
Journal of Artificial Intelligence Research 1 (1993) 1-15 Submitted 6/91; published 9/91

Planning with Critical Section Macros: Theory and Practice

Lukáš Chrpa chrpaluk@fel.cvut.cz
Faculty Of Electrical Engineering,
Czech Technical University in Prague

Mauro Vallati m.vallati@hud.ac.uk

School of Computing and Engineering,

University of Huddersfield

Abstract

Macro-operators (macros) are a well-known technique for enhancing performance of
planning engines by providing “short-cuts” in the state space. Existing macro learning
systems usually generate macros by considering most frequent action sequences in training
plans. Unfortunately, frequent action sequences might not capture meaningful activities as
a whole, leading to a limited beneficial impact for the planning process.

In this paper, inspired by resource locking in critical sections in parallel computing,
we propose a technique that generates macros able to capture whole activities in which
limited resources (e.g., a robotic hand, or a truck) are used. Specifically, such a Critical
Section macro starts by locking the resource (e.g., grabbing an object), continues by using
the resource (e.g., manipulating the object) and finishes by releasing the resource (e.g.,
dropping the object). Hence, such a macro bridges states in which the resource is locked
and cannot be used. We also introduce versions of Critical Section macros dealing with
multiple resources and phased locks. Usefulness of macros is evaluated using a range of
state-of-the-art planners, and a large number of benchmarks from the deterministic and
learning tracks of recent editions of the International Planning Competition.

1. Introduction

Automated planning is an important research area of Artificial Intelligence that deals with
the problem of finding a sequence of actions whose application in an initial state of the en-
vironment leads to a desired goal state (Ghallab, Nau, & Traverso, 2004). Automated plan-
ning has been successfully applied in challenging real-world domains, including drilling (Fox,
Long, Tamboise, & Isangulov, 2018), transport (Vallati, Magazzeni, Schutter, Chrpa, & Mc-
Cluskey, 2016; Cardellini, Maratea, Vallati, Boleto, & Oneto, 2021), smart grid (Thiébaux,
Coffrin, Hijazi, & Slaney, 2013), UAV control (Ramı́rez, Papasimeon, Lipovetzky, Benke,
Miller, Pearce, Scala, & Zamani, 2018), e-learning (Garrido, Morales, & Serina, 2012) and
mining (Lipovetzky, Burt, Pearce, & Stuckey, 2014).

Since 1998, the International Planning Competition (IPC)1 has been organised and is
increasingly attracting the attention of the automated planning community. IPCs are a
driving factor for developing domain-independent planning engines, predominantly based
on heuristic search (Bonet & Geffner, 2001), that accept planning task specification in the
PDDL language (Mcdermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins,
1998) on the input and output a plan (if it exists). This decoupling between the planning

1. http://ipc.icaps-conference.org

c©1993 AI Access Foundation. All rights reserved.

Chrpa, & Vallati

engine and the planning task specification supports the use of reformulation techniques,
that can automatically re-formulate planning models provided as input to the engines,
while keeping to the same input language, in order to increase the efficiency of planning
engines and increase the range of problems solved.

A very well-known reformulation approach is the generation of macro-operators, macros
for short, that encapsulate sequences of (primitive) planning operators. Macros are en-
coded as ordinary planning operators and, hence, they can be easily added into planning
domain models such that standard planning engines can straightforwardly take advantage
of them. Macros, informally speaking, provide short-cuts in the state space and, conse-
quently, planning engines can generate plans in a smaller number of steps. This comes at
the cost of increased branching factor, since macros often have much more instances than
primitive operators and thus their use might introduce additional overheads as well as larger
memory requirements. Although in theory the use of macros might reduce complexity of
planning (Korf, 1985), in practice, macros are considered only if they are frequently used
in solution plans (Hofmann, Niemueller, & Lakemeyer, 2017), their number of instances is
small (Chrpa, Vallati, & McCluskey, 2014), or they address weaknesses of a specific planning
engine (Coles, Fox, & Smith, 2007).

In this paper we present a detailed study of Critical Section Macros (CSMs), that are
inspired by parallel computing critical sections, and show their beneficial impact on the
performance of domain-independent planning engines. In parallel computing, a critical
section is a part of the code that deals with one or more shared resources such that the
resources are initially locked (to prevent other processes or threads to concurrently access
them), then processed and at the end they are released. In automated planning we can
observe parts of plans that share similar characteristics of critical sections. For example,
a hand of a robotic barman can be understood as a shared (or limited) resource, since the
hand can hold at most one object at a time. Then a sequence of actions starting with
the hand grasping a shaker, following with shaking the cocktail, pouring the cocktail into
a glass and cleaning the shaker, and finishing by releasing the shaker can be referred to
as a critical section. Assembling such an action sequence into a (Critical Section) macro
bridges states in which the resource is locked and cannot be used (e.g. the hand cannot
grasp a different object at the same time). Consequently, it might, to some extent, mitigate
the incorrect assumption of some heuristics (e.g. delete-related ones) that a resource can
be used with multiple objects simultaneously. Due to their nature, CSMs can sometimes
replace primitive operators they are assembled from and/or can be effectively combined
with other macro generating techniques.

Contributions of this paper, in which we significantly extend the work presented in our
conference paper (Chrpa & Vallati, 2019), are as follows:

• We describe the concept of standard and phased resource locks.

• We define and describe the concept of Critical Section Macros (CSMs).

• We consider complex variants of CSMs, namely multi-locks CSMs and multi-phased
lock CSMs.

• We introduce the concept of compound CSMs that, in a nutshell, account for incre-
mental construction of more complex CSMs from simple ones.

2

Planning with Critical Section Macros

• We consider the aggressive approach of CSM use in which we eliminate replaced
original operators.

• We provide an extensive and detailed empirical evaluation on a broad range of do-
mains.

The remainder of this work is organised as follows. Section 2 contextualises the proposed
approach with regards to existing related work. The necessary background, in terms of
classical planning, macros and outer entanglements, is given in Section 3. Critical Section
Macros and their compound variant are formally introduced in Sections 4 and 5, and the
approach for extracting such macros is provided in Section 6. The experimental analysis is
presented in Section 7. Finally, in Section 8, conclusions are given.

