� ���



�
Gates� ���	� Gates et al
� ����� Ford � Diggle� ��	�� Huston� ��	�� Bonan� ��		� ����


��



give rise to a positive relationship between density and size inequality over a range of

very low densities� In their models increasing inequality at higher densities occurred only

when competition was asymmetric�

The main model is a CML �chapter �
� The second model comes directly from Bonan ��	���

�		�� �		�
 and uses circular ZOI about each plant� the only di�erence is that the boundaries

are treated as continuous or wrap�round� In each case� overlaps between neighbouring plants are

calculated and the growth modelled for four types of competition �absolute symmetry� relative

symmetry� absolute asymmetry� relative asymmetry
� Stochasticity is limited to the random

distribution of seedlings in the stand� so that neighbourhood e�ects are isolated� Although

previous models have considered uniform patterns of plants� these are not realistic for natural

populations and they are not used here� Finally� because density�dependent mortality has been

said to mask the e�ects of asymmetric competition� death has been suppressed by restricting

growth to be non�negative�

���� A Coupled Map Lattice Model�

A toroidal CML is used as an IBM of a plant monoculture� with the value of each cell represent�

ing the mass of the plant present in that cell� Mass is given as a proportion of the maximum

possible plant size attainable by the model� multiplied by a factor of ���� This factor allows

for possible overshooting caused by the discrete nature of the mathematical model� Each cell

has a �xed area equal to one �fth of the maximum area attainable by a plant grown under the

conditions set by the model� This is justi�ed as follows� The neighbourhood of a cell consists

of its four nearest neighbours and itself � a total of �ve cells ��gure �
� As this is a model of

competition between plants� plant growth is restricted so that it is never larger than its neigh�

bourhood �ZOI
� If this rule were violated� the plant would grow into regions where the model

could not treat the interactions� Hence a suitable cell size is one �fth of the maximum area

occupied by a single plant� The following mathematical model controls the growth of the plants

through time� It is an extension of the model of Aikman � Watkinson ��	��
 and includes

explicit spatial e�ects�

��



Figure �� Representation of a Von Neumann cell neighbourhood�

Parameter Value

g �
 gm��day��

b ������� gday��

c ������� m��g�
�

�

Table �� Parameter values for the plant growth equations in the single species CML model�

��



Symmetry option Competitive regime

� absolutely symmetric

� relatively symmetric

� relatively asymmetric

� absolutely asymmetric

Table �� De�nitions of the competitive regimes in the single species CML model� �symmetry

�� � �symmetry ���

��



The change in mass ��mi
 of plant i from one time step to the next is given by equation

��

� ai is the area covered by plant i and is given by the
�
� self�thinning rule of equation ���


�Moore� �	��� Westoby� �	��� Watkinson� �	��a� Hutchings � Budd� �	��� Westoby� �	��
� �i

is the growing area lost via competition� g is the intrinsic growth rate of the plant� b and c are

constant parameters and �t is the time step�

�mi �
�
g �ai � �i
� bm�

i

�
�t ��



ai � cm
�

�

i ���


It is necessary to establish the lost growing area for a plant in the lattice as a result of the

competitive regime under consideration� This involves �nding the areas by which neighbouring

plants overlap each other� Firstly� the maximum size for a plant that is not experiencing

competition �mmax
i 
 is obtained from equation ��

 by taking �i � � and �mi � ��

gai � bm�
i � mmax

i �
�gc
b

� �

�

� ���


Hence� by equation ���
� the area of each lattice cell� �� as the maximum mass divided over 


sites� is�

� �
c




r
gc

b
� ���


Assuming that a plant over�owing its own cell expands equally into the areas occupied by its

four neighbours� the overlap into a neighbouring cell of plant i is�

max

�
ai � �

�
� �

�

�




and hence the total overlap between two neighbours i and j is�

�i�j � max

�
ai � �

�
� �

�
�max

�
aj � �

�
� �

�
�

This leads to equation ��	
� which gives the total overlap of the area of the plant� �i� nhd

denotes the four�cell neighbourhood described above� �This is not a perfect model of the

overlap of areas� but is a good approximation of the in�nitely recursive series of overlaps that

would have to be considered for an exact representation�


�i �
X
i�nhd

max

�
ai � �

�
� �

�
�max

�
aj � �

�
� �

�
��	


The area lost to competition� �i� depends on the type of competition used in the model� The

four types of competition used here are representative of the spectrum of possibilities ranging

from fully symmetric to completely asymmetric� For absolute asymmetry� the larger plant of

two plants takes resources from the entire overlap area� equal�sized plants will share the area

equally� For absolute symmetry� plants divide the area equally� For relative situations� the

overlap is weighted by the relative masses� linearly for relative symmetry and quadratically for

relative asymmetry� Hence the following equation can be derived to give the total area lost to

competitors under the di�erent competitive regimes�

�i �

���������	
��������


P
j�nhd

�
��i�j absolute symmetryP

j�nhd

mj

mi�mj
�i�j relative symmetryP

j�nhd

m�

j

m�

i
�m�

j

�i�j relative asymmetryP
j�nhd ��i� j
�i�j absolute asymmetry

���


where�

��



��i� j
 �

�����	
����


� mi � mj

� mi � mj

�
� mi � mj �

As self�thinning may mask the e�ects of local neighbourhood interactions and variation in

competitive regime� density�dependent mortality is suppressed in this model� When �mi � ��

plant growth is prevented by setting this increment to zero� Thus the model can be expressed

by�

m
�t��

i � m

�t

i �max

��
g�ai � �i
 � bm�

i

�
� �
�
�

where the superscript t refers to the time step�

���� Analysis of the Basic Model�

The model of equations ��

 and ���
 is appropriate for annual plants� This section considers

the density�dependent behaviour of the model when applied to a symmetric mean �eld scenario�

If a certain number of plants is grown in a �xed area� then� under a symmetric competitive

regime� each plant has a �xed maximum growing area� denoted by A� If the plants are able

to reach the maximum mass� mmax �
�
gc
b

� �
� � before they su�er competition� then clearly the

plants grow to this terminal size� If they �ll their available area� no further growing space

exists and their growth is restricted� This modi�es the maximum size by changing the growing

area ai to A� so that m
max �

q
gA

b
� There is thus a threshold value of density� above which

the maximum plant mass is constrained� This threshold is determined by setting the area in

equation ���
 to A� Hence the density�dependence of the terminal mass is given by�

mmax �

��	
�

q

gA

b
A �

q
gc�

b�
gc

b

� �
� A �

q
gc�

b

���


The maximum yield per unit area� Y � is then obtained in terms of the density� � � �
A
�

��



Y �

��	
�


�
�
gc

b

� �
� � �

q
b
gc�p

g�

b
� �

q
b
gc�

�

Thus the yield increases inde�nitely as the density rises� However� the growing time is restricted

for annual plants� so the yield does not become in�nite as growing space decline to zero� A

suitable range of densities for the model must therefore be estimated�

���� The Circular Neighbourhood Model�

An alternative spatial model of plant monoculture development involves the construction of

circular neighbourhoods �ZOI
� The simulations allow plants to grow on a square plot and the

plot edges are treated toroidally� as with the CML� Seedlings are randomly distributed over

the plot and growth is simulated using the same model as before �equations ��

 and ���

�

The technique for allocation of seedlings ensures that the ZOI do not initially overlap� so that

competition cannot occur immediately� The area of a plant �equation ��


 is translated into a

circle of appropriate radius centred on the plant�

The spatial scheme is illustrated in �gure �� which represents a plot occupied by eight plants�

labelled A to H� Plants A and B overlap the plot edge� In order that the plot may be treated

as a torus� A� and B� are created as imaginary or virtual plants� These have �real� e�ects on

neighbours E and F �respectively
� Thus G and H have no close neighbours� B� C and F have

one neighbour� D and E have two neighbours� A has three neighbours �D� E and F
� Plant C is

entirely within the zone of in�uence of plant D and under asymmetric competition would not

be able to grow�

The overlaps between neighbouring plants are needed to calculate the growing area lost to

competition� �i� The overlap between two interfering neighbours� i and j� with zones of radius

p and q respectively� which are a distance d apart� is�

�i�j � p� cos��
�
p� � d� � q�

�pd

�
� q� cos��

�
q� � d� � p�

�qd

�

��
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Figure �� Schematic representation of eight plants in the circular neighbourhood model� A�

and B� are virtual plants� generated to satisfy the toroidal boundary conditions�

�	



� qd sin

�
cos��

�
q� � d� � p�

�qd

��

where�

p �

s
cm

�

�

i

	
and q �

s
cm

�

�

j

	
�

If one plant is entirely contained within the zone of in�uence of another� then the overlap is

equal to the area of the smaller circle �cm
�

�

i 
� The lost growing area is then calculated according

to the type of competition� as in equation ���
� In this model the neighbourhood nhd of plant

i consists of all plants whose ZOI overlap plant i� Again� mortality is avoided by constraining

the mass increment to obey �mi � ��

���� Population Statistics and Simulation Parameters�

������ Statistical Measures�

The following statistics were used to examine the plant population statistics of the two models�

The mean mass� 
� �equation ���
 is averaged over the lattice L
� The coe�cient of variation

�equation ���

 is the standard deviation adjusted for the mean mass� This provides a good

measure of the variability within a population� Another indicator of variability is the Gini

coe�cient used in the plant ecology literature� which is related to the Lorenz curve of cumulative

frequencies� Equation ���
 gives a relatively unbiased estimator of the Gini coe�cient for jjLjj�

��� �Weiner � Solbrig� �	��� Dixon et al�� �	��� Bendel et al�� �	�	
�


 �
�

jjLjj

X
i�L

mi ���


coe�cient of variation �
�




X
i�L

�mi � 

�

kLk� �
���


��



Gini coe�cient �

P
i�L

P
j�L jmi �mj j

�kLk�kL� �k
���


������ Computational details�

The parameters for equations ��

 and ���
� which are taken from Bonan ��		�
� are given

in table table �� A time step of �t � � day was used� after comparative simulations showed

negligible impact of smaller steps� Seedlings were sown with size ���g� which was small enough

�by several orders of magnitude
 to ensure no competition in the �rst few times steps� Previous

studies of spatial plant growth involved the variation of the initial mass and parameters g� c or

b� These variations were usually taken to be Gaussian or Normal� Such distributions were used

to represent genetical variation� micro�environmental heterogeneity and variation in seedling

emergence times� The parameters were taken here to be constant so that neighbourhood e�ects

and the in�uence of competitive regime could be studied� Runs with a uniform distribution of

initial seedling mass between � and ���g produced very similar results to those with a constant

seedling size of ���g� The e�ect of Normal seedling size distribution on the population structure

is investigated in section ����

The CML model was run on grids of �� by ��� 
� by 
� and ��� by ��� cells� Densities were

expressed as the proportion of cells occupied by plants� ranging from ��� to ���� The circular

neighbourhood model was run on a square plot with dimensions ���m� Densities were given in

terms of the number of plants randomly distributed on this plot� speci�cally the ten values are ��

�	� ��� ��� 	�� ���� ���� ���� �	� and �

 plants� as used by Bonan ��		�
� This range extended

to higher values than the CML� the latter was restricted by the ratio of neighbourhood size to

cell size� Repeated simulations were run to produce smoother averaged results� The statistical

variables considered were mean� coe�cient of variation and Gini coe�cient� The distribution

of sizes and the patterns of suppressed thinning were also considered�

��



���� Results�

������ Coupled Map Lattice Model�

The growth of plants through time� for �ve di�erent densities in the range ��� to ���� is illustrated

in �gure �� The absolutely symmetric regime is illustrated here� but the form of growth is similar

for all of the types of competition� The mass is seen to increase sigmoidally with time and to

decrease as density rises� Equilibrium has been �approximately
 attained within the ��� time

steps� These results shown are those obtained from a �� by �� grid� The model has also been

run for larger grid sizes� but as the growth did not di�er in any way� a smaller grid size has

been used for computational speed�

The model was then run for ��� time steps �� ��� days
 on a 
� by 
� lattice� for ten di�erent

densities in the range ��� to ���� The results were averaged over 
� simulations� Figures 	a � c

give the dependence on density of mean mass� coe�cient of variation and Gini coe�cient�

The distribution of plant sizes after 
�� time steps is shown in �gures ��a � d for density

��
� These graphs were produced by a single run on a 
� by 
� lattice� The large time used

ensured that the equilibrium was reached in all cases� At this density of ��
� the distributions

contained fewer peaks as the degree of asymmetry increases� but they become narrower� When

the density was set at ���� a single very sharp peak was obtained for all competitive types� as

all plant neighbourhoods and hence all growth rates were identical�

������ Circular Neighbourhood Model�

The model was run for ��� time steps at ten di�erent densities �� to �

 plants in the plot
 and

the results averaged over ��� simulations� Figures 	d � f give the dependence on density of the

three statistics of mass� mean� coe�cient of variation and Gini coe�cient� The model was run

for the higher densities of ���� �
�� 
�� and 

�� but the results showed no di�erent behaviour�

It should be noted that these new results using Bonan�s model are di�erent from those reported

in Bonan ��		�
 and the results here are smooth due to the number of replicated runs�

��
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Figure �� Mean mass of plants grown under the single species CML model� proportion of

maximum isolated plant size as a function of time� The �ve curves show di�erent densities�

from ��� �red
 to ��� �blue
 rising in steps of ���� Competition is absolutely symmetric�
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Figure 	� Population statistics for the single species CML model� �a
 � �c
 The CML model

at time ��� days� �a
 Mean mass �proportion of maximum isolated plant size
 as a function

of density� �b
 Coe�cient of variation of mass as a function of density� �c
 Gini coe�cient of

mass as a function of density� �d
 � �f
 The circular neighbourhood model at time ��� days�

�a
 Mean mass �g
 as a function of number of plants �equivalent to density
� �e
 Coe�cient of

variation of mass as a function of number of plants� �f
 Gini coe�cient of mass as a function

of number of plants� In all cases the competitive types are absolute symmetry �red
� relative

symmetry �green
� relative asymmetry �cyan
 and absolute asymmetry �blue
�
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������ Self�thinning�

Since the condition �mi � � prevented density�dependent mortality� it was of interest to �nd

the extent to which this constraint was implemented� The two models were run for ��� time

steps and the number of plants where the mass increment was reset to zero was found as a

function of density� The circular neighbourhood model was run only once because of the highly

intensive computation� whereas the CML was averaged over 
� simulations� Figures ��a � b

illustrate the results� the degree of self�thinning that would occur� if permitted� increased with

the level of asymmetry� particularly for the CML�

��	� Discussion�

The results show that the mean mass decreases as density increases ��gures 	a and d
� Because

mass in the CML is given as a proportion of maximum isolated plant size� it is clear that size

has been constrained by competition �Mack � Harper� �	��� Ellison � Rabinowitz� �	�	� Grace

� Tilman� �		�
� Competition can thus be considered a boundary constraint on plant size� as

previously described by Goldberg ��	��
�

Growth of the plants is sigmoidal� so the early phase is exponential� Turner and Rabinowitz

��	��
 claim that variation in the early exponential phase of growth leads to the generation of

size hierarchies� However� interference does not occur immediately� as mass is the same for all

densities for the �rst 
� or so time steps ��gure �
� As the initial plant masses are constant and

no competition occurs during the early part of growth� there can be no size hierarchy formation

at this stage� Variation in growth rates can thus only occur when competition sets in after the

exponential stage of growth�

The mean mass of plants is similar for all the competitive schemes� except for the absolute

symmetry in the CML ��gure 	a
� This may be attributed to the equal sharing of resources�

that is� two neighbours of a similar size in adjacent cells prevent each other growing� If there

is any asymmetry present� at least one of the plants is able to grow� Because of this� the even

spacing of plants caused by the regularity of the lattice and interference by neighbours the total
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Figure ��� The proportion of plants which stop growing in the single species CML model by

time ��� days� �a
 CML model� shown as a function of density� �b
 Circular neighbourhood

model� shown as a function of initial number of plants� In both cases the competitive types are

absolute symmetry �red
� relative symmetry �green
� relative asymmetry �cyan
 and absolute

asymmetry�blue
� �The values are so low in the CML model for absolute symmetry �a
 that

the red curve is not easily distinguished from the horizontal axis�
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population yield is suppressed�

The coe�cient of variation and Gini coe�cient demonstrate the existence of variation in the

population� allowing the formation of size hierarchies to be seen ��gures 	b� c� e and f
� The

variation increases as the density rises� because higher densities lead to earlier and stronger

interactions between plants� The variation is considerably greater with absolutely asymmetric

competition� There is a clear di�erence between the coe�cient of variation for relative symme�

try and absolute asymmetry� which are the most commonly considered modes of competition

��gures 	b and e
� The di�erence is less marked with the Gini coe�cient ��gures 	c and f
�

Bendel et al� ��	�	
 have noted that the coe�cient of variation is more sensitive to hierarchy

di�erences than the Gini coe�cient�

It is therefore reasonable to state that the formation of hierarchies can distinguish between

symmetric and asymmetric competition� as claimed by Miller and Weiner ��	�	
 and Weiner

��	�
� �	��� �		�
 but disputed by Bonan ��	��� �		�
� There is� however� some variation even

in the symmetric case� This con�rms that spatial�neighbourhood e�ects do play a signi�cant

role in the generation of size variability �Bonan �	��� �		�
� but they are secondary to the

competitive regime� The use of the four di�erent symmetries illustrates the progressive nature

of competition mechanisms� It is relevant to express the conclusion as follows� higher variability

at higher densities implies greater asymmetry in neighbourhood interactions�

The sudden decrease in all the mass statistics at the highest density of the CML ��gures 	a �

c
 is caused by the regularity of the lattice� This is because for low and intermediate densities�

the plants are scattered through the grid� whereas when the lattice is full �density ���
� the

plants are necessarily regularly spaced� so the randomness of the spatial distribution is lost�

The rate of increase in the coe�cient of variation and Gini coe�cient for both models falls o�

as density rises� This partially re�ects a decrease in the e�ective randomness of the distribution

as the initial density of plants is increased� There is less variation at higher densities in the

overlapping of zones of in�uence and so the growth rates and hence the plant sizes are more

similar�

��



The hierarchy is still able to remain strong in the asymmetric case and there is a large variation

in plant sizes ��gures ��c and d
� Here the asymmetry dominates the plant growth and the

distribution is of secondary importance in determining the �nal population structure� The size

distribution plots ��gures ��a � d
 give an insight into the e�ects of the degree of asymmetry

on the population structure� Symmetric competition results in a wide distribution� which is

skewed to the right because of the suppression of mortality� Absolute asymmetry restricts the

plants to a discrete set of sizes� These size classes are used in Appendix A to reduce the CML

model to a CA� thus allowing long time scales to be used�

The levels of thinning ��gures ��a and b
 exhibit an appreciable di�erence between the two mod�

els� The coupled map lattice shows that greater asymmetry leads to more density�dependent

mortality� as suggested by Bonan ��	��
� The self�thinning is less dependent on symmetry in

the circular neighbourhood model� Greater asymmetry means that large plants cause the death

of smaller plants� whereas with symmetry� similar neighbours will reduce each others� growth

rather than bring about death� These discrepancies between the models demonstrate that the

type of spatial distribution used is important�

The comparison of the two types of model �CML and circular neighbourhood model
 highlights

the issue of the aims of ecological modelling �Wissel� �		�b
� The excessive computation of the

latter type of model limits the extent of investigation of the system� The CML allows critical

mechanisms to be quickly and thoroughly studied and general results extracted� it is ideal for

use at low and intermediate densities� The current implementation of the CML does have the

shortcoming of limiting the upper end of the density range� However� the model is suitable for

extension to higher densities through development of the use of larger neighbourhoods�

In summary� the results of both models support the view that size hierarchies can be used as

evidence to distinguish between asymmetric and symmetric competition �Weiner � Thomas�

�	��
 over the alternative view that size hierarchies are evidence for neighbourhood e�ects

�Bonan �	��� �		�
� Asymmetric competition is a key factor in determining size variation in

plant populations and communities�

�	



��
� The E�ect of Variation of Initial Seedling Weight�

The e�ect of a Normal distribution of initial seedling sizes on the mean and coe�cient of

variation of plant mass is considered in this section� The initial conditions of the CML were

altered so that the plants were independent normally�distributed random variables of mean ���g

and standard deviation �� where � is expressed as a percentage of the mean� The parameters

of table � were again used and the full range of symmetry types �table �
 were run on a 
��
�

grid for ��� time steps� Firstly � was varied between �� and 
�� for a full grid �density �
�

then the response of non�zero � to a range of densities was studied�

The �nal mean mass of plants was very little a�ected by �� whereas the coe�cient of variation of

mass was strongly a�ected by the value of � ��gure ��a
� The impact of seedling variation was

particularly strong for the more symmetric competitive types� with the coe�cient of variation

for absolute symmetry rising by �ve orders of magnitude as � increases from �� to 
��� There

was little e�ect of � on absolute asymmetry� because even small plant�to�plant variation was

greatly ampli�ed by one�sided competition� On the other hand� symmetric interactions did not

appreciably a�ect the population structure� re�ecting the initial distribution much more closely

in this case�

Figure ��b shows the coe�cient of variation of mass as a function of density for � � ��� initial

seedling weight variation� By comparison with �gure 	b� it can be seen that � played no signi��

cant part in the response of the population structure to density e�ects� The only exception was

for the full grid �density �
� where � � �� did not allow any variation because all neighbour�

hoods were necessary identical� as discussed in section ���� For � � ��� initial variation was

able to develop with the stand� in particular the coe�cient of variation increased monotonically

under absolute asymmetry� Thus the conclusions of section ��� hold for populations with varied

seedling sizes� increased variation at higher density implies asymmetry of interactions�
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Figure ��� Results of the single species CML model assuming initial seedling variation� �a
 Co�

e�cient of variation of mass as a function of initial variation � �� of mean initial seedling size


assuming a Gaussian distribution� �b
 Coe�cient of variation of mass as a function of density

for � � ���� In all cases the competitive types are absolute symmetry �red
� relative symmetry

�green
� relative asymmetry �cyan
 and absolute asymmetry �blue
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Figure ��� Arrangement of carrot seedlings in the single sowing experiment� Upper case letters

give harvested plants�
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a a a a a ab b b b b b

a a A A A a bbBBBb

a A A A a ab b B B bB

a a a a a a bbbbbb

a A A A a ab b B B bB

a a A A A a bbBBBb

a a a a a ab b b b b b

a a A A A a bbBBBb

a A A A a ab b B B bB
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Figure ��� Arrangement of carrot seedlings in the double sowing experiment� Upper case letters

give harvested plants� a is sown on day �� b is sown on day ���
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b b b ba a a ac c c c

b b b ba a a ac c c c

b b b ba a ac c c c a

b b b ba a a ac c cc

c C C ca A A ab B B b

c C C cAb B B b aa A

Ca A A ab B B bc cC

b b b ba a a ac c c c

c C C cAb B B b aa A

Ca A A ab B B bc cC

c C C ca A A ab B B b

b b b ba a ac c c c a

Ca A A ab B B bc cC

c C C ca A A ab B B b

c C C cAb B B b aa A

b b b ba a a ac c cc

c C C ca A A ab B B b

c C C cAb B B b aa A

Ca A A ab B B bc cC

b b b ba a a ac c c c

c C C cAb B B b aa A

Ca A A ab B B bc cC

c C C ca A A ab B B b

b b b ba a ac c c c a

Ca A A ab B B bc cC

c C C ca A A ab B B b

c C C cAb B B b aa A

b b b ba a a ac c cc

c C C ca A A ab B B b

c C C cAb B B b aa A

Ca A A ab B B bc cC

Figure �
� Arrangement of carrot seedlings in the triple sowing experiment� Upper case letters

give harvested plants� a is sown on day �� b is sown on day ��� c is sown on day ���
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Figure ��� Results of the carrot CML model� mean masses for the � harvested plants at each

harvest date� Intrinsic growth rates are g � 
 �a � c
� �� �d � f
 and �� �g � i
� The columns

are respectively the single� double and triple sowing simulations� The competition types are

absolute symmetry �red
� relative symmetry �green
� relative asymmetry �cyan
 and absolute

asymmetry �blue
�
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Figure ��� Experimental data for the carrot experiments� mean masses for the � harvested

plants at each harvest date� Inter�plant spacings are 
��cm �a � c
� ��
cm �d � f
 ����cm �g � i


and �
��cm �j � l
� The columns are respectively the single� double and triple sowing simulations�

Three replicates are shown for each experiment�
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Figure ��� Sample �ts of CML output to empirical carrot data� mean masses for the � harvested

plants at each harvest date� �a
 Single sowing� data �green
 for spacing 
cm � 
 and �
cm

�� � �
 with �tted models �red
� absolutely symmetric �� o �
 and absolutely asymmetric �� � �


with g � ��� �b
 Double sowing� data for spacing 
cm �green
 with �tted model absolutely

asymmetric and g � �� �red
� �c
 Double sowing� data for spacing �
cm �green
 with �tted

model absolutely asymmetric �red
� g � �� �� o �
 and g � �� �� � �
� �d
 Triple sowing� data

for spacing 
cm �green
 with �tted model absolutely asymmetric and g � �� �red
�
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����� Application of the Coupled Map Lattice to Crop Data�

���	��� Introduction�

In this section the CML model is adjusted to model a �eld experiment on carrot plants �Daucus

carota
 carried out at Horticulture Research International at Wellesbourne in Warwickshire in

the summer of �	�
� Seedlings were planted on three sowing dates in a grid and harvested over

the subsequent ��� days� Three of the sowing patterns were examined� single� double and triple

sowing dates� In the �rst case all plants were sown on day �� In the second case alternate plants

were sown on day � and the remainder on day ��� The �nal experiment planted every third

plant on day �� half of the gaps were �lled on day �� and the rest on day ��� Plants of each

cohort were harvested on days ��� 
�� ��� ��� �� and 	�� Four di�erent inter�plant spacings

were used� 
� ��� � �� and �
cm� there were three replicates of each sowing treatment�

The sowing and harvesting patterns are shown in �gures �� � �
� The letters a� b and c refer

respectively to the sowings on days �� �� and ��� Upper case letters indicate harvested plants

and lower case letters give �guard plants�� The blocks of harvested plants were removed and

weighed� starting from one end of the grid� Further experimental details are given in Benjamin

��	��
 as experiment ��

���	��� Extension of the Basic Model�

The carrot experiment is ideal for simulation by a CML because of the rectilinear pattern of

the plants� The width of the CML model was changed to ��� as in the experiments� The length

was changed to �	� �� and 

 for the single� double and triple sowings� to allow �� harvestings

to be simulated� This was twice as many as the experiment� to allow further development of

the stand to be studied�

Seedlings were �sown� on the CML at the three sowing dates in the patterns given by �gures

�� � �
� with mean initial mass ���	 �relative to the maximum mass described in section ���

and equation ���

 and with a standard deviation of �� At the appropriate iterations� � plants

were removed of each type �a� b or c
 by resetting their masses to zero and the mean masses

	�



attained were recorded� The model was run for the single� double and triple sowings and for

all four competitive symmetries �table �
� Standard deviations of � � ��� �� and ��� of the

initial plant size were used� A range of intrinsic growth rates were used� g � 
� �� and ��

�gm��day��
� The results were averaged over �
 runs to produce smooth curves�

���	��� Results and Discussion�

Figure �� shows the mean mass for the single� double and triple sowings for the three growth

rates� These curves are for the �� standard deviation� but the other cases resulted in values

di�ering by less than ����� Variation of symmetry type has signi�cantly di�erent e�ects only

for the multiple sowings and for su�ciently higher growth rates �comparing �rstly �gures ��a�

d� g with c� f� i and secondly a� b� c� with g� h� i
� Since there is a plant in every CML cell

�density ���
 in the single�sowing even�aged stand� there is no signi�cant di�erence between

the plants to be enhanced by greater asymmetry of competition� In the multiple�aged stands�

the �rst�sown plants have an advantage over later cohorts� This is magni�ed by asymmetric

interference as is particularly clear in �gures ��h � i�

The intrinsic growth rate g �equation ��


 also signi�cantly a�ects the resulting population

structure� If the growth rate is low� the �rst cohort does not gain such an advantage over

later plants and there is less e�ect of asymmetric competition� If the growth rate is high�

the �rst plants gain such a size advantage that even slight asymmetry leads to great size

di�erences between the cohorts� Hence there is the most di�erence between the symmetry

types at intermediate growth rates ��gures ��d � f
�

Figure �� shows the experimental data for the �� combinations of plant spacings and sow�

ing treatments� each with three replicates� The double and triple sowing experiments show

signi�cant di�erences between the �rst and subsequent cohorts� which indicates considerable

asymmetry of interaction� These di�erences arise at a fairly early stage� indicating a relatively

high intrinsic growth rate� As the spacing between plants rises� the second and third sowings

produce relatively larger plants� The larger growing space delays interactions� so there is less

opportunity for size di�erences to arise� Wider spacing is thus equivalent to a lower growth

		



rate at a �xed spacing� which is a constraint of the CML model�

Although this model is intended only to study the type of interactions� data not being available

for parameter estimation� a basic comparison can be made by �tting a constant multiple of the

model output to the empirical data by a least squares technique� Figure �� shows �ttings for

sample single� double and triple sowings� Figure ��a shows the results for a single sowing at

the maximum and minimum spacings� with a good �t to the data by the absolutely asymmetry

model with g � ��� Figure ��b shows the 
cm spacing for the double sowing� with a reasonable

�t for absolutely asymmetry and g � ��� The largest spacing� �gure ��c� is apparently mid�way

between the g � �� and g � �� model results� Thus as expected� the wider spacing is equivalent

to a lower growth rate� The triple sowing data provide a less good �t� as the later cohorts of

carrots carried on growing larger for slightly longer than the model predicted ��gure ��d
�

In conclusion� the plant CML model was able to show that carrot plants grown on a rect�

angular lattice experienced predominantly asymmetric competition� resulting in high levels of

suppression in later cohorts of plants�

���



�� A Model for Annual and Perennial Plant Communities�

Chapter Summary

The plant coupled map lattice of chapter � is extended to two species and multiple

years� The two species are described as short�lived annuals and long�lived clonal

perennials� Growth is represented deterministically� as in chapter �� whereas

reproduction is modelled stochastically� Perennials propagate via localised ramet

production and annuals produce seeds that are dispersed via a random walk�

Annuals in monoculture persist for a wide range of demographic parameters� In

contrast� perennial survival depends on a threshold function of the birth�death

ratio� A mean �eld approximation highlights the importance of space by present�

ing discrepancies between the spatial and non�spatial systems at high and at low

perennial reproduction rates�

Patterns form in the lattice system� the clumping index is used to quantify the de�

viation of the pattern from random� Perennials are clumped both in monoculture

and in competition� whereas the annuals are very nearly random in monoculture�

but are constrained to patches in competition with the perennials� The impo�

sition of a range of scaling relations on the annuals population by the presence

of perennials is demonstrated by multifractal analysis� which further illustrates

the asymmetrical relationship of the two species and provides an indication of

underlying complex interactive mechanisms�

The coherence length scale is shown to be of order �	�� which means that a large

grid size is essential to the dynamics� The length scale analysis identi�es negative

spatial coherence of annuals over small scales� corresponding to the dispersal

process� while the perennials always show positive spatial coherence�

���



�If one way be better than another� that you may be sure is Nature�s way� � Aristotle

���� Introduction�

The CML model of chapter �� which examined the interaction of individual plants� competitive

mechanisms and population structure in a single species plant community over a short time

scale is expanded in this chapter� The model is extended both to multiple years and to two

species and is used to investigate the e�ect of individual plant performance on the size and

spatial structure of a bispeci�c community� The impact of long�lived clonal species on the

persistence and spatial structure of short�lived localised species is investigated and illustrated

using selected numerical techniques� including a clumping index and multifractal analysis�

The long�lived perennial species is assumed to rely on propagation by vegetative growth� in a

manner motivated by the CA type model of Crawley 	 May 
���
�� in which the dynamics

of an annual�perennial community are simulated by simply recording the presence�absence of

each plant� The short�lived annual species� in contrast� reproduces by scattering seeds over its

immediate locality� The use of a CML rather than a CA allows the plasticity of individuals

to be incorporated in the system and the distribution of mass to be studied in addition to the

distribution of individual plants�

���� Extension of the Coupled Map Lattice to Competing Plant Pop�

ulations�

In each growing season� the individual annual and perennial plants both follow the same growth

patterns as in chapter �� as summarised by equations 
��� and 
���� Thus the species di�erence

is limited to the propagation mechanism 
Hegazy� ����� and species longevity 
Symonides�

������ At the end of each year� all of the annual plants produce seeds and die� The number

of seeds per annual plant depends on the size of the plant at the end of the year 
Dolan 	

Sharitz� ����� Thompson et al�� ����� Klinkhamer et al�� ������ A full size annual 
whose

growth has not been limited by competition� is assumed to produce ��� seeds� smaller plants

produce proportionately fewer seeds� Each seed is scattered in turn from the cell occupied by