2. Related Work

Using macros dates back to 1970s and 1980s. REFLECT (Dawson & Siklóssy, 1977) builds
macro-operators from pairs of primitive operators that can be successively applied and share
at least one argument. MORRIS (Minton, 1988) learns macro-operators from parts of plans
appearing frequently (S-macros) or being potentially useful despite having low priority (T-
macros). Macro Problem Solver (Korf, 1985) learns macros for particular non-serialisable
sub-goals (e.g. in Rubik’s cube).

Recent planner-independent techniques aim at improving performance of any standard
planner. MacroFF (Botea, Enzenberger, Müller, & Schaeffer, 2005) generates macros ac-
cording to several pre-defined rules (e.g., the “locality rule”) that apply on adjacent actions
in training plans. Wizard (Newton, Levine, Fox, & Long, 2007) learns macros from train-
ing plans by exploiting genetic programming. Alhossaini and Beck (2013) select problem-
specific macros from a given pool of macros (hand-coded or generated by another technique).
Dulac, Pellier, Fiorino, and Janiszek (2013) exploit n-gram algorithm to analyse training
plans to learn macros. DBMP/S (Hofmann et al., 2017) applies Map Reduce for learning
macros from a larger set of training plans. The recent extension of DBMP/S supports
ADL features (Hofmann, Niemueller, & Lakemeyer, 2020). CAP (Asai & Fukunaga, 2015)
exploits component abstraction (introduced by MacroFF) for generating sub-goal specific
macros.

MUM (Chrpa et al., 2014) leverages “outer entanglements”, which are relations between
operators and initial or goal atoms (Chrpa, Vallati, & McCluskey, 2018), as a heuristic for
generating macros step by step (i.e., assembling two “macro candidates”, which can be
both primitive operators or macros, in a given step). Generated macros have limited num-
ber of instances, specifically, the number of macro instances has to be in the same order of
magnitude as the number of primitive operator instances. Junghanns and Schaeffer (2001)
introduce the concept of “tunnel macros” aiming at bypassing “uninteresting” intermediate
states for the Sokoban game. The idea of “tunnel macros” was later elaborated in the con-
text of breaking variable coupling in order to decompose abstracted planning tasks (Haslum,
2007). Conceptually, CSMs, which are the contribution of this paper, can be seen as “tun-
nel macros” in the sense of bypassing states in which the (limited) resource is being used.
BloMa (Chrpa & Siddiqui, 2015) leverages block deordering, which rearranges plans into
“blocks” that can no longer be deordered (Siddiqui & Haslum, 2012), for generating longer

3

Chrpa, & Vallati

macros. In particular, BloMa generates a large pool of macros from “macroblocks”, which
are derived from “blocks” by applying a set of rules, that is later reduced by applying (strict)
frequency requirements. CSMs, in contrast to other macro generating techniques, have a
specific structure capturing whole activities in which limited resources are used. Although
the aim of generating meaningful long macros is similar to BloMa, CSMs are targeted to
bypassing states in which limited resources are being used that in consequence might help,
for example, delete-relaxation-based approaches to make better heuristic estimates. CSMs
can be combined with “chaining” macro generation approaches such as MUM, as shown in
our previous work (Chrpa & Vallati, 2019).

Macro generation is not limited to classical planning, a few recent works concern the
use of macros in plan repair in numeric planning (Scala, 2014; Scala & Torasso, 2015).

Several works go in the opposite direction of macros. Haslum and Jonsson (2000) pro-
posed a method that identifies and removes “redundant” actions, i.e. actions whose effects
can be achieved by sequences of other actions. In other words, the method identifies and
removes macros from the planning task description. From another perspective, operator
schema splitting (Areces, Bustos, Dominguez, & Hoffmann, 2014) deals with decomposing
complex planning operators into simpler ones; basically, the contrary of what macro gener-
ation approaches are aiming at. It should be mentioned that these works do not contradict
the usefulness of macro generation techniques, they just highlight the importance of care-
ful selection of useful macros, or careful positioning of macros in domain models (Vallati,
Chrpa, McCluskey, & Hutter, 2021) – and to some extent, the importance of the wider
knowledge engineering process of encoding domain models (McCluskey, Vaquero, & Vallati,
2017).

3. Classical Planning

Classical planning is concerned with finding a (partially or totally ordered) sequence of
actions transforming the static, deterministic and fully observable environment from the
given initial state to a desired goal state (Ghallab et al., 2004; Mcdermott et al., 1998).

In the classical representation, a planning task consists of a planning domain model
and a planning problem, where the planning domain model describes the environment and
defines planning operators while the planning problem defines concrete objects, an initial
state and a set of goals. The environment is described by predicates that are specified via
a unique identifier and terms (variable symbols or constants). For example, a predicate (at
?t ?p), where at is a unique identifier, and ?t and ?p are variable symbols, denotes that a
truck ?t is at a location ?p. Predicates thus capture general relations between objects.

Definition 1. A planning task is a pair Π = (DomΠ, P robΠ) where a planning domain
model DomΠ = (PΠ, OpsΠ) is a pair consisting of a finite set of predicates PΠ and planning
operators OpsΠ, and a planning problem ProbΠ = (ObjsΠ, IΠ, GΠ) is a triple consisting
of a finite set of objects ObjsΠ, initial state IΠ and goal GΠ.

Let atsΠ be the set of all atoms that are formed from the predicates PΠ by substituting
the objects ObjsΠ for the predicates’ arguments. In other words, an atom is an instance of
a predicate (in the rest of the paper when we use the term instance, we mean an instance that
is fully ground). A state is a subset of atsΠ, and the initial state IΠ is a distinguished

4

Planning with Critical Section Macros

state. The goal GΠ is a non-empty subset of atsΠ, and a goal state is any state that
contains the goal GΠ.

Notice that the semantics of state reflects the full observability of the environment. That
is, that for a state s, atoms present in s are assumed to be true in s, while atoms not present
in s are assumed to be false in s.

Planning operators are the mean that allows to modify the environment. They con-
sist of preconditions, i.e., what must hold prior an operators’ application, and effects, i.e.,
what is changed after operators’ application. Specifically, we distinguish between delete
effects, i.e., what becomes false, and add effects, i.e., what becomes true after applying the
operator. Actions are instances of planning operators, i.e., operators’ arguments as well
as corresponding variable symbols in operators’ preconditions and effects are substituted
by objects (constants). Planning operators capture general types of activities that can be
performed. Planning operators can be instantiated to actions in order to capture given
activities between concrete objects.

Definition 2. A planning operator o = (name(o), pre(o), del(o), add(o)) is specified such
that name(o) = op name(x1, . . . , xk), where op name is a unique identifier and x1, . . . xk are
all the variable symbols (arguments) appearing in the operator, pre(o) is a set of predicates
representing the precondition of o, del(o) and add(o) are sets of predicates representing the
negative (or delete) and positive (or add) effects of o.

Actions are instances of planning operators that are formed by substituting objects,
defined in a planning problem, for operators’ arguments as well as for corresponding variable
symbols in operators’ preconditions and effects. An action a = (pre(a), del(a), add(a)) is
applicable in a state s if and only if pre(a) ⊆ s. Application of a in s, if possible, results
in a state (s \ del(a)) ∪ add(a).

We define a transition function γ : S ×An → S, where S is a set of states, A is a set
of actions and n is a non-negative integer, as follows:

γ(s, 〈〉) = s

γ(s, 〈a〉) = (s \ del(a)) ∪ add(a) if a is applicable in s, or undefined otherwise

γ(s, 〈a1, a2, . . . , an〉) = γ(γ(s, 〈a1〉), 〈a2, . . . , an〉), or undefined if γ(s, 〈a1〉) is undefined

A solution of a planning task is a sequence of actions transforming the environment
from the given initial state to a goal state.

Definition 3. A plan is a sequence of actions. A plan is a solution of a planning task Π,
a solution plan of Π in other words, if and only if a consecutive application of the actions
from the plan starting in the initial state of Π results in the goal state of Π.

Given a planning task Π, we say that a state s′ is reachable from a state s if and
only if there exists a sequence of actions such that their consecutive application starting
in s results in s′. We say that atoms p and q are mutex if and only if no reachable state
contains both of them. We also say that a set of atoms is a mutex group if and only
if in each reachable state at most one atom from the set is true. We say that an action
ai is an achiever for an action aj if an only if add(ai) ∩ pre(aj) 6= ∅. We also say that

5

Chrpa, & Vallati

actions ai and aj are independent if and only if del(ai) ∩ (pre(aj) ∪ add(aj)) = ∅ and
del(aj)∩ (pre(ai)∪ add(ai)) = ∅. We also say that actions ai and aj are equivalent if and
only if for each state s it is the case that γ(s, ai) = γ(s, aj) or both γ(s, ai) and γ(s, aj) are
undefined.

3.1 Running Examples

Throughout the paper, we will use examples from several benchmark domains that were
introduced in the International Planning Competitions2.

BlocksWorld (Bw, in short) is perhaps the best known domain in the planning commu-
nity. In Bw, the task is to rearrange towers of blocks by a robotic hand. A “clear” block
(i.e., nothing is stacked on that block) can be picked up from the table if the robotic hand
is free. A “clear” block can be unstacked from another block if the robotic hand is free. A
block can be put down on the table if held by the robotic hand. Similarly, a block can be
stacked on another “clear” block if held by the robotic hand.

The Transport domain is a variant of a logistics domain in which packages have to
be delivered by limited-capacity trucks from their locations of origin to their destination
locations. A package can be picked up by a truck if they both are at the same location and
the truck has sufficient capacity to carry the package. A package can be dropped by the
truck if the package is inside the truck. A truck can drive from one location to another if
the locations are connected by road.

In the Storage domain, crates have to be delivered by hoists from the areas of their
origin to the areas of their destination. A “free” hoist can pick up a crate if the hoist is
located in the area next to the area in which the crate is placed. A hoist can drop the crate
to a free store area next to the area the hoist is located. A hoist can move to a free adjacent
store area. A hoist can go out from the store area to an adjacent transit area and, finally,
a hoist can go in to a free adjacent store area from the transit area the hoist is located.

The Barman domain models a robotic barman which has to prepare a collection of
drinks and cocktails. The robotic barman has two hands that can be used to carry and
manipulate containers (shots or shakers). Cocktails are prepared in a shaker to which the
barman has to put required ingredients (two of them). Ingredients can be poured from
dispensers to shots and then put to the shaker that has to be clean before use. The shot
has to be clean as well before use unless it is used for the same ingredient as before.

3.2 Macro-actions and Macro-operators

Sequences of actions can be assembled into single actions, called macro-actions. Macro-
actions can be understood as short-cuts in state-transition systems representing planning
tasks. Plan generation might hence be done in a smaller number of steps. Macro-actions
are formally defined as follows.

Definition 4. Let 〈a1, . . . an〉 be a sequence of actions. We say that a1,...,n is a macro-
action over 〈a1, . . . an〉 if and only if for each state s it is the case that γ(s, a1,...,n) =
γ(s, 〈a1, . . . an〉) or both γ(s, a1,...,n) and γ(s, 〈a1, . . . an〉) are undefined.

2. http://ipc.icaps-conference.org

6

Planning with Critical Section Macros

Algorithm 1 Assembling Macro-actions from a sequence of actions

Require: 〈a1, . . . an〉
Ensure: a1,...,n

1: function AssembleTwo(ai, aj)
2: pre(ai,j)← pre(ai) ∪ (pre(aj) \ add(ai))
3: del(ai,j)← (del(ai) \ add(ai)) ∪ del(aj)
4: add(ai,j)← (add(ai) \ del(aj)) ∪ add(aj)
5: return ai,j
6: end function

7: for i = 1 to n− 1 do
8: a1,...,i+1 ←AssembleTwo(a1...,i, ai+1)
9: end for

We also say that a1,...,n is sound if and only if for each 1 < i ≤ n it is the case that
pre(ai) ∩

⋃i−1
j=1(del(aj) \

⋃i−1
l=j add(al)) = ∅.

A macro-action a1,...,n can be assembled from a sequence of actions 〈a1, . . . an〉 as shown
in Algorithm 1. The algorithm iteratively assembles actions one by one until the required
macro-action is created.

At a more general level, macro-operators encapsulate sequences of ordinary planning
operators and as actions are grounded instances of planning operators, macro-actions are in-
stances of macro-operators. Also, macro-operators are domain-specific rather than problem-
specific and hence they can be added into a domain model and exploited in a planner in-
dependent way (e.g. encoded in PDDL). We generalise Definition 4 for macro-operators as
follows.

Definition 5. Let 〈o1, . . . on〉 be a sequence of planning operators. We say that o1,...,n is
a macro-operator over 〈o1, . . . on〉 if for each instance a1,...,n of o1,...,n it is the case that
a1,...,n is a macro-action over 〈a1, . . . an〉, where for each 1 ≤ i ≤ n it holds that ai is an
instance of oi.