���



the parent plant� A scattering probability Ps controls the level of dispersion via a random

walk� At each step� the seed moves in a north�south direction with probability Ps and in an

east�west direction with probability Ps� The seed moves north or south with equal probability

and similarly for east or west� Assuming that the lattice is su�ciently large to neglect the

possibility of seeds looping round the lattice and returning to a position near the parent plant�

the expected distance that a seed travels in each direction is�

Ps


Ps � ���
�

so that the expected �nal displacement from the parent plant is�

p
�Ps


Ps � ���
� 
���

This is an increasing function of Ps on ��� ��� which rises very sharply after Ps � ���� For

example� a scattering of Ps � ���� will give a more or less randomly�distributed seed bath

covering a ��� by ��� grid� It should be noted that a large scattering parameter leads to

excessive computation�

At the end of each year� the perennials generally survive� but a small proportion are assumed

to die during the winter period� If pi is taken to be the relative mass of plant i�

pi �
mi

mmax
�

where mmax is the maximum mass of an isolated plant 
equation 
�
��� then the probability

that a perennial with relative mass pi will die is given by equation 
���� dmin is the probability

that a plant of maximum size 
pi � �� will die during a winter and thus is the minimum

probability of death�

���



probability of

perennial death
�

dmin

dmin � pi
�� dmin�

���

The perennials are assumed to propagate vegetatively by ramets� An empty cell will receive

a perennial�s ramet with probabilities according to the total mass of perennials in the four

neighbouring cells� The probability of a new perennial growing in a cell is given by equation


�
�� where Pmax is the probability that a cell surrounded by four maximum size plants will

receive a new ramet and nhd represents the four cell von Neumann neighbourhood�

probability of

new ramet
�

�

�
Pmax

X
j�nhd

pj 
�
�

A surviving perennial ramet will severely suppress the growth of an annual seed that falls

into a neighbouring cell under all but absolutely symmetric competition� because of its initial

size advantage� Thus perennials are assumed to have a competitive advantage over annuals

at the reproduction stage� annual seeds do not germinate in the immediate neighbourhood

of a perennial ramet� The ramets are spread �rst� then seeds are able to grow in any cells

that remain empty� Each individual seed grows with probability Pg so that the probability a

new annual grows in a given cell is given by equation 
���� where ns is the number of seeds

which have fallen into the cell� Thus the surviving perennials� new perennial ramets and the

new annual seedlings together contribute to the initial conditions for the next year�s growth�

controlled by equations 
��� and 
����

In general the results presented here correspond to absolutely asymmetric competition� in many

cases the competitive type does not a�ect the results� occasionally the computation is too

intensive to allow all of the types to be used� It should be noted that the growth phase is

modelled deterministically� whereas the reproductive phase incorporates stochastic elements�

���



probability of

new annual
� �� 
�� Pg�

ns 
���

���� Parameter Testing�

The model was tested under absolutely asymmetric competition for a full range of parameters�

Simulations were for �� years with a ��� day growing season on a �� � �� grid� The annual

parameters� Pg 
seed growth probability� and Ps 
seed scattering probability� were tested for

��� parameter combinations� while the perennial parameters� dmin 
winter death probability�

and Pmax 
ramet production probability� were tested for ��� parameter pairs�

The parameter ranges are given in table �� The total biomass after the �fty year period

is shown for the annuals in �gure a and for the perennials in �gure b� The results for the

annuals 
consisting of � ��� time steps� took approximately one week to run on a SPARC��

workstation� so none of the results were replicated and only one competitive type was used�

Thus the irregularity of the plot is due to stochastic noise� which would be expected to be

removed if it were feasible to make repeated runs�

The behaviour of the annual plants is relatively uniform for most of the parameter range� A

total biomass� ��� mass units is produced after �� years for Pg � ��� and Ps � ���� 
The units

of mass are grams relative to the maximum mass of an isolated plant as described in chapter

��� The perennials are unlikely to survive under all but the smallest death probabilities� that

is� dmin � ��� is needed� The functional forms for the critical parameter values for survival are

considered later�

���� Results�

Figures ��a � d show examples of the spatial patterns reached by the model after ��� years� Fig�

ure ��a 
absolute asymmetry� illustrates the restricting e�ect of the high density of perennials

on the dispersion of the annuals� The annuals are unable to scatter seeds extensively and appear

clumped in certain regions of the grid� By comparison� the pure annual population covers the

���
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a� 
b�


c� 
d�

Figure ��� Spatial pattern in the annual�perennial CML model after ��� years� Red cells are

perennials� green cells are annuals and white cells are empty� 
a� Mixed population� abso�

lute asymmetry 
b� Mixed population� absolute asymmetry with higher perennial mortality�


c� Pure annual population� absolute asymmetry� 
d� Pure perennial population� absolute

asymmetry�

��




lattice 
�gure ��c�� Figure ��b� with higher perennial mortality has a much smaller perennial

population� which allows the annuals to be more widely and evenly spread� Figure ��d shows a

typical perennial distribution� which is relatively una�ected by the presence of annuals� Hence

the pattern of annuals is a�ected by coexisting perennials� but not appreciably vice versa� The

manifestation of this relationship is examined numerically in section ��
�

���� Using Singular Value Decomposition to Test Robustness�

The robustness of the values at each lattice point cannot be considered here because the model

is too large� Indeed� it is of more interest whether the structure is statistically consistent rather

than identical at every cell and at every time step� The presence or absence of a plant in any

one cell after ��� years cannot be expected to be predictable because the plants are randomly

distributed nad reproduction and death are stochastic� It is� however� relevant whether the

characteristics of the spatial patterns are robust� Thus the sizes of clumps of plants produced

are suitable for consideration� A simple measure of these is obtained by counting the number

of adjacent cells with plants in� across each row of the grid� The lengths of these blocks are

recorded and the frequency of each block length found� These are divided into the classes �� ��

� � �� � and ��� and over�� The decision to use ten classes is somewhat arbitrary� but based on

the heuristic observation that there are few blocks greater that ten cells in length�

The model was run ten times� to produce a �� � �� replication matrix X� given in table ��

Table � shows the singular values e�� � � � � e�� obtained for matrix X� using the SVD technique

described in chapter �� The ratio of the �rst two singular values is ������ which for n � ��

corresponds to Gaussian noise of about ���� of the maximumdata value� The spatial structure

is clearly substantially robust to repeated simulations of the CML�

���� A Mean Field Approximation for the CML Model�

������ Mathematical Analysis�

The role of the spatial dimension can be highlighted and the parameter ranges for which the

spatial model is essential can be determined by analysing a mean �eld version of the system�

���



Plant type Parameter Values

Annual Pg f�� ����� ����� ����� ����� ���� ���� ���� ���� ���� ��� g
Ps f�� ���� ���� ���� ���� ���� ���� ��
� ���� ���g

Perennial dmin f�� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ���g
Ps f�� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ���g

Table �� Parameter values used for parameter�testing runs of the annual�perennial model�

Class Run number

� 

� ��� 
�� 
�� ��� 
�� 
�� 
�� ��� ���

� ��� ��� ��� �
� �
� ��� ��� ��� ��� ���

� ��
 ��� ��
 ��� ��� ��
 �� ��� ��� ���

� �� �� �� �� �� �� �� 
� �� ��

� �� �� �� �� �� �� �� �
 �� ��

� �
 �� �
 �� �� �� � �� �� ��


 � � �� � �� �� �� �� �� �

� � � 
 � � � � � � �

� � � � � � � � � � �

��� � � 
 
 � � 
 � � �

Table �� Replication matrix for the annual�perennial system�

���



Singular value

e� ������

e� ����

e� ���


e� ����

e� ����

e� ���

e� 
��

e	 ���

e
 ���

e�� ���

Table �� Singular values of the replication matrix for the annual�perennial system�

Parameter Value

dmin ����

Pmax ���

Ps ��


Pg ����

competition type �

Table 
� Parameter values used for error analysis runs for the annual�perennial CML�
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Such a model is constructed in this section� by extending the basic method of Crawley 	 May


���
� and Durrett 	 Levin 
����b�� This is compared with the full CML model� allowing the

impact of spatial processes to be assessed�

The perennials are dealt with �rst� as the model assumptions limit the in�uence of the annuals

on them� Annuals do not a�ect the yearly spread of ramets� as it is assumed that they have died

at the end of the previous growing season and the seeds have not yet germinated� Annuals also

have little impact on the growth of perennials as seeds falling near existing clumps of perennials

will have their growth suppressed� As observed by Crawley 	 May� it is simplest to model the

proportion of cells not occupied by perennials� denoted here by Et at time step t� where the

time steps are years� If the probability that any one perennial dies at each time step is given by

a parameter � and the probability an empty cell receives a ramet is proportional to the number

of neighbouring ramets and a parameter �� then the following di�erence equation models the

dynamics of the empty cells�

Et�� � 
� � 
�� ��Et� 
�� 
��Et�
�� ���� �

Expressions are now needed for the parameters � and �� Substituting for average plant size �p

provides an expression for the probability of death 
equation 
����� where �p is relative to the

maximum plant size mmax� Similarly equation 
��� gives a mean �eld approximation for the

probability of a new ramet being produced�

�
�p� �
�pdmin

�p
�� dmin� � dmin


���

�
�p� � �pPmax 
���

It is clear that as the population develops the density and average mass will vary� so that

�p � �p
t�� However� an expression can be obtained for the equilibriumvalue of limt�� �p
t� � �p��

���



It has been shown in chapter � that the maximum 
and hence non�trivial equilibrium� plant

mass under a mean �eld approximation is given by equation 
���� the area per cell by equation


���� so that the area per plant is�

�

��

r
gc�

b
�

where � is the proportion of cells occupied at equilibrium� that is�

� � ��E��

Hence the average plant size at equilibrium will be �p� 
equation 
����� Equilibria can be sought

by solving Et�� � Et with �p � �p�� which is equivalent to roots of equation 
����

�p� � min

�
��

�p
� 
��E��

�

���

E� �
�

�p�dmin

�p�
��dmin��dmin
�
�
�� �p�dmin

�p�
��dmin��dmin

�
E�
�

�
�
�� 
��E��

�
�� �p�dmin

�p�
��dmin��dmin

�
�p�Pmax

� 
���

Conditions for the existence of a non�trivial solution to 
��� in ��� �� can be obtained in terms

of the mean mass� �p� but it is more informative to obtain an approximation to equation 
���

in terms of powers of E�� Figure ��a shows a plot of 	
E� against E� 	
E� is the right

hand side of 
��� and the ��� subscripts have been dropped for brevity� The discontinuity in

	�
E� at E � ��� is caused by the min function in equation 
���� Since 	 is nearly linear in

��� ���� and in ����� ��� 	� is positive and approximately constant in each interval� Therefore�

there clearly exists a critical value of dmin� dc � dc
Pmax�� below which there exists an internal

equilibrium in ��� ���� and above which there are only boundary equilibria� Since 	
�� � � for

all values of dmin and Pmax� E � � 
no perennials� is always a stable equilibrium� as would

be expected� The critical death rate� dc can be determined by solving 	
���� � ���� Using a

���



quadratic approximation to 	� the following estimate is obtained� with the negative root falling

in the required interval ��� ���

dc � ��

�

�
� �

�Pmax � ��
q

�
�Pmax � P �

max � �

Pmax

�
A � 
���

The proportion of cells occupied by annuals� At� can now be found� in terms of the empty

cells� Et� The number of annuals depends on the number of seeds sown� which in turn depends

linearly on the mean mass �p� The expected number of seeds per plant is ����pAt� so the number

of seeds per empty cell is ����pAtEt� This leads to the di�erence equation 
���� Again �p � �p
t��

but the equilibrium value of �p
t� can be found 
equation 
����� Then the equilibrium proportion

of annuals� A�� is determined by solving At�� � At 
equation 
�����

At�� �
�
�� 
�� 
�����pAtEt

�

���

�p� � min

	
�p
�A�

� �




���

A� �
�
�� 
�� 
���

p
�A�E�

�

���

Denoting the left hand side of equation 
��� by �
A� and again dropping the subscripts ����

third order polynomial approximations to � can be found for A � ��� and A � ���� 
These

ranges represent the two terms of the min function�� The third order solution to �
A� � A�

�
E� 
�� is given in equations 
�
� and 
��� for the intervals ��� ���� and ����� �� respectively�

where  
 � log
�� 
�� These two expressions combine to produce a continuous function with a

discontinuous derivative 
�gure ��b��

�
E� 
� �
���

�
���� 
�E� � �� �p

�

p�������� 
�E� � ���� 
�E� � �
�

������
p
� 
�E�


�
�

���
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Figure ��� Mean �eld analysis of the annual�perennial system� 
a� Graph of 	
E� for di�erent

values of dmin� the probability of perennial death� dmin increases from ���� 
magenta� to �


red� as 	 increases� Intersection of the curve with 	 � E gives the position of equilibria of the

mean �eld perennial model� 
b� Graph of �
A� for di�erent values of E� the proportion of cells

free of perennials and for 
 � ����� where 
 is the probability of seed germination� E increases

from ��� 
blue� to � 
red� in steps of ��� as � increases� Intersection of the curve with � � A

gives the position of equilibria of the mean �eld annual model� 
c� The critical value� dc� of

the perennial death rate� dmin� above which the perennials become extinct� 
d� The critical

value� Ec� of the equilibrium proportion of cells free of perennials� E�� below which the annuals

become extinct� 
e� Comparison of numerical values for the critical perennial death rate� dc�

with the mean �eld values� value of dc from the simulation 
red�� theoretical value of dc 
blue��
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�
E� 
� �
��
�
���� 
�E� � �� �p

�

p�������� 
�E� 
��� 
E� � ��
�

������� 
�E�

���

It is clear that there exists a critical value of the proportion of cells without perennials� Ec�

This is the solution to �
E� 
� � �� which for the third order approximation is given by equation


���� Hence the value of 
 controls the lower limit of the gap frequency E which a population

of annuals can tolerate�

Ec �
�

���j log
�� 
�j 
���

Figures ��c � d illustrate the two critical value expressions derived respectively for dc and Ec�

������ Comparison with Computational Results�

Since the annuals have minimal e�ect on the perennials� parameter testing for the perenni�

als 
�gure b� can be compared to the mean �eld critical value expression 
equation 
��� and

�gure ��c�� Approximate dependence of dc on Pmax can be extracted from the surface plot

by nonlinear interpolation 
�gure b�� The critical value� dc is the point at which the subset

of parameter pairs under which extinction occurs meets the subset where the population sur�

vives� Upper and lower limits for the value of dc are given by the parameter values in �gure a�

which correspond to zero and non�zero values of stand biomass� This is necessarily a rough ap�

proximation because the model contains stochastic �uctuations and is subject to demographic

extinction and the results are not replicated for reasons of computational infeasibility�

Figure ��e shows that the mean �eld approximation is a fair predictor of the survival of the

perennial species for intermediate values of reproduction 
Pmax�� However� at low reproductive

rates� perennials survive better in a spatial system than in the mean �eld� so that space provides

a refuge e�ect� In contrast� at high perennial reproductive rates � aggressive expansion � spatial

extensiveness is detrimental to survival� propagation restricted by the clonal spatial structures�

It is thus clear that spatial dimensions are essential in the model for most of the range of this

parameter�

���



The parameter testing for the annuals 
�gure a� shows that the population survives for all

parameter combinations when Pg � �� Since the population is pure� E � �� so the population

should survive as long asEc � �� The value ofEc depends only on 
 
� Pg�� as in�nite scattering


or a seed bath� is assumed in the mean �eld derivations� Hence extinction is expected if�

Ec �
�

���k log
�� 
� k � ��

that is� if�


 � �� e�
�

��� 	 �����

The numerical simulation has no values of Pg in the open set 
�� ������ so the only parameter

values which should exhibit extinction are those with Pg � �� as seen in �gure a�

��	� Analysis of Spatial Structure�

The evolution of the spatial structure of the annual�perennial model can be examined by fol�

lowing the variation of the clumping index of section ����� through time� Figures ��a � c give

various paths of the index for di�erent compositions of populations� All results shown are for

absolutely symmetric competition� but the type of competition has negligible e�ect on the form

of the clumping index path� E�ects are mostly limited to the variation of density� Figure ��a


mixed population� absolute symmetry� shows that both plant types quickly reach a level of

clumping somewhat larger that for a random distribution� Thereafter the density changes but

the clumping index remains about the same distance from the random C� line� The clumping

appears to be slightly higher for the perennials�

Figure ��b shows the path of the index for a pure annual population� The annuals remain close

to the C� curve at all times� so the plants are approximately randomly distributed� despite

limited seed dispersal� Hence competition considerably increases the clumping of the annuals�

The path for pure perennial populations is shown in �gure ��c� the level of clumping increases

���
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Figure ��� Paths of clumping indices through time in the annual�perennial system as a func�

tion of density �� Paths always start on the curve C� 
� � ��� which is the clumping index for

random distributions� 
a� Mixed population� annuals 
green� and perennials 
red� for absolute

symmetry� 
b� Pure annual population� 
c� Pure perennial population�
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more gradually than in the mixed population�

��
� Multifractal Analysis�

Data from several runs of the model were used with the techniques of section ����� to analyse

the multifractal scales of the plant distributions resulting at the end of the ��� years� Di�erent

combinations of plant and competition types were studied 
�gures ��a � d�� The mass exponents


or fractal pressures� 
 
q� were calculated for �� � q � �� using equations 

� and 
��� The

exponents were then used to �nd the Lipschitz�H!older exponents� �
q� 
equation 
���� and the

spectrum f
�
q�� 
equation 
�����

The mass exponents for mixed populations under absolutely asymmetric competition are shown

in �gure ��a� There is a large variation in the slope of the curve for the annuals� This is clearly

equivalent to a large range of the scaling 
��� The multifractal spectrum corresponding to these

mass exponents is given in �gure ��b� where a large range 
� � � � ���� can be seen for the

annuals� There is a much smaller range for the results obtained for the distribution arising from

symmetric competition�

Figures ��c � d show the spectra for pure annual and perennial populations respectively� It

is clearly demonstrated for the pure populations 
�gures ��c � d� that the range of scaling

parameters� �� increases as the competition becomes less symmetric� For example� the annuals

have a scaling range of ��� under asymmetric competition� but only a range of ��� for the

absolutely symmetric case� A shift of the scale is sometimes seen as well as a widening of

the range� The same observations also apply to the mixed populations 
not illustrated�� The

perennials are never seen to exhibit a large range of scales� The annuals only show a signi�cant

range of � in mixed population� As expected the perennials are relatively una�ected by the

annuals� similar spectra are seen in �gure ��b as in �gure ��d� In contrast� the distribution

of annuals is substantially altered by the perennials� the range of � increases from ��� to ����

Thus competition induces a multifractal character in the pattern of annual plants�

The graphical representation� clumping index and multifractal spectrum all combine to under�
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Figure ��� Multifractal analysis of the annual�perennial system� 
a� Graph of fractal pressure


 
q� against moment index q for mixed population with absolute asymmetry� annuals 
green�

and perennials 
red�� 
b� � 
d� Multifractal spectrum f
�� as a function of scaling exponent ��


b� Mixed population with absolute asymmetry� annuals 
red� and perennials 
green�� 
c� pure

annual population with absolute symmetry 
"�� relative symmetry 
� � �� and absolute asym�

metry 
� � ��� 
d� pure perennial population with absolute symmetry 
"�� relative symmetry


� � �� and absolute asymmetry 
� � ���

���



line the asymmetrical relationship 
Crawley� ����b� between the annual and perennial species�

this is discussed further in chapter ��

���� Length Scale Analysis�

For investigating the coherence length scale� the model was run on a ������� grid with a mixed

population� N � ��� was� however� extremely computationally intensive� so the error analysis

was only performed for one competition type 
absolute asymmetry�� The period over which

the error analysis was carried out is T � �� years� starting after t� � �� years� A constant k

was �tted to nEn 
section ������ for four cases� a mixed population of annuals and perennials�

monocultures of annuals and perennials and a mixed population with reduced annual seed

dispersal 
�gure ����

The coherence length scale is around nc 	 ��� for the mixed population 
�gure ��a�� There is�

however� very little error above nc 	 ���� so that the grid size of N � �� used in this chapter

is acceptable� particularly in view of the great computation involved in this model�

The mixed population shows slight negative spatial coherence at small scales 
� � n � ���

as En � E �n� Since �
�n


nEn� � �� an aggregating tendency is exhibited as n increases over a

wide range of scales 
� � n � ���� resulting in positive spatial coherence at intermediate scales


�� � n � nc�� Disaggregation necessarily occurs at larger scales 

� � n � nc�� as the mass

tends towards a random distribution above the coherence length scale 
 �
�n


nEn� � ���

The annual monoculture 
�gure ��b� has a slightly lower coherence length 
nc 	 ���� and

starts with slightly more negative coherence than the mixture 
� � n � ���� with a stronger

aggregating force as n increases for � � n � ��� The perennial monoculture 
�gure ��c� is�

in contrast� always shows signi�cant positive coherence below nc 	 ��� 
En � E �n� with a very

slight aggregating tendency as n rises at smaller scales 
� � n � ��� and disaggregation at

larger scales 
�� � n � nc�� Thus there is a clear di�erence between the annuals� which have

the dispersing e�ect of seed scattering� and the perennials� whose clumping mechanisms are

always dominant�
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Figure ��� Error analysis for the annual�perennial system� numerical error nEn for the model


"� and theoretical error nE �n 
� � ��� 
a� Total mixed population 
Ps � ��
�� 
b� Annual

plants only� 
c� Perennial plants only� 
d� Total mixed population for reduced seed dispersal


Ps � �����
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The length scale analysis is not valid above half of the total grid size 
n � ����� because of

the toroidal boundary conditions� so the results are only shown up to this value� However� the

error values for n � ��� do in fact support the results by giving a constant value of nEn�

A lower annual seed scattering distance leads to a weaker negative coherence and to a stronger

aggregating tendency as n increases 

�� �
�n


nEn�
�� is greater in �gure ��d than in �gure ��a��

but the coherence length scale is the same 
nc 	 ����� Thus the error analysis identi�es this

change to a mechanism with greater aggregation�

By examination of the coherence length scale of the model� it is clear that a large lattice is

needed� doubt is cast on the many lattice models which have used small grids of sizes as small

a � � � 
Auld 	 Coote� ����� Karlson 	 Jackson� ����� Bard� ������ Each model naturally

requires individual analysis as the coherence length scale can be a low as �� 
section 
������

but this is likely to correspond to near random patterns where a spatial model is probably not

needed�
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�� A Resource�Based Coupled Map Lattice Model for

Plant Populations�

Chapter Summary

The plant coupled map lattice of chapters � and � is extended to incorporate

an explicit resource base� through the introduction of a second lattice variable�

Resource depletion and crowding suppress plant growth and both positive and

negative feedback processes mediate the formation of size hierarchies�

Environmental or resource heterogeneity is introduced using an algorithm for

generating di�erent sizes of patches� a necessary balance of computational speed

and accuracy is identi�ed� Patchy resources are shown to lead to suppressed stand

yields and increased size variation�

The result of chapter �� asserting that hierarchy development can be used to

discriminate between symmetric and asymmetric competition� is seen to hold

with a homogeneous or moderately heterogeneous resource distribution� The

model is extended to multiple years� allowing the coherence length scale to be

found� demonstrating that a moderately	sized lattice is su
cient�

An overview of the ecology of seed sizes is presented� focusing on the opposing

selective forces on large seeds� which are sometimes adapted to tolerate adverse

conditions� but are also suited to the intense competition of rich habitats� In a ho	

mogeneous environment� higher resource levels favour large	seeded species� which

exclude the small	seeded species� the opposite happens with lower resources� Co	

existence of the two species is seen in intermediate environments� Small	 and

large	seeded species are seen to coexist in a heterogeneous environment with suf	

�ciently large high and low resource patches�

���



�And nature must obey necessity� � William Shakespeare � Julius Caesar IV� iii

���� Introduction�

Resources � soil nutrients� light and physical space � naturally play a central role in plant

ecosystems� The e�ect of resource availability and heterogeneity on both plant and animal

systems have been studied for many years� in natural and agricultural systems�� and via patch�

reaction�di�usion and lattice models��� Resource patterns have been shown to have fundamen�

tal implications for community structure� species diversity and evolution of physiological and

behavioural characters� Spatial and temporal resource heterogeneities challenge the survival of

plant species �Fowler� �	

� and consequently di�erent ecological types of plants have evolved

various mechanisms to overcome unreliability of nutrient supply� Examples are dispersal of

propagules to overcome spatial �uctuations� dormancy as a response to temporal heterogeneity

and physiological integration in clonal species to exploit spatial patchiness �Hutchings 
 Slade�

�	

� Caraco 
 Kelly� �		�� Fahrig et al�� �		���

In chapters � and � the CML models of plant populations adopt the common assumption

that occupation of space is representative of the acquisition of nutrients and light as well

as physical space� In this chapter an explicit resource distribution is added to the CML�

which a�ects growth rates and is depleted as individual plants grow� Using a separate variable

for a generalised representative nutrient allows di�erent environments� both homogeneous and

heterogeneous� to be applied to the CML plant populations� Thus the CML can be used to

assess the impact of nutrient levels on the structure of plant monocultures during a growing

season� An algorithm is added to the CML to deal with heterogeneous resource distributions�

in the form of patches of high and low resources� The consequences of such heterogeneities

��Cohen� ����� Hartnett � Bazzaz� ���	� ���
� Ferrara � Quinn� ����� Inouye � Tilman� ����� Hocking �

Steer� ����� Naeem� ����� Grieve � Fran�cois� ���
� Jackson � Caldwell� ���
� Kelly � Canham� ���
� Jackson

� Caldwell� ���	� Robertson et al�� ���	� Birch � Hutchings� ����� Mian � Nafziger� ����� Gross et al�� ���
�

Kadmon� ���
�
��Horn � McArthur� ���
� Comins � Blatt� ����� Ludwig et al�� ����� Shigesada et al�� ����� Chesson� �����

Elderkin� ���
� Pacala � Roughgarden� ���
� Pacala� ����� Abrams� ����� Armesto et al�� ����� Colasanti �

Grime� ���	� Vail� ���	� Lavorel et al�� ����� Oborny� ����a� ����b�

���



are investigated in monospeci�c stands for single growing seasons and for competing species

over several years and the role of dispersal in providing spatiotemporal integration of resource

supplies is examined�

The CML is applied to the speci�c issue of the ecology of seed sizes� After a detailed study of

the growth over a single season of species with di�erent sizes of seeds� the controversial subject

of the adaptation of seed sizes to high or low resource habitats is investigated�

���� A Resource Base for the Coupled Map Lattice Plant Model�

������ The Model�

The CML of chapter � is extended here to include an explicit resource base� The resource

is assumed to a�ect the growth rate of individual plants� by a factor ri in the growth term

�equation ������ variables are de�ned as in chapter �� The resource is �used up� according to

equation ����� Resource consumption is taken to be of two forms� a growth cost proportional

to the change in mass and a maintenance cost proportional to the mass� It has been shown

that di�erent species di�er in their patterns of depletion of soil nutrients �Tilman 
 Wedin�

�		�a�� so the resource dynamics can be varied� via the controlling parameters kg and km�

which correspond respectively to the growth and maintenance costs� A similar functional form

is used in a resource�based mechanistic model by Tilman �Grace� �		���

Initially a single growing season is modelled� so a resource distribution is imposed at the start

of the season and is depleted as the stand develops� A constant or temporally�varying resource

�ow could potentially be added to the model�

dmi

dt
� rig�ai � li�� bm�

i ����

ai � cm
�

�

i

���



dri

dt
� �kg dmi

dt
� kmmi ����

������ Local Stability Analysis in the Mean Field�

The basic two�dimensional mean �eld system can be analysed for stability by considering the

growth of a stand of identical plants of density � on a plot of area A� After competition has

set in the equations reduce to�

dm

dt
� �m� � �r

dr

dt
� �m� � �m � �r

where�

� � �b � � �km
� � gA� � � �kg�

� � kgb

�

Hence the eigenvalues of the Jacobian matrix are given by�

	 �
�� ��m�

p
�� � ��m�� � ���

�
�

The eigenvalues are real if m 
 � or if kg 

q

km
�

for m � �� Both eigenvalues are negative �or

have negative real parts� for m � �� Hence a non�zero equilibrium is a stable node and a stable

node or focus is seen at m � � depending on the values of kg and km� There only exists an

equilibrium value for r if m � � or km � �� so if there is a maintenance cost then there is a sole

attracting �xed point at the origin� If� however� there is only a growth cost �kg 
 �� km � ��

then there is a degenerate line of stable nodes given by�

���



r �
bm�

gA�
�

The mean �eld equilibrium therefore depends on the initial conditions� which here strictly are

the values at the onset of competition� As the path of competition is highly dependent on spatial

e�ects� the following section investigates the behaviour of the CML as various parameters are

varied�

������ Computational Methods�

The resource CML was run on a ��� �� grid �section ��� gives a length scale analysis� for ���

iterations and the mean and coe�cient of variation of mass were calculated at each time step

�equations ��	� and ������ A range of parameters were investigated for their impact on the

dynamics� growth cost �kg�� maintenance cost �km�� plant density ���� initial resource level �rI�

and symmetry �table ��� The same values were used for the constants b� c and g as in chapter

� �table ���

Also investigated was the form of mortality� In chapter �� plants were assumed to stop growing

if the mass increment ��mi� fell below zero� This was called mortality option � here and two

further possibilities were considered� Option � assumed that a plant with negative growth dies

and the mass is reset to zero� Option � allowed negative growth� so that a negative increment

simply subtracts from the current mass� subject to the obvious constraint that mass is non�

negative� The mortality options are summarised in table 
�

������ Results and Discussion�

�a� Variation of Growth Cost�

As the cost of incremental growth rises� the mean mass of fully�grown plants falls� as would be

expected with a �xed supply of resources ��gure ��a�� This is accompanied by a fall in mean

resource level� as greater growth leads to greater resource uptake ��gure ��b�� Higher growth

costs reduce the mass variation in the population by a negative feedback process ��gure ��c��

���



Mortality option Regime Treatment of plants with �mi � �

� plants stop growing set �mi � �

� plants stop die set �mi � �

� plants decrease in size set m
�t�
i � max�m

�t���
i ��mi� ��

Table 
� De�nitions of the mortality options in the resource�based CML model�

Clumping level low medium high

First factor 
 ������ ����� �����

Aggregation factor � ��� ���� �����

Approximate number of iterations ��� ���� 	��

Accuracy of density 		�	 � 		�	�� 		�	�

Range of clumping indices ��� � ��� �� � �� �	 � ��

Table 	� The three clumping levels used in the patchy resource�based CML model�

��




Larger plants arise from faster growth rates in less crowded areas� but they incur higher costs

as resources are depleted faster and growth is restricted� There is an opposite e�ect on the

variation of resource levels� as higher growth costs amplify di�erential resource use ��gure ��d��

�b� Variation of Maintenance Cost�

As with the growth cost� higher maintenance costs push down the mean mass and the mean

resource remaining ��gures ��e � f�� The e�ect is much more severe� particularly on the resource

depletion� as an increased maintenance cost is compounded over time� whereas the growth cost

acts on each unit of mass only once� There is a very similar relationship between mass variation

and both types of costs ��gures ��c and g�� as both suppress growth of large plants and promote

growth of small plants� as already described� Maintenance cost has a signi�cantly di�erent

impact on resource variation across the stand ��gure ��h�� Initially an increase in maintenance

cost ampli�es resource variation� but at higher levels the complete depletion of resources �as

seen in �gure ��f� leads to decreased and eventually zero resource variation� As the two types

of costs have similar e�ects on population structure� only kg is given positive values in the rest

of this chapter� which also allows non�zero mean �eld equilibria�

�c� Variation of Density�

Decreased plant mass at higher population densities ��gure ��a� shows that competition in�

tensi�es as growing space is reduced� Mean resource levels rise with density� indicating that

crowding is restricting resource uptake ��gure ��b�� Both mean mass and mean resource show

greater variation at higher density� arising primarily by one�sided interactions as in chapter �

and secondarily through neighbourhood e�ects ��gures ��c � d�� As previously noted� there is

a sharp drop in the coe�cients of variation as density approaches ��� �a full grid�� because of

reduced randomness of plant distribution �section �����

�d� Variation of Initial Resource Level�

Raising the total amount of resources available to the plant population allows higher mean

masses to be attained ��gure ��c� while more resources are still left at the end of the growing

��	
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Figure ��� Population statistics for the single species resource�based CML model as growth

and maintenance costs vary at time ��� days with mortality option �� �a� � �d� Variation of

population parameters with growth cost kg� Parameters are km � �� rI � ��� and � � ����

�e� � �h� Variation of population parameters with maintenance cost km� Parameters are kg � ��

rI � ��� and � � ���� �a�� �e� Mean mass �proportion of maximum isolated plant size��

�b�� �f� Mean remaining resource� �c�� �g� Coe�cient of variation of mass� �d�� �h� Coe�cient

of variation of remaining resource� In all cases the competitive types are absolute symmetry

�red�� relative symmetry �green�� relative asymmetry �cyan� and absolute asymmetry �blue��
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Figure ��� Population statistics for the single species resource�based CML model as density

and initial resource levels vary at time ��� days with mortality option �� �a� � �d� Variation

of population parameters with density �� Parameters are kg � �� km � � and rI � ����

�e� � �h� Variation of population parameters with initial resource level rI � Parameters are

kg � �� km � � and � � ���� �a�� �e� Mean mass �proportion of maximum isolated plant size��

�b�� �f� Mean remaining resource� �c�� �g� Coe�cient of variation of mass� �d�� �h� Coe�cient

of variation of remaining resource� In all cases the competitive types are absolute symmetry

�red�� relative symmetry �green�� relative asymmetry �cyan� and absolute asymmetry �blue��

���



season ��gure ��f�� Increased initial resources also allow greater variation of masses and re�

sources to arise in the stand� as a less restricted resource supply allows hierarchies to develop

fully ��gures ��g � h��

�e� Variation of Symmetry�

Symmetry generally has little e�ect on mean resource levels or mass levels ��gures ��a � b�

e � f and ��e � f�� There is however a slightly higher usage of resources in the absolutely

symmetric case� with correspondingly lower mean masses this indicates lower of e�ciency of

this mechanism� in terms of resource used per unit mass accumulated� There is a more noticeable

impact at lower densities� where absolute symmetry leads to appreciably greater depletion of

resources ��gures ��a � b��

In contrast� symmetry has a profound e�ect on the coe�cients of variation of both mass and

resource� as variation always increases substantially with asymmetry ��gures ��c � d� g � h and

��c � d� g � h�� Higher growth and maintenance costs lead to especially strong size hierarchies

under absolutely asymmetric competition ��gure ��c and g�� Greater initial resource levels lead

to higher coe�cients of variation� but there is a much smaller rise under absolutely symmetric

competition ��gure ��g � h�� The rise in mass variation with density observed in chapter � is

still present in the resource�based CML ��gure ��c��

These results a�rm that higher variation at higher density implies asymmetry of interactions�

as stated in section ���� This conclusion can equally well be drawn from the variation of resource

��gure ��d��

�f� Variation of Mortality Regime�

Implementation of mortality option �� where plants stop growing� generally results in smooth

sigmoidal growth� Figure ��a is a sample of such and illustrates the increase with time and

decrease with growth cost of mass variation� Similar curves are produced for all competitive

symmetries�
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Figure ��� Time series for the single species resource�based CML model over ��� days� variation

of coe�cient of variation of mass with time� �a� Symmetry � and mortality option �� �b� Sym�

metry � and mortality option �� �c� Symmetry � and mortality option �� �d� Symmetry � and

mortality option �� Results are for a range of values of growth cost kg� varying from � �red� to

� �black��
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The inclusion of plant death in mortality option � has two main e�ects� Firstly the coe�cient

of variation of mass rises to a peak then falls o� as self�thinning progresses ��gure ��b�� This

shows the importance of the suppression of thinning as in chapter �� to avoid masking the

dynamics of competitive interference� Secondly� mortality � leads to erratic dynamics� as shown

in �gure ��c� particularly for more asymmetric competition� Extensive self�thinning removes

the characteristic decrease in mean mass as density rises ��gure ��a�� likewise mean resource

uptake is fairly constant as density varies ��gure ��b�� The coe�cients of variation of mass and

resource increase as density rises from low to moderate� but decrease again at the highest levels

of crowding as more thinning takes place ��gures ��c � d�� con�rming the confounding e�ects

of self�thinning�

Allowing plants to decrease in size in the absence of adequate resources and growing space

�mortality option �� has relatively low impact on the dynamics� which remain smooth as with

option �� but the population hierarchies continue to develop over a longer time period ��g�

ure ��d�� In general there is much more e�ect of symmetry on resource variation than mass

variation ��gures ��e � h��

���� The Impact of Resource Heterogeneity�

������ Normal Distribution of Resources�

A simple method of introducing spatial variation of the resource base into the CML is to treat

the resource in each cell as a normally�distributed random variable with standard deviation ��

so that ri � N �rI� ��� The e�ect of a normal distribution on the resource CML was studied on

a �� � �� grid for a range of standard deviations � � ��� �� for parameters rI � ���� kg � ��

km � � and � � ��� and for the full range of symmetries and mortality option ��

Figure �
 shows the population statistics after a growing season of ��� days� The mass is

virtually independent of the initial resource distribution� whereas the resource remaining at

t � ��� does vary with �� The constancy of the yield can be attributed to the independence of

the normal random variables�

���



0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

(a)

density

m
ea

n 
m

as
s

0.2 0.4 0.6 0.8 1

0.8

0.9

1

(b)

density

m
ea

n 
re

so
ur

ce

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

(c)

density

C
V

 m
as

s

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6
(d)

density

C
V

 r
es

ou
rc

e

0 0.5 1 1.5 2

5

10

15

20

(e)

kg

C
V

 m
as

s

0 0.5 1 1.5 2

2

4

6

(f)

kg

C
V

 r
es

ou
rc

e

0.2 0.4 0.6 0.8 1
0

10

20

30
(g)

density

C
V

 m
as

s

0.2 0.4 0.6 0.8 1
0

2

4

6

(h)

density

C
V

 r
es

ou
rc

e

Figure ��� Population statistics for the single species resource�based CML model as mortality

varies at time ��� days� �a� � �d� Variation of population parameters with density � for mor�

tality option �� �e� � �f� Variation of population parameters with growth cost kg for mortality

option �� �g� � �h� Variation of population parameters with density � for mortality option ��

�a� Mean mass �proportion of maximum isolated plant size�� �b� Mean remaining resource�

�c�� �e�� �g� Coe�cient of variation of mass� �d�� �f�� �h� Coe�cient of variation of remaining

resource� In all cases the competitive types are absolute symmetry �red�� relative symmetry

�green�� relative asymmetry �cyan� and absolute asymmetry �blue��
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Heterogeneity of resource supply imposes a range of growth rates and hence plant sizes on a

local population� However� a distribution of sizes also arises under a uniform resource distri�

bution� through a combination of competitive and neighbourhood e�ects� Thus in any locality�

interference mechanisms �bu�er� the resource heterogeneity and allows the same yield to be

maintained over a range of standard deviations ��gure �
a��

There is� however� less resource depletion under greater heterogeneity of resource supply ��g�

ure �
c� which means that the exploitation of limited resources is more thorough� Since some

plants will remain small because of competitive suppression� their resource supplies remain

mostly unused� If all plants have the same initial resources� large dominant plants will expe�

rience more severe resource limitation that small suppressed individuals� If the resource base

is heterogeneous� then small plants are generally found on low resource sites and large plants

on high resource sites� clearly resulting in greater e�ciency of resource utilisation� Absolutely

symmetric competition leads to signi�cantly greater resource exploitation ��gure �
c�� because

the plant interactions are more equal and small plants will require a large resource supply

than under more asymmetric conditions� The variation in resource uptake is not� however�

particularly signi�cant as the resource remaining here is no more than ��� of the initial level�

The variation of masses attained in the stand is strongly dependent on the resource hetero�

geneity� This shows that the initial resource distribution largely imposes the size hierarchy

on the population� Absolute symmetry of interference� however� acts as an equalising force

and reduces the size variation by around ��� ��gure �
b�� The coe�cient of variation of re�

maining resource also re�ects the initial resource� but it is misleading simply to consider the

�nal �t � ���� values ��gure �
d�� as is highlighted by a sample path of the resource variation

through time ��gure �
e�� The high variation of the imposed initial resource distribution is

rapidly destroyed as the stand grows and large plants deplete the richest sites� Competition

then leads to the re�establishment of high levels of variation as existing size di�erences and

hence resource uptakes are ampli�ed� The early phase of stand growth does not completely

remove the resource variation� as even absolutely symmetric competition leads to high �nal

resource variation ��gure �
d��
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Figure �
� �a� � �d� Population statistics for the single species resource�based CML model as

the standard deviation of initial resource levels varies at time ��� days with mortality option

�� Parameters are kg � �� km � �� rI � ��� and � � ���� �a� Mean mass �proportion of

maximumisolated plant size�� �b� Coe�cient of variation of mass� �c� Mean remaining resource�

�d� Coe�cient of variation of remaining resource� In all cases the competitive types are absolute

symmetry �red�� relative symmetry �green�� relative asymmetry �cyan� and absolute asymmetry

�blue�� �e� Variation of the coe�cient of variation of remaining resource with time for symmetry

� and mortality option �� Parameters are kg � �� km � �� rI � ��� and � � ����
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������ Generation of Patchy Distributions of Resources�

The normal distribution of initial resources in the previous section only provides local �mi�

crosite� variation� whereas resources are often variable over a larger �regional� scale� An algo�

rithm for generating patchy distributions at any required level of aggregation is described in

this section�

A square grid is partitioned into two states � high and low resources � using a technique which

sweeps the grid many times� setting a few cells at each sweep� Such a concept was used by

Deutschman et al� ��		�� for studying grid resolution� but the details of the sweeping algorithm

are di�erent here and more appropriate to the generation of a patchy distribution�

Initially the grid cells are all set to a default state �the low resource level or �o���� The grid is

then �seeded� by a number of cells� which are reset to a second state �the high resource level or

�on��� these cells are a �xed proportion 
 �the ��rst factor�� of the total grid� The distribution of

on cells is random� achieved by switching each cell on with probability 
� Then the algorithm

sweeps through the grid and resets each cell to on with probability �n� where n is the number of

neighbours in an 
 cell neighbourhood that are on� � is the �aggregation factor� and controls the

degree of clumping of the �nal distribution of on states� The algorithm continues to sweep the

grid until the required number of cells are switched on� The level of aggregation is dependent

on 
 as well as �� as a greater number of initial points leads to many small clusters of on cells

while lower 
 leads to a few large clumps�

There are three considerations which in�uence the choice of the �rst factor and the aggregation

factor� Firstly 
 and � combine to produce a certain level of aggregation or patchiness� Secondly�

the amount of computation is highly dependent on �� as a very low value will require a lot of

sweeps and hence is likely to be unacceptably slow to produce the distribution� The �nal point

to note is that a large value of � may lead to quantitative inaccuracy� if a lot of cells are

switched on the intended density of on cells may be overshot considerably� Thus computation

times and numerical accuracy must both be monitored�

��




The algorithm was used to generate sample patchy distributions on a ��� � ��� grid using a

range of the factors 
 and � with a target density of ��� of each cell type� The clumping index

�chapter �� was used to quantify the patchiness of the on and o� states� The clumping index�

number of iterations required to attain the target density and the density actually attained

were recorded for values of 
 and � ranging over several orders of magnitude�

Figure �	 illustrates a variety of distributions with a range of clumping indices ����� 	��� �����

����� ���� and ������ Figure �� shows the results of a detailed investigation of the �rst factor


 and clumping factor �� The clumping index rises with both 
 and � ��gure ��a�� attaining

peak values where both 
 and � are largest� The accuracy is only severely a�ected by large

values of the aggregation factor �� where the density of the o� cell is nearer � than the target

density of ��� ��gure ��d�� There is a substantial increase in the number of iterations needed

for small values of 
 and � ��gure ��c�� Thus a balance must be found between accuracy and

computational feasibility� Figure ��d shows the ratio of computational intensity to accuracy of

density and indicates that it is best to have one of the factors 
 and � small and one large�

These results are used to choose suitable values of 
 and � to provide a range of clumping

indices for the resource�based CML�

������ Patchy Resources in the Coupled Map Lattice�

�a� Introduction�

The algorithm described in the previous section was used to investigate the e�ects of patchy

distributions of rich and poor resources on the growth of a monoculture over a single season�

The CML was run on a ��� �� grid for a range of clumping levels� densities and growth costs�

A further variable of interest in the model was the resource di�erentiation� As described by

Kotliar 
 Wiens ��		��� there are two aspects of heterogeneity� aggregation and contrast�

that is� the level of clumping and the di�erence between clumps� The model was run for a

range of resource di�erentiations from total homogeneity to maximum contrast� The average

resource level was kept constant at ����� but ��� of the grid cells were given a higher resource

��	
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Figure �	� Patterns generated by the patch algorithm� The clumping indices are �a� ��� �b� 	��

�c� ���� �d� ���� �e� ���� and �f� �����
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level and ��� a correspondingly lower level� Six sample pairs of resource values were used�

������ ����� �homogeneous�� ����� ����� ������ ������ ����� ����� ������ ����� and ����� ���� �fully

heterogeneous�� The resource di�erentiation is denoted by rH � the higher resource level� so that

���� � rH � ����

Three clumping levels were taken � high� medium and low � generated by the factors 
 and �

given in table 	� which were chosen to provide the required aggregation with su�cient accuracy

and speed� The clumping indices were not identical for every run but provide reasonable

consistency� as shown in table 	�

�b� Variation of Contrast and Aggregation�

Figure �� shows the e�ect of varied resource di�erentiation rH on the plant population dynam�

ics� There is a small e�ect of rH on �nal mean mass and resource� At high levels of clumping

the mass decreases as the contrast rises� so that homogeneous distributions provide optimal

yields� Maximum di�erentiation �rH � ���� leads to an approximately ��� lower yield than

the uniform case� Interesting behaviour occurs with the �nest aggregation� the yield falls o� at

�rst as rH increases� before rising again at the highest rH values� Thus the ����� ���� case� where

half of the plot has zero resources and is therefore totally hostile to growth� is not the worst

pattern for stand yield� This minimum yield at intermediate rH is a robust feature of �ne�scale

heterogeneity� seen for a wide range of densities �� growth costs kg and for all symmetries�

The growth process can be better understood by studying the development of mass and resource

levels over time ��gure ��a � b�� These time series show a reversal of the ordering of yield as

a function of di�erentiation rH � At �rst plants on the richest patches grow rapidly and use up

resources� These plants dominate the population� so at times � � t � 
� the mean mass rises

with rH and the mean remaining resource falls� By the end of this time� the largest plants

are near to their maximum asymptotic sizes and growth focuses on the poorest patches� Later

dynamics �t � 
�� are dominated by the smaller plants� so that situations of lower contrast fare

relatively better and mean mass now falls with rH � Thus higher di�erentiation scenarios see

earlier resource depletion� It is therefore apparent that� in general� particularly low resources

���
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Figure ��� Population statistics for the patchy single species resource�based CML as resource

di�erentiation varies at time ��� days with mortality option � and symmetry �� variation of

population parameters with resource di�erentiation rH � �a� Mean mass� �b� Mean resource�

�c� Coe�cient of variation of mass� �d� Coe�cient of variation of resource� In all cases three

clumping levels are shown� low �red�� medium �green� and high �blue��
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Figure ��� Time series for the patchy single species resource�based CML with mortality op�

tion � and symmetry �� variation of population parameters with time for a range of resource

di�erentiation rH � �a� Mean mass� �b� Mean resource� �c� Coe�cient of variation of mass�

�d� Coe�cient of variation of resource� Values of rH vary between ���� �red� and ��� �ma�

genta��
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are more disadvantageous to growth than high resources are bene�cial�

The low level clumping promotes a di�erent relationship between mass and rH because of local

competitive e�ects� If there is a �ne scale to the heterogeneity� then large plants on high

resource patches will be direct neighbours to small plants on low resource patches� This means

that the small plants are much more suppressed when intermingled with the large plants� than

if they were in clumps of smaller plants� Hence the maximum resource di�erentiation� which

puts all resources into the larger plants� is able to do better than intermediate di�erentiation�

which �wastes� resource on small plants that are doomed to suppression�

The formation of hierarchies is not greatly a�ected by the level of clumping but mass and

resource coe�cients of variation rise rapidly with rH ��gures ��c � d�� Figure ��d shows that

the high variation predominantly arises from the initial bimodal resource distribution� which

imposes variation on the mass distribution ��gure ��c��

�c� Variation of Density and Symmetry�

It is now of interest to examine the e�ect of patchy resources on the mass variation�density rela�

tionship discussed in chapter �� with particular emphasis on the e�ect of competitive symmetry�

Figure �� shows the impact of di�erent degrees of contrast on the coe�cients of variation of

mass� for the high clumping level� as density varies between ��� and ��� for all four symmetry

types and for the six values of rH �

The homogeneous resource base ��gure ��a� shows the familiar sharp rise of variation with

density� particular under asymmetric competition �equivalent to �gure 	b�� Although the mass

variation clearly rises with asymmetry for all contrasts rH � there is not the same rise with

density at very high di�erentiation� there is actually a decrease in mass variation at higher rH

��gures ��e � f�� There is also less di�erence here between symmetry � and symmetries � � �

�seen in �gure ��a�� the most noticeable di�erence at high rH is that absolute symmetry shows

signi�cantly lower mass variation than the other symmetry types ��gures ��c � f�� The more

symmetric plant interactions damp initial resource variations� so that higher densities� having

���



stronger interactions� allow more damping of initial variation� Mean mass decreases with rising

density� as seen previously in chapter � ��gure ��a�� because of greater competition�

���� Long TermDynamics of the Resource�Based CoupledMap Lattice�

������ Introduction�

The long term impact of resource heterogeneity on plant communities can be studied by ex�

tending the resource�based CML to multiple years in a similar way to chapter �� At the end of

each growing season� all plants produce seeds in proportion to their sizes� which are scattered

across the grid and then die� The new season begins with the growth of the seeds into seedlings�

The random walk algorithm used in chapter � for seed dispersal was found to be highly compu�

tationally intensive� so an alternative algorithm is presented here� Seeds are scattered with a

uniform distribution with maximum distance Ms in both north�south and east�west directions

on the grid� As in chapter �� the seed moves north or south with equal probability� likewise

east or west� Although the binomial distribution generated by the random walk of chapter

� is an appropriate representation of seed dispersal shadows �Okubo 
 Levin� �	
	� Willson�

�		��� the uniform distribution allows a comparison of di�erent scattering distances and corre�

sponding population dynamics� The bene�t of the uniform scattering is substantially reduced

computation time� with all values ofMs requiring similar computation� unlike the random walk

which is very slow for high values of the scattering parameter Ps� In summary� a seed moves

�x� y�	 �x��x� y��y� where �x � U ���Ms� and �y � U ���Ms��

When a heterogeneous environment is used� a scheme for deriving the next year�s resource

distribution from the current year�s pattern must be chosen� The simplest option is to have

a �xed distribution of patches that remains invariant over many years� representing persistent

topographical features such as rock outcrops or long�lived vegetational patches� An alternative

is to have completely random patches each year� where only the degree of aggregation remains

the same from year to year� This represents� for example� ephemeral nutrients or annually

changing patches�
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Figure ��� Population statistics for the patchy single species resource�based CMLas density

varies� coe�cient of variation of mass as a function of density � for a range of resource di�eren�

tiation rH � �a� rH � ����� �b� rH � ���� �c� rH � ����� �d� rH � ���� �e� rH � ����� �f� rH �

���� In all cases the competitive types are absolute symmetry �red�� relative symmetry �green��

relative asymmetry �cyan� and absolute asymmetry �blue��
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An intermediate scenario occurs when the resource patches are a mutation or shift of the

previous year� which covers a wide range of naturally occurring resource distributions� This

idea can be incorporated in the patch�generating algorithm of section ����� as follows� The

algorithm may be stopped prematurely when a fraction � of the desired �nal number of cells

have been switched on� This intermediate stage is recorded and used as the initial distribution

for all of the patch distributions� Thus the resource patterns vary in a limited way from year

to year� The amount of correlation between the patches generated by this shifting algorithm

is controlled by parameter �� The proportion of cells that are identical in two typical shifted

patterns varies approximately linearly from around ��� for� � ��� to around 	�� for� � ��	�

Thus three resource allocation regimes are considered here and termed respectively �xed� random

and shifting patches� After a consideration of the spatial scales of the CML� the long term

dynamics of one and two species systems are investigated for these three cases�

������ Characteristic Spatial Scales�

Figure �� shows the error analysis of the resource�based CML for four combinations of parame�

ters on a ������� grid� In each case the coherence length scale is between nc 
 �� and nc 
 ��

cells� Therefore the ��� �� grid used throughout this chapter is adequate to avoid distortion

of the dynamics by spatial correlations�

The relative constancy of nc for di�erent degrees of resource clumping and di�erent mean

dispersal distances indicates relative insensitivity of the spatial scales of the dynamics to the

imposed distributions� However� there are marginally shorter length scales of nc 
 �� and

nc 
 �� for the lower clumping cases ��gure ��b� d� than the higher clumping cases ��gures

��a� c� nc 
 �� and nc 
 ���� Restricted seed scattering has more e�ect on the scale� with

a decrease in the coherence length scale by �� or �� cells compared with the more widely�

scattered species� The error is below the theoretical curve in each case� so the distribution on

small subgrids is more evenly dispersed than on an in�nite lattice and so it exhibits positive

coherence for � � n � nc� The cases of lower scattering deviate less from E �

n� consistent with a

lower dispersing tendency�
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Figure ��� Error analysis for the resource�based CML� numerical error nEn for the model ���

and theoretical error nE �

n �� � ��� �a� High resource aggregation� high scattering �Ms � ����

�b� low resource aggregation� high scattering �Ms � ���� �c� high resource aggregation� low

scattering �Ms � �� � �a� low resource aggregation� low scattering �Ms � ���
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������ Single Species Dynamics�

The e�ect of varying mean dispersal distance was studied using the CML over a period of

�� years� by which time single populations consistently settle to equilibria� Figures ��a � c

show mean masses after �� years as a function of dispersal �Ms� for a homogeneous resource

environment and for �xed� random and shifting patches� The homogeneous case is naturally

independent of the allocation regime and Ms has little e�ect� except that Ms � � is slightly

preferable� as the o�spring of a large plant can use the space immediately around the parent

plant� previously occupied by poorly�reproducing suppressed plants�

When there are �xed resource patches� low scattering is optimal in the long term ��gure ��a��

in agreement with Lavorel et al� ��		��� Plants that have reached favourable regions produce

their o�spring nearby� so they can use the rich resources in the locality� In contrast� random

patches lead to the extinction of species with limited dispersal �Ms � ��� as a certain level

of dispersal is needed to allow plants to follow resources as they move randomly from year to

year� The changing resources do not allow the plants to grow as well as �xed resources� as a

proportion of seeds will always be lost in poor resource patches each year� Thus the average

mass of a plant population which manages to survive on a patchy landscape is similar to the

homogeneous case ��gure ��b�� Shifting patches are similar to �xed patches� with low dispersal

being favoured by plants in those high resource areas which do not change to low resources at

any particular time ��gure ��c��

In addition to dispersal distance� the number of seeds produced by an adult plant of maximum

size may be varied� Figure ��d illustrates the combined e�ect of dispersal and seed number

on the number of plants present after �� years in a stand with �xed resource patches� For

any number of seeds� lower scattering produces fewer plants� The seed number does� however�

provide a trade�o� against dispersal distance� so that more locally�scattered seeds and fewer

widely�scattered seeds produce similar numbers of adult plants� Figure ��d also shows that the

number of plants reaches saturation as the seed number rises� so that there is no bene�t to the

production of excessive numbers of propagules�
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Figure ��� Results for the basic and patchy multiple year single species resource�based CML

with asymmetric competition� �a� � �c� Mean mass in year �� as a function of maximumscatter�

ing distance �Ms�� �a� �xed resource patches� �b� random resource patches� �c� shifting resource

patches �� � ����� In each case results are shown for homogeneous �red� and heterogeneous

resources with large clumping and high resource di�erentiation �blue�� �d� Number of plants in

year �� as a function of maximum scattering distance �Ms� and the number of seeds per plant

for �xed resource patches�
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������ Two Species Dynamics�

The e�ect of patchy resources and varied dispersal distances on pairwise interspeci�c competi�

tion was studied using the CML� Figure �� shows time series for the number of plants of each

species over a �� year period� Where the resource are homogeneously distributed� the species

with higher dispersal excludes the other species ��gures ��a � c�� The inferior species does

better in the short term when it has a higher dispersal distance� as the number of plants with

Ms � � increases at �rst before slowly going to extinction ��gure ��c�� whereas Ms � � imme�

diately declines ��gures ��a � b�� Thus the absolute dispersal distance of a species is important

in determining its response to a more widely�dispersing species�

Heterogeneous environments also consistently favour the more widely dispersed of two com�

peting species� although the successful species does less well than in the homogeneous case�

In particular� neither MS � � nor Ms � � survive on random patches ��gure ��d�� although

Ms � � goes to extinction more slowly than Ms � �� Ms � � is able to survive ��gures ��e �

f�� but with fewer plants than on �xed patches� As in section ������ the shifting patch regime

exhibits similar dynamics to the �xed patch case ��gures ��g � i��

���� Introduction to the Ecology of Seed Sizes�

The evolution and ecology of seed sizes has received much attention in the literature� with

an overwhelming volume of agricultural research into the relationship of seed size and crop

yield of biomass� grain or oil� The experimental data is con�icting� with evidence presented for

positive�	 and negative
� correlations of seed weight with stand yield as well as many examples of

no correlation of the variables
�� Aspects of germination have been focused upon in agricultural

��Pet � Garretsen� ���	� Murray et al�� ����� Tekrony et al�� ����� Spilde� ����� Reddy et al�� ����� Tinius et

al�� ����� Heather � Sieczka� ����� Grieve � Fran�cois� ���
� Pearson � Miklas� ���
� Tinius et al�� ���
� Tinius

et al�� ���	� Leishman � Westoby� ����b�
��White � Gonzales� ����� Bebawi et al�� ����� Acquaah� ���
� Singh� ���
� White et al�� ���
� Mehlman�

���	� Sexton et al�� �����
��Pyke � Hedley� ���	� Murray et al�� ����� Stanton� ����� Tekrony et al�� ����� Reddy et al�� ����� Graven

� Carter� ����� Nafziger� ���
�
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Figure ��� Results for the basic and patchy multiple year two species resource�based CML

with asymmetric competition between pairs of species with di�erent seed dispersal distances�

In each case the number of plants surviving is shown in a homogeneous environment �red�

and in a highly clumped heterogeneous environment �blue� for the highest dispersal ��� and

lowest dispersal �� � �� species� The resource allocation regimes are� �a� � �c� �xed patches� �d� �

�f� random patches� �g� � �i� shifting patches� The pairs of species are� �a�� �d�� �g� Ms � �

and �� �b�� �e�� �h� Ms � � and �� �c�� �f�� �i� Ms � � and ��
���



studies� with proportions of emergence generally rising with seed weight
� or staying constant
��

but speed of germination or emergence showing both positive
� and negative

 correlation with

seed weight� The species for these studies have ranged from herbaceous annuals and perennials

through to shrubs and trees in a wide range of geographical locations and habitats� The

empirical background for the determination of the ecological signi�cance of seed size is thus

very complex and requires a wide range of factors to be taken into consideration�

Many advantages of large seeds have been suggested and in some cases demonstrated� A large

seed provides a nutrient reserve and a moisture supply which can give a seedling a better chance

of establishment under circumstances of depleted nutrients or drought

� Similarly an intrinsic

nutrient store reduces the reliance of seedlings on photosynthesis� so growth is possible in shaded

areas
�� Thus large�seeded species can be expected to dominate in mesic environments� arid

regions and understoreys of dense canopy vegetation�

Nutrient deprivation also occurs in the opposite circumstances of intense competition� which

will tend to correspond to rich habitats
�� Reserves within a large seed give the seedling

a competitive advantage� as the seed will generally produce a large vigorous seedling� well�

equipped to compete for space and nutrients� There is thus a tendency for late successional

species to have relatively large seeds
	� There is also some evidence that larger seeds can remain

��Stanton� ����� Singh � Makne� ���
� Winn� ����� Chandra�Babu et al�� ����� Milosevic et al�� ���
� Naylor�

���	� Leishman � Westoby� ����a�
�	Tekrony et al�� ����� Zhang � Maun� ����� Shipley � Parent� ����� Gonzales� ���	� Sung� ���
� Douglas

et al�� ���	�
��Pet � Garretsen� ���	� Marshall� ����� Winn� ����� Zhang � Maun� ����� Heather � Sieczka� ����� Grieve

� Fran�cois� ���
� Kelly � Purvis� ���	� Naylor� ���	�
��Lafond � Baker� ����� Marshall� ����� Stamp� ����� Giles� ����� Seiwa � Kikuzawa� ����� Sung� ���
�

Milosevic et al�� ���
�
�
Baker� ���
� Murray et al�� ����� Stanton� ����� Gross� ����� Venable� ����� Zammit � Zedler� ����� Grieve

� Fran�cois� ���
� Jurado � Westoby� ���
� Huyghe� ���	� Krannitz et al�� ����� Mian � Nafziger� �����
��Salisbury� ���
� Baker� ���
� Foster � Janson� ���
� Seiwa � Kikuzawa� ����� Leishman � Westoby� ����a�

����c�
��Baker� ���
� Harper� ����� Stanton� ����� McConnaughay � Bazzaz� ����� Mara�non � Grubb� ���	�

Armstrong � Westoby� ���	�
��Salisbury� ���
� ����� Stanton� ����� Foster � Janson� ���
� Gross� ����� McConnaughay � Bazzaz� �����

Houssard � Escarre� ����� Seiwa � Kikuzawa� �����

���



dormant in a seed bank for longer� providing a temporal integration of resource heterogeneity

�Venable� �	
�� Silvertown� �	

� Thompson et al�� �		���

The suitability of large�seeded species for both rich and poor habitats suggests that there should

be strong selection towards increasingly large seeds or fruit� There are� however� bene�ts of

small seeds in many circumstances� The most obvious factor is the ease of dispersal �Westoby

et al�� �		��� The widest scattering of seeds usually occurs via the mechanism of wind� which

clearly is biased towards small propagules� often with wings or other similar adaptations for

�ight
�� Thus small seeds can be advantageous in environments with patchy or ephemeral

resources� Likewise� greater dispersive mechanisms allow species to invade uncolonised regions�

so small seeds species often dominate early successional vegetation �McConnaughay 
 Bazzaz�

�	
�� and larger canopy gaps �Winn� �	

��

A second� less immediately apparent feature of smaller seeds concerns the growth rate of the

resultant seedlings� There have been repeated observations of a negative correlation of relative

growth rate �RGR� with seed weight
�� Thus a small�seeded species can grow rapidly and catch

up with seedlings from larger seeds after a certain time� There is� however� some empirical data

showing a positive correlation of RGR and seed weight
�� so the growth rate advantage of small

seeds is not necessarily universal�

Alternative hypotheses have been put forward for the superior growth rates of smaller seeds�

Small seeds have less DNA per cell which permits faster cell division� although Mara non 


Grubb ��		�� suggest this e�ect is secondary� They demonstrated that small seeds produce

seedlings with higher speci�c leaf areas �SLA� but lower unit leaf rates �ULR�� This means that

they have a greater area of leaf per unit mass� but the leaves are thin and photosynthetically

less e�cient� The balance of SLA and ULR determines the correlation of seed size with RGR


�Stanton� ����� McConnaughay � Bazzaz� ����� Ganeshaiah � Uma�Shaanker� ����� Pons� ���
� Willson�

���
�

�McConnaughay � Bazzaz� ����� Houssard � Escarre� ����� Nafziger� ���
� White et al�� ���
� Mara�non �

Grubb� ���	�


�Stanton� ����� Elrahman � Bourdu� ����� Tekrony et al�� ����� Zhang � Maun� ����� Huyghe� ���	�

���



and explains the con�icting data�

There are thus opposing selective forces for seed size� Long range dispersal and high RGR

favour small seeds and nutrient reserves and initial competitive advantage favours large seeds

�Allsopp 
 Stock� �		�� Leishman et al�� �		��� There are therefore arguments why large seeds

should be found in either rich or poor habitats and di�erent authors usually have their preferred

theory� which will often be dependent on their study area �Moore� �		���

The resource CML is used here to investigate the growth of pairs of species with di�erent seed

sizes as their RGRs vary� in a range of homogeneous and heterogeneous environments�

���� Short Term Dynamics of Di	erent Seed Sizes�

������ Introduction�

Given the substantial body of evidence that large seeds initially produce large seedlings
�� the

CML model may be used to investigate the interaction of seed sizes and growing conditions in

the determination of stand yields� Throughout this section� it is assumed that the initial masses

on the CML represent initial seedling sizes and hence pre�germination seed sizes� The CML

was used to determine the response of di�erent seed sizes growing in competition to resource

availability and density� The balance of seed size and growth rate was assessed by varying the

parameter g� the intrinsic growth rate� which directly in�uences the relative growth rate�

������ Computational Methods�

The resource�based CML was run on a ��� �� grid for ��� iterations with mortality � �section

������ under a range of conditions� Symmetries � and � �absolute symmetry and asymmetry�

were used throughout to represent the range of possible competitive interactions� where a

limitation to the computational intensity was necessary�


	Ferrara� Quinn� ����� Hocking� Steer� ����� Giles� ����� Stock et al�� ����� Shanmuganathan� Benjamin�

���
� Douglas et al�� ���	� Gonzales� ���	�

���



�a� Variation of Seed Sizes�

Firstly� pairs of seed sizes were investigated� one species �small�seeded� was given a �xed seed

size of ������� mass units� The large�seeded species was given a size ranging between ��������

and ����� so that the large seeds were ��� to ����� greater than the small seeds� These initial

sizes re�ect a realistic range of seed sizes �Mara non 
 Grubb� �		�� given the model parameters

of chapter � �table ��� The relative yields of the two species were found for the two extreme

symmetries and assuming a constant resource base of value ��� �km � kg � ���

�b� Variation of Growth Rate�

The e�ects of a negative correlation between seed size and relative growth rate was studied

using a range of intrinsic growth rates� Two �xed seed sizes were used� of ������� and �������

with the growth rate of the small seed �xed at g � �� and the growth rate of the large seed

varied between g � �� and g � �� A change in g was balanced by a change in b� to maintain a

constant maximum plant size �equation ������

�c� Variation of Initial Resource Level�

The two �xed seed sizes were also used to investigate the e�ect of di�erent resource availabilities

or habitat qualities assuming a growth cost of kg � ��� and a range of symmetries� but �xed

growth rate g � ���

�d� Variation of Density�

Sections �a� � �c� used a full grid of plants �density � � ����� but density is also an impor�

tant determinant of stand yield� Sample pairs of seedlings with sizes of ��������� ������� and

��������� ����� were used� as well as four densities �� � ����� ���� ���� and ���� and �ve growth

rates �g � �� ��� ��� �� and ����

�e� Variation of Growth Cost�

The growth cost was varied between kg � ��� and kg � ��� for the �ve growth rates given in �d�

���



and seed sizes ������� and ������� Again only two symmetries were used to limit computation�

������ Results and Discussion�

�a� Variation of Seed Sizes�

Figures ��a � b show sample growth curves for absolutely symmetric competition between small�

and large�seeded species� Growth is typically sigmoidal and competition shows a greater impact

on the smaller seedling as the di�erence in size increases� Figures ��c � d show the �nal yield of

each species for a range of sizes of the larger seedling� A larger seedling has a strong competitive

e�ect on a smaller seedling but is little a�ected by the other�s presence� this is more apparent

under asymmetric competition� The competitive response of the smaller seedling weakens as

the larger seedling increases in size� with its yield exhibiting a roughly linear decline� The total

stand yield ��gure ��e� demonstrates a marked decrease as the size gap widens� showing that

similarity of initial size allows a more e�cient use of limited growing space�

�b� Variation of Growth Rate�

A large�seeded species produces a greater yield than a small�seeded species assuming equal

growth rates� but a negative correlation of growth rate and seed size easily confers an advantage

on the smaller seedling ��gure �
a � b�� As the growth rate of the large seedling is reduced�

there is a crossing�over point ��o�� where the small seed starts to gain ground� The total yield

shows that the stand as a whole grows more e�ciently if the di�erence of growth rates is less�

If competition is asymmetric� a mixed stand is able to produce a higher total output than a

monoculture ��gure �
c�� since the available space may be more e�ciently used by mixing small

and large plants�

�c� Variation of Initial Resource Level�

As the supply of resources rises� both small and large seedlings do better and attain their

full size more quickly� Yields typically increase exponentially� as shown for absolutely sym�

metric competition ��gure �	a�� Small seedlings do relatively better at lower resource levels

��
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Figure ��� Yields for the resource�based seed size CML model� �a� � �b� Yield as a function of

time with absolute symmetry for small seeds of size ������� and large seeds of sizes ��������

�red�� ����� �green� and ���� �blue�� �a� yield of small�seeded species� �b� yield of large�seeded

species� �c� � �d� Relationship of �nal yield and size of large seeds� �nal yield of �c� small�seeded

species� �d� large�seeded species� �e� Total yield of stand as a function of size of large seeds and

theoretical yield for an equivalent monoculture �� � ��� For �c� � �e� the competitive types are

absolute symmetry �red� and absolute asymmetry �cyan��
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Figure �
� Yields for the resource�based seed size CML model as growth rates vary� Competition

between species with seed sizes ������� and ������ as the growth rate of the large�seeded

species varies� Yield of small� ��� and large� �� � �� seeded species for �a� absolute symmetry

and �b� absolute asymmetry� �c� Total stand yield for absolute symmetry �red� and absolute

asymmetry �cyan� and theoretical yield for a monoculture �� � ���

���



��gure �	b�� high resource levels promote rapid growth� so that small seedlings are less able

to catch up with big seedlings before competition sets in� Asymmetric competition puts small

seedlings at more of a disadvantage� so that the yield relative to the large seedlings is less than

under symmetric competition for all resource levels�

�d� Variation of Density�

Lower density always favours the inferior competitor ��gure �	c � f�� Where large seedlings

have low growth rates� low density delays the onset of competition and reduces the loss of space

to the smaller�seeded species� Similarly� where large seedlings have growth rates nearer to those

of the small seedlings� low density reduces the detrimental impact of competition on the small

seedlings� There is therefore a cross�over point ��o�� where all densities lead to similar yield

ratios� Greater seed size di�erence and greater asymmetry both lead to the cross�over point

occurring at small growth rates �g��

�e� Variation of Growth Cost�

As growth costs rise� plant growth has greater impact on the resource base� so yields of large�

seeded species rise at the expense of small�seeded species� In cases with high growth cost�

maximum growth will occur at the start of the growing season� before the resource level has

decreased� larger seedlings are better able to derive bene�t from the early resources� Figures

��a � j show the balance of the advantage to small seedlings of higher growth rates against the

disadvantage of high growth costs� A cross�over point therefore exists for each growth rate g

where higher costs lead to dominance by the large�seeded species and lower costs lead to higher

yields by small�seeded species� The cross�over points ��o�� are shown in �gure �� if they lie in

the range ��� � kg � ���� otherwise they may be estimated from the slope of the yield curves�

Under asymmetric competition the initial advantage is more in�uential in determining �nal

yields� so the cross�over points take more extreme values of kg ��gures ��b� d� f� h� j��

������ Theory of Monoculture Growth�

Given the basic equations of growth for unit resource level �equations ���� and ����� the area of

���
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Figure �	� Yields for the resource�based seed size CML model as initial resource levels and

densities vary� �a� � �b� Varying the initial resource level �rI�� �a� yield of small�seeded species

of size ������� ��� and large�seeded species of size �������� � ��� �b� ratio of yields of small� to

large�seeded species for absolute symmetry �red� and absolute asymmetry �cyan�� �c� � �f� Ratio

of yields of large� to small�seeded species as density varies from ���� ��� to ����� � ��� ���� �� � ��
and ��� �� � ��� �c�� �e� absolute symmetry �red�� �d�� �f� absolute asymmetry �cyan�� Seed sizes

are� �c� � �d� ������� and ������� �e� � �f� ������� and �����
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Figure ��� Yields for the resource�based seed size CML model as growth costs vary with

seed sizes ������� and ������� yield of small� ��� and large� �� � �� seeded species for

�a�� �c�� �e�� �g�� �i� absolute symmetry �red� and �b�� �d�� �f�� �h�� �j� absolute asymmetry

�cyan�� Growth rates of the large�seeded species are� �a� � �b� g � ��� �c� � �d� g � ��� �e� � �f�

g � ��� �g� � �h� g � ��� �i� � �j� g � ��

���



a cell is given as � �equation ��	�� or one��fth of the maximum possible individual plant area�

Thus for a grid of maximum density� allowing for the discretisation constant ��� of chapter ��

the expected mean �eld yield of a monoculture� Y � is given by�

Y �
�p
�
N�

�
�

���

�
�

which means that Y 
 ���� for a ��� �� grid� or Y 
 ��
 for a species present in exactly half

of the grid cells� Figure ��e shows that the total yield of the CML varies roughly between 
��

and ����� that is� �	� and ���� of the mean �eld yield in monoculture�

Consideration of the individual species ��gure ��c � d� shows that the small�seeded species

attains between ��� and ��� of the monoculture yield� while the large�seeded species exceeds

the monoculture with a yield of ���� to ����� The total yield is in general depressed by the

presence of a variety of seed sizes� while large seeds gain in competition relative to monocultures�

small seeds lose out to a greater extent�

The situation is di�erent when a negative correlation of seed size and growth rate g is assumed

��gure �
�� the maintenance of a constant ratio g

b
ensures the same maximum plant size is

attained for all values of g� Total yield varies between ��� and ����� small seed yields between

��� and ���� and large seed yields between �� and ����� Thus a di�erence in growth rates

allows a higher total yield to be attained in mixture than in monoculture� although for a wide

range of parameter values yield is depressed�

������ Response to Resource Heterogeneity�

The algorithm described in section ����� was used to examine the response of di�erent sizes of

seedlings to patchy distributions of resources over the course of a single growing season� As in

section ������b�� three levels of resource clumping were used �table 	�� Three pairs of resource

levels were used� ������ ������ ���
��� ������ and ����� ����� which respectively represent low�

medium and high resource di�erentiation �rH��

���



Figure �� shows the yields attained on the CML grid for plants undergoing symmetric compe�

tition with a large seedling growth rate g � ��� similar results were obtained for asymmetric

competition and a range of growth rates� Figure ��a shows the yield of two species of seed

sizes ������� and ������� The yield of both species on the poorer patches falls to zero with the

resource level� that is� as the di�erentiation rH rises� In contrast� the high resource patches sup�

port greater yields of both species at either low or high levels of rH � but the yield is depressed at

intermediate rH � This observation echoes the results of section ������b�� but the reduced yields

for intermediate rH are observed for a range of clumping levels� whereas the single species case

of ������b� only behaves in this way under �ne scale aggregation� In the single species case�

�ne scale high and low resource patches lead to the emergence of larger and smaller plants

in close proximity and hence to economy of resource utilisation� In the two species case� the

species naturally lead to cohorts of smaller and larger plants� which are emphasised by resource

heterogeneity�

Figure ��b shows that aggregation slightly restricts the growth of both species on the richer

resource patches and promotes growth in poor areas� In large patches of high resources� any cell

of the lattice can theoretically support a large plant� but limited space means that large plants

cannot grow in all the cells of a neighbourhood� so some growth is restricted� In contrast� plants

in large clumps of low resources are able to grow freely� una�ected by the large neighbouring

plants they would experience in a more homogeneous environment�

The total yields of each species and of the whole stand all decrease as both clumping level

and resource di�erentiation increase ��gures ��c � d�� except under �ne resource aggregation

��gure ��e as described in ������b��� Thus homogeneous resource distributions promote optimal

yields of the stand and both species� When competition is asymmetric� the dominant faster�

growing small�seeded species gains less of an advantage in large clumps� where space is limited�

asymmetry of competition highlights this e�ect�

��
� Long Term Dynamics of Di	erent Seed Sizes�

The CML was extended to multiple years� so that the long term e�ects of di�erent seed sizes

���
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Figure ��� Yields for the patchy resource�based seed size CML model as resource di�erentiation

and clumping levels vary with seed sizes ������� and ������ and growth rates g � �� and

g � �� with absolute symmetry� �a�� �c�� �e� Final yield for �a�� �c� medium clumping and

�e� low clumping� �b�� �d� Final yield as a function of clumping level for medium resource

di�erentiation� �a� � �b� Yield on the two patch types� small�seeded species �red� and large�

seeded species �blue� on high ��� and low �� � �� patches� �c� � �e� Total yield for small�

�red� and large� �blue� seeded species and total stand yield �� � ��� �f� Total yields for absolute

asymmetry�

���



could be assessed and the interaction of seed size and resource distribution examined� Both

species were assumed to reproduce according to the method of section ���� As discussed in

section ���� there is a complex relationship between seed size� seed number� seed survival and

dispersal distance� so for simplicity a constant dispersal distance and seed number is assumed

here for all sizes of seeds�

��	��� Competition in a Homogeneous Environment�

Two species with di�erent sizes of seeds were placed in equal quantities on a ��� �� grid� The

small�seeded species was given a size of ������� and a growth rate g � �� and the large�seeded

species was permitted a range of sizes and growth rates� A range of initial resource levels was

used� with the resource homogeneously distributed across the grid at the start of each year�

Figure �� illustrates typical behaviour of the system as the resource level is varied� Here the

large seeds are of size ����� and growth rate g � ��� At low resource levels ��gure ��a� the

small�seeded species drives the other to extinction within �� years� At high resource levels

��gure ��c� selection favours the large�seeded species and the small�seeded species disappears

before �� years have passed� At intermediate resource levels ��gure ��b� both species are able

to persist over many years at roughly equal levels� Thus high resource levels are able to promote

the survival of large seeds which otherwise lose ground to smaller seeds under poorer conditions�

The transition from a small�seeded monoculture to a large�seeded monoculture is illustrated

in �gure ��d by the yields in year ���� A mixed community is supported by the intermediate

range of resources �� � rI � 
�� while outside these values a monoculture results� The total

stand yield naturally increases � approximately linearly with rI � as more resources support

more growth of either species�

The change in stand composition may also be seen by evaluating the rates of exponential

increase and decrease of the annual yields over the �rst part of the study period� Exponents

were estimated by a weighted linear least�squares method� Exponents are positive for the

dominant species at each resource level and approach zero for each seed type near rI � � where

���



0 50 100
0

1000

2000

3000

time (years)

pl
an

t n
um

be
rs

(a)

0 50 100
0

1000

2000

3000

time (years)
pl

an
t n

um
be

rs

(b)

0 50 100
0

1000

2000

3000

time (years)

pl
an

t n
um

be
rs

(c)

6 8 10
0

1000

2000

3000

(d)

resource level rI

fin
al

 n
um

be
rs

6 8 10

-0.15

-0.1

-0.05

0

(e)

resource level rI

po
pu

la
tio

n 
ex

po
ne

nt

Figure ��� Results for the multiple year resource�based seed size CML model� two species with

seed sizes ������� and ����� and growth rates g � �� and g � �� under symmetric competition�

�a� � �c� Evolution of community composition over ��� years for initial resource levels �a� rI � ��

�b� rI � �� �c� rI � 	� annual yield of small� ��� and large� �� � �� seeded species� �d� Yield

after ��� years of small� ��� and large� �� � �� seeded species as a function of initial resource

level �rI�� �e� Mean rate of exponential increase or decrease of annual yields of small� ��� and

large� �� � �� seeded species over the early years of competition�

��




�a�

�b�

Figure ��� Spatial pattern in the multiple year resource�based seed size CML model� �a� Dis�

tribution of high and low resources� rI � � �blue� and rI � �� �green�� �b� Distribution of

plants after �� years� seed sizes ������� �green� and ����� �blue� with growth rates g � �� and

g � �� respectively under symmetric competition� Darker shades indicate larger plants�
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Figure ��� Results for the patchy multiple year resource�based seed size CML model� two

species with seed sizes ������� and ����� and growth rates g � �� and g � �� under symmetric

competition with a heterogeneous resource distribution� �a� � �c� Number of small�seeded

�red� and large�seeded �blue� on high ��� and low �� � �� resource patches� �a� High resource

aggregation and resource levels rI � �� 
� �b� high aggregation and rI � �� �� �c� low aggregation

and rI � �� 
� �d� � �e� Number of small�seeded �red� and large�seeded �blue� on high ��� and

low �� � �� resource patches as a function of clumping index� �d� rI � �� ��� �e� rI � �� 
�
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the mixture is stable� Thus the initial rates of population change are indicative of the �nal

community structure�

��	��� Response to Resource Heterogeneity�

The CML model was run with patchy resource distributions over multiple years for di�erent

degrees of aggregation and various pairs of resource levels� Figures �� shows a typical distri�

bution of small� and large�seeded plants for large patches of resource levels � and ��� These

resource levels in a homogeneous distribution correspond respectively to monocultures of small�

and large�seeded species� The patchy distribution� however� allows both species to coexist over

a long time scale� �gure ��a shows that both species persist for at least two and a half millennia

on resource patches of levels rI � � and 
�

The spatial distribution in �gure �� shows that the large�seeded species dominates the higher

resources patches with the small�seeded plants clustered around the edges of these patches�

There are similar numbers of small�seeded plants on low resources and large�seeded plants on

high resources ��gure ��a�� Likewise there are roughly equal� and signi�cantly lower� numbers

of small�seeded plants on high resources and large�seeded plants on low resources� Thus the

species are mainly found on the patch type where they exists in monoculture under homogeneous

conditions� These do not� however� indicate the preferred resource level for each species� as all

plants will naturally perform better in isolation with more resources�

A heterogeneous environment also a�ects the rates of exclusion of inferior species� If patches

with rI � � and � are used� both of which favour small�seeded plants� then the large�seeded

species is indeed driven to extinction ��gure ��b� but at a much slower rate than under homo�

geneous conditions �around ��� years rather than �� years��

The dynamics are signi�cantly a�ected by the degree of resource aggregation� When the patches

are very small the small�seeded species is eventually driven out of the system ��gure ��c�� This

is because there is enough dispersal of seeds from the large�seeded species to allow it to colonise

both patch types�

���



A range of parameters for the patch�generating algorithm were used and the �nal yields of the

di�erent species and patches were recorded together with the resulting clumping indices� Figures

��d � e illustrate a further investigation of the e�ect of clumping level an community structure�

The large�seeded species always exploits the resource rich patches and maintains a constantly

high yield� The small�seeded species is consistently unsuccessful on these rich patches� The

clumping level has a strong e�ect on the poorer patches� in low resource grid cells� �ne scale

patchiness favours big seeds and coarse patches favour small seeds� Thus the yield curves of

the small� and large�seeded species on the poor resources cross over at an intermediate scale�

The cross�over point represents a balance between the ability of the poor resource patches to

act as refuges and the dominance of the large�seeded species on the rich patches�
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�� A Grouse Model�

Chapter Summary

The population and behavioural ecology of the red grouse Lagopus lagopus scoti�

cus is described and the idea of kin tolerance is discussed in relation to the

observed cyclic population dynamics of red grouse�

A brief overview of previous modelling approaches to the population dynamics of

red grouse is given� The algorithm for a two�dimensional spatial arti�cial ecology

is described in detail and typical graphical output is presented�

Simple selection between kin tolerant and kin intolerant grouse types is shown

to be an inadequate mechanism for the production of cyclic dynamics� However�

it is demonstrated that direct density responses of either individual or social

behaviours� in terms of kin tolerance� are feasible underlying processes for the

population cycling�

�The fascination of shooting as a sport depends almost wholly on whether you are at the right

or wrong end of the gun�� � P�G� Wodehouse

���� Introduction�

The population dynamics of the red grouse �Lagopus lagopus scoticus� are particularly note�

worthy among natural populations� since there is long term data exhibiting relatively regular

cyclic �uctuations in population numbers� The red grouse also has anthropocentric interest

as it is economically important� with shooting on approximately ��� hectares of grouse moors

producing an income in excess of ���m annually �Lance 	 Lawton� �
�
�� There is thus a need

to understand the population biology of the grouse� so that appropriate management techniques

can be implemented to guarantee the persistence of the species and shooting interests�

��




Figure ��� The red grouse Lagopus lagopus �after Thomas Bewick ��������
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This chapter discusses the possible phenomena underlying observed dynamics and formulates

an individual�based spatially explicit model to investigate key mechanisms in the red grouse

system�

���� Overview of the Behavioural and Population Ecology of the Red

Grouse�

The red grouse is a territorial game bird found in several parts of the British Isles and Europe�

notably Northern England and North East Scotland� The extent of the species is limited by

suitable habitat� namely the moorland dominated by swards of the common heather Calluna

vulgaris�

������ Population Dynamics�

The red grouse is almost unique in having continuous sets of population data going back to

��
�� This is in the form of �bag data� and keepers� records� which provide the annual numbers

of grouse shot on dozens of moors around England and Scotland� as well as information on

weather and other extrinsic factors �MacKenzie� �
���� Figure ��a shows a typical set of bag

data accumulated frommoors in Central England over the course of nearly a century� Although

the bag data provides an accurate record only of birds shot� it is considered to provide a good

indication of the size of the population in any given year �Williams� �
���� However� the bag

data� which provides an autumn population count� will �uctuate with greater amplitudes than

a spring count� because rapid population increases are bu�ered by autumn and winter mortality

through natural causes or shooting� Figure ��b gives a sample set of �eld data giving actual

counts for a study site at Rickarton in North East Scotland�

Many time series of bag data from around the British Isles have been analysed and have demon�

strated widespread cycling of population sizes� with more regularity than would be expected

for random �uctuations �Moran� �
��� Williams� �
���� with cycles often being synchronised

over extensive areas of moors �Moss 	 Watson� �
�
c� and evidence of correlation with other

Tetraonids �MacKenzie� �
��� Moran� �
���� In North East Scotland cyclic �uctuations are
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Figure ��� Bag data and �eld data for red grouse� �a� Bag data from moors in Central Scotland

from ���
 to �
��� from data in MacKenzie ��
���� �b� Population count data from the study

site at Rickarton in North East Scotland� from Moss �personal communication��
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seen of lengths � to 
 years� with shorter cycles around � years in length found in some English

estates �Moss et al�� �


�� The amplitude of the cycles varies� with increases from trough to

peak typically being between two� and �ve�fold� as seen at Kerloch �south west of Aberdeen�

respectively in �
�
 � �
�
 and �
�
 � �
�� �Watson et al�� �

���

A second feature of the bag records is a marked long term decline in red grouse numbers

throughout the British Isles over the last century �Moss 	 Watson� �
�
b�� This is attributed

largely to habitat destruction � for example as moorland is reforested � and to reduction in

habitat quality by poor management and overgrazing by sheep �Ovis spp��� deer �Cervus spp���

rabbits �Oryctolagus cuniculus� and hares �Lepus spp��� there is also evidence of a climatic

e�ect� Inevitable short term erratic �uctuations attributable to environmental noise are also

seen� which may be caused by complex interactions of such features as weather� resources and

predator dynamics�

������ Food and Cover�

Red grouse feed primarily on the heather Calluna vulgaris� which also acts as cover �Watson

	 Moss� �
���� The heather is a short evergreen shrub which has particularly low nutritional

content� being low in protein and high in �bre �Moss 	 Watson� �
�
b�� The quantity of

heather available is not considered to be a limiting factor for population density� with the

quality and distribution being of greater signi�cance� Grouse feed selectively on a mere � � 
�

of the available heather� preferring younger more nutritious shoots� Higher levels of nitrogen

in the heather leads to correspondingly smaller territories as a higher density of birds can be

supported �Moss 	 Watson� �
�
a��

Grouse do� however� generally choose to remain close to taller old heather� which provides

safe cover from predators� as well as being the location of most nesting sites� There is good

indication that a �ne scale mosaic of old and young heather is more suitable for grouse and

such an environment is able to support a greater density of birds� For this reason it is standard

management practice� on keepered moors� to maintain the local heterogeneity by burning the

heather in small patches in rotation�

���



Although over 
�� of a grouse�s diet consists of heather� other plants including bilberry �Vac�

cinium myrtillus� and cotton grass �Eriophorum vaginatum� contribute nutrients to the birds�

In particular� alternative species are consumed preferentially in early spring before the new

shoots of the heather appear� In addition� arthropods form an important source of extra pro�

tein in the early weeks of chick growth�

Reduced food supply at peak density does not� however� appear to have a signi�cant role in the

cyclic dynamics� as resources have been observed to remain relatively constant while population

size varies signi�cantly �Moss 	 Watson� �

��� Food supply is more likely simply to set the

peak density of birds� Likewise� an experimental fertilisation of heather has been demonstrated

to have negligible e�ect on the cycling of grouse numbers �Moss 	 Watson� �
����

������ Shooting�

The prevalence of shooting on the grouse moors certainly means that the moorland ecosystem

is unnatural� but it is generally believed that shooting has limited e�ect on the population

dynamics of the grouse� The shooting season opens on ��th August� when the chicks are

almost fully grown� so that the e�ect is simply a reduction in the adult population� This is

assumed by some to be balanced by a correspondingly lower winter mortality and thus the

total population size is una�ected by the shooting� However� it is argued by some workers

that the shooting will remove birds at random� whereas the winter mortality will generally

a�ect the weaker individuals of the species� it has been observed by others that in practice

shooting primarily removes slower birds at the rear of a �ock� There may thus be a decrease

in the average �tness of the population where shooting takes place� Some authors dispute this�

producing evidence that predation� a major cause of winter death� is not selective of weaker

individuals �Hudson� �
�
��

A second implication of shooting is that it could cause territory con�gurations to be broken up�

Under the hypothesis that territorial behaviour and territory con�guration is a key process in

determining red grouse dynamics �see section ������� shooting could have a signi�cant impact

on the population numbers� for example by reducing the magnitude of cyclic �uctuations �Moss

���



	 Watson� �
����

Many recent study sites are located on unshot moors� so that the shooting factor is not of great

signi�cance� except in terms of movement between shot and unshot moors� There is a further

consideration in this situation� a lack of shooting is generally accompanied by lower levels of

management and in particular the absence of keepers means that natural predation is much

higher� Some sites � such as Kerloch and Rickarton � have� however� continued to be keepered

whilst shooting has not taken place� There has been a widespread increase in the numbers of

predators of grouse of the past few decades� so the extrinsic environment of current study areas

cannot be assumed to be representative of the conditions which produced the early bag data�

������ Disease and Predation�

The primary disease of red grouse is� appropriately� grouse disease or trichostrongylosis� which

is caused by the caecal nematode Trichostrongylus tenuis� Most red grouse have some of these

worms� but low concentrations have little apparent e�ect on �tness� There are� however� re�

peated observations of outbreaks of grouse disease dating back to the last century� when heavy

worm burdens and subsequent fatalities are seen� The e�ect of the parasite is chie�y seen in

spring and early summer �Moss et al�� �
�
�� when both direct mortality and reproductive

e�ects are seen �Hudson 	 Dobson� �
�
�� High parasite intensities have been positively cor�

related with the production of smaller later clutches and chicks with lower hatching weights�

There is a much weaker relation between worm burden and individual adult condition �Moss

et al�� �
�
� �

���

Some authors consider T� tenuis to be a key factor in the regulation of grouse population

densities and assert that cyclic populations correspond to higher prevalence of the parasite�

However� there is a relatively low intensity of T� tenuis on the East Scottish moors� where

cycles have been frequently recorded�

A second disease found in the red grouse species is Louping ill� which is a virus transmitted

by the sheep tick Idoxes ricinus� The condition is usually fatal and particularly a�ects chicks

��




�Lawton� �
�
�� but its occurrence is patchy and is generally a problem only in areas of intensive

sheep grazing� There are also two tapeworms� Hymenolepsis microps and Davainen urigalli�

but their role in grouse population ecology dynamics has yet to be ascertained�

As stated in section ����
� predation was not a signi�cant factor on the traditional shot moors�

where keepers were able to keep predator numbers at a low level� At the present time� there are

many areas of moorland where predators are now present in substantial numbers� including the

red fox �Vulpes vulpes�� stoat �Mustela erminea�� carrion crow �Corvus corone�� golden eagle

�Aquila chrysa�etus�� peregrine falcon �Falco peregrinus� and the hen harrier �Circus cyaneus��

Predators will take adult birds throughout the year� with foxes� stoats and crows also robbing

nests of entire clutches of eggs in the spring� although females are sometimes able to lay a

replacement clutch if this happens�

������ Reproduction�

The red grouse is typically monogamous �Moss 	 Watson� �

��� with mating being restricted

to territorial males� most of which are paired with a single hen� although there is a low incidence

of bigamy �Watson et al�� �

��� Some territorial males do not have hens� especially in poorer

habitats� where the sex ratio tends to be biased towards more males� it is generally more uniform

in richer environments� where bigamymay occur� Experimental fertilisation of heather has been

shown to shift the sex ratio away from the males and hence breeding is more successful �Moss

	 Watson� �

���

Hens lay clutches of approximately seven eggs in mid April� which hatch in late May or early

June� males tend to stay near the nest during this time� There is high mortality in the �rst

couple of weeks after hatching �Jenkins et al�� �
���� but chicks which survive this �rst phase

experience minimal further mortality� The pairs tends to move around the moor during the

summer� taking their families with them� but they usually return to the natal site in time for

the autumn territorial disputes �Lance� �
���� The young grouse are fully grown after about

three months and young males compete with older birds on roughly equal terms in the autumn

�Watson 	 Moss� �
���� While young males will attempt to gain territory near their fathers�

���



territories� young females will often disperse over distances of several kilometers �Lawton� �
�
�

Moss 	 Watson� �

���

������ Territorial Behaviour�

Many authors assert that a key stage in the life history of the red grouse is the recruitment of

young males to the adult territory�holding population in the autumn��� The autumn territory

distribution is then assumed largely to determine the spring distribution and hence control the

breeding density �Watson� �
���� Thus the density and distribution of the male population

is assumed to be fundamental and to limit the breeding density of females �Moss 	 Watson�

�

��� This agrees with the observation that population declines can occur despite successful

breeding seasons and increases can occur when the reproductive rate is low �Watson 	 Moss�

�
�
�� This is disputed by other authors �Hudson� �
�
�� who claim that most winter mortality

occurs when there is snow cover� which is accompanied by the temporary breakdown of the

territorial structure� However� it has also been stated that the �ocks which form during periods

of snow cover also exhibit patterns of spacing associated with dominance behaviour �Watson 	

Moss� �
�
��

Young and old male grouse start to attempt to take their own territories in early autumn� On the

whole� old birds will stay close to their original territory and young birds will attempt to recruit

fairly near their fathers� territories ��natal philopatry�� �Moss 	 Watson� �

��� Aggressive

behaviour during the autumn includes song �ights� which end with a characteristic call known as

becking� and patrolling of territory boundaries accompanied by calling and aggressive posturing

�Jenkins et al�� �
�
�� These behaviours mostly occur at dawn and dusk� although territory

is defended throughout the day just before the breeding season �Watson 	 Jenkins� �
��� and

most encounters are observed to be pairwise� as neighbouring birds try to maintain or expand

their territories�

When the population is at high density� more of the weaker individuals will fail to capture

��Jenkins et al�� ����� ���	� Watson 
 Jenkins� ����� Watson 
 Miller� ��	�� Watson 
 Moss� ����� Moss et

al�� ���
� Watson� ����� Watson et al� ���
�
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or hold a territory� Thus a pool of non�territorial males is established by the winter time�

Territorial birds which die tend to be replaced by non�territorial birds �Watson 	 Jenkins�

�
��� Watson 	 Miller� �
���� but those individuals which do not gain a territory always die

or emigrate from the area before breeding��� Thus territory acquisition is crucial to a bird�s

survival and hence to the species� population dynamics�

The size of territories held by males has various implications� It appears that hens select males

that have larger territories� with the important aspect being the relative rather than absolute

territory size in any one year� Quality of the territorial habitat is also a relevant factor in

their selection� Larger territories will usually encompass a greater quantity of food resources

and are more likely to include regions of higher quality food and well as better cover� There

must� of course� be a upper bound on territory size� given the necessary energy and time cost

of maintaining territory and repelling intrusions by neighbours� although this bound may often

not be limiting�

There have been several studies on the causes and consequences of aggression in male grouse�

Aggression is measured by the tendency of an individual to threaten or attack in pairwise

encounters� Breeding and implantation experiments have provided good evidence that the level

of aggression in an individual is partly heritable and partly controlled by hormones� Implants

of testosterone in male grouse have been made in both captive and wild grouse �Moss et al��

�

��� In natural populations� implanted territorial males executed more song �ights� took part

in more aggressive encounters and chased more females� This resulted in substantial increases

in the territory sizes of experimental males at the expense of unimplanted individuals which

died or emigrated� Likewise� implanted non�territorial birds were able to capture territories�

Hens paired with implanted birds were seen to produce marginally larger broods�

A slightly di�erent aspect of territorial behaviour is dominance� Male grouse can be attributed

a social dominance rank which de�nes their positions in a pecking order within a group of

males� Dominance has shown to be heritable from both parents and is partially correlated with

��Jenkins et al�� ����� ���	� Watson 
 Miller� ��	�� Watson 
 Moss� ��	�� Moss 
 Watson� �����
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aggression and physiological condition �Watson� �
����

The mean dominance within the populationmay provide clues to the mechanisms underlying the

observed density cycles� It has been established that mean population dominance falls during

the increase phase of the cycles and rises during the decline phase �Watson 	 Moss� �
��� Moss

et al�� �
���� The mechanisms generating the cyclic phenomenon must therefore correspond to

selection for subordinate types during density increases and selection for dominant types during

declines �Moss et al�� �
���� In contrast� displays of aggression are seen to increase in frequency

as density rises� The cycling is initiated by events at� or just after� the peak density� an annual

experimental removal of birds� which kept the density below the maximum value� was shown

to stop the decline phase �Watson et al�� �
��� Moss 	 Watson� �
�
c� �

���

����	� Kin Selection�

Red grouse are observed to recognise their close relatives and hence are able to identify their

family �Mountford et al�� �
�
�� Males tend to recruit in family clusters of territories� with

most young males dispersing a limited distance from their natal sites� A lower rate of boundary

disputes is seen between close kin �by a factor of four� and fathers have been observed assisting

their sons in establishing territories �Watson et al�� �

��� Thus a father may accept a territory

that is smaller than its personal optimum� to facilitate the establishment of territories by its

sons� Thus groups of related individuals may allow recruitment to take place at a higher density�

This behaviour may be described as kin tolerance�

Kin tolerance appears to have a dynamical nature� as the mean degree of family association

varies with the phase of the population cycle� The level of aggregation of family groups falls

during the decline phase� with sons dispersing further from their natal sites �Watson et al��

�

��� Thus cycles either cause� or perhaps are caused by� the break up of the family territory

structure� The cycles are therefore accompanied by switches between tolerant and intolerant

social environments� which correspond to higher and lower equilibrium densities respectively�

The decline sees increased aggression� with higher rates of territorial disputes relative to density�

as well as selection for greater dominance� In contrast� the increase phase sees selection for

��




subordinate types� as kin tolerance allows less dominant individuals to gain territories with

passive or active assistance of their families�

There are two slightly di�erent mechanisms that can be proposed to explain the observed change

in behaviour� Firstly� some event around the peak of the cycle may cause the grouse to become

intolerant to their kin� This makes it more di�cult for young chicks to recruit near their fathers�

promoting dispersal and breaking up family structures� as well as increasing the mean territory

size� which causes the population density to fall� Secondly� some event may trigger dispersal

at or after the peak of the cycles� which breaks up the philopatric distribution� Each grouse is

then adjacent to fewer or no kin� so that intolerance is prevalent in the population� This may

reduce the tendency to accept smaller territories� so the population density falls� Under both

scenarios� the population will continue to fall in size until the situation becomes favourable for

kin tolerance and family clustering�

��� Modelling the Red Grouse�

������ Overview of Previous Models�

Several models have been developed to address the issue of the red grouse population cycles�

One approach assumes that the key mechanism involves the parasite T� tenuis and constructs

a system based on the standard host�parasite equations of Anderson 	 May ��

��� Hudson

	 Dobson ��
�
� show that simple host�parasite interactions can lead to cycling of both host

and parasite� especially given some conditions which the grouse�nematode system appear to

satisfy� These are �rstly that the parasite a�ects the host reproduction to a greater extent

than its survival� secondly that the parasite displays a weakly�aggregated distribution within

the host population and �nally that the life cycle of T� tenuis involves developmental delay

or hypobiosis� Density�dependence of the host population is needed to stabilise the resultant

oscillations� which are roughly of the correct period� Workers on the East Scottish moors dispute

the assertion that this model demonstrates that parasites are essential for cycling and claim

that the parasite prevalence in Scotland is too low to support the assumptions of the model� It

is� however� possible that the host�parasite explanation of the population cycles applies in the
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English habitats and an alternative mechanism holds in Scotland� so that T� tenuis is su�cient

but not necessary to cause cycling�

Empirical models with linear di�erence equations have been suggested which use a chick pro�

duction ratio �ratio of young grouse in autumn to adults in spring� with a two year lag and

winter survival rates with a one year lag to �nd adult population densities in the following

spring �Rothery et al�� �
��� Watson et al�� �
��� Moss 	 Watson� �
�
a� Watson 	 Moss�

�
�
�� The model has been shown to have predictive value� producing damped oscillations

which may be sustained by stochastic factors �Watson et al�� �
���� but it yields little insight

into the functioning of the system� The model has been extended to include details of resource

levels and emigration� but the equations are hypothetical and based on intuitive reasoning�

The Mountford model uses the ratio of young to old grouse as the key variable� which represents

the recruitment rate �Moss 	 Watson� �

��� This is taken to increase as family clustering rises

and to decrease as density rises� High recruitment leads to a rise in density� which leads to

small territories and a decline in the recruitment rate� This causes density to fall and the

subsequent large territories allow recruitment to rise� This argument clearly predicts cycling�

which is indeed shown by the model�

The above models operate in the mean �eld� no spatially explicit models of the red grouse

ecosystem exist in the literature� One�dimensional models addressing kin selection are currently

being developed �P�J� Bacon �personal communication�� S� Palmer �personal communication��

which assign locations on a line segment to each individual grouse� Grouse interact with a

given number of neighbours � which they can recognise if they are kin � and disperse along the

line at the appropriate stage of the life cycle� These models do not yet� however� exhibit cyclic

dynamics�

������ A Two
dimensional Spatial Model for Red Grouse�

A model is presented here which examines the dynamics of reproductive and territorial be�

haviour in two dimensions� The aim is to study the form of the population dynamics which

���



arise naturally from the assumptions of the model which� in turn� are based on a combination

of qualitative and quantitative observations of grouse behaviour and demography� The main

question that is to be asked is whether tolerance of kin can result in cyclic behaviour� so that

the cycling is an intrinsic dynamic� or whether extrinsic factors are essential�

The grouse model is both individual�based and spatially explicit and has an essential di�erence

from the plant models of chapters 
 to �� grouse can move around� This requires an extension

from a conventional lattice model to an arti	cial ecology �AE�� In this case� the AE is more

like a CA than a CML� as each cell will give information on the presence or absence of an

individual grouse via a discrete variable on a �nite set� The model follows the observation that

population dynamics are usually driven by the male grouse and hence only records the males�

As in previous chapters� boundaries are treated toroidally�

Each live grouse is allocated an index number n � f�� � � � � Ng and each grid cell i of the AE has

two discrete variables associated with it� namely Xi and Ti� which both take values between �

and N � Xi � n gives the central point of the territory of grouse n� which will be assumed to be

the natal site for any o�spring of grouse n� all other cells will take value �� Ti � n represents

all other cells which belong to the territory of grouse n� All values of Ti will be between � and

N � except when a grouse has just died or emigrated� when Ti � � until the space is occupied

by remaining birds�

At the beginning of each year� the birds are moved to the centres of their territories� using an

algorithm which locates the centroid of a region of grid cells� with an adjustment if the centroid

falls outside of the region� which may occur in the very rare case of a signi�cantly concave

territory� The grouse are assumed to be paired with a female� which then produces a clutch

of o�spring� Clutches are assumed to be normally distributed� with mean �brood and standard

deviation �brood� an even sex ratio is assumed� In addition� there is a probability pfail that an

entire brood will fail� because of late snowfall� heavy rain or predation� These three parameters

are taken from empirical observations and �brood and �brood are calculated to include summer

mortality of chicks which successfully hatched but later died�

���



At this stage� the surviving chicks are noted as individuals in their own right and allocated an

index number n� so that the total population size N increases� Details of lineage and phenotype

are recorded by variables Kmn� Fn� Toln and FRSn� Kmn takes the value � if birds m and

n are related �m � n� and � otherwise� �Related� in this situation refers to fathers� brothers

�full� and half��� uncles and grandfathers� Chicks are assumed to recognise their more distant

relatives by the behaviour of their fathers� Fn � f�� � � � � Ng records the index number of the

birds� fathers� so certainly KFnn � �� Toln � � if the grouse can display tolerant behaviour

towards its kin and is � otherwise� this characteristic is assumed to be heritable�

Each bird is also allocated a 	ghting rank strength �FRS� �P�J� Bacon� personal communication�

which determines its relative dominance status in the population� This is a suggested realistic

mechanism which allows the outcome of pairwise contests to be determined non�randomly� The

chicks disperse a small distance from their natal sites� which is determined by a uniform random

variable based on the current mean territory size�

During the summer� the model simply records the survival or death of each adult� with each

being killed by a predator or shot with probability pdie� The cells in the grid are then allocated

to the nearest surviving grouse� using a searching algorithm based on a pre�determined matrix

of search paths� This procedure sets up the initial con�gurations for the autumn territorial

disputes� at which point young and old grouse �ght on equal terms� It should also be noted

that the life expectancy is similar for existing adults and the new generation of young males�

so that age structure is not required in the model�

The algorithm for territory allocation is constructed around the concept of pressure� Each

individual bird will e�ectively exert a force on the boundaries of its territory� If this force

produces a pressure Pn greater than that exerted by an adjacent bird� then the former will

expand its holding of territory� conversely it may lose ground to a neighbour� Since defending

a larger territory will require a greater expenditure of energy� the pressure exerted is assumed

to be inversely proportional to the current territory area �TSn�� Likewise� the �ghting ability

will depend on dominance status� represented by the FRS� The pressure can therefore be given

���



as follows�

Pn �
FRSn

TSn
�

The algorithm proceeds by considering each grid cell that has a neighbouring cell in the eight

cell Moore neighbourhood which belongs to a di�erent grouse� This cell is then reallocated to

whichever grouse has a territorial cell in that neighbourhood and has the highest pressure value�

The algorithm requires various re�nements to ensure that it is robust and produces realistic

distributions� For example� all the territory cells of each bird must be connected� this can be

ensured by restricting the changes that are made to the distribution at each iteration� After

a �xed maximum number of iterations� or when the distribution has converged to equilibrium�

the procedure stops� and the territories are �xed for the new breeding season in the following

spring� subject to the minimum critical territory size criterion discussed below�

One problem that arises is �uctuation of territory boundaries� When the pressures of adjacent

territories are very similar� it is common for the boundary to �uctuate backwards and forwards

by a single grid cell� which will prevent convergence of the algorithm� This is overcome by

de�ning a minimum pressure di�erence� �P � If the di�erence between the pressures of two

competing birds is below this value� that is� Pn�Pm � �P � then the boundary will not move�

The value of �P is set by experiment to avoid the majority of trivial binary oscillations�

It is observed that grouse will not attract a mate if their territory is below some critical minimum

territory size� CTSn� This cut�o� is implemented by the model� which removes all birds with

TSn � CTSn� where CTSn � CTS is a �xed parameter� The territory map is then re�adjusted

for the remaining birds until convergence is obtained� Removal of all subordinate individuals

below CTSn is not carried out instantaneously� as this would be too much of a shock in the

system� but rather a few birds are removed at a time� starting with the smallest territories�

This does allow some birds which are marginally below the critical size to gain a little extra

space and thus survive�

���



Failed recruiters go into a surplus pool� which may be used for a dispersal phase� which is

optional within the model� A proportion of the birds in the pool are assumed to die� then

the survivors disperse over distances signi�cantly greater than the dispersal at the start of the

autumn� The dispersing birds then attempt to recruit at the new location� which is taken to

be on an existing territory boundary� where the chances of success are greatest� Several �Ndisp�

dispersal attempts may be made� each of which sees iteration until equilibrium is reached�

removal of birds with territories that are too small and subsequent iteration to equilibrium� At

the end of the year� after the dispersal phase if one is implemented� all non�territorial birds are

removed from the area� corresponding either to death or emigration�

The phenomenon of kin tolerance is included by three separate mechanisms� Firstly� a grouse

is assumed to exert less pressure on its neighbours if it is surrounded by kin� The pressure

function is therefore amended to�

Pn �
FRSn

TSn�� �NNn�
�

where NNn is the number of kin neighbours of the kin tolerant individual n� If there are no kin

adjacent to a bird it is e�ectively intolerant and a breakdown of family structure generates a

socially intolerant regime� Tolerant birds are also assumed to put up with more pressure from

kin before they respond and move territory boundaries� so that the minimumpressure di�erence

�P is increased� Finally� it has been observed that grouse will tolerate a smaller territory so

that a family member can be recruited nearby� Therefore the critical minimum territory size

expression is modi�ed to�

CTSn � max
�
�� CTS ����Tol NNn�

�
�

where �Tol is a parameter representing the bene�t of having a kin neighbour� It is thus possible

to have a smaller mean territory size in a socially tolerant environment than in an intolerant

situation� The parameter �Tol provides the required mechanism for di�erentiating between kin

��




tolerant and kin intolerant behaviour and e�ectively sets the upper bound on the amplitude of

any cycles that may arise� The one�dimensional models referred to in section ��
�� incorporate

the same assumption via di�erent parameters�

There has been a recent breakthrough in the genetic identi�cation of individual grouse� so that

it is now possible to determine the relatedness of any two grouse on a study site �P�J� Bacon�

personal communication�� Thus both the assumptions and results of models such as the one

presented here are� in principle� testable� although the signi�cance of any results will be harder

to assess�

The structure of the program is detailed in the �ow chart given in Appendix B� examples of

the parameter values taken and variables used are also tabled in Appendix B� The following

section describes the development of the model and discusses the results obtained for variants

of the basic algorithm�

���� Details and Results of the Grouse Model�

������ Model ��

�a� Introduction�

The basic two�dimensional grouse model as described above was investigated in a range of

situations� Model � covers the development phase of the model� where the behaviour of the

core algorithm was checked to see that it is robust and intuitively reasonable� An immediate

conclusion drawn from the development concerned computing constraints� The algorithm is

su�ciently complex to require considerable computational e�ort� in particular where repeated

dispersal phases are incorporated in the system� There is thus an unfortunate but inevitable

restriction on the length of simulations and the feasible number of replicates� Future access

to supercomputing facilities is therefore very desirable and would open up the opportunity

to carry out more rigorous sensitivity analyses as well as investigations of di�erent modelling

assumptions and techniques�

�
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The cell size is de�ned by the maximum and minimum territory sizes held� or equivalently the

population densities� On the assumption that a typical intermediate territory size is � hectares�

then each lattice cell is taken to represent around ��� hectares of moorland� Thus the lattice

corresponds to an area of around ��km�� which is much larger than any of the intensive study

sites used�

Two types of grouse are potentially able to exist within these populations� kin tolerants and

kin intolerants� The former display tolerant behaviour towards any neighbours that are kin� as

described in the algorithm of section ��
��� whereas the latter are consistently intolerant to all

other individuals�

�b� Spatial Pattern�

Figure �� shows typical territorial con�gurations generated by the models at an intermediate

population density� Territory boundaries are shown in black and family groups are indicated

by territories of the same shade� clearly indicating natal philopatry� It was noted that the

distribution of territory sizes �mean and variance� is reasonable� The same observations apply

to the models that follow �I � II��

�c� Numerical Results�

Figure �� displays typical dynamics generated by Model �� In a purely intolerant population a

relatively low and noise�free equilibrium results ��gure ��a�� In contrast� a population of non�

dispersing tolerant grouse allows a higher density to be attained� but the dynamics are much

more erratic� Including a dispersal phase causes the density to perform a two point oscillation�

with the intolerant population and non�dispersing tolerant population densities respectively

forming approximate lower and upper bounds to the oscillations� The dynamics are illustrated

for Ndisp � � dispersal attempts� for lower Ndisp the amplitude of oscillations tends to be less�

whereas higher Ndisp still exhibits oscillations between the two bounds described above� but

with increased stochastic noise� However� the dynamics are still ��cycles for any Ndisp between

� and ��

�
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Figure ��� Typical territory distribution from the grouse AE�
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Figure ��� Population dynamics from red grouse Model �� �a� Numbers of grouse in a �������

AE grid over a thirty year period for kin intolerant �blue�� kin tolerant non�dispersing �red�

and kin tolerant dispersing �four dispersal attempts� �green� types� �b� Numbers of kin tolerant

grouse for parameters �Tol � ��� ��� and �Tol � ��� �� � ��� �c� � �e� Numbers of grouse in

competing populations of kin tolerant �red� and intolerant �blue� types� The initial proportion

of tolerants is �c� ���� �d� ��� and �e� ����
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Various parameters in the model were tested for their e�ects on the model output� The brood

size was seen to have no e�ect on the dynamics of an intolerant population� but larger broods

induced greater stochasticity in the tolerant case� The population size was una�ected in all

cases� but the dynamics oscillated with greater amplitude� predominantly with period �� in a

tolerant population with large broods� similarly smaller broods decreased the noise level� The

parameter �Tol was varied in the kin tolerant scenario and� as expected from its de�nition

as the controlling parameter of the kin tolerant response to territory size� higher population

densities resulted from larger values of �Tol� Greater stochasticity was also noted as �Tol

increased ��gure ��b�� but the dynamics essentially remained in the form of a smooth increase

towards a noisy equilibrium population density�

The simulation of mixed tolerant�intolerant populations is illustrated in �gures ��c � e� There

does not appear to be signi�cant selection for or against kin tolerance� as the results are largely

dependent on the initial conditions� If the initial proportion of kin tolerants in the population

is below ��� or above ���� then they are respectively eliminated from or �xed in the population�

but in intermediate cases the types coexist� as shown in �gures ��c � e� This suggests that a

stronger mechanism will be required to produce the desired oscillatory dynamics and relying

on automatic selection between the two types is not su�cient�

It thus appears that introduction of the concept of kin tolerance to the grouse model is a desta�

bilising factor� The non�dispersing populations have much noisier dynamics� when tolerance is

present� with a considerable degree of �uctuation� The introduction of dispersal further desta�

bilises the dynamics and generates two year oscillations� Although these are de�nitely not the

extended four to ten year cycles observed in real populations of red grouse� Model � clearly pro�

vides a good basis for extension� since it possesses the capacity for the equilibrium to bifurcate

to a cycle� It is now of interest to see whether a reasonable set of additional assumptions may

lead to a model that cycles in a realistic manner� Variations on Model � are presented below

which suggest some di�erent mechanisms that may potentially lead to cycling�

�
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������ Model I�

�a� Introduction�

In Model I � following the �rst hypothesis of section ����� � a decline is assumed to trigger a

change in behaviour� As in Model �� there are assumed to be two types of grouse� kin tolerants

and kin intolerants� It is this tolerance or intolerance that provides the basis of the behavioural

change� Since a total instantaneous change is unlikely� a proportion �Tol of the kin tolerant type

change to intolerant for each year of decline and an increase in density is accompanied by the

reverse change� It is a reasonable assumption that grouse can alter their behaviour according

to their numbers� as it is believed that old grouse could perceive a change in local density from

the previous year� while young grouse respond to their fathers� behaviours�

This process is predisposed to cycling� as the kin tolerant and intolerant types correspond

independently to di�erent equilibrium population densities� as shown in ������ It is not� how�

ever� immediately obvious what form of �uctuations will arise � two point oscillations� as seen

in Model �� may occur� which are not the required type of cycles� An investigation of the

��Tol� �Tol� parameter space is needed to assess the possibility of this type of behavioural

adaptation underlying the red grouse population cycles�

�b� Numerical Results�

As shown in �gure �
� cycles of length greater than two occur in Model I for a wide range of val�

ues of �Tol and �Tol� As �Tol increases� the pure tolerant and intolerant equilibria move apart�

so the amplitudes of cycles increase� The system is far less sensitive to the parameter �Tol� with

less noise arising from more sudden changes in social environment� Cycles of period between

� and � years arise naturally for moderate values of �Tol �around �Tol � ����� with cycles

nearer 
 or �� years for larger �Tol ��Tol � ��
�� This mechanism of tolerance�intolerance

adaptation thus naturally generates cycles of appropriate length�

�
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Figure �
� Population dynamics from red grouse Model I� Numbers of grouse in a ��� � ���

AE grid over a thirty year period as the bene�t of having a kin neighbour ��Tol� and the

rate of change of tolerance level ��Tol� vary� �a� � �c� �Tol � ���� �d� � �f� �Tol � ���� �a�� �d�

�Tol � ���� �b�� �e� �Tol � ���� �c�� �f� �Tol � ��
�
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������ Model II�

�a� Introduction�

The second mechanism suggested in section ����� does not assume an explicit change in toler�

ance of individual grouse towards their kin� but rather suggests that changes in movements of

individuals may alter the social environment to more or less tolerant� In Model II� a decline

in density triggers an increase �by �Disp� in the number of attempts to disperse �Ndisp� that

are made by birds that initially fail to be recruited to the territorial population� If the decline

persists� then the number of dispersal attempts continues to rise� Likewise� any population rise

is accompanied by a decrease in dispersal attempts� down to a minimum of zero�

As in Model I� there is an intrinsic tendency of the model to cycle� but it is not clear whether

the dynamics will be limited to ��cycles� It is possible that the �rst dispersal from a tolerant

philopatric community will break up the family structure to such an extent that the grouse are

all e�ectively intolerant� having no kin neighbours� This would cause the density to plummet

immediately to a minimum� at which point numbers could only rise again� stopping dispersal

leading to a large amplitude ��cycle� Alternatively� the �rst dispersal may have a very minor

e�ect� just allowing the population to recover at the next time step� leading to a small amplitude

��cycle� However� a gradual break down of the philopatric social structure may allow extended

decline and increase phases� leading to cycles of longer periods�

�b� Numerical Results�

Figure �� gives the population dynamics for �Disp � � and shows clear cycling with periods

of nine to �fteen years� Although the cycles produced here are longer ��� years� than those

typically quoted in the literature� long cycles such as these are observed� for example the ten

year cycle at Rickarton ��gure ��b� and cycles of up to sixteen years in Ireland�

������ Conclusions�

It has been shown that simple selection between kin tolerant and kin intolerant types of red

�
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Figure ��� Population dynamics from red grouse Model II� Numbers of kin tolerant grouse in a

������� AE grid over a thirty year period� assuming dispersal attempts increase and decrease

in steps of two in response to density�
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grouse �Model �� is insu�cient to generate the observed long term cyclic behaviour of the

population dynamics� However� further reasonable assumptions of density�related changes in

behaviour� within this kin tolerance framework� can robustly produce model cycles of appropri�

ate lengths to those observed� Two alternative behavioural patterns have been suggested and

shown to be possible� These are� respectively� a change in individual tolerance and a change in

social tolerance environment by a modi�cation of dispersal behaviour�

It should now be possible to extend this modelling work� in association with appropriate �eld

work �particularly incorporating the latest genetic techniques� to further probe the underlying

processes operating within the red grouse ecosystem�
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�� Memory in Ecological Systems�

Chapter Summary

A brief overview of the theory of mosaic cycles is presented and a non�individual�

based cellular automaton model by Wissel is reconstructed to simulate a mid�

European beech forest cycle�

The concept of �memory� in an ecological system is introduced� which incorporates

ideas of age� size and susceptibility to disease and mortality� Visual inspection

and the clumping index demonstrate the evolution of a patchy structure in the

presence of memory� independent of the presence of the mechanism of radiation

death� showing that memory is fundamental to the system� A mean �eld analysis

supports this result� Chaos is promoted by memory and the dimension of the

system� analysed by an embedding technique� is lower in the presence of memory�

The memory concept is extended to a Susceptible � Infected � Recovered epidemic

model� where memory is shown to be essential to the formation of a patchy spatial

structure� A Markov approximation is again presented in support of this assertion�

������� �����	 �o
��� �����	� �Everything �ows and nothing stays��� � Plato after Heraclitus

���� Introduction�

The spatial structure and species composition of multispecies systems promote questions con�

cerning mechanistic processes leading to the construction and maintenance of complex commu�

nities� Such systems involve large scales in time and space and hence demand an alternative

modelling approach to the CML used in chapters � to � �	gure 
�� The processes underlying

the coarse scale patchy structures observed over many centuries in large forest ecosystems are

investigated using a discrete state CA model�

�





���� Mosaic Cycles�

������ Overview of Mosaic Cycles�

The theory of mosaic cycles arose in the 
��
s� In contrast to classical ecology� which sought

to describe a constant climax state for any given ecosystem �Clements� 
����� advocates of

mosaic cycle theory asserted that an ecological system would never reach a 	xed equilibrium�

but rather would remain in constant �ux �Watt� 
����� A mosaic landscape consisted of patches

or mosaic stones� which cycled continually through a set of states� with adjacent patches cycling

asynchronously� Over a large region� statistically stationary averages were attained� but local

cycles persisted� The concept was largely abandoned� with the exception of Whittaker �

Levin �
����� until its revival by Remmert in 
��� for temperate forests �Remmert� 
�����

Mosaic cycles were subsequently suggested for temperate� tropical and subalpine forests �M�uller�

Dombois� 
��
� Wissel� 
��
� 
���a� Thi�ery et al�� 
���� and marine systems �Reise� 
��
��

A model of a temperate forest mosaic cycle� originally developed by Wissel �
��
� 
���a�

is presented and re�examined here� This study focuses on the fundamental mechanisms in

the mosaic cycle� in particular the concept of memory and its role in the evolution of local

and global patterns� Techniques are introduced to characterise more fully the patterns and

dynamics generated by the model� The mosaic cycle is modelled by a CA �section ��� dynamics

are studied here in depth and the model is used to provide deeper mechanistic understanding

of the mosaic system�

������ The Mid�European Beech Forest Mosaic Cycle�

�a� Description of the Forest Cycle�

The model is based on a cycle seen in a mid�European forest �Wissel� 
��
� 
���a� where the

dominant long�lived species is beech� Gaps caused by fallen beech are invaded by two early�

successional communities� The 	rst pioneers are birch� which survive for about �
 years� This

monoculture is followed by a mixed forest� with species such as oak� cherry� ash and maple�

which live for up to 
�
 years� This intermediate community is eventually succeeded by beech�

�





initially as a young thicket� followed by thinning and growth of survivors into mature trees

over three centuries or longer� This cycle is represented in 	gure �
� It is generally accepted

that life history traits play an important part in the successional patterning of forests� Those

traits favoured early in succession� such as tolerance to full sunlight� rapid growth and e�cient

seed dispersal are often the opposite of the traits favoured later on� tolerance to shade and

production of few seeds with large energy reserves�

The cycle can be interrupted at times through local interactions� One simple e�ect is early

colonisation� if a gap has mixed forest nearby� rather than birch� then the birch phase is

skipped and the mixed community invades the gap� A beech tree is not immediately succeeded

by a beech sapling �autosuccession�� as the soil needs to recover an adequate supply of nutrients

speci	c to beech�

A second process� radiation death� acts to induce premature death in the beech stand� A beech

tree has smooth bark� which splits under exposure to solar radiation� often leading eventually to

death� The nature of the physiological and biochemical e�ects of shock are not directly known�

but are thought to involve photo�inhibition and the failure of stress proteins to repair heat�

damaged molecules �Nagao et al�� 
���� Welch� 
����� Thus� in the Northern Hemisphere� a

gap to the south of a beech tree may lead to its death� The other species are not a�ected in this

way� birch have paler bark and the mixed community species have rougher bark which is not

particularly susceptible to splitting �Remmert� 
��
�� It will be shown that this is an important

mechanism in the dynamics of the forest cycle� although not the dominant mechanism�

Although this mechanism is restricted to this particular system� similar dynamical e�ects are

seen in other ecological situations� for example� Iwasa et al� �
��
� have studied formation of

intricate spatiotemporal patterns in models of 	r forests� where a dominant mechanism is death

by exposure to wind� As with the radiation death� this is a directional process� where the trees

are only susceptible to damage in the direction of the wind and where they are not sheltered

by other trees�

�
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�b� A Model for the Mosaic Cycle�

The CA is based on Wissel�s papers and consists of �� states� each of which corresponds to a

ten year period� The 	rst two states are gap� the next 	ve states are birch� the next 	fteen are

mixed and the 	nal thirty three states are beech� each set of states represents communities of

increasing age �table 

�� In general� at each iteration� the states progress by 
� except state ��

�the oldest beech� which moves to state 
 as it dies� Early colonisation is modelled by either of

the gap states �
 and �� moving immediately to young birch �state �� if any neighbouring states

are birch �states � to ��� If no neighbours are birch but at least one neighbour is mixed �states

� to ���� then the gap moves immediately to young mixed forest �state ��� The neighbourhood

used here is the nine cell Moore neighbourhood �	gure ���� Increased likelihood of death in old

beech �die�back� is incorporated� by allowing states �
 to �� to die with probability P� � 
�

Radiation death is modelled by considering separately the cells to the southwest� south and

southeast of a beech cell �states �� to ���� This requires the imposition of a direction on the

CA� If a beech has a gap �state 
 or �� in the southwest� south and southeast cell �marked

SW� S and SE in 	gure ���� then it dies at the next iteration with probabilities pW � pS and pE

respectively�

�c� Summary of the Results of Wissel�

Wissel showed that the model produces a pattern of patches� demonstrating that the cyclic

nature of the CA rules� combined with the local neighbourhood e�ects� are su�cient to produce

a mosaic� The pattern was shown to be insensitive to the parameter values used� provided they

are in the open set �

 
�� Wissel also claimed that no patches are produced if there are no local

radiation e�ects� this claim is reassessed here� Consideration of the rate of radiation death from

empirical data allowed Wissel to de	ne the cell size as approximately �
 metres by �
 metres�

The patch sizes in the model were shown to be compatible with data from forests in the former

Yugoslavia�
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���� Memory in the Mosaic Cycle�

������ Introduction�

Wissel stated that the local neighbourhood e�ect� radiation death� is the critical mechanism in

the cycle� Here a second mechanism � memory � is shown to be vital�

Memory in this context refers to the way the past history of a system a�ects its current structure

and behaviour� History is a relatively simple concept in sessile organisms� where it is su�cient

to consider 	xed spatial locations� At the simplest level� the history of an individual tree is

largely contained in its present age� which is equivalent to the time for which the tree has

occupied that position in space�

In modular organisms� age is signi	cant in several ways� susceptibility to physiological shock�

native diseases and native parasites generally rises with age� Size usually increases with age

�although a counter example is given by Thomas � Weiner �
���b�� and biomass allocation

changes� When communities are examined on the level of individuals� size is strongly related

to e�ects on neighbours �chapter ��� On a population or community level� growth may be

considered to be controlled� to a 	rst approximation� by density� This model is constructed on

the level of spatially�de	ned communities� as the lattice cells correspond to subsections of the

forest ecosystem� The use of an IBM is not feasible at these large scales of time and space�

as seen on the diagram of scales in 	gure 
� Therefore the size of individuals is not recorded

explicitly� but represented as an average stand age� The tendency to die in response to biotic

or abiotic pressures is modelled by the probability of accelerated death� P�� in the elderly beech

stands�

The history of each spatial position goes back further than the lifetime of the plant currently

sited there� The state of the soil� in terms of the previous depletion or addition of essential

nutrients� has an important e�ect on the growth of current organisms� Similarly� the level of

the water table has an e�ect on the forest growth� after a dominant species has been in a region

of the forest for a few centuries� the water table is substantially lowered and essential nutrients
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may be completely absent� Such factors are not explicit in this model� but exhaustion of the

soil following long�lived beech stands is implied by the enforced absence of autosuccession�

It is asserted in Remmert �
��
� that the driving force in any mosaic cycle is the longevity of

the species involved� In this model� longevity is equivalent to the age of the individuals in the

beech stands and hence� in basic terms� is equivalent to memory� This is represented in the

CA in the form of the �� di�erent states of cells containing beech� these states represent beech

of ages 

� �
� ���� ��
� ��
 years� Hence longevity or memory is explicit in this model and it

is of interest to consider the impact of this mechanism on the behaviour of the model and the

structure of the emergent mosaic patterns�

������ Removal of Memory from the Model�

The absence of memory from the cycle essentially means that the trees do not �know� how old

they are� This means that death and succession must be entirely independent of age� The range

of states for each species is removed �the multispecies mixed forest is included as a �species��

and the whole cycle is represented by four amalgamated states� gap� birch� mixed and beech�

The probabilities of transition between these four states are set so that the expectation of the

duration of each successional stage is the same in both the memory and the no memory cases�

Wissel claimed that the production of clumped areas of beech forest depends critically on the

local synchronising e�ect of the radiation death� The radiation e�ect is independent of age� so

it is not necessarily expected that the removal of the age structure will a�ect the formation

of patches� The memory and no memory models are compared here to see if the presence of

memory in the system a�ects the formation and character of the mosaic patches� This involves

characterising the spatial patterning and the dynamics of the system�

The no memory model is constructed as follows� The gap� birch and mixed states are simply

transferred into single states� with transition probabilities equal to the reciprocal of the expected

lifetimes� Gap is originally represented by two states� so that the expected lifetime� Egap� is

�� Thus the transition probability in the new model� pgap� is equal to �

�
� This also gives an

�
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expected lifetime of �� Similarly the new birch and mixed states have transition probabilities

pbirch � �

�
and pmixed �

�

��
� respectively�

The transition probability for the beech state is more complicated� as the early death probabil�

ities �P�� for states �
 to �� must be considered� The expected lifetime of beech trees� Ebeech�

is given by equation ��� Thus the transition probability for beech in the no memory model

is given by the reciprocal of Ebeech� The transitions are summarised in table 

� The early

colonisation and radiation death mechanisms are implemented in the new model as before� It

is therefore possible to consider four combinations of mechanisms� memory�radiation� mem�

ory�no radiation� no memory�radiation and no memory�no radiation� No radiation is simply

implemented by setting pW � pS � pE � 
�

Ebeech � �� � P� � ��
� P��P� � ��
� P��
�P� � ��
� P��

�P�

��
�

� P� � �
� P��P� � �
� P��

�P� � �
� P��
�P�
�

� ��� 

P� � 

P �
� � �P �

� � P �
� ����

������ Preliminary Results�

Figure �� shows typical CA con	gurations for the four combinations of mechanisms� These

patterns are shown at iteration 



� which has allowed transients to pass� It is clear that the

memory mechanism plays a fundamental role� the top two patterns �memory�radiation and

memory�no radiation� show patches� while the lower two patterns �no memory�radiation and

no memory�no radiation� appear to be randomly distributed� This directly contradicts Wissel�s

claim that removal of radiation death prevents patches forming� In the following two sections

	rstly a basic analytical investigation of memory is presented and secondly various numerical

techniques for analysing the structure of the spatial pattern are given for considering scale and

for characterising the dynamics�
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CA states Description Duration


 � � forest gap �
 years

� � � birch stand �monospeci	c� �
 years

� � �� mixed forest communities 
�
 years

�� � �
 beech stand �monospeci	c� ��
 years

�
 � �� elderly beech stand �monospeci	c� �
 years

TOTAL ��
 years

Table 

� Description of the states of the mosaic cycle CA model

State Transition probability

Gap �

�

Birch �

�

Mixed �

��

Beech �

�����P����P�

�
��P�

�
�P�

�

Table 

� Transition probabilities for the mosaic cycle CA model in the no memory case�
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Mechanisms Mean �eld frequency Spatial frequencies Error

��gap� �birch� �mixed� �beech� ��gap� �birch� �mixed� �beech�

memory� �
�
��� 
�
��� 
����� 
����� �
�
��� 
�
��� 
���� 
����� 
�
��


radiation

no memory� �
�
��� 
�
��� 
���
� 
���
� �
�
��� 
�
�
� 
����� 
���
� 
�
���

radiation

no memory� �
�
��� 
�
��� 
���
� 
����� �
�
��� 
�
��� 
���
� 
���
� 
�

��

no radiation

Table 
�� Comparison of the mean 	eld Markovian model and the spatial CA model�
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Figure ��� Spatial pattern in the mosaic cycle CA model at iteration 



� Top left� mem�

ory�radiation� top right� memory�no radiation� bottom left� no memory�radiation� bottom

right� no memory�no radiation� White � gap� yellow � birch� brown � mixed forest� darkening

shades of green � beech of increasing age�
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���� Analytical Investigation of the Memory Mechanism�

��	��� Introduction�

A mean 	eld approximation to the mosaic cycle model is presented here as a Markov process

�Rosanov� 
����� Analytical solutions are presented for three combinations of mechanisms and

compared to numerical results of the spatial model� The local colonisation feature� whereby

birch and mixed forest near to a gap may invade it� is omitted here as it causes the mean 	eld

model to be analytically intractable� This means that the radiation death is now the only local

coupling mechanism� so the no memory�no radiation and memory�no radiation systems are

identical�

��	��� Mean Field Models�

�a� No memory�no radiation�

In this simplest case there are the four basic states� gap� birch� mixed and beech� The transition

matrix for the Markov chain� P� is given by equation ����� The expected lifetime of beech