We also say that o1,...,n is sound if and only if each of its instances is sound as well.

Macro-operators, in the most general case, contain all the variable symbols (parameters)
of operators they are assembled from. However, it is useful to bind some variables to be
equal. For example, in BlocksWorld, assembling two operators pickup(?x) and stack(?z ?y)
into a macro-operator makes sense if ?x and ?z are equal since we would like to stack
the same block we picked up. Instead of explicitly putting equality constraints into macro-
operators’ preconditions, we unify equal variables by renaming substitutions. That is, in our
example, renaming ?z to ?x, so the macro-operator pickup-stack(?x ?y) has two parameters.

Note that hereinafter we will use the term macro to refer to both macro-actions and
macro-operators. Where not clear from the context we will use the notions macro-action/macro-
operator to disambiguate. Another type of variable binding is inequality constraints, which
might be necessary to handle a possible source of unsoundness of macro-operators (Chrpa,
2010b). For example, in the BlocksWorld domain, a macro pickup-stack(?x ?y) that has (clear

7

Chrpa, & Vallati

?x)(ontable ?x)(clear ?y)(handempty) in its precondition can be instantiated into pickup-
stack(A A) that is applicable if (clear A)(ontable A)(handempty) is true in some state. How-
ever, actions (pickup A) and stack(A A) cannot be applied consecutively because (pickup
A) deletes (clear A) which is required by stack(A A). By generalising this observation we
can see that if some (different) variable symbols are substituted by the same constants, a
macro-operator might become unsound. To avoid such cases, a constraint requiring dif-
ferent instantiation of affected variable symbols, i.e., the inequality constraint, is added
into macro-operator’s precondition (e.g. (not (= ?x ?y)) is added into pickup-stack(?x ?y)’s
precondition).

3.3 Outer Entanglements

Outer Entanglements are relations between planning operators and initial or goal predicates,
and have been introduced as a technique for eliminating potentially unnecessary instances
of these operators (Chrpa et al., 2018).

Generally speaking, entanglements by init capture situations where only instances of
a given operator that requires instances of a certain predicate present in the initial state
are needed to solve the problem. Similarly, entanglements by goal capture situations where
only instances of a given operator that achieves instances of a certain predicate present in
the goal are needed to solve the problem.

For example, in the BlocksWorld domain, the operator unstack is entangled by init with
the predicate on, since we need to unstack blocks only from their initial positions. Similarly,
the operator stack is entangled by goal with the predicate on, since we need to stack blocks
only to their goal positions.

Definition 6. Let Π = (D,P) be a planning task, where P = (Obj, I,G) is a planning
problem and D = (P,O) is a domain model. We say that operator o ∈ O is entangled by
init (resp., goal) with a predicate p ∈ P if and only if p ∈ pre(o) (resp., p ∈ add(o)) and
there exists a solution plan π of Π such that for every o’s instance a ∈ π and for every p’s
instance pgnd it holds: pgnd ∈ pre(a)⇒ pgnd ∈ I (resp., pgnd ∈ add(a)⇒ pgnd ∈ G).

Outer entanglements have been used as a reformulation technique, as they can be directly
encoded into a problem instance. The way outer entanglements are encoded is inspired by
one of their properties: given a static predicate ps (ps is not a part of effects of any operator),
an operator o is entangled by init with ps if and only if ps ∈ pre(o) (Chrpa & Barták, 2009).
For an operator o being entangled by init (resp., goal) with a predicate p, a supplementary
static predicate p′ that “clones” p is introduced and put into pre(o). Initial (resp., goal)
instances of p are cloned and put into the initial state.

Formally, let Π be a planning task, I be its initial state and G its goal. Let an op-
erator o be entangled by init (resp., goal) with a predicate p. Then Π is reformulated as
follows (Chrpa et al., 2018):

1. Add a new static predicate p′ having the same arguments as p to the domain model
of Π.

2. Add p′ into o’s precondition such that p′ has the same arguments as p which is in
precondition (resp., add effects) of o.

8

Planning with Critical Section Macros

3. Add instances of p′ which correspond to instances of p in I (resp., in G) into I.

To give an example, operator unstack(?x ?y) that is entangled by init with (on ?x ?y) is
modified such that a new static predicate (ei on ?x ?y) is added to its precondition. Then,
assuming that, for example, (on A B) and (on B C) are present in the initial state of a
planning task, the initial state of the reformulated planning task will contain (ei on A B)
and (ei on B C).

4. Critical Section Macros (CSMs)

In parallel computing, critical sections are used to regulate the access to resources, to
guarantee the integrity of the overall system by avoiding situations where multiple different
processes are concurrently modifying a shared resource. To prevent other processes (or
threads) to access the resource while it is in use, the resource is locked at the beginning of
the critical section, then the required operations are made with the resource by the process
that is locking it, and then –at the end of critical section– the resource is released and is
therefore available for other processes.

In planning, we can observe that some subsequences of actions in plans replicate the
underlying structure of critical sections, i.e., locking a resource, using it, and releasing it.
In BlocksWorld, the robotic hand can be seen as a resource. When the robotic hand picks-
up or unstacks a block it becomes locked, that is, no other block can be carried by the
robotic hand at that time. When the robotic hand stacks or puts-down the block it is
holding, then the hand is released, that is, it can be used to manipulate other blocks. A
more complicated example can be found in the Barman domain, in which a robotic barman
prepares cocktails. Here, a critical section activity, for instance, involves grabbing a shaker
(locking robot’s hand), shaking a cocktail, pouring the cocktail into a shot, cleaning the
shaker before putting it back on the table (releasing robot’s hand).

The rationale behind CSMs is to bridge resource use with a single macro. Such macros
can hence capture a whole activity that deals with a limited resource (or more limited
resources). This might be beneficial, for instance, for planning techniques incorporating
delete-relaxation, i.e., ignoring delete effects of actions (Hoffmann & Nebel, 2001). For states
in which a resource is available, delete-relaxation heuristics might incorrectly assume that
the resource can be simultaneously used by multiple objects (e.g. a robotic hand holding
multiple blocks at the same time), potentially leading to inaccurate heuristic estimates.

Technically speaking, a free resource, as well as a locked resource, is represented by
corresponding atoms. For example, (handfree) represents a free resource (the robotic hand)
while (holding a) represents a locked resource (the robotic hand carrying block a).

We recognise critical activities by identifying mutex atoms p and q that represent a free
and a locked resource, respectively. We consider two different conditions for p and q such
that one has to be met in order to recognise p and q as a lock. In the first condition, the
arguments of q must be a superset (not necessarily proper) of the arguments of p. Arguably,
since q represents a locked resource, it might contain additional arguments referring to why
the resource is locked (e.g. a hand holding an object), however, it cannot contain fewer
arguments (in order to recover a corresponding atom p after releasing the resource). In the
second condition, p and q must have the same name and the same number of arguments
but they differ at exactly one argument. Such a condition refers to a situation, for example,

9

Chrpa, & Vallati

where a predicate represents a capacity of a resource (e.g. a truck). One argument describes
the capacity of the resource (in that argument in which p and q differ) while the other
arguments describe the resource itself (e.g. a truck).

Locking and releasing resources is done by specific actions. An action that deletes p and
adds q, a locker, locks a given resource. Analogously, an action that deletes q and adds p,
a releaser, releases (unlocks) the given resource. An action having q in its precondition but
not deleting it, a user, uses the given resource. This idea is formalised as follows (note that
args(p) represents the set of arguments of a predicate p).

Definition 7. Let Π be a planning task and atsΠ be atoms and AΠ be actions (defined
in Π). Let p, q ∈ atsΠ be atoms that are mutex and where (i) args(p) ⊆ args(q), or (ii)
name(p) = name(q) and |args(p) ∩ args(q)| + 1 = |args(p)| = |args(q)|. We say that an
action a ∈ AΠ is a p, q-locker if p ∈ del(a) and q ∈ add(a). We also say that a′ ∈ AΠ is
a p, q-releaser if q ∈ del(a′) and p ∈ add(a′). We also say that a′′ ∈ AΠ is a q-user if
q ∈ pre(a′′) \ (del(a′′) \ add(a′′)). We denote the pair p, q as a lock.

The above definition considers single-phased locks, i.e., resources are locked/released by
one action only. However, it might be the case that locking and/or releasing a resource has
to be done in multiple steps. For illustration, multi-phase locks might account for capacity
of a truck that might carry at most k packages. Then, a sequence of “pick” actions might
account for a multi-phase locker and a sequence of “drop” actions might account for a
multi-phase releaser. To consider multi-phased locks, we extend Definition 7 as follows.

Definition 8. Let Π be a planning task and atsΠ be atoms and AΠ be actions (defined
in Π). Let p1, . . . , pk ∈ atsΠ be atoms forming a mutex group and where (i) args(p1) ⊆
· · · ⊆ args(pk), or (ii) name(p1) = · · · = name(pk) and |

⋂k
i=1 args(p

i)|+ 1 = |args(p1)| =
· · · = |args(pk)|. We say that a sequence of actions al1 , . . . , alm forms a p1, . . . , pk-locker
if for each i ∈ {1, . . . ,m} it is the case that ali is a pci , pci+1-locker, where 1 = c1 < c2 <
· · · < cm < cm+1 = k. Similarly, we say that a sequence of actions ar1 , . . . , arn forms a
p1, . . . , pk-releaser if for each i ∈ {1, . . . , n} it is the case that ari is a pdi+1 , pdi-releaser,
where k = d1 > d2 > · · · > dn > dn+1 = 1. We denote the sequence p1, . . . , pk as a phased
lock.

We say that p1, . . . , pk-locker and p1, . . . , pk-releaser are balanced if and only if m = n
and for the indices it is the case that c1 = dn+1, c2 = dn, . . . , cn+1 = d1.

It should be noted that one action can be a locker/releaser or a part of action sequence
forming a locker/releaser for more locks (single- or multi-phased).

In the following subsections, we describe in detail three kinds of CSMs, the simple ones
that use a single-phased lock such that they start with a locker and end up with a releaser
over that (single) lock, and the complex ones that involve multi-phased locks or multiple
locks.

4.1 Single-phased Single-lock CSMs

A Single-phased Single-lock (SpSl) CSM, in general, encapsulates a sequence of actions
starting with a locker and ending up with a releaser. Such an action sequence might also
contain users and “gluing” actions. A gluing action, roughly speaking, is an action that

10

Planning with Critical Section Macros

cannot be moved before the locker or after the releaser without compromising the sequence
– by invalidating a precondition of some action or by achieving a different outcome than
the original action sequence. To give an example, an action sequence – pick(truck pkg
loc1), drive(truck loc1 loc2), drop(truck pkg loc2) – can form a CSM. The drive action is a
gluing action as it neither can be moved before pick, since these actions are not independent
because drive deletes pick’s precondition, nor can be moved after drop, since drive achieves
a fact required by drop. In another action sequence – pick(truck pkg loc1), drive(truck loc1
loc2), drive(truck2 loc2 loc3), drop(truck pkg loc2) –, we can see that we can move the latter
drive action (drive(truck2 loc2 loc3)) after drop as it is not an achiever for drop and both
actions are independent. Note that the latter drive action can also be moved before pick
as it is independent with both pick and the former drive action (drive(truck loc1 loc2)) and
none of these actions is an achiever for it (the latter drive action).

We define the notion of a “potentially gluing” action that unifies the conditions under
which the action can be considered as “gluing” within a CSM.

Definition 9. Let a1,...,k be a macro over 〈a1, . . . , ak〉. We say that an action ai, where
1 < i < k, is a potentially gluing action with respect to a1,...,k if the following conditions
hold:

• there exists an action aj, where 1 ≤ j < i, such that ai and aj are not independent or
aj is an achiever for ai

• there exists an action am, where i < m ≤ k, such that ai and am are not independent
or ai is an achiever for am

Formally, a CSM with a single-phased single lock is defined as follows.

Definition 10. Let Π be a planning task and atsΠ be atoms and AΠ be actions (defined in
Π). Let a1, a2, . . . , ak ∈ AΠ be actions. We say that a1,...,k is a Single-phased Single-lock
Critical Section Macro over a lock p, q (p, q ∈ atsΠ) if it is a macro over a sequence of
actions 〈a1, . . . , ak〉 such that

i) a1 is a p, q-locker

ii) ai, where 1 < i < k, is either a q-user, or a potentially gluing action not being a
q-user (a gluing action, for short)

iii) ak is a p, q-releaser

Furthermore, we can classify SpSl CSMs into the following categories with regards to
their shape.