�equation ����� is denoted by E �

P �

�
BBBBBBBB�

�

�

�

�
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�
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����

Using basic Markovian analysis� the mean occupancy rate of state i is given by �i� where � is

the solution to the equation �P 
 �� Thus� for this model� the relative frequencies of the four

states are given �in the order gap� birch� mixed� beech� by�

� �

�
�

�� � E 

�

�� � E 


�

�� � E 

E

�� � E
�
�
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�b� No memory�radiation�

The 	rst step in developing the full model is to add the e�ect of radiation death to the fourth

state in the Markov chain� Since the elements of � necessarily sum to unity� � may be denoted

by ��
 �
 �
 
 � � � � � �� so that � � frequency of gaps� � � frequency of beech cells and �

� frequency of mixed forest cells� The probability of radiation death depends on the frequency

of gaps� �� and the average probability of death� pR � pW � pS � pE �

P �

�
BBBBBBBB�

�

�

�

�

 



 �

�

�

�




 
 ��

��

��

��

�

E
� �pR 
 
 
� �

E
� �pR

�
CCCCCCCCA
�

The solution of �P 
 � may be found by solving simultaneous equations to obtain�

� �
��

�



� � ��

and

� �

�

�
pR � �

�
� ��

�E
�
q�

�

�
� ��

�E
� �

�
pR
��

� ��	

E
pR




��
pR

where the positive square root ensures that 
 � � � 
�

�c� Memory�radiation�

Memory is added to the basic Markov process by increasing the number of states from � to ���

The form of the matrix is given by equation ����� The solution �equation ��� is obtained� in

�
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terms of a normalisation constant�  �� This constant can be found numerically to any required

precision by solving�

k�k �
��X
i��

�i � 
�

P �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
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����

where�

R� � ��� � ���pR

and

R� � ��� � ���pR � P�
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�
 � � � 
 �
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�

 ����

�
� �pR�
�
�
� �pR � P��
 � � � 
 �
� �pR�

�
�
� �pR � P��
�
�

��	��� Comparison with Spatial Models�

The full spatial model was run �with early colonisation omitted� and time series �	gure ��� for

the four �species� used to estimate average values of �� The parameters used were P� � 
���

pW � 
��� pS � 
�� and pE � 
�
� The frequencies obtained are given in table 
� for the

numerical results and the mean 	eld model� with pR � 
�� and E � �
���
�� The normalising

factor�  �� in the memory�radiation model was evaluated using the software package MAPLE

�Char et al�� 
�����

The �error� in table 
� is the root mean square error of the mean 	eld values relative to the

spatial model� The spatial e�ects are only signi	cant where the local radiation e�ects are

present� as this provides the only coupling in the absence of early colonisation� Generically� any

local process will considerably a�ect the frequency distributions in a spatially explicit model�

The important feature to notice in the results is the magni	cation of the error by the memory

of the system� Therefore� memory appears to play a substantial modifying role in the model�

as an ampli	er of local e�ects�

���� Description of Numerical Techniques�

������ Characteristic Spatial Scales�

As with the models of previous chapters� the mosaic model is explicitly spatial� so spatial

scales need to be carefully considered� One important emergent scale is the coherence length

scale of section ��
��� which is related to the optimisation of information from the system and

is the minimum lattice size that should be used� At very small scales� below the coherence

length scales� the deterministic dynamics are overwhelmed by stochastic �uctuations caused by

the probabilistic nature of the local interactions� At large scales �above the averaging length
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Figure ��� Time series from the mosaic cycle CA model with local colonisation e�ects omitted�

�a� memory�radiation� �b� no memory�radiation� �c� no memory�no radiation� �Species� are

gap �red�� birch �green�� mixed �cyan�� beech �blue��
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scale� the dynamics are averaged out and therefore also provide minimal information about

the dynamics� Hence there is clearly an intermediate spatial scale� at which the information

about the deterministic dynamics is maximised while noise is minimised� The coherence length

scale identi	es the scale at which the �error� in the system is simply that arising necessarily

from the discrete two�dimensional spatial representation� Hence the coherence length scale

usually provides an optimal scale for viewing the deterministic dynamics with a minimal level

of stochastic noise�

The second emergent length scale mentioned above is the averaging length scale� An important

feature that arises in the system is the decoupling of su�ciently remote parts of the lattice�

While every cell directly in�uences all of its nearest neighbours� there is a separation distance

above which cells do not in�uence each other� they are decoupled� Therefore� over su�ciently

long spatial and temporal scales� the dynamics will be smoothed out to constant averages�

regardless of the nature of the local dynamics� which may be periodic or even chaotic� Thus

a grid size may be de	ned� which is the minimum scale for which the dynamics averaged over

the whole grid are constant�

This minimumgrid size can be estimated by using standard deviations� The standard deviation�

�n� for all the cells in a subgrid of size n�n� is found relative to a mean calculated over a large

grid of size N � N � The dynamical variation �and hence the standard deviation� decreases as

the subgrid size rises� The averaging length scale� nd� is the subgrid size at which the standard

deviation has fallen to zero� which corresponds to fully�smoothed dynamics�

������ Characterising the Spatial Pattern and Dynamics�

�a� The Clumping Index�

The mosaic cycle model clearly produces clumped patterns� so that a statistical test to prove the

presence of aggregation will not provide signi	cant new information� The dynamical approach

of the clumping indices to the variation in the level of clumping is ideal for this model �section

��
���� as the e�ect of di�erent mechanisms on the spatial structure can be observed using
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either the clumping index or the relative clumping index� A second use of the indices is in the

identi	cation of transience �section �c���

�b� Lyapunov exponents�

Super	cial examination of any time series from the model reveals erratic dynamics� It is of

interest to determine whether the model is dominated by stochastic noise or by deterministic

chaos� This is attempted by estimating the average and maximum Lyapunov exponents of

the dynamics� as described in section ������ The average exponent characterises the global

predictability of the system while the maximum exponent determines whether the dynamics

are in fact chaotic�

�c� Transience�

It has recently been noted that transience is an important feature in ecological systems �Hast�

ings � Higgins� 
����� Transient dynamics can persist for extremely long times� as has been

demonstrated in simple coupled maps� where the length of transience increases exponentially

with level of coupling �Kaneko� 
��
� Sol�e � Valls� 
���a�� It is possible for the transience

to persist su�ciently long that it is the only relevant behaviour in the system� This disputes

the traditional approach to biological modelling� which focuses on equilibrium or long term

dynamics�

Distinguishing of transient and post�transient dynamics in ecological systems is now a central

issue� along with the identi	cation of the transience time� The apparently simple approach of

studying time series is unsatisfactory for two reasons� Firstly� transience may persist beyond

the time series data available� Although it may be possible to tell that the data displays

transience �simple damped oscillations would be a straightforward example�� it has been shown

theoretically that a certain type of transience cannot be determined as such until it has passed

�Crutch	eld � Kaneko� 
����� Secondly� if the time series is produced on an unsuitable spatial

scale� transient and post�transient behaviour may be indistinguishable� The 	rst problem is

minimised by modelling for as long a period as possible� while the second problem requires
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identi	cation of an optimal spatial scale�

The clumping index provides a new approach to analysing transience in a system� by focusing

on the temporal evolution of a system�s structure� Although the density or absolute number of

a given species may be constant� or may be oscillating periodically or aperiodically with roughly

constant cycle amplitude� the structure may be evolving� Thus a plot of the clumping index

may demonstrate the evolution of the level of aggregation� in spite of �uctuating densities� A

plot of relative clumping index may be used to illustrate contrasting transience properties of

di�erent systems�

������ Robustness and Stability of the Model�

�a� Singular Value Decomposition�

It is useful to determine the robustness of the model� which refers to the constancy of the global

features of the results over replicated simulations� This is investigated using the SVD technique

of section ��
��� The number of each of the �� states of the CA is recorded for each of ��

replicates and a ��� �� replication matrix X is formed�

�b� Stability of the Model�

Stability covers a wide�range of concepts in ecology� Amongst the most important ideas are

resistance and resilience �Grimm et al� 
����� A system is resistant if it is not changed by

disturbances and is resilient if it returns to its original state after disturbances� Resistance and

resilience of the structure of the mosaic patches are central stability concepts in this model�

It is important to de	ne the type of disturbance� in terms of its spatiotemporal structure

and amplitude� Wissel performs a basic stability analysis of the full model� but limits the

perturbation to the removal of particular species and ages of trees� This corresponds to human

interference in the communities� Here resistance and resilience of the system to catastrophic

�natural� disturbances are considered� Whole subregions of the mosaic system are removed for

various durations and over various spatial scales� Time series and the clumping index are used
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to study the impact of disturbances�

�c� Dimensionality of the Model�

The technique of SVD is combined with that of embedding to provide a preliminary insight into

the dimensionality of the dynamical system �Broomhead � King� 
���� Rand � Wilson� 
�����

The system has four species and hence three degrees of freedom� but the age structure� spatial

structure and stochastic noise potentially raise the dimension to a very high number� SVD of

an embedded matrix allows the actual dimension to be estimated�

An embedded or time�delayed matrix X �equation ����� is constructed from the time�delayed

vectors xt �equation ������ which are based on a time series fx�
 x�
 � � �g� For example� the

series fxtg may be the total number of a particular species� E is the embedding dimension and

should be taken su�ciently large� N � the number of vectors� should be of the same order as E�

X �

p
N

�
BBBBBBBB�

x� � x

x� � x

���

xN � x

�
CCCCCCCCA

����

where�

x �



N

NX
i��

xi

xt � �xt
 xt��
 � � � 
 xt�E��� ����

The SVD of X is carried out� as in section ��
��� The singular values� feig� are the diagonal en�
tries of S and in the canonical SVD form are in decreasing order of magnitude� If a subset of the

singular values fe�
 � � � 
 edg �d� E� are substantially larger than the remainder fed��
 � � � 
 eEg
then the dynamics are approximately of dimension d� The time series may be projected onto
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the 	rst d singular vectors and this projection provides a good approximation to the series� The

higher singular values fed��
 � � � 
 eEg correspond to noise in the system�

���� Results and Discussion�

������ Characteristic Spatial Scales�

The coherence length scale nc� below which the lattice size interacts with the dynamics� is found

from 	gures ��a � d� The simple no memory�no radiation model has a coherence length scale

of around 
� �	gure ��d�� the spatial e�ects are clearly minimal in this case �in agreement with

the mean 	eld Markovian model�� The coherent grid size for the full model is around �
� �


�	gure ��a�� which is still small compared with many discrete spatial models �Keeling et al��


����� This means that it is not usually necessary� nor desirable� to run the model on a larger

grid� However� later consideration of transience shows the importance of larger grids for some

applications�

The memory�no radiation model �	gure ��b� has a much larger value of nc � 


� in general

both memory cases have a longer coherence scale than the no memory cases� The full model

displays negative spatial coherence for 
 � n � �
 and shows aggregation with increasing n

��En�n � �
�� as does the no memory�radiation case �	gure ��c�� The memory�no radiation

model is signi	cantly di�erent� showing positive coherence at all scales below nc and a disag�

gregating tendency as n rises to nc� Thus substantially di�erent mechanisms are present in the

memory case with and without radiation�

Figures ��a � d show the variation of standard deviation with grid size� The intersections of

the curves with the horizontal axes give the averaging length scales� This scale is about 
�
 for

the full model� but is signi	cantly less �around �
� for the no memory models� The memory

mechanism therefore causes the spatial coupling to extend over a larger distance� a larger grid

is needed to see the dynamics as statistically stationary�

��
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Figure ��� Error analysis for the mosaic cycle CA modelfor the four mechanisms� numerical

error nEn for the model �!� and theoretical error nE �n �� � ��� �a� Memory�radiation� �b� mem�

ory�no radiation� �c� no memory�radiation� �d� no memory�no radiation�
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Figure ��� Standard deviation of the mosaic cycle CA model as a function of grid size� �a� Mem�

ory�radiation� �b� memory�no radiation� �c� no memory�radiation� �d� no memory�no radia�

tion�
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������ Spatial Pattern and Dynamics�

�a� The Clumping Index�

Figures ��a � d show the paths of the clumping indices as functions of density for the four

mechanisms and each of the four �species�� As the initial conditions are random� the paths always

start on the dotted line� which is the clumping curve� C�� for a random distribution of density ��

The spatial structures can be seen evolving to clumped patterns� given that a greater distance

normal to the dotted line represents greater aggregation� In the memory�no radiation case�

the density is �uctuating� but the clumping index indicates substantial transience� Thus this

method clearly demonstrates the form of the transient dynamics� in particular� the memory�no

radiation model evolves slowly throughout a long transience from a random to a clumped

structure�

Figure �� shows the average post�transient clumping index for each mechanism and each species�

This graph exhibits the e�ect of mechanism on the spatial structure of the models� The memory

mechanism is clearly fundamental to the production of aggregated mosaic patches� The two

memory models are away from the the random C� curves� whereas the no memory models are

very close to the C� curves �especially the basic no memory�no radiation model��

�b� Lyapunov Exponents�

Figures ��a � d show the average Lyapunov exponents for the four mechanisms� The exponent

�the horizontal part of the curve� is very close to zero� but just negative� in all four cases� It is

therefore not possible to state from these results whether the dynamics are chaotic or not� It

is� however� possible to state that the system is 	rstly very noisy and secondly predictable �to

some limited extent� on average� Figure ��d demonstrates the e�ects of nonlinearities for large

initial orbit separations �
 � 
�
���

Figures �
a � b show the maximum Lyapunov exponents for the memory�radiation and no

memory�radiation models �which are similar to the graphs for the respective no radiation

models�� The curves for the three values of k appear to meet at around 
�� for the full model�
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Figure ��� Clumping index paths for the mosaic cycle CA modelfor 



 iterations for the four

�species� �gap� birch� mixed� beech�� Clumping index Ci �!� and random distribution clumping

curve C� �� � ��� �a� Memory�radiation� �b� memory�no radiation� �c� no memory�radiation�

�d� no memory�no radiation� �Species� are gap �red�� birch �green�� mixed �cyan�� beech �blue��
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Figure ��� Mean post�transient clumping indices for the mosaic cycle CA model for iterations





 to �


 � random distribution clumping curve C� �!�� The four mechanisms are denoted�

MR memory�radiation� MN memory�no radiation� NR no memory�radiation� NN no mem�

ory�no radiation The four �species� are connected �� � �� in the order� gap �nearest the origin� �

birch � mixed � beech�

���



0 0.05 0.1
-0.1

-0.05

0

0.05

0.1

δ

ly
ap

un
ov

 e
xp

on
en

t

(a)

0 0.05 0.1
-0.1

-0.05

0

0.05

0.1

δ

ly
ap

un
ov

 e
xp

on
en

t

(b)

0 0.05 0.1
-0.2

-0.1

0

0.1

0.2

δ

ly
ap

un
ov

 e
xp

on
en

t

(c)

0 0.05 0.1
-0.2

-0.1

0

0.1

0.2

δ

ly
ap

un
ov

 e
xp

on
en

t
(d)

Figure ��� Average Lyapunov exponents for the mosaic cycle CA model as a function of initial

orbit separation 
� �a� Memory�radiation� �b� memory�no radiation� �c� no memory�radiation�

�d� no memory�no radiation�
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so this is a strong indication that the model is chaotic� However� the no memory model has all

exponents negative� so there is de	nitely no chaos here�

�c� Transience�

The time series for the beech states in the full model are shown in 	gures �
a � c for grid sizes

�

� �

� 


� 


 and �
� �
� The smallest grid� which is near the coherence length scale�

has oscillations which are aperiodic but of relatively constant amplitude� There is no apparent

di�erence between the early and later stages of the dynamics� The large grids� of the order of

the averaging length scale� clearly show initial quasi�regular damped oscillations� The coherence

length scale is therefore inadequate for determining the duration and character of transience�

The full model has a transience time of around �

 iterations� During this time� the coupling

in the system is extended and the whole lattice oscillates wildly in phase� The oscillations are

damped out as the coupling decreases in extent�

The clumping index can be used to demonstrate structural transience� Figures ��a � b plot

the relative clumping index for the beech states in the memory�radiation and memory�no

radiation models� The transience persists considerably longer in the no radiation case� for

almost 



 iterations� The graphs also show that the full model varies more in its spatial

structure� displaying erratic �uctuations about the mean index value�

������ Robustness and Stability�

�a� Singular Value Decomposition�

Figure ��c shows the singular values of a replication matrix for the full mosaic model� The ratio

of the 	rst singular values is 
�

��� which corresponds to 
���" Gaussian noise for n � ���

This shows that the cell state structure is considerably robust to repeated simulations�
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Figure �
� MaximumLyapunov exponent for the mosaic cycle CA model as a function of initial

orbit separation 
 for three di�erent values of maximum orbit separation ratio k� �a� Mem�

ory�radiation �k � � �blue�� k � 
� �red�� k � �� �green��� �b� no memory�radiation �k � �
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Figure ��� Relative clumping indices for the beech states in the mosaic cycle CA model for

�


 iterations� �a� memory�radiation� �b� memory�no radiation� �c� Singular values obtained

by standard value decomposition of the replication matrix for the full mosaic cycle model�
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�b� Resistance and Resilience to Catastrophic Disturbance�

All trees in areas of sizes from 

 � 

 to �
 � �
 were removed from a 


 � 


 lattice at

time �


 �well after transients had passed�� The areas were constrained to remain empty for

a range of times� from 
 iteration up to �


 iterations� In all cases the system recovered its

original �dynamic� equilibrium� as illustrated by 	gure �� for a �

 iteration disturbance�

Perturbations of great spatial extent show wild but relatively even oscillations which are damped

out over a period of about �

 iterations� The components of the system are therefore not at

all resistant to perturbations but are extremely resilient� �These results are shown for the full

model� but qualitatively similar results were obtained for all the types of mechanism��

The relative clumping index is a useful measure of the reaction to a disturbance� Figure ��

shows �on logarithmic axes� the relative clumping index for beech averaged over various phases

of the system�s existence� The level of clumping increases greatly during large disturbances and

remains at a raised level as the post�disturbance transients pass� The structure returns to the

original level when the system has settled down after the perturbation� Thus the structure also

demonstrates substantial resilience but no resistance to catastrophic disturbance�

�c� Dimensionality�

Figure ��a illustrates the time�delayed matrix for the number of beech cells at each iteration

in the full model� with E � �
 and N � 
�
� Figure ��b shows the singular values for this

matrix� Figure �� shows the 	rst �
 singular vectors and clearly demonstrates that the 	rst few

singular vectors are fairly smooth and simple� but that later ones are simply noise� The system

is therefore predominantly low�dimensional but there is some noise in addition to the dynamics�

Figures ��a � c show the projection of the time series onto the 	rst �� � and � singular vectors

respectively� The four�dimensional projection is clearly a better 	t than the two�dimensional

projection� but the six�dimensional projection provides little improvement� a four�dimensional

representation of the system captures all of the essential features of the dynamics�

Figure ��c shows the singular values for the no memory model� There are clearly at least eight
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Figure ��� Embedding analysis of the mosaic cycle CA model� �a� Time�delayed matrix with

embedding dimension E � �
 for the number of beech cells in the full model� �b� � �c� Singular

values for the time�delayed matrix for the number of beech cells� �b� The full memory�radiation

model� �c� the no memory�radiation model�

���



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure ��� Representation of the embedded singular vectors for the mosaic cycle CA model� the

	rst �
 vectors of the time�delayed matrix with embedding dimension E � �
 for the number

of beech cells�

���



0 50 100 150 200 250
-200

0

200

time

x

(a)

0 50 100 150 200 250
-200

0

200

time

x

(b)

0 50 100 150 200 250
-200

0

200

time

x

(c)

Figure ��� Projection of the time series for the mosaic cycle CA model onto the 	rst d singular

vectors of the time�delayed matrix with embedding dimension E � �
 for the number of beech

cells in the full model� projection �red !�� original time series �blue � � ��� �a� d � � �b� d � �

�c� d � ��

���



singular values that are larger than the remainder� so the fundamental dimension of this system

is not less than �� which is signi	cantly larger than the memory model�

����	� Summary�

The full beech forest model has a coherence length scale of around �
 and an averaging length

scale of around 
�
� A lattice above 
�
�
�
 shows constant state frequencies� which provides

minimal information about the system dynamics� whereas a �
��
 lattice should allowmaximal

observation of the deterministic dynamics without the complication of local stochasticity� The

no radiation model has a larger coherence length� above the lattice size used by Wissel� which

may also have contributed to his failure to observe patches� The no memory�no radiation model

has a very small coherence length scale� which agrees with the observation from the Markovian

model that the spatial e�ects have minimal impact in this case�

Consideration of transience demonstrates that the coherence length scale is not a universally

optimal scale for studying spatial systems� At this scale� transients are not apparent� whereas

they are clearly observable around the averaging length scale� An alternative technique for

viewing transients is the evolution of trajectories of the clumping indices for the dominant

species� The path of the clumping index converges throughout the transient period onto a 	nal

value �which �uctuates slightly because of noise in the system�� This method therefore provides

a graphic illustration of the length and form of transience and allows comparison of the four

models�

The clumping index also dynamically illustrates of the relative levels of aggregation in the dif�

ferent models� There is only a slight decrease in clumping levels when the radiation mechanism

is removed from the mosaic cycle� whereas absence of the memory mechanism leads to near

random index values� This supports the claim that memory is vital in the mosaic ecosystem�

A basic investigation of stability studied the e�ect� on both state frequencies and spatial struc�

ture� of perturbations at various spatiotemporal scales� All but the smallest disturbances cause

large oscillations in species distributions and considerably increase the aggregation� since the

���



range of spatial coupling is temporarily increased� Thus the system is not at all resistant to

perturbation� However� even massive disturbances of long duration do not prevent return to

the original dynamical equilibria� so the system is extremely resilient� The clumping index

proved useful for exhibiting the phases of disturbance phenomena� It therefore appears to be a

practical and insightful statistic for a wide range of spatial models� as well as other applications

such as image processing�

Lyapunov exponents were used to investigate whether this model is chaotic� despite the high

levels of noise which make evaluation of the exponents di�cult� An extension to the standard

method of evaluating maximumpositive Lyapunov exponents suggests that the mosaic cycle is

chaotic� Removal of memory removes the chaos �this does not apply to radiation�� so memory

fundamentally a�ect the nature of the dynamics� However� the no memory model has a large

stochastic element and does not have a signi	cantly greater level of global predictability that

the chaotic model� as shown by the much simpler average Lyapunov exponent� However� the

average exponent does not fully characterise the dynamics� as it fails to predict the chaotic

nature of the full model�

The full model was shown� by techniques of embedding and SVD� to have underlying dynamics

of low dimension� A four�dimensional projection of the time series for beech was seen to

represent the full model well� while the no memory model has a higher dimension� Hence

simpler models need not correspond to lower�dimensional dynamical systems� An alternative

use of the SVD technique� for the evaluation of the singular values of a replication matrix

demonstrated substantial robustness of the model simulation�

���� Extension of the Memory Concept to Epidemiology�

������ Introduction to the SIR Model�

The forest CA belongs to a class of models � e�ectively spatially�explicit Markov chains � which

is applicable to other areas of biology� The importance ofmemory can therefore be extended and

illustrated more widely� The CA is adjusted to model an SIR �Susceptible Infected Recovered �

���



epidemic �Anderson � May� 
���� Anderson � Nokes� 
��
� Anderson� 
����� The population

is assumed to consist of individuals which are Susceptible to a viral or bacterial infection�

Transmission of the infection is assumed to occur by contact with an Infected neighbour with a

transmissibility � � Infected individuals remain infectious for a certain period before becoming

Recovered� Recovered individuals are assumed to be immune to the infection� but are eventually

replaced by more Susceptibles� via assumed implicit birth�death processes�

The basic model with memory consists of �� states� 
 Susceptible� 
� Infected and 
� Recovered

with a maximumtransmissibility of � � �

�
� There is a transition probability between Susceptible

and Infected proportional to the number n of Infected cells in an eight cell Moore neighbourhood�

All other states progress with probability 
 at each iteration� so that the evolution of the states

is�

S
n��	� I�

�� � � � �� I��
�� R�

�� � � � �� R��
�� S�

The no memory model has � states� Susceptible� Infected and Recovered� The transition

between Susceptible and Infected is the same as above� The other two transition probabilities

are both �

��
� so that the model is�

S
n��	� I

����� R
����� S�

Figure �� shows the memory and no memory CA after transients have passed� The memory

model exhibits a striking ringed pattern� whereas the no memory model is a near random

distribution� The results speci	cally contradict the claim by Durrett �
���a� that universality

implies that an exponential duration of infection �equivalent to the no memory case� has similar

qualitative behaviour to a more realistic �memory� model�

������ Implications of Memory for an Epidemic�

The proportions of the Susceptible� Infected and Recovered states in a 


�


 CA are shown

���



�a�

�b�

Figure ��� Spatial pattern in the SIR epidemic CA model after transience� �a� With memory�

�b� without memory� White � Susceptible� red � Infected� blue � Recovered�

��




as time series for the memory and no memory cases in 	gure ��a� There is some oscillation in

the memory case� but the mean proportions of each class of cell are similar for the two types

of CA�

Markov matrices may be constructed as in section ����� for the SIR model� For the no memory

case� the � � � transition matrix P is given by equation ����� where nI and nR are the times

spent respectively in the Infected and Recovered states� which in the previous section are given

by nI � nR � 
�� The mean number of Infecteds in the eight cell neighbourhood of a cell

is approximated in the mean 	eld by ��� where � is the vector of mean occupancies of the

Susceptible� Infected and Recovered states�

P �

�
BBBB�


� ��
�

��
�





 
� �

nI
�

nI

�

nR

 
� �

nR

�
CCCCA ����

The proportions of each of the states are found from the solution of �P 
 � as�

� �

�
�

nI


nI � �

nI � nR


nR

nI

nI � �

nI � nR

�
�

The memory model has an �nI�nR�
���nI �nR�
� transition matrix �equation ����� which

gives a frequency vector � identical to the no memory case �equation ��
��� Thus memory has

no e�ect on the SIR system in the mean 	eld� as well as little e�ect on the state frequencies of

the CA �	gure ��a�� Memory therefore primarily has an impact on the spatial structure of a

system�
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Figure ��� Investigation of the SIR epidemic CA model� �a� Numbers of the di�erent cell types

in the SIR CA on a 


� 


 grid with memory �!� and without memory �� � ��� Susceptibles

�black�� Infecteds �red� and Recovereds �blue�� �b� Probability of survival of the epidemic for






 iterations as the size of the CA varies for the memory �!� and no memory models� given

a random initial distribution� �c� Probability of survival of the epidemic for 




 iterations as

the duration of infection and immunity varies on �
��
 �red�� 


�


 �green� and �

��



�blue� grids� �d� Relative clumping index of the SIR model as the duration of infection and

immunity varies on a �
� �
 grid�
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Spatial structure has implications for the long term behaviour of an epidemic� so the CA was

run 	fty times for both memory scenarios for 




 iterations and for a range of grid sizes up

to 


� 


 �	gure ��b��

With memory� a small grid causes the epidemic to wipe itself out� If a single Infected cell is

placed at the centre of a grid of Susceptibles� a wave of infection will propagate outwards from

the initial site of infection� This is followed by a wave of immune Recovered sites� which blocks

the Infecteds from the following wave of Susceptibles� The epidemic can only persist if at least

one Infected cell can break through the ring of Recovereds and infect a Susceptible� The speed of

the epidemic wave is roughly constant� as is the probability that the epidemic will break through

to the new Susceptibles� Therefore in a small �toroidal� system the epidemic is very likely to

reach the edge of the grid and disappear with the ring of Recovereds remaining unbroken�

whereas a large system allows su�cient opportunity for the infection to break through so the

epidemic can persist� This is shown by the relatively sharp increase in the survival probability

of the epidemic from near zero below about a 

� 

 grid to near 
 above �
� �
 �	gure ��b��

The system thus exhibits a type of threshold phenomenon�

In contrast� although the no memory system shows greater survival of the epidemic as the grid

size increases� the variation of survival probability is extremely erratic� The random structure

of the no memory system mean that the infection disappears from any cell with probability

���



�

nI
� thus there is always a chance that all Infected cells become Recovered at a given instant in

time� Similarly it is possible that the infection will spread to none of the Susceptibles at that

iteration� so there is always a 	nite probability that the epidemic will disappear immediately�

However� this probability will decrease as the number of grid cells increases� hence the survival

probability rises with the grid size �	gure ��b�� The system is very noisy� so the functional

form of the variation of survival probability with system size is not clear�

������ Duration of Infection and Immunity�

The long term dynamics of the epidemic critically depend on the ability of the infection to

penetrate the wave of immunity that follows the epidemic� The width of this ring of Recovereds

clearly depends on the duration of immunity �nR�� so the role of the parameters nI and nR in

determining the structure of the system is investigated here�

Figure ��c shows the probability that a single Infected site will lead to an epidemic lasting

at least 




 iterations� as nI �� nR� varies� Results are shown for grids of sizes �
 � �
�




�


 and �

��

� For low values of nI the epidemic sometimes disappears via stochastic

e�ects as there is limited structure in the system �	gure �
a�� At intermediate values �� � nI �

nR � 

� the epidemic always survives� as the pattern is not noisy enough to cause random

extinction� while the wavefronts are su�ciently narrow to allow the infection to spread to new

Susceptibles� Above nI � nR � 
� extinction always occurs as the ring of immune Recovered

cells is impenetrable to the infection� Between nI � 

 and 
� the epidemic persists with a

positive probability for as much as 




 iterations� The probability of survival is higher for

large grids� as there is more time for the infection to break the ring of immunity before the

wave reaches the edge of the grid�

The structure of the epidemic before extinction is shown in 	gure �
 for four values of nI �

Spatial structure clearly becomes more pronounced as nI and nR� and hence the width of the

wavefronts� increase� Thus the longevity of states is critical to the production of structure in

systems with memory and there is a continuous spectrum from the randomness of no memory

�or nI � nR � 
� through to the strong patterns of high values of nI and nR� The patterns

���



�a� �b�

�c� �d�

Figure �
� Spatial pattern in the SIR epidemic CA model as duration of infection varies on

a 


 � 


 grid with memory� �a� nI � nR � �� �b� nI � nR � �� �c� nI � nR � ��

�d� nI � nR � 

� White � Susceptible� red � Infected� blue � Recovered�

���



are quanti	ed in 	gure ��d by the mean relative clumping index of the Infected states� which

rises sharply with nI � as long as the epidemic persists and settles to a pattern for a long enough

period�

The e�ect of memory in the SIR epidemic can also be investigated analytically using a simple

representation in a single dimension� The epidemic can be assumed to spread outwards from an

initial site of infection at the origin� The direction of propagation is denoted by x� which could

represent a radial vector in two dimensions or else linear vectors �positive and negative� in one

dimension� The epidemic spreads outwards towards an asymptotic shape �Durrett� 
���a� at a

relatively constant speed S� which is independent of nI and nR �	gure �
a�� the speed is about


�� cells per iteration� In the memory case the wavefront of Infecteds is at x � St at time t

and the fronts of Recovereds and Susceptibles are at x � S�t � nI� and x � S�t � nI � nR�

respectively �	gure �
b�� The proportion of Susceptibles� Infecteds and Recovereds are given

at time t and position x by �S �x
 t�� �I�x
 t� and �R�x
 t��

�S �x
 t� �

�	

	�


 
 � x � S�t � nI � nR�


 otherwise

�I �x
 t� �

�	

	�


 S�t � nI� � x � St


 otherwise

�R�x
 t� �

�	

	�


 S�t � nI � nR� � x � S�t � nI�


 otherwise�

The average proportions of each type over their range are  �S �t� �  �I �t� �  �R�t� � 
� In the no

memory case the transitions from Susceptible to Infected and from Infected to Recovered are

both exponential processes with parameters �
nI

and �

nR
respectively� Given that the probability

density function of an exponential random variable with parameter � is�

���
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Figure �
� Analysis of a one�dimensional simpli	cation of the SIR epidemic CA model� �a� Time

for an epidemic to reach the edge of the grid for a 


 � 


 CA SIR model as the duration

of infection �nI� and immunity �nR� varies �!� and mean time �� � ��� �b� � �c� Frequency of

Susceptibles �black�� Infecteds �red� and Recovereds �blue� in a simple one�dimensional SIR

model as distance �x� from the initial site of infection varies� �b� with memory� �c� with no

memory� �d� � �f� Mean frequency averaged over space of Susceptibles �black�� Infecteds �red�

and Recovereds �blue� as time �t� varies from the initial time of infection for �d� nI � ��

�e� nI � 
�� �f� nI � ���

���



f��� �

�	

	�

�e��x x 	 



 x � 




the proportion of Infecteds at x at time t is given by�

�I �x
 t� �

Z t� x

S

�




nI
e
�

t
�

nI dt�


since site x 	rst becomes infected at time x
S � Thus�

�I�x
 t� � e
�
St�x

SnI

and�

 �I�t� �

Z St

�

�I�x
 t�dx � SnI

�

� e

�
t

nI



�

Likewise the proportion of Susceptibles� assuming nI 
 nR� is�

�S �x
 t� �

Z t� x

S

�

dt��



nI
e
�

t
��

nI

Z t�t��t��

�

dt�



nI
e
�

t
�

nI

� 
� e
�
St�x

SnI � St � x

SnI
e
�
St�x

SnI �

The remaining fraction is therefore Recovered� so that�

�R�x
 t� � 
� �I�x
 t�� �S �x
 t�

�
St � x

SnI
e
�
St�x

SnI �

The average densities of Recovereds and Susceptibles are therefore�

���



 �S �t� � S�t � �nI�� Ste
�

t
nI

and�

 �R�t� � SnI � S�t � nI�e
�

t
nI �

These spatial distributions are shown in 	gure �
c and the spatially�averaged proportions in

	gures �
d � f for a range of values of nI � It is clear that even for very long infection times