Trivial – CSM contains only a locker and a releaser

Using – CSM contains also users, besides a locker and a releaser

Gluing – CSM contains also gluing operators, besides a locker and a releaser

Full – CSM contains all types of operators

11

Chrpa, & Vallati

For example, a macro pickup-stack(?x ?y), representing that a block ?x is moved from the
table to a block ?y, is a CSM consisting of only a locker (pickup(?x)) and a releaser (stack(?x
?y)) and hence is classified as trivial. In Storage instead, a macro go out-lift-go in(?hoist
?storearea1 ?transitarea ?crate ?storearea2 ?place), representing that ?hoist initially moves
from ?storearea1 to ?transitarea in order to lift ?crate from ?place in ?storearea2 and then
moves back to ?storearea1, is a CSM consisting of a locker (go out(?hoist ?storearea1 ?tran-
sitarea)), a releaser (go in(?hoist ?transitarea ?storearea1)) and a user (lift(?hoist ?crate ?store-
area2 ?transitarea ?place)) and hence is classified as using. In a variant of Transport in which
each truck can carry at most one package, a macro pick-drive-drop(?truck ?package ?loca-
tion1 ?location2), representing that ?truck delivers ?package from ?location1 to ?location2,
is a CSM consisting of a locker (pick(?truck ?package ?location1)), a releaser (drop(?truck
?package ?location2)) and a gluing action (drive(?truck ?location1 ?location2)) and hence is
classified as gluing.

4.2 Single-Phased Multi-lock Critical Section Macros

Operators involved in one CSM might be lockers or releasers for other CSMs. That said, a
SpSl CSM might contain a part of another CSM (could be more than one). Consequently,
some CSMs might overlap, i.e., sharing a common subsequence of actions, and such a
situation might be impractical during planning, as the planner might use only one of these
macros. To give an example, in the Storage domain we can find two SpSl CSMs (parameters
are omitted for the sake of clarity): go out-lift-go in (see Section 4.1) and lift-go in-drop,
where the hoist lifts a crate, moves from the transit area to a store area and then drops the
crate. These CSMs overlap in the lift and go in actions.

To deal with this issue we introduce Single-phased Multi-lock (SpMl) CSMs that contain
multiple lockers and releasers.

Definition 11. Let Π be a planning task and atsΠ be atoms and AΠ be actions (defined in
Π). Let a1, a2, . . . , ak ∈ AΠ be actions. We say that a1,...,k is a Single-phased Multi-lock
Critical Section Macro over a set of locks p1, q1, p2, q2, . . . , pl, ql (p1, q1, p2, q2, . . . , pl, ql ∈
atsΠ) if it is a macro over a sequence of actions 〈a1, . . . , ak〉 such that

(i) a1 is a pi, qi-locker

(ii) ai, where 1 < i < k, is either

(a) a qx-user, where there exists j < i such that aj is a px, qx-locker and there exists
m > i such that am is a px, qx-releaser

(b) a pv, qv-releaser, where 1 ≤ v ≤ l, there exists 1 ≤ m < i such that am is a
pv, qv-locker

(c) a potentially gluing action which is neither a qx-user nor a pv, qv-releaser as in
(a) or (b), respectively (a gluing action, for short)

(d) a pv, qv-locker, where 1 ≤ v ≤ l, there exists m, where i < m ≤ k, such that am is
a pv, qv-releaser, and ai is a qx-user (x 6= v), a gluing action, or a px, qx-releaser
(x 6= v).

(iii) ak is a pj , qj-releaser

12

Planning with Critical Section Macros

Let locks(i) = {aj | j ≤ i, aj is a pv, qv-locker, 1 ≤ v ≤ l} be a set of lockers up to the index
i and rels(i) = {aj | j ≤ i, aj is a pv, qv-releaser, 1 ≤ v ≤ l} be a set of releasers up to the
index i. It is the case for each 1 ≤ i ≤ k − 1 that |locks(i)| > |rels(i)|.

Returning to the above Storage domain example, we can construct a SpMl CSM –
go out-lift-go in-drop (parameters are omitted for the sake of clarity) representing that a
hoist moves to a transit area, lifts a crate from an adjacent store area, returns back to the
store area the hoist was before and drops the crate to a (different) adjacent store area. By
constructing such a CSM, we effectively deal with the above mentioned overlap.

Note that if a SpMl CSM starts with a pi, qi-locker and ends with a pi, qi-releaser, it
also classifies as a SpSl CSM, where the other lockers and releasers count as users or gluing
actions.

4.3 Multi-phased Single-lock Critical Section Macros

More complex situations involve multi-phased locks, that is, a sequence of actions need to
be applied to get the lock and similarly a sequence of other actions need to be applied to
release the lock. Multi-phased Single-lock (MpSl) CSMs are defined as follows.

Definition 12. Let Π be a planning task and atsΠ be atoms and AΠ be actions (defined in
Π). Let a1, a2, . . . , ak ∈ AΠ be actions. We say that a1,...,k is a Multi-phased Single-lock
Critical Section Macro over a multi-phased lock p1, p2, . . . , pl (p1, p2, . . . , pl ∈ atsΠ) if it
is a macro over a sequence of actions 〈a1, . . . , ak〉 such that

(i) there exist 1 = l1 < · · · < lm < r1 < . . . rn = k such that al1 , . . . , alm forms a
p1, p2, . . . , pl-locker and ar1 , . . . , arn forms a p1, p2, . . . , pl-releaser

(ii) ai, where 1 < i < k and i 6∈ {l1, . . . , lm, r1, . . . , rn}, is a px-user (1 ≤ x ≤ l), or a
potentially gluing action not being a px-user (a gluing action, for short)

For example, in the Transport domain, a MpSl CSM, is pick-pick-drive-drop-drive-drop.
The macro represents that a truck initially picks up two packages at the same location and
delivers the first package to a location adjacent to the location of origin, and the second
package to a location adjacent to the first delivery location.

Note that if a MpSl CSM starts with a p1, p2-locker and finishes with a p1, p2-releaser
(it is always the case for balanced locks), it is also a SpSl CSM (the other actions being
part of the phased lock will count as gluing actions).

It is possible to define Multi-phased Multi-lock (MpMl) CSMs that, roughly speaking,
would combine Definitions 11 and 12. To give an example, in the Barman domain, we can
have two SpSl CSMs, i.e., 1) grasping a shot, filling a shot by an ingredient, pouring the
shot to the shaker, cleaning the shot, filling the shot by another ingredient, pouring the shot
to the shaker, cleaning the shot, leaving the shot, 2) grasping a shaker, shaking a cocktail,
serving the cocktail, emptying, cleaning and leaving the shaker, and one MpSl CSM, i.e., 3)
pouring the shot to the shaker, cleaning the shot, filling the shot with another ingredient,
pouring the shot to the shaker, cleaning the shot, leaving the shot, grasping the shaker,
shaking the cocktail, serving it and emptying the shaker. For the first and second CSM, the
limited resource is a barman’s hand which holds a shot in the first case and the shaker in
the second case. For the third macro, the limited resource is the capacity of the shaker. The

13

Chrpa, & Vallati

go out-lift-go in-drop

go out-lift-go in lift-go in-drop

Figure 1: Example of a SpMl CSM in the Storage Domain.

shaker is filled by two pouring actions and emptied by the “pouring to shot” action and the
“empty” action. It can be observed that the third macro overlaps with the other two. To
deal with the overlap, we can generate a MpMl CSM, i.e., grasping a shot, filling a shaker
with ingredients and leaving the shot, grasping the shaker, shaking a cocktail, serving the
cocktail, cleaning the shaker and leaving the shaker.

5. Compound Critical Section Macros

As macros are encoded as ordinary actions, this fact can be leveraged for assembling more
complex CSMs from simpler ones. In particular, we might only need a method that learns
SpSl CSMs (we refer to this type of macros as simple CSMs) and by iterative use of the
method, we can construct more complex CSMs (i.e., SpMl, MpSl or even MpMl CSMs).
Also, as we learn CSMs from training plans, which might be noisy (e.g., contain some
peculiarities such as very suboptimal action sequences, or redundant actions), it seems to
be a more feasible option to learn CSMs incrementally as shorter macros might be easier to
identify in noisy plans.

Initially, we define the notion of compound CSMs that captures the property where one
CSM (strictly) incorporates a simpler CSM.

Definition 13. Let a1,...,k be a Critical Section Macro over the sequence of actions 〈a1, . . . , ak〉.
Let ai,...,i+m be another Critical Section Macro over the sequence of actions 〈ai, ai+1 . . . , ai+m〉
such that 1 ≤ i < i+m ≤ k. Then, we say that a1,...,k incorporates ai,...,i+m. If (m−1) < k,
then we also say that a1,...,k strictly incorporates ai,...,i+m

We say that a Critical Section Macro cm is compound if there exists a Critical Section
Macro m such that cm strictly incorporates m.

As can be observed from Definition 13, Compound CSMs form hierarchies which are
defined by the relation of strict incorporation.

Definition 14. Let m be a (compound) Critical Section Macro. We say that H(m) is a
Critical Section Macro hierarchy over m, where H(m) = (N,E) is a directed graph
such that N = {mi | m incorporates mi} is a set of nodes and E = {(mi,mj) | mi,mj ∈
N,mi strictly incorporates mj , @mk : mi strictly incorporates mk∧mk strictly incorporates mj}
is a set of edges. We say that a Critical Section Macro mp is primitive with respect to
H(m) if and only if there is no outgoing edge from the mp node in H(m).

14

Planning with Critical Section Macros

For the recent Storage example, the SpMl CSM – go out-lift-go in-drop – has two prim-
itive successors in its CSM hierarchy, i.e., go out-lift-go in and lift-go in-drop, as depicted in
Figure 1.

Since macros are encoded as ordinary actions, we can leverage such a property to con-
dense more complex CSMs by replacing a strictly incorporated action sequences forming
CSMs by actual macros.

Definition 15. Let a1,...,i,...,i+m,...,k be a Critical Section Macro over the sequence of actions
〈a1, . . . , ai, . . . , ai+m, . . . , ak〉. Let ai,...,i+m be another Critical Section Macro over the se-
quence of actions 〈ai, ai+1 . . . , ai+m〉 such that a1,...,i,...,i+m,...,k strictly incorporates ai,...,i+m.
We say that a Critical Section Macro a1,...,{i,...,i+m},...,k, over 〈a1, . . . , ai,...,i+m, . . . , ak〉, is a
condensation of a1,...,i,...,i+m,...,k with respect to ai,...,i+m.

We say that a Critical Section Macro is maximally condensed if its Critical Section
Macro hierarchy contains exactly one node.

Lemma 16. For any triplet of Critical Section Macros, mc,m,m
′, such that mc is a con-

densation of m with respect to m′, it is the case that mc and m are equivalent.

Proof. The claim immediately follows from Definition 4.

The above definition gives an intuition of how more complex CSMs can be incrementally
constructed from simpler CSMs. In particular, we show how more complex CSMs can be
generated while having only a method for generating simple (SpSl) CSMs. The case of SpMl
CSMs is shown in the following proposition.

Proposition 17. For each Single-phased Multi-lock Critical Section Macro m, there exists
an equivalent Single-Phased Multi-lock Critical Section Macro m′ whose Critical Section
Macro hierarchy H(m′) has the following property. For each node mn in H(m′) (it holds
that m′ incorporates mn) it is the case that a maximally condensed Critical Section Macro
equivalent to mn is a Single-phased Single-lock Critical Section Macro.

Proof. Initially, we show that for each SpMl CSM m we can find an equivalent SpMl CSM
m′ such that for each lock considered in m, m′ incorporates a SpSl CSM over that lock.

Without loss of generality let us assume that p, q is a lock and 〈ai, . . . , ai+r−1, ai+r, ai+r+1,
. . . , ai+m〉 is a subsequence of the sequence of actions m is assembled from, where ai is a
p, q-locker, ai+m is a p, q-releaser and ai+r is neither a p, q-user nor a gluing action (as in ii)
of Definition 10). Hence, the action subsequence does not form a CSM because of ai+r. As
ai+r is not a potentially gluing action (see Def. 9) there are two possibilities. If it is the case
that ai+r is independent with all actions ai, . . . , ai+r−1 and no action ai+j (0 ≤ j < r) is
an achiever for ai+r, then we can move ai+r before ai. The independence condition ensures
that ai+r will not delete preconditions for ai, . . . , ai+r−1 as well as these actions will not
delete add effects of ai+r. Also, these actions are not important to satisfy the precondition
of ai+r as none is the achiever for it . Analogously, if it is the case that ai+r is independent
with all actions ai+r+1, . . . , ai+m and an achiever for none of them, then we can move ai+r

after ai+m.
Hence, m′ can be constructed from m by moving the ai+r actions as above. Note that

since the ai+r actions have to meet condition (ii) in Definition 11 they cannot be moved
outside the macro (i.e., either before the first locker or after the last releaser).