�	gure �
f� the average frequency of Infecteds and Recovereds is far below one� The average

frequency provides a good indication of the degree of aggregation in the system� as a simpli	ed

alternative to the clumping index� Thus 	gures �
b � f show that the no memory SIR model

has far less aggregation and spatial structure than the memory model�

���



�� Analysis of a One�dimensional Cellular Automaton�

Chapter Summary

The forest and epidemic models of chapter � are reduced to a simple one�

dimensional cellular automaton model� which is a discrete time contact process

on two states� A mapping is constructed between the n�site cellular automaton

and a �n�state Markov process�

A Sierpi�nski Matrix is de�ned to be a matrix with the same geometric scaling

properties as the fractal object called a Sierpi�nski Gasket� In the case of zero

transmission� the Markov transition matrix and all its iterates are shown to be

of the Sierpi�nski form and hence fractal in the limit of n��� with respect to a

geometric mapping to the unit square� In the case of zero recovery� the transition

matrix is shown to be a subset of a Sierpi�nksi Matrix�

For the full model� the complex structure of the transition matrix is fully described

and is shown to have a fractal dimension below � in the limit of n � �� The

fractal dimension is found numerically by two alternative methods�

�Et harum scientarum porta et clavis est Mathematica�� � Roger Bacon

���� Introduction�

A one�dimensional simpli�cation of the forest CA model is examined here� which is a basic

contact process�� de�ned on a �nite one�dimensional n�vector� The CA is treated as a Markov

process and analysed via the Markov transition matrix� which is shown to have a characteristic

neo�fractal structure�

��Harris� ����� Durrett� ���	� Durrett� ����� Durrett 
 Liu� ����� Durrett 
 Schonmann� ����� Durrett et

al�� �����

���



The CA states are con�ned to the space N� � f�� 	g� so that a con�guration Xt � 
xt�� x
t
�� � � � �

xtn� can be considered to be a binary number of length n� The automaton rules describe a simple

contact process� dependent only on the nearest neighbours� If the model is treated as a simple

Susceptible�Infected�Susceptible 
SIS� epidemic� then states � and 	 can considered respectively

to be �Susceptible
 and �Infected
� Alternatively� it could be viewed as the spread of a plant

population by localised dispersive mechanisms� An individual at cell i becomes �Infected
 with

probability nip� where ni is the number of nearest neighbours that are infected� so that ni �

N� � f�� 	� �g� An individual loses infection and returns to susceptibility with probability q�

The transition probabilities are therefore as follows�

P
xt��i � �jxti � �� xti�� � �� xi�� � �� � 	

P
xt��i � 	jxti � �� xti�� � 	� xi�� � �� � p

P
xt��i � 	jxti � �� xti�� � �� xi�� � 	� � p

P
xt��i � 	jxti � �� xti�� � 	� xi�� � 	� � �p

P
xt��i � �jxti � 	� � q�

The boundary conditions for the automaton are toroidal so that the neighbourhood of xt� is

fxtn� x
t
�g and the neighbourhood of xtn is fxtn��� x

t
�g� The speed with which an infection dies

out is dependent on the parameters p and q� Figure ��a shows the probability that there are

no infected sites left at iteration 	�� for the case n � 	�� persistence generally rises with p

q
�

The spatial structure of the CA also varies with p and q� The relative clumping index 
chapter

�� �gure ��b� shows that intermediate values of p

q
lead to highly aggregated patterns�

���� The Cellular Automaton as a Markov Process�

The set of con�gurations fXtg of the CA can be considered to be the random variables of a

discrete stationary �nite Markov chain� For an n�site CA on the state space N�� the size of the

con�guration space �n will be �n� so that there will be a corresponding �n�state Markov process�

with a �n��n stochastic matrix P representing the stationary Markov transition probabilities�

��	
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Figure ��� Numerical investigation of the one�dimensional contact CA model� 
a� Probability

that infection persists for at least 	�� iterations in a 	��site one�dimensional CA as a function

of the CA parameters p and q� 
b� Relative clumping index in a 	��site one�dimensional CA as

a function of the CA parameters p and q�
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A map � � �n � f	� � � � � �ng can be de�ned between the automaton con�guration Xt � �n and

the Markov state N t � f	� � � � � �ng� Since con�guration Xt is equivalent to a binary number of

length n digits� the Markov state N t may be expressed as the corresponding denary number�

Thus � is given by�

�
Xt� � 	 �
nX
i��

�n�ixti�

The inverse map ��� � f	� � � � � �ng � �n may be calculated recursively on the sites fxtig as

follows�


���
N t��n � 
N t � 	� 
mod ��


���
N t��i �

�
� 
N t � 	�

�n�i
�

nX
j�i��

xtj

�j�i

�
A 
mod ���

The transition matrixP for the Markov process can be calculated explicitly from the automaton

rules for any n � N� The structure of the matrix initially will be investigated in the following

section for the simple case of p � � or zero transmission�

���� The Case of Zero Transmission�

If p � � and q � � then no new infections can occur� while the expected time to loss of infection

is �
q
� � for any site i � f	� � � � � ng� Thus the totally uninfected con�guration 
�� � � � � ��

corresponds to Markov state N t � 	� which is an absorbing state� Denoting matrix P by A in

this special case� and the elements by aij� this means that a�� � 	 and a�j � � � j � 	� A few

lemmas now investigate the structure of A for this special case of p � �� The transition matrix

is denoted here by A
n� for the n�site automaton� with elements a
n�ij �

Lemma ��

A�n� is lower triangular�

���



Since p � �� the only feasible transitions are �� �� 	� � and 	� 	� so that�

xt��i � xti

and therefore�

N t�� �
nX
i��

�n�ixt��i �

nX
i��

�n�ixti � N t�

Hence for i � j�

P
N t�� � jjN t � i� � �

and�

a
n�ij � � � i � j�

that is� A is lower triangular �

The structure of the transition matrix A is shown in �gure ��b and exhibits a characteristic

pattern� which has the same scaling behaviour as a Sierpi�nski gasket 
Stewart� 	����� The

Sierpi�nski gasket is a fractal object� with Hausdor� dimension log �
log � � which is constructed by

removing a triangle from the centre of a triangle with twice the linear dimensions� The �nite

nature of the transition matrixAmeans that the scaling relations only occur over a �nite range�

not down to the in�nitesimal scales of the true Sierpi�nski gasket� so it can be considered to be

a truncated Sierpi�nski gasket� Such a matrix will here be described as a Sierpi�nski matrix�

���
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Figure ��� Structure of the transition matrices for the one�dimensional contact CA model�

structure of the positive elements for the ��site one�dimensional CA� 
a� full model� 
b� zero

transmission 
q � ��� 
c� zero recovery 
p � ���
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Definition�

A matrix M is a Sierpi�nski matrix if the non�zero elements of the matrix satisfy

the same geometric scaling properties as the Sierpi�nski gasket�

Lemma ��

A is a Sierpi�nski matrix�

For n � 	 and n � � the transition matrices are�

A
	� �

�
B� 	 �

q 	� q

�
CA

and�

A
�� �

�
BBBBBBBB�

	 � � �

q 	� q � �

q � 	� q �

q� q
	� q� q
	� q� 
	� q��

�
CCCCCCCCA

�

This illustrates a primitive truncated Sierpi�nski structure� whereby the three �� � submatrices

covering the lower triangle of A
�� are each lower triangular�

Assuming that A
n� is a Sierpi�nski matrix� the structure of A
n � 	� can be determined in

terms of fa
n�ijg� Suppose Markov states i and j correspond to con�gurations Yn
i� and Zn
j�

of the n�site CA�

Yn
i� � 
y�� � � � � yn�

Zn
j� � 
z�� � � � � zn��

���



Then for the 
n� 	��site CA�

Yn��
i� � 
�� y�� � � � � yn�

Zn��
j� � 
�� z�� � � � � zn��

For p � � the CA states are independent random variables so that

a
n�ij �
nY

k��

P
xt��k � zkjx
t
k � yk��

Given that�

P
xt��i � �jxti � �� � 	�

the probability in the 
n� 	��site CA for the transition i� j is�

p
n� 	�ij � 	�a
n�ij�

Similarly�

Yn��
i � �n� � 
	� y�� � � � � yn�

Zn��
j � �n� � 
	� z�� � � � � zn��

so noting that�

P
xt��i � 	jxti � �� � q

P
xt��i � 	jxti � 	� � 	� q�

���



the transition probabilities for the two lower �n � �n submatrices are given by�

a
n� 	�i��nj � q�a
n�ij

a
n� 	�i��nj��n � 
	� q��a
n�ij �

Using lemma 	 to provide the remaining submatrix� the structure of A
n� 	� is�

�
BBBBBBBBBBBBBBB�

A
n� �

qA
n� 
	� q�A
n�

�
CCCCCCCCCCCCCCCA

�

Thus the structure of the top left submatrix is preserved in the lower two submatrices and hence

by induction A
n� shares the scaling properties of a truncated Sierpi�nski gasket and therefore

A
n� is a Sierpi�nski matrix for all n �

If the matrix is assigned dimensions in space of one unit by one unit� and each element of the

matrix is assumed to �ll a �
�n �

�
�n square� the matrix can be treated as a geometric object�

Thus as the transition matrix increases in size� as n��� the matrix approaches the structure

of the Sierpi�nski gasket� Given this interpretation of the geometrical structure of the matrix�

the following lemmas may be stated as corollaries to lemma 	� However� it must be noted that

the positive elements of A tend towards zero as the matrix and CA become in�nitely large�

Corollary ��

A
�� � limn��A
n� is a Sierpi�nski gasket�

���



Corollary ��

A
�� � limn��A
n� is fractal�

The following two lemmas show that the structure of the transition matrix is preserved as it is

iterated� which is equivalent to multiple generations of the underlying CA�

Lemma ��

An iterated lower triangular matrix is lower triangular�

Consider an n � n lower triangular matrixM with elements mij and denote the rth iterate of

M by Mr with elements mr
ij�

mr��
ij �

nX
k��

mikm
r
kj�

By assumption� mr
ij � � for i � j� hence�

mr��
ij �

iX
k�j

mikm
r
kj � � � i � j�

Thus by inductionMr is lower triangular for all r �

Lemma ��

An iterated Sierpi�nski matrix is a Sierpi�nski matrix�

Consider a �n � �n truncated Sierpi�nski matrix M
n� with elements m
n�ij and denote the

rth iterate of M
n� by M
n�r with elements m
n�rij � M
	� �M
	�� is lower triangular so by

lemma � M
	�� is lower triangular and trivially Sierpi�nski for all r� Consider M
n � 	�� and

take i� j � f	� � � � � �ng� so that�

���



m
n � 	��ij �
�n��X
k��

m
n � 	�ikm
n � 	�kj

�
�nX
k��

m
r � 	�ikm
n � 	�kj �
�n��X

k��n��

m
n� 	�ikm
n � 	�kj

�
�nX
k��

m
n�ikm
n�kj � �

� m
n��ij �

using lemma � and the fact that M
	�r is lower triangular� Similarly� if i � f�n � 	� � � � � �n��g

and j � f	� � � � � �ng then�

m
n � 	��ij �
�nX
k��

m
r � 	�ikm
n � 	�kj �
�n��X

k��n��

m
n� 	�ikm
n � 	�kj

�
�nX
k��

qm
n�ikm
n�kj �
�n��X

k��n��


	� q�m
n�ikqm
n�kj

� q
�� q�m
n��ij �

and if i� j � f�n � 	� � � � � �n��g then�

m
n � 	��ij �
�nX
k��

m
r � 	�ikm
n � 	�kj �
�n��X

k��n��

m
n� 	�ikm
n � 	�kj

� � �
�n��X

k��n��


	� q�m
n�ik
	� q�m
n�kj

� 
	� q��m
n��ij �

Thus the structure ofM
n � 	�� is�

���



�
BBBBBBBBBBBBBBB�

M
n�� �

q
�� q�M
n�� 
	� q��M
n��

�
CCCCCCCCCCCCCCCA

�

which is Sierpi�nski by induction for all n� It remains to show that M
n�r is also Sierpi�nski for

any r� By lemma ��M
	�r is lower triangular and trivially Sierpi�nski for all r� Also�M
n�r is

lower triangular for all n and r� Suppose that M
n�r is Sierpi�nski� Thus by a straightforward

extension of the argument above�

m
n � 	�rij � m
n�rij i� j � f	� � � � � �ng

m
n � 	�rij � q
�� q�m
n�rij i � f�n � 	� � � � � �n��g� j � f	� � � � � �ng

m
n � 	�rij � 
	� q��m
n�rij i� j � f	� � � � � �ng�

so that the structure ofM
n� 	�r is�

�
BBBBBBBBBBBBBBB�

M
n�r�� �

q
� � q�M
n�r�� 
	� q��M
n�r��

�
CCCCCCCCCCCCCCCA

�

Thus by induction on n all iterates of a Sierpi�nski matrix are also Sierpi�nski matrices �

Corollary ��

All iterates of A
n� have an invariant structure and are Sierpi�nski matrices�

��	



The following lemma is a simpli�cation of a theorem in Doob 
	���� and shows that if a

Markov matrix M has a column with all entries strictly positive� the iterated matrixMr will

tend towards having all rows identical as n���

Lemma ��

Given an n � n Markov matrix M containing a column �� with all elements strictly

positive� such that	

min
��i�n

mi�� � � � ��

then there exist numbers m�� � � � �mn such that	

lim
r��

mr
ij � mj � i� j � f	� � � � � ng�

The following lemmademonstrates that all infection eventually dies out for all initial conditions�

for the case p � ��

Lemma ��

A
n�� � limr��A
n�r is given by	

a
n��ij �

���
��

	 j � 	

� j 	� 	�

A
n� has been shown to be lower triangular 
lemma 	�� so that a
n��� � 	 and a
n�ij � � for

j � 	� Also�

a
n�r���j �
�nX
k��

a
n��ka
n�
r
kj �

�nX
k��

��ka
n�
r
kj � a
n�r�j �

���



so that for all r�

a
n�r�j �

���
��

	 j � 	

� j � 	�

Now consider the elements of the �rst column of A
n��

a
n�i� � qs�

where s is the number of sites of the automaton in state 	�

s �
nX
k��


���
i��k�

Since s � f�� ���� ng� � � a
n�i� � 	� for all i and the conditions of lemma � are satis�ed� which

means that all the rows of A
n�r become identical in the limit r � �� Since the �rst row is

known for any r� all rows must have this form� Thus at large times the iterated matrix tends

towards having all elements zero except the �rst column where all elements are unity� Thus

Markov state 	� equivalent to CA con�guration 
�� � � � � ��� is absorbing �

���� The Case of Zero Recovery�

If q � � and p � � then no infection can die out� so there is zero recovery� However� the totally

uninfected con�guration 
�� � � � � �� or Markov state N t � 	 is still an absorbing state� Denoting

the elements of the transition matrix for q � � by Q and the elements by bij � this means that

b�� � 	 and b�j � � � j � 	� The following lemmas investigate the structure of B and show

that an infection will eventually spread through the entire population� assuming that at least

one cell is initially infected� The structure of B is a subset of a Sierpi�nski matrix� as shown in

�gure ��c�

���



Lemma ��

B�n� is upper triangular�

Since q � �� the only feasible transitions are �� �� �� 	 and 	� 	� so that�

xt��i 
 xti

and therefore�

N t�� �
nX
i��

�n�ixt��i 

nX
i��

�n�ixti � N t�

Hence for i � j�

P
N t�� � jjN t � i� � �

and�

b
n�ij � � � i � j�

that is� B is upper triangular �

The following lemma demonstrates that B
n� has no column with all elements strictly positive�

but su�cient iterations of B
n� produce a column that has all entries strictly positive� except

in the �rst row�

���



Lemma 	�

There exists an r� such that	

b
n�r��j � � for some ��� � j r � r�

b
n�ri�n � � � i � 	 r 
 r��

By an identical argument to lemma ��

b
n�r�j �

���
��

	 j � 	

� j � 	

for all r� Thus the only column of B
n� that could have all elements strictly positive is column

	� But� by lemmas � and �� B
n� is upper triangular� so that�

b
n�ri� � � i � 	

for all r� Therefore no column has all elements strictly positive in any iterate ofB
n�� However�

the above observations mean that the structure of B
n�r is as follows�

�
BBBBBBBBBBBBBBBBBBBBBB�

	 � � � ��

�

��� �B
n� r�

�

�
CCCCCCCCCCCCCCCCCCCCCCA

�

���



where �B
n� r� is upper triangular� Denote �B
n� 	� by �B
n� and suppose that �B
n� r� � �B
n�r�

Then if i� j � 	�

b
n�r��ij �
�nX
k��

b
n�ikb
n�
r
kj

� b
n�i�b
n�
r
�j �

�nX
k��

b
n�ikb
n�
r
kj

� �i���j �
�n��X
k��

�q
n�ik�q
n�
r
kj

� � � �q
n�r��ij �

so by induction on r� �B
n� r� � �B
n�r for all r� It has already been shown that �B
n�r is

upper triangular� so all columns except the last must always have at least one zero element�

The structure of the last column is now investigated� Column j � �n � 	 of �B
n�r represents

transitions to the state of total infection� 
	� � � � � 	�� Firstly� consider initial con�gurations where

there is a single infected state� so that the Markov state Ni is�

Ni � 	 � �n�i

for any i � f	� � � � � ng� It is possible for the infection to move out from the initial site of

infection at a rate of one site per iteration in each direction� but this is the maximum speed of

transmission� Thus the probability that there are 
�r � 	� infected sites at iteration r is p�r�

but the probability that there are more than 
�r � 	� infected sites is zero� Thus�

���



�b
n�rNi�n�� �

��������������������
�������������������

� r � n��
� n odd

pn�� r � n��
� n odd

� r � n
� � 	 n even

�pn�� r � n
� n even�

so that the �nal column of �B
n�r� has all elements strictly positive� where�

r� �

������
�����

n��
� n odd

n
� � 	 n even�

but there is at least one non�zero element for r � r�� It remains to show that this structure of

the �nal column of �B
n�r is preserved for all r � r�� First consider the diagonal elements of

�B
n�� which represent zero change in the automaton� so that�

�b
n�ii � f
i� � ��

since it is always possible for the automaton to remain unchanged� given p � 	� which means

that the transmission is not perfect and automaton is non�deterministic� Assuming r � r� and

�B
n�r has all elements of the last column non�zero� then the last column of �B
n�r�� is given

by�

�b
n�r��i�n�� �
�n��X
k��

�b
n�ik�b
n�
r
k�n��

� �b
n�ii�b
n�
r
i�n�� �

i��X
k��

�b
n�ik�b
n�
r
k�n�� �

�n��X
k�i��

�b
n�ik�b
n�
r
k�n��

���




 �b
n�ii�b
n�
r
i�n�� � �

� f
i���b
n�ri�n��

� ��

Thus by induction on r� the lemma holds �

Lemma 
�

B
n�� � limr��B
n�
r is given by	

b
n��ij �

���
��

	 i � 	 and i � �n� j � 	

� otherwise

Since �B
n� is upper triangular� �b
n�r�n�n � 	 for all r� Applying lemma � to �B
n�r and using

the results of lemma ��

�b
n�rij � b
n�ri��j�� �

���
��

	 j � �n

� j � �n

Thus�

lim
r��

B
n�r �

�
BBBBBBBBBBBBBBB�

	 � � � � � �

� � � � � � 	

���
���

���
���

� � � � � � 	

�
CCCCCCCCCCCCCCCA

�

���



���� The Full Model�

The following lemma describes the general structure of the transition matrix P
n� for p� q � ��

which exhibits a complex iterative structure� shown in �gure ��a�

Lemma ���

If some of the �n�� � �n�� submatrices of P
n� are denoted by A � G as follows	

P
n� �

�
BBBBBBBB�

A B C D

E

F

G

�
CCCCCCCCA
�

then the structure of the matrix P
n� 	� is given by	

P
n� �

�
BBBBBBBBBBBBBBBBBBBBBB�

A B � � C D � �

E E E E E� E� E� E�

A A A A A A A A

E E E E E E E E

F F� F F� F F� F F�

G G G G G G G G

F F F F F F F F

G G G G G G G G

�
CCCCCCCCCCCCCCCCCCCCCCA

�

where E� � E with rows f	� �� � � � � �n��� 	g replaced by zeros and F� �

�
B� �

F�

�
CA

given that F �

�
B� F�

F�

�
CA�

Assuming Markov states i� j � f	� � � � � �n��g� then the corresponding automaton states may be

���



denoted by�

Yn
i� � 
�� �� y�� � � � � yn���

Zn
j� � 
�� �� z�� � � � � zn���

and the various �n�� � �n�� submatrices of P
n � 	� may be analysed in turn� The following

functions are de�ned to allow simpli�cation of transition probabilities�

f
	� yi� � 
	� �	�
	 � yi�p� 	� 	

g
	� � 
	� �	�q � 	

h
	� � 
�	� 	�p� 	� 	

for which it should be noted that f
	� yi� � �� g
	� � � and h
	� � � for 	� 
� yi � f�� 	g� given

that � � p � �
� and � � q � 	� as assumed for the full model� The Markov states of P
n � 	�

are given by automata Yn�� and Zn�� and the transition probabilities for each submatrix of

P
n� 	� are found in terms of the submatrices of P
n��

�i� Submatrix A�

Yn��
i� � 
�� �� �� y�� � � � � yn���

Zn��
j� � 
�� �� �� z�� � � � � zn���

p
n� 	�ij � Pn��
	� �� ��Pn��
�� �� ��Pn��
�� �� ��
n��Y
k��

Pn��
k � �� zk� yk�

� Pn
	� �� ���	�Pn
�� �� ��
n��Y
k��

Pn
k � �� zk� yk�

� p
n�ij

���



where Pn indicates probability in an n�site automaton and Pn
a� b� c� represents Pn
xt��a �

bjxta � c�� Also�

Yn��
i � �n��� � 
�� 	� �� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� �� z�� � � � � zn���

where� � � f�� � � � � �g� 	 � 	
��� 
 � 

�� and � � �
��� 	� 
� � � f�� 	g� Thus�

p
n� 	�i��n��j���n�� � Pn��
	� 	� ��Pn��
�� 
� 	�Pn��
�� �� ��
n��Y
k��

Pn��
k � �� zk� yk�

� f
	� yn���g

�f
�� y� �
n��Y
k��

Pn
k � �� zk� yk�

�
f
	� yn���g

�f
�� y� �


	� py��
	� pyn���
p
n�ij

� � if p
n�ij � �

�ii� Submatrix B�

Yn��
i� � 
�� �� �� y�� � � � � yn���

Zn��
j � �n��� � 
�� �� 	� z�� � � � � zn���

p
n � 	�ij��n�� � Pn��
	� �� ��Pn��
�� �� ��Pn��
�� 	� ��
n��Y
k��

Pn��
k � �� zk� yk�

� Pn
	� �� ���p�Pn
�� 	� ��
n��Y
k��

Pn
k � �� zk� yk�

� p�p
n�ij

� � if p
n�ij � �

��	



�iii� Submatrix C�

Yn
i� � 
�� �� y�� � � � � yn���

Zn
j � �n��� � 
�� 	� z�� � � � � zn���

Yn��
i� � 
�� �� �� y�� � � � � yn���

Zn��
j � �n� � 
	� �� �� z�� � � � � zn���

p
n� 	�ij��n � Pn��
	� 	� ��Pn��
�� �� ��Pn��
�� �� ��
n��Y
k��

Pn��
k � �� zk� yk�

� Pn
	� 	� ���	�Pn
�� �� ��
n��Y
k��

Pn
k � �� zk� yk�

� p
n�ij��n��

�iv� Submatrix D�

Yn
i� � 
�� �� y�� � � � � yn���

Zn
j � �n�� � �n��� � 
	� 	� z�� � � � � zn���

Yn��
i� � 
�� �� �� y�� � � � � yn���

Zn��
j � �n�� � �n� � 
	� �� 	� z�� � � � � zn���

p
n� 	�ij��n����n � Pn��
	� 	� ��Pn��
�� �� ��Pn��
�� 	� ��
n��Y
k��

Pn��
k � �� zk� yk�

� Pn
	� 	� ���	�Pn
�� 	� ��
n��Y
k��

Pn
k � �� zk� yk�

� p
n�ij��n����n��

���



�v� Submatrix E�

Yn
i � �n��� � 
�� 	� y�� � � � � yn���

Zn
j� � 
�� �� z�� � � � � zn���

Yn��
i � �n��� � 
�� �� 	� y�� � � � � yn���

Zn��
j � ��n��� � 
�� 
� �� z�� � � � � zn���

where � � f�� � � � � �g�

p
n� 	�i��n��j���n�� � Pn��
	� �� ��Pn��
�� 
� ��Pn��
�� �� 	�
n��Y
k��

Pn��
k � �� zk� yk�

� 
	� pyn���h

�g
��
n��Y
k��

Pn
k � �� zk� yk�

�

	� pyn���h

�g
��

�	� p
	 � yn����q
p
n�i��n��j

� � if p
n�i��n��j � �

Yn��
i � �n�� � �n��� � 
�� 	� 	� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� �� z�� � � � � zn���

where � � f�� � � � � �g�

p
n� 	�i��n����n��j���n�� � Pn��
	� 	� ��Pn��
�� 
� 	�Pn��
�� �� 	�
n��Y
k��

Pn��
k � �� zk� yk�

���



� f
	� yn���g

�g
��
n��Y
k��

Pn
k � �� zk� yk�

�
f
	� yn���g

�g
��

�	� p
	 � yn����q
p
n�i��n��j

� � if p
n�i��n��j � �

�vi� Submatrix E��

Yn��
i � �n��� � 
�� �� 	� y�� � � � � yn���

Zn��
j� � 
�� �� �� z�� � � � � zn���

Yn��
i � �n��� � 
�� �� 	� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� �� z�� � � � � zn���

where � � f�� � � � � �g�

p
n� 	�i��n��j���n�� � Pn��
	� 	� ��Pn��
�� 
� ��Pn��
�� �� 	�
n��Y
k��

Pn��
k � �� zk� yk�

� pyn���p�g
��
n��Y
k��

Pn
k � �� zk� yk�

�

������
�����

� if yn�� � �

p�g	�

	��p
qp
n� 	�i��n��j

� � if yn�� � 	� p
n�i��n��j � �

�vii� Submatrix F�

Yn
i � �n��� � 
	� �� y�� � � � � yn���

Zn
j� � 
�� �� z�� � � � � zn���

���



Yn��
i � �n� � 
	� �� �� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� �� z�� � � � � zn���

where � � f�� �� �� �g�

p
n� 	�i��nj���n�� � Pn��
	� 	� 	�Pn��
�� 
� ��Pn��
�� �� ��
n��Y
k��

Pn��
k � �� zk� yk�

� g
	�h

�
	 � py��
n��Y
k��

Pn
k � �� zk� yk�

�
g
	�h

�
	 � py��

qp
	 � y��
p
n�i��n��j

� � if p
n�i��n��j � �

Yn��
i � �n�� � �n� � 
	� 	� �� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� �� z�� � � � � zn���

where � � f�� � � � � �g�

p
n� 	�i��n����nj���n�� � Pn��
	� 	� 	�Pn��
�� 
� 	�Pn��
�� �� ��
n��Y
k��

Pn��
k � �� zk� yk�

� g
	�g

�f
�� y� �
n��Y
k��

Pn
k � �� zk� yk�

�
g
	�g

�f
�� y� �

qp
	 � y��
p
n�i��n��j

� � if p
n�i��n��j � �

���



�viii� Submatrix F��

Yn
i � �n��� � 
	� �� y�� � � � � yn���

Zn
j� � 
�� �� z�� � � � � zn���

Yn��
i � �n� � 
	� �� �� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� 	� z�� � � � � zn���

where � � f	� �� �� �g�

p
n� 	�i��nj���n�� � Pn��
	� 	� 	�Pn��
�� 
� ��Pn��
�� 	� ��
n��Y
k��

Pn��
k � �� zk� yk�

� g
	�h

�py��
n��Y
k��

Pn
k � �� zk� yk�

�

����������
���������

� if y� � � 
i � f	� � � � � �n��g�

pg	�
h	�

�pq p
n�i��n��j

� � if y� � 	 
i � f�n��� 	� � � � � �n��g�

p
n�i��n��j � �

�ix� Submatrix G�

Yn
i� �n�� � �n��� � 
	� 	� y�� � � � � yn���

Zn
j� � 
�� �� z�� � � � � zn���

Yn��
i � �n�� � ���n�� � �n� � 
	� 
�� 	� y�� � � � � yn���

Zn��
j � ��n��� � 
	� 
� �� z�� � � � � zn���

���



where � � f�� � � � � �g and �� � f�� 	g�

p
n� 	�i��n������n����nj���n�� � Pn��
	� 	� 	�Pn��
�� 
� 
��Pn��
�� �� 	�
n��Y
k��

Pn��
k � �� zk� yk�

� g
	� �
�g

� � 
	� 
���p�g
��
n��Y
k��

Pn
k � �� zk� yk�

�
g
	� �
�g

� � 
	� 
���p�g
��

q�
p
n�i��n����n��j

� � if p
n�i��n����n��j � �

�x� Zero submatrix ��

Yn��
i� � 
�� �� �� y�� � � � � yn���

Zn��
j � ��n�� � �n�� � ���n� � 
	� 	� �� z�� � � � � zn���

where �� �� � f�� 	g�

p
n� 	�ij���n����n������n 
 Pn��
	� 	� ��

� �

�

From lemma 	� the invariant structure of the matrix P
n� can be described� for n � ��

���



Corollary ��

The structure of P�n� can be given by	

P
n� �

�
BBBBBBBB�

A B C D

E E E E

F F F F

G G G G

�
CCCCCCCCA

�

The following lemma shows that all infected sites eventually die out� so any epidemic persists

for a �nite time only�

Lemma ���

P
n�� � limr��P
n�r is given by	

p
n��ij �

���
��

	 j � 	

� j 	� 	�

By the same argument used in lemma �� the �rst row of P
n�r is�

p
n�r�j �

���
��

	 j � 	

� j � 	�

for all r� so that Markov state 	 
no infection� is an absorbing state� The elements of the �rst

column of P
n� can be expressed as�

p
n�i� � 
	� p�s���
	� �p�s���qs� �

where s��u is the number of sites of the automaton in state � with u neighbours in state 	

���




u � 	� �� and s� is the number of sites of the automaton in state 	� Thus � � p
n�i� � 	� for

all i and the conditions of lemma � are satis�ed� so all the rows of P
n�r become identical in

the limit r�� �

By de�ning the geometric structure of matrices P
n� in the same way asA
n�� the box�counting

dimension of P
n� in the limit as n�� is fractional� so that as a geometric object the matrix

if fractal� The following intuitive lemma 
	�� is used in the inductive derivation of expressions

for the box�counting dimensions�

Lemma ���

In limit n�� the number of zero submatrices of a given size within a Sierpi�nski

matrix is constant�

Lemma ���

P
�� � limn��P
n� has a fractional box�counting dimension�

The box�counting fractal dimension of the matrix P
�� is given by the scaling with m of the

number of submatrices of size �m � �m which are needed to cover all of the non�zero elements

of P
���

Firstly P
n� is considered for n � �� Since it is clear that there are no �n � �n� �n�� � �n��

or �n�� � �n�� zero submatrices� let the number of total zero submatrices in P
n� of size

�n�m��� �n�m�� be denoted by 

m�� The total number of �n�m��� �n�m�� submatrices is

�m��� so the number of submatrices needed to cover all of the non�zero elements is �m���

m��

Similarly� let 
A
m�� 
B
m�� � � � denote the number of �n�m����n�m�� zero submatrices in the

submatrices A�B� � � �� as shown in lemma 	�� Then in general 
Z
m� is four times 
Z
m � 	�

plus the number of �n�m�� � �n�m�� zero submatrices that are not part of a larger zero

submatrix� For m � 	 and m � � new zero submatrices are created� as shown by the structure

given in lemma 	�� For m � 	� �n�m�� � �n�m�� zero submatrices of P
n� are equivalent

to �n�m�� � �n�m�� zero submatrices of P
n � 	�� However� in the in�nite limit� it can be

���



assumed by lemma 	� that 
 is the same for P
n� and P
n� 	�� Thus for m � ��


A
m� � 
A
m � 	� � 
B
m � 	� � �
E
m � 	�


B
m� � �
E
m � 	�


C
m� � 
C
m� 	� � 
D
m � 	� � �
E�
m � 	�


D
m� � �
E�
m � 	�


E
m� � �
A
m � 	� � �
E
m � 	�


F 
m� � 
F 
m � 	� � 
F� 
m � 	� � �
G
m � 	�


G
m� � �
F 
m � 	� � �
G
m � 	�


E� 
m� � �
C
m � 	� � �
E� 
m� 	�


F� 
m� � �
G
m � 	�



m� � �

m � 	� � 
A
m� � 
B
m� � 
C
m� � 
D
m� � 

E
m� � 
F 
m� � 
G
m�� �

The fractal dimension FB is then given by�

FB � lim
m��

log
	
�m�� � 

m�



� log

	
�m�� � 

m � 	�



log �

�

Now� a lower bound can be put on 

m� by noting that�


A
m� 
 
A
m � 	� 
 � � � 
 
A
�� � �

and�



m� 
 
A
m� � �

m � 	� � �

m � 	��

Thus�

���



�m�� � 

m� � �
�
�m�� � 

m � 	�

�
�

so that�

log
	
�m�� � 

m�



� log

	
�m�� � 

m � 	�



� log



�m�� � 

m�

�m�� � 

m � 	�

�

� log �

� � log�

and hence FB � � �

The use of lemma 	� may be veri�ed numerically� by evaluating FB �rstly directly from the

structure of a sample 
�nite� matrix and secondly using the expressions for 
 derived above�

Such methods both yield a value of 	��� for FB� so the approaches are equivalent� The initial

values for 
 are�


A
	� � � 
A
�� � �


B
	� � � 
B
�� � �


C
	� � � 
C
�� � �


D
	� � � 
D
�� � �


E
	� � � 
E
�� � �


F 
	� � � 
F 
�� � �


G
	� � � 
G
�� � �


E�
	� � � 
E� 
�� � �


F� 
	� � � 
F� 
�� � �



	� � � 

�� � ���

���� Extensions�

The one�dimensional CA model is still being investigated further and in particular the rela�

��	



tionship between the mean �eld approximation� a pairwise approximation and the full spatially

extensive model is being studied analytical and numerical techniques� along with the obser�

vation that  uctuations from the mean �eld predictions are typically Gaussian� Many of the

results that exist in the literature for continuous time models� such as the Contact Process� are

being extended to the discrete time case presented here 
I� Mezic� personal communication��

Particularly noteworthy results are the exponential dependence of mean survival time with

system size 
n� and the catastrophic nature of the death process�
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�� Conclusions�

�Many of earth�s habitats� animals and plants that we know as rare may not be known at all by

future generations� We have the capability and the responsibility� We must act before it is too

late�� � The Dalai Lama ����

The approach of spatially explicit ecological models has been shown to be both necessary and

useful in many circumstances because of the range of insights and empirically testable results

that have been obtained� The majority of the models presented here have concerned plant

communities� single and multiple species systems have been investigated using a variety of

numerical and graphical techniques�

Both short and long term systems have been modelled� with the former providing qualitatively

distinctive results that can potentially be tested in �eld conditions 	chapters 
 to �� and the

latter adding to the understanding of long term ecological processes where experiments cannot

feasibly be undertaken 	chapters � and 
�� Throughout� the aim has been to construct simple

mechanistic models which are able to promote understanding of the processes and dynamics

involved 	section ��
����

A CML model of a single plant species has been described and simulated� using a discrete

spatial extension of the mapping of local interactions presented by Aikman � Watkinson 	�����

	chapter 
�� Simulations of the system demonstrate the presence of competitive interference

and exhibit the size structures which subsequently develop in the population� Asymmetric

competition between neighbouring plants is observed to give rise to increased size variability

compared with symmetric competition� This result favours the assertion of Miller � Weiner

	����� that higher size variation at higher density implies greater competitive asymmetry� at

the expense of Bonan�s 	����� ����� claim that such observations arise by local spatial e�ects

alone� Thus plant population size variation can be used as evidence for discriminating between

asymmetric and symmetric competition� It is not being suggested� however� that spatial e�ects

are unimportant� On the contrary� the local spatial interactions are fundamental to the growth

patterns of the individual plants and hence profoundly in�uence the population statistics� It is
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the interaction of the spatial processes with the asymmetric competition that gives rise to the

characteristic response of the size structure to the stand density�

A lattice�based data set was obtained from a �eld experiment on carrot plants which is a

suitable application of the CML model� The single� double and triple cohorts of seedlings sown

in checkerboard con�gurations are easily mimicked by the model and arti�cial harvests can

be �taken� numerically to correspond to the available data� The plant CML model provides a

clear indication that carrot plants grown in monoculture experience predominantly asymmetric

competition� resulting in high levels of suppression of later cohorts of plants� The presence

of asymmetry means that even�aged monocultures at high densities which are not grown on a

completely regular lattice are likely to develop high levels of size variation� which is unsuitable

in many agricultural applications� Thus� having established asymmetry in a crop� there is a

balance to be found between the desirable high yields of a high density stand and the commercial

undesirability of excessive size variability�

The relationship of long� and short�lived species has been investigated by a complex extension

of the CML from a single growing season in monoculture to multiple years in a two species

system 	chapter ��� In particular� various spatial analyses have demonstrated the impact of

perennial plants on annual species� Visual inspection� back up by numerical analysis� of the

CML patterns shows that the perennial species imposes an aggregation pattern to a greater

extent than the annuals regardless of the presence or absence of the annuals� The perennials are

also seen to induce a complex scaling or multifractal character in the annuals� This provides

a quantitative representation of processes acting over a range scales� with di�erent patterns

of mass distribution corresponding to di�erent biological mechanisms� This leads to the need

to ask new biological questions about the relationships of mass distributions and mechanistic

processes within plant communities�

The annual�perennial system is thus asymmetrical with the perennials in�uencing the annuals

to a far greater extent than the annuals in�uence the perennials� This has also been shown

empirically� for example by transplantation experiments with analyses of of selection pressures�

���



that annuals have restricted success when placed within areas of established perennial vegetation

	Davy � Smith� ������ The conclusions of this model point to a potential problem in both

empirical and theoretical plant community studies� The time scales involved must not solely

correspond to a particular species of interest� but must also take into account any longer�

lived species that form part of the local environment� Thus a model may require time scales

substantially in excess of the life expectancy of the target species� This will often impose a

severe computational penalty on plant community models�

In spite of the asymmetrical annual�perennial relationship� the evolution of the annual type

of life history strategy and the presence of annual species in association with perennial species

across a broad range of habitats provides a clear indication of advantages to the annual strategy�

In some situations perennial vegetation structures will provide protection for the annuals� while

the annuals are sometimes better adapted to deal with spatiotemporal environmental stochas�

ticity� Therefore� despite the asymmetry of the interspeci�c interactions in the annual�perennial

system� as quanti�ed by the techniques presented here� a frequently successful and ubiquitous

plant community structure is seen�

The vital role of spatial dimension in plant ecosystems has been further emphasised by the

annual�perennial model� Although a mean �eld analytical approximation provides a fair pre�

diction of the coexistence of annual and perennial species at intermediate reproductive rates�

it is wholly inadequate towards the extremes of reproductive rates� Thus spatial extensiveness

plays a key part in the species interactions via either a refuge e�ect or a restriction of dispersal

depending on the part of the parameter range�

The widespread occurrence of environmental heterogeneity at many scales in ecological sys�

tems prompts the inclusion of an explicit resource base in the plant CML model 	chapter ���

This allows the impact of resource heterogeneity on plant growth to be assessed and� just as

importantly� the extent of alteration of the environment by plants can be studied� The two

way relationship between a species and its environment is all too often overlooked� In general�

a plant will profoundly in�uence both its biotic and physical surroundings by direct and in�
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direct competitive e�ects� including crowding� allelopathy� depletion of mineral nutrients and

the mediation of herbivore and pathogen e�ects� The CML model certainly is able to display

this complex interdependence of organism and environment as di�erent mechanisms and model

parameters are investigated�

In its simplest form of one species� a homogeneous resource supply and a single growing season�

the resource CML demonstrates suppression of growth by high resource depletion and crowd�

ing� Positive and negative feedback processes interact to a�ect the extent of size hierarchy

development in the plant population� The increase of size variation at high densities indicates

asymmetry of competitive interactions� verifying the conclusions of chapter 
� The coe�cient

of variation of resources levels provides a good � and in some circumstances better � indicator

of asymmetry than mass variation�

Heterogeneous resource distributions can be imposed on the lattice using an algorithmdeveloped

here for generating patchy patterns� The scale of patches is clearly a signi�cant factor in the

response of a system� so it is imperative that the grain of the resource patterns can be controlled�

The grain determines whether there is any di�erence between the environment experienced at

the level of individual plants and in the population as a whole� For example� in an environment

with large contrasting patches� an individual must usually rely on a single resource patch type�

while the population may have access to all patch types� A small grain� on the other hand�

allows each individual to exploit all patch types�

In monocultures� patchy resource distributions lead to suppressed stand yields and enhanced

population variability� which demonstrates the importance of environmental heterogeneity in

crops� where yield and size constancy are both important economically� An interesting phe�

nomenon is exhibited whereby �ne scale variation allows greater yields under highly contrasting

patches than under intermediate contrasts� Competitive mechanisms and neighbourhood in�

teractions lead to a di�erentiation in size between small suppressed plants and large dominant

individuals� so a resource environment echoing this distribution may be optimal� This observa�

tion supports the idea that community and environment coevolve� as the biota both adapt to
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and modify the physical environment�

The inference of competitive asymmetry from increases in mass variation with density 	chapter


� is dependent on relative homogeneity of resource distribution� The increase in size variability

at high density becomes less marked as the contrast between rich and poor patches rises� but is

only substantially obscured when the poor patches are deprived of virtually all resources� Thus

the absence of increasing mass variation with rising density cannot be taken to imply symmetry

of competitive interference� as it may alternatively be due to the confounding in�uence of

resource heterogeneity� The environmental factor must therefore always be considered before

an inference of competitive asymmetry is made� In the case of the carrot plants studied in

chapter 
� the experimental conditions are controlled� so resources are likely to be largely

homogeneous and the conclusions remain valid�

The selection of di�erent characteristics over periods of many years can be studied using an

extension to the resource�based CML to longer time scales� Although a constant environmental

pattern means that a single species produces a higher yield with localised seed dispersal� in com�

petition wider dispersal is favoured� The central role played by environmental predictability is

highlighted by the extinction of species with overly�restricted dispersal in a randomly�changing

environment� A second observation is that community behaviour cannot in general be inferred

from the dynamics of a single species� This is another aspect of the argument that community

and environment evolve together� as the environment of a single species can be considered to

be not only the physical factors involved but also all the other species in the same system�

The resource environment is the key system feature investigated in the �nal part of chapter ��

which makes a preliminary exploration of the ecology of seed sizes� There is a long�held and

widespread belief in agricultural science that identifying an optimal seed size is a signi�cant

factor in maximising crop yield� but there is no consensus as to whether small or large seeds

are best�

From a more ecological viewpoint� there is also a lack of agreement on the relationship of seed

size and environment� There is much evidence that large seeds � with their intrinsic nutrient
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reserves � are adapted to tolerate adverse conditions such as drought or shade� It is like�

wise asserted that these reserves give a large seed a competitive head start in areas of intense

competition� which are likely to correspond to rich resources� Thus there are very di�erent

environmental types which appear to impose selective forces in favour of larger seeds� It can�

however� be argued that the richest environments provide adverse conditions� as competition

also leads to nutrient deprivation� the di�erence between this and the former case of the poor�

est environments being that the disadvantages arise respectively from biotic and physical 	or

indirect biotic� sources�

The fact that seeds vary widely in size� by many orders of magnitude� implies that there must

also be selective pressures acting in favour of small seeds� One such is the possibility of wide

dispersal� although it must be noted that dispersal distance and propagule size have a far from

simple relationship� This is an interesting feature� but the large range of spatial scales involved

is not immediately suited to this type of model� which is restricted to scales ranging over only

two orders of magnitude or so� A second feature of small�seeded species� concerns relative

growth rates� negative correlations of seed size and relative growth rates have been reported in

many studies and provide the mechanism whereby small seeds counter the head start of large

seeds� Resource supply and growth rates are easily studied using the resource CML making

seed size ecology a suitable application of this model�

Assuming these features and pairwise competition in a homogeneous environment� low resource

levels favour small seeds and high resource levels favour large seeds� with the preferred type

driving the other to extinction� An elegant transitional behaviour is seen in intermediate

environments where the two species types coexist� with an increasing proportion of the large�

seeded species as the resource levels rise�

A heterogeneous environment adds an extra dimension to the competitive interactions� Coex�

istence of large� and small�seeded species is seen if su�ciently large patches of high and low

resources are imposed on the system� As would be expected� large�seeded plants monopolise

the high resource patches� Although small�seeded plants are dominant in poorer environments�
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they naturally perform better in monoculture on the high resource regions� so they are seen to

cluster around the edges of the high resource patches�

These observations are� however� dependent on the grain of the system� If the patches are small

and the high and low resources are closely intermingled� then large seeds always fall su�ciently

near high resource supplies and the small�seeded species is excluded� Thus� while a homoge�

neous landscape sees a transition of species� dominance as resource levels varies� heterogeneity

witnesses a transition between single species dominance and coexistence as the grain of the

resource patterns changes� This re�ects back on the earlier observation that an individual may

experience an environmental type di�erent from that of the whole population� In this way� the

CML model exhibits qualitative changes in community structure as assumptions of the model

system are varied� which are potentially observable in real systems�

The plant lattice model has thus already been shown to have several applications in both the�

oretical and more empirical plant communities� The models are eminently usable in widely

ranging areas of ecology and would feasibly make particularly strong contributions where asso�

ciated empirical studies could be carried out� One proposed experimental project would obtain

data from populations of chrysanthemums� These crops are grown commercially in lattice con�

�gurations and so could potentially provide ideal data for validation of a version of the lattice

model� Optimisation of planting patterns could be investigated by a combination of theoretical

and �eld work� The CML can� for example� be used to select from the myriads of possible plant

con�gurations those which are most likely to produce maximal crop yields�

At the other end of the scale from such detailed and speci�c cases� the lattice model can

continue to be developed for the purpose of addressing general ecological issues and promoting

broader understanding of ecosystems functioning� If a basic model with minimal assumptions

can produce signi�cantly di�erent empirical outcomes from di�erent suggested mechanisms�

then these predictions can be tested in real systems� There is good capability to combine

these modelling approaches with laboratory work in simple controlled ecosystems� such as the

�Ecotron� at Silwood Park 	Lawton et al�� ���
� and the controlled microcosms at the NERC

���



Unit of Comparative Plant Ecology 	U�C�P�E�� ������ Di�erent conditions in simpli�ed real

systems can be examined in conjunction with di�erent assumptions in the model systems� thus

promoting understanding of the fundamental controlling mechanisms of real systems�

The lattice model has the capacity to be extended beyond the plant community itself to as�

sociated organisms and issues such as herbivory� seed predation and the e�ects of changes in

climate and land use�

Herbivory can have a strong e�ect on the abundance� spatial distribution and size distribution

of single plant species and communities 	Louda et al�� ������ Selective consumption and mod�

i�cation of competitive ability of di�erent plant species by herbivores can alter the outcome

of competition in multispecies communities� The CML could be adapted in a straightforward

manner for herbivory� for example by imposing dynamical patterns of mass reduction of the

individual plants in the lattice cells� In possible conjunction with a strong size�dependence of

reproductive output� the impact of various types of herbivory on one or more species of plants

can be investigated�

The explicit treatment of the seed dispersal stage in the lattice model� at the level of the

individual seeds� means that the model lends itself to the study of topics such as seed predation

	granivory�� The high numbers of seeds that are often produced by single plants point to high

potential selective forces on seed attributes� so that predation can be a signi�cant mediating

factor in a plant community 	Crawley� ������ The lattice model could usefully be applied

to such issues as the e�ects of pre� and post�dispersal predation and the impact of di�erent

spatiotemporal patterns of predation on persistence and distribution of plant species�

The CML could also be developed to investigate mechanisms at a more fundamental level� using

a more explicitly physiological approach� Resources could be partitioned into above ground

	photosynthate� and below ground 	mineral nutrient� sources and the relative importance of

these investigated under a range of conditions� The size of the neighbourhood over which a

plant assimilates resources could be extended beyond the four cells used here� This could allow

di�erent resources to be treated over di�erent spatial ranges� as a representation of di�erent
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foraging characteristics� In particular� it would be insightful to provide a model intermediate

between the simple lattice used here and the detailed translocation model used by Colasanti

	U�C�P�E�� ������ In this way the interdependence of plant population structure and resource

dynamics could be investigated�

All of the above issues � resource dynamics� herbivory� physiological response � will interact

with changing environmental conditions as climate and land use are modi�ed by natural or

anthropological forces� Small scale empirical work is being carried out on the e�ect of such

factors as changes in temperature and atmospheric composition� but large scale predictions

are inevitably restricted to modelling techniques� These lattice models are a good basis for

such models and could easily incorporate simple physiological mechanisms to allow the e�ects

of temperature� carbon dioxide level and other components to be investigated at the level of

individual plants� single species and more complex multispecies communities� As described

above� collaboration of these modelling methods with existing experimental microcosm studies

will provide an good basis for studying and eventually predicting the change in plant dynamics

as their environmental background evolves�

The red grouse model of chapter � establishes the alternative methodology required by animal

rather than plant ecosystems� The motile nature of the red grouse adds to the complexity and

encourages the use of the discrete state CA type of mode� an arti�cial ecology� Computational

intensity is clearly a problem in this system and places a restriction on the length of simulations

and number of replicates� Nonetheless� di�erent processes for producing the characteristic

cyclic population dynamics observed in �eld data are able to be implemented and tested� This

allows some suggestions to be dismissed and others to be identi�ed as possible mechanisms�

This example illustrates both the bene�ts and disadvantages of spatially explicit modelling

techniques in ecosystem analysis�

The di�erence of approach needed to study systems with longer temporal and spatial scales is

illustrated in the �nal part of this thesis� including Appendix A� As with the complex grouse

model� larger scale systems need simpler modelling procedures to be practicable� The CA
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of chapter 
 demonstrates the use of simple discrete state models for assessing the relative

importance of di�erent processes in a mosaic ecosystem�

The dominant role ofmemory or longevity 	Remmert� ����� as a mechanism in ecological pattern

formation is clearly demonstrated� A beech forest mosaic cycle displays spatial structure if

memory is present in the system� but has random distributions otherwise� This contradicts

the claim of Wissel 	����� ����a� that the formation of the mosaic depends critically on local

synchronisation by radiation death� but his failure to observe patches in the absence of radiation

death may be attributed to insu�cient allowance for transience� Although the memory does

not in itself cause the emergence of structure from the model�s interactions� it ampli�es other

aggregating mechanisms within systems� This conclusion is supported by comparison with a

non�spatial 	Markovian� analytical model� which demonstrates that the spatial dimensions are

not important in the absence of memory�

The role of the explicit longevity of the species can be understood by considering pattern

formation as a balance of aggregating and randomising processes� The radiation and early

colonisation mechanisms provide pattern aggregation� while death through senility tends to

break down spatial structure� In the memory case� death in old age is restricted to a few of the

beech states� so there is only a weak randomising e�ect and clumped patterns emerge� In the

no memory case� all beech trees are susceptible to this mortality� which leads to a widespread

breakdown of spatial structure�

A variety of techniques are used to illustrate further the part played by memory within the

beech forest system� The aggregation of di�erent versions of the model is quanti�ed numerically

and con�rms that the memory mechanism is the main promoter of a clumped spatial pattern�

Memory in the system is linked both to chaotic behaviour and to low dimensionality of the

system dynamics� so the character of the dynamics is fundamentally altered by the inclusion of

memory� However� the no memory case is very noisy and o�ers little more global predictability

than the chaotic memory case�

The vital role of memory is further illustrated using a second CA model in a di�erent area �
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epidemiology� In this case memory refers to the duration of infectious and immune phases in

an SIR epidemic� so that this CA is stage�structured rather than age�structured� This supports

the use of the general term �memory� rather than �age�structured�� Memory ampli�es the local

synchronisation induced by the infection process and leads to marked ring patterns in the CA

grid� The memory plays a key part in determining the behaviour of the system� as an enforced

delay in recovery from infection and in return to susceptibility means that the susceptibles are

kept separated from the epidemic waves for signi�cant periods� Memory can thus cause the

epidemic to wipe itself out completely below a certain threshold lattice size� as well as leading to

the emergence of characteristic spatiotemporal patterns� A very simple one�dimensional model

veri�es these conclusions analytically�

The spatial pattern formation in such large scale arti�cial ecosystems� such as the forest model�

is ideally suited to comparison with real systems using modern data collection techniques�

primarily satellite imagery� Data on vegetation patterns are now increasingly available over

wide spatial scales by the interpretation of radiation maps gathered by satellites� Con�gurations

of re�ected radiation from di�erent vegetational types can be combined with ground�truthing

studies to obtain patterns for comparison with arti�cial ecology output� Some of the numerical

techniques developed here for the lattice models are equally applicable to grid�based satellite

data� In this way the real and arti�cial ecosystems can be compared and underlying mechanisms

explored further into the future�

The primary drawback of satellite data is the restricted time scale� although wide spatial scales

are being surveyed� the time scale is limited by the real time that has elapsed since the technique

of satellite imagery was �rst developed� This does� however� again point to the invaluable role

played by the development of models� Although it is possible to �nd current examples of

ecosystems at all stages of succession � which may be cyclic � data on long term dynamical

progression is simply not available and cannot be produced in the foreseeable future� Therefore

modelling must be combined with the snapshots of ecological structures that are available at

this particular moment in time� in an attempt to describe and understand the entire course

of dynamical ecosystems� This understanding can then eventually lead to reliable prediction
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of the future of the Earth�s major ecosystems and thus to the implementation of appropriate

protection and management schemes for the entire biosphere�

Lattice models are thus widely applicable in theoretical plant 	and animal� ecology and have

great potential for further development in conjunction with experimental spatial studies�
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Appendix A� A Cellular Automaton Model for Juvenile

Selection in Plant Species�

Chapter Summary

An arti�cial ecology version of the plant coupled map lattice of chapters � to �

similar to a cellular automaton� is constructed� It is presented as an illustration

of the spatial modelling techniques used throughout this thesis� although spurious

results are obtained� in particular the necessity of computational simpli�cation is

shown for situations where longer time scales are required�

The conjecture of Salisbury that important selection occurs at the juvenile stage

of a plant�s life history is studied� along with the rejection of the idea by Fisher

on the grounds of low reproductive value of juvenile plants�

Probability tables are drawn up to provide a mapping between the coupled map

lattice of chapter � and the growth phase for selected discrete automaton states�

Alleles are described which allow for the bias of a plant�s success at either the

adult or juvenile stage� No genetic selection operates in a mean �eld version of

the model� but the spatial model demonstrates selection for a varied life history�

favouring the allele for juvenile bias� but allowing the allele for adult bias to

coexist with it at lower levels�

�The aims of scienti�c though are to see the general in the particular and the eternal in the

transitory� � Alfred North Whitehead

�� Introduction�

A CA version of the plant CML of chapters � � � is presented here� Some of the results obtained

appear to be spurious and for this reason the model is con�ned to an appendix� Nonetheless� the

���



approach taken highlights the relationship between CA and CML and demonstrates a method

of overcoming the unfeasible computational intensity that would result from modelling this

system with a CML�

The speci�c issue of genetic selection in plant species is addressed here�

In 	�
�� Salisbury suggested in a short article in Nature that selection acts at the seedling stage

of the life cycle of a plant �Salisbury� 	�
�
� He justi�ed this claimwith the observation that the

greatest mortality occurs at this early stage� hence there is the most opportunity for stronger

genotypes to gain an advantage� However� in the same year� Fisher replied with a letter which

rejected Salisbury�s conjecture� on the basis that seedlings have very low reproductive value

�Fisher� 	�
�
� This was a theoretical concept which means that while a large number of

seedlings contribute to the gene pool� they each have very low importance� compared with the

adult plants�

The ideas of Salisbury and Fisher are re�examined here via a CA model�

�� Reduction of the Coupled Map Lattice to a Cellular Automaton�

It is noted in chapter 
 that under absolutely asymmetric competition the hierarchy of plant

sizes generated by the plant CML is limited to �ve discrete classes ��gure 	�
� Consideration

of crop data �section 
�	�
 shows that a substantial degree of asymmetry is present in plant

monocultures� The CML distribution is bimodal� most plants are either large or small� while

a few take one of three intermediate sizes� The di�erent size classes can be mapped to CA

states� the three intermediate classes being aggregated to form a single CA state� to reduce

the complexity of the model and hence limit the computation� The adult sizes are therefore

restricted to small� medium and large� denoted here by k � 	� � and 
 respectively�

The CML was run � 	�� times for a complete range of densities to construct a mapping from the

seedling neighbourhood type to the adult size distribution� The neighbourhood type of a plant

was initially classi�ed by the number of plants in the �rst� second and third neighbourhoods

��gure ��a
� Probability tables were drawn up for the mapping from seedling neighbourhood
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to adult size using the CML data� The third neighbourhood was found to have relatively little

e�ect on the mapping� so only the �rst two neighbourhoods are used in the CA�

The probability of getting an adult of size k if there are i and j plants in the �rst and second

neighbourhoods respectively is given by pijk� pijk therefore provides the CA rules� by giving

the transition probabilities between juvenile and adult states� The probability mapping is

illustrated in �gures ��b � d�

It now remains to specify the transition between adults and the juveniles of the following

season� The adults produce a number of seeds in proportion to their sizes� which are scattered

into the surrounding four cells� At most one seed per cell is then able to grow into a seedling

and hence survive into the next generation of adults� according to the seedling neighbourhood

con�gurations� There are therefore three phases of the model� seedling� adult� adult� seeds

and seeds � seedling� This is therefore not strictly a CA and is more accurately termed an

AE�

�� Incorporation of Genetics in the Arti�cial Ecology�

There are three stages in the life history� seed� seedling and adult� with three corresponding

transition mechanisms� growth� reproduction and seed survival� The plants are assumed to have

a single locus A� with three alleles� expressed at the survival and reproduction stages� The

alleles are arranged as follows�

� A� favours reproduction at the expense of seed survival

� A� is neutral to reproduction and seed survival

� A� favours seed survival at the expense of reproduction�

The CA thus has two state variables� The �rst describes the plant phenotype� presence�absence

at the seedling stage� size �small�medium�large
 at the adult stage� the number of seeds at the

seed stage� The second variable describes the genotype as A�� A� or A��
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Figure ��� Construction of the genetic CA model from the CML model� �a
 Representation of

the CML neighbourhoods� �b
 � �d
 Probabilities P	� P�� P
 of getting �a
 small �b
 medium

and �c
 large focal plants given N	 neighbours in the �rst neighbourhood and N� neighbours

in the second neighbourhood�
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�a� Growth�

The growth mechanism acts on the seedlings� The grid cells contain either � or 	 seedlings�

Each seedling assesses the number of nearest neighbours and grows to a small� medium or large

plant according to the probability tables described in the previous section�

�b� Reproduction�

Two factors a�ect the production of seeds by adults� the adult size �phenotype
 and the A

locus �genotype
� The number of seeds is weighted by a size factor� depending on parental size�

and by a gene factor� determined by the allele at locus A� The weighting factors are simply

applied multiplicatively� When the number of seeds has been determined by the phenotype

and genotype� the seeds are redistributed into the parent�s focal cell and four nearest neighbour

cells� The genotype of each scattered seed is noted� so that the number of seeds of each genotype

in each cell is ascertained�

�c� Seed survival�

One seed in each cell is chosen to have the potential to survive to a seedling� The seed is chosen

randomly� in proportion to the numbers of seeds of each genotype present in each cell� These

seed numbers are weighted by genetic factors controlled by the A locus� Thus some genotypes

may be chosen preferentially over others� The chosen seed is then given a �xed chance of

surviving� which results in either an empty cell �juvenile state �
 or a seedling of the chosen

genotype �juvenile state 	
�
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�� A Mean Field Approximation�

The mean �eld approximation to the AE follows the proportion of seedlings in the population�

as this is the simplest life stage� The proportion of cells with a seedling of genotype � is j��

where � represents the allele at locus A� Thus the total density of seedlings� as a proportion of

cells occupied� is given by ��

� �
X
�

j��

The probabilities of having i seedlings in neighbourhood 	 and j seedlings in neighbourhood �

are approximated respectively by ����i and �
���
i � assuming a su�ciently large grid�

�
���
i �

�
B�

�

i

�
CA �i �	� �
��i

�
���
i �

�
B�

�

i

�
CA �i �	� �


��i
�

The probability that an adult is of size k and genotype � is given by P�k �equation ��	

� where

pijk is the probability that seedling neighbourhood types i� j lead to a size k adult�

P�k �
X
ij

j��
���
i �

���
i pijk ��	


The expected number of seeds from an adult of type � and size k is S� �equation ���

� �k is

the size factor which gives the phenotypic dependence of seed production on parent size� r� is

the gene factor which gives the dependence of seed production on locus A�

S� �
X
k

�kP�kr� ���



��



The probability that a cell has a surviving seed of type � is therefore�

PgS�s�P
�� S��s��

�

where Pg is the probability any chosen seed survives and s� is the weighting factor for survival at

locus A� This is therefore equal to the proportion of seedlings of type � in the next generation�

that is� j��� The generation may therefore be described fully in the mean �eld by�

j�� �

Pg
P

ijk

�
B�

�

i

�
CA

�
B�

�

i

�
CA fP�� j��gi�j f

P
���	� j��
g���i�j �kpijkr�s�j�

P
���ijk

�
B�

�

i

�
CA

�
B�

�

i

�
CA fP�� j��gi�j f

P
���	� j��
g���i�j �kpijkr���s���j���

�

If the reproduction�survival weighting factors are balanced so that the A locus is �compensated�

then�

r�s� � 	�

Therefore the evolution reduces to�

j�� �
PgFj�P
�� Fj��

�

where F is independent of �� Hence the mean �eld model exhibits no selection in the case of a

compensated A locus�

�� Results of the Arti�cial Ecology�

���� Length Scale Analysis�

Error analysis �section ��	��
 of the genotypes in the model is illustrated in �gure ��� from


�	



which a coherence length scale of nc � �� can be identi�ed� At scales below nc the system

shows negative spatial coherence� with an aggregating tendency as n increases� Thus an �����

AE grid is used throughout�

���� Selection for Di�erent Life History Strategies�

Figure �� illustrates the structure of the model at early stages of invasion ��gures ��a � b
 and

in a later near�equilibrium phase ��gures ��c � d
� There is a near random distribution of plant

sizes ��gures ��a� c
 but the spatial distribution of genotypes is structured ��gures ��b� d
�

If the A locus is compensated �r�s� � 	 for all �
 then the mean �eld model predicts that

no selection occurs� The AE� however� shows selection in favour of the A� and A� alleles

and rapid elimination of the A� �neutral
 allele� for a range of values of r� �
�
s�

��gure ��a
�

Allele A�� which favours the seedling stage� is present in the polymorphic population at a

considerably higher level that the A� allele� which favours the adult stage� �If the A locus

is not compensated� then selection takes place towards whichever allele has the highest r�s�

value�
 Thus the system shows clear selection towards genotypes which are expressed at di�erent

life stages� with a bias towards those genotypes favour selection at the juvenile stage� These

results cannot be predicted by mean �eld theory and must arise via local interactions in space�

���� Competition Between Constant and Varied Life Strategy Genotypes�

Selection towards r� �� s�� that is� varied life strategies� has been demonstrated in the presence

of a constant neutral genotype r� � s� � 	� It is therefore interesting to see how much bias

must be given to the constant strategy r� � s� � 	 before this allele is selected above the

varied strategy� Figure ��b shows the probability of extinction of allele A� within ��� years� as

a function of rA� � sA�� The varied strategy alleles take the values rA� �
�

sA�
� �

rA�
� sA� � ��

so that rA�sA� � rA�sA� � 	� A clear threshold is seen where there is a switch between the

varied and constant strategies�

Thus� in summary� the AE version of the plant CML has allowed su�ciently long time scales

to be used that selection of life history strategies can be modelled �Davy � Smith� 	���
� The


��
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Figure ��� Spatial pattern in the genetic CA model� �a
 � �b
 early invasion phase� �c
 � �d
 later

equilibrium phase� �a
� �c
 Adult plant sizes� small �yellow
� medium �green
 and large �blue
�
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� �d
 Genotype� A� favours adults �red
� A� neutral �grey
 and A� favours juveniles �black
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AE provides evidence that selection occurs in favour of variable life history strategies and in

particular in favour of selection at the juvenile life stage�
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Appendix B� Technical Details for the Grouse Model�

�Nessuna humana investigazione si pio dimandara vera scienzia s�essa non passa per le matem�

atiche dimonstrazione� �No human investigation can be called real science if it cannot be demon�

strated mathematically��� � Leonardo da Vinci

Parameter Description Typical value�s	

L grid size 	��

NoY ears duration of simulation ��

density initial density of birds ����	

	brood mean brood size 
��

�brood standard deviation of brood size ���

pfail proportion of broods which fail ��	

pdie summer mortality of adult birds ��	 � ��


Ndisp number of dispersal attempts � � �

�P pressure di�erence tolerated before boundary moves �����

kindp factor by which kin neighbours increase �P 	�

CTS basic critical minimum territory size �� � ��

�Tol e�ect of kin neighbours on minimum critical territory size ��	 � ����


Tol change in tolerance behaviour �Model I
 ��� � 	��


disp change in dispersal behaviour �Model II
 	 � �

Table 	
� Parameters for the two�dimensional red grouse model�
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Variable Description

N population size

Xi bird present in cell i

Ti territory owner of cell i

Kmn relatedness of birds m and n

Fn father of bird n

Toln tolerance�intolerance of bird n

FRSn �ghting rank strength of bird n

Pn pressure exerted by bird n

TSn territory size of bird n

CTSn critical minimum territory size of bird n

NNn number of kin neighbours of bird n

resid �residual� � number of site changes in one iteration

nw number of failed recruiters

Table 	�� Variables in the two�dimensional red grouse model�
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