15

Chrpa, & Vallati

Next, we show that for each node mc ofH(m′) it is the case that its maximally condensed
equivalent is a SpSl CSM. If mc starts with a locker and ends with a releaser for the same
lock(s), then mc is also a SpSl CSM (see Definition 10). It is straightforward to see that a
maximally condensed CSM, equivalent to mc, is also a SpSl CSM. If mc starts with a locker
and ends with a releaser for at least one different lock, then there exist two CSMs that
are successors of mc in H(m′) as follows (note that more than the two following successors
might exist). Let us assume that mc is a CSM over 〈ai, . . . , aj〉. Let k be the smallest k
such that k > i and 〈ak, . . . , aj〉 forms a CSM. Consequently, this CSM is a successor of mc

in H(m′). Such k exists because if aj is a releaser for a lock that ai is not a locker for, then
a different action in mc has to be that locker. Note that ak does not necessarily have to be
that locker, it might be a locker for a different lock of mc. We can also observe that there
is a releaser au with k ≤ u < j for a lock for which ai is a locker but aj is not a releaser.
If au was placed before ak, then all locks would have been released before ak and hence mc

would not have been a valid CSM (see Definition 11). A condensation of mc with respect
to 〈ak, . . . , aj〉 is a SpSl CSM since the CSM over 〈ak, . . . , aj〉 is a releaser of lock(s) that ai
is the locker for (as the releaser au is part of the incorporated CSM).

We can also find the largest l such that l < j and 〈ai, . . . , al〉 forms a CSM, which is
a successor of mc in H(m′). In analogy to the previous case, we can observe that there is
a locker av with i < v ≤ l for a lock for which aj is a releaser but ai is not a locker. A
condensation of mc with respect to 〈ai, . . . , al〉 is a SpSl CSM since the CSM over 〈ai, . . . , al〉
is a locker of lock(s) that aj is the releaser for.

It can be straightforwardly observed that a successor of SpMl CSM in a CSM hierarchy
has at least one less lock and all primitive CSMs are SpSl CSMs (otherwise they would have
had at least two successors as described above).

To understand the practical consequences of the above proposition (including the proof),
we recall the Storage example. We also assume that we can only identify SpSl CSMs.
Hence sequences in form – go out-lift-go in-drop – would not be immediately identified as
SpMl CSMs. Yet we can identify subsequences – go out-lift-go in – and – lift-go in-drop
– as SpSl CSMs (see Figure 1). We can condense both subsequeces into macros. As the
subsequences overlap, only one of them would be a part of the SpMl macro. For the first
subsequence, we get CSM1-drop. CSM1 inherits the locker property from the lift action
and hence CSM1-drop forms a compound SpSl CSM. For the second subsequence, we then
get – go out-CSM2. CSM2 inherits the releaser property from the go in action and hence
go out-CSM2 also forms a compound SpSl CSM.

In a similar fashion, MpSl CSMs, where multi-phased locks are balanced, can be incre-
mentally constructed from SpSl CSMs.

Proposition 18. For each Multi-phased Single-lock Critical Section Macro m, where the
lock is balanced, there exists an equivalent Multi-phased Single-lock Critical Section Macro
m′ whose Critical Section Macro hierarchy H(m′) has the following property. For each
node mn in H(m′) (it holds that m′ incorporates mn) it is the case that a maximally con-
densed Critical Section Macro equivalent to mn is a Single-phased Single-lock Critical Sec-
tion Macro.

16

Planning with Critical Section Macros

Proof. In analogy to proof of Proposition 17, we can obtain m′ from m by moving actions
that are neither users nor gluing actions before the lockers or after the releasers.

Let m′ be a MpSl over p1, . . . , pk-lock. Let mi be a CSM over pi, . . . , pk-lock with
1 ≤ i < k such that m′ incorporates mi. We can observe directly from Definition 12
that mi strictly incorporates mj for every 1 ≤ i < j < k. We can also observe that a
condensation of mi with respect to mi+1 (1 ≤ i < k − 1) is a maximally condensed SpSl
CSM over pi, pi+1-lock (mi+1 becomes a pi+1-user). Finally, we can observe that mk−1 is a
SpSl CSM over (single-phased) pk−1, pk-lock, which is primitive in H(m′).

For MpSl CSMs, the CSM hierarchy is linear, so the bottom-up construction of MpSl
CSMs is straightforward. In Transport we might, for example, initially generate a SpSl
CSM – pick-drive-drop, which is condensed to CSM1. Then we might, for example, generate
a compound SpSl CSM – pick-CSM1-drive-drop – which is equivalent to MpSl CSM – pick-
pick-drive-drop-drive-drop. Technically, as we deal with balanced locks the macro in each
level of the hierarchy is a SpSl CSM. Hence, it might be possible to identify MpSl CSMs
with balanced locks at once even if we assume that we can only identify SpSl CSMs. In
practice, however, the bottom-up incremental approach might be useful to deal with noise
in training plans or to limit the number of macros’ arguments (see Section 6).

By combining proposition 17 and 18 we can also construct MpMl CSMs, where multi-
phased locks are balanced.

6. Constructing Critical Section Macros from Training Plans

To learn CSMs from training plans, we have to determine locks, lockers and releasers.
Since macro-operators are a domain-specific (or class-of-problems-specific) kind of knowl-
edge, locks, lockers and releasers have to be in lifted form. We capture the information in
quadruples (p, q,Ol, Or), where p, q are predicates and Ol, Or are sets of operators defined in
the given domain model. Then, for each pg and qg being instances of p and q, respectively,
and forming a lock, it is the case that for each operator ol ∈ Ol there exists its instance being
a pg, qg-locker and for each operator or ∈ Or there exists its instance being a pg, qg-releaser.
The quadruples (p, q,Ol, Or) are determined by considering whether each operator, defined
in the domain model, that deletes p (resp. q) adds the corresponding variant of q (resp. p).
Such operators then form the Ol (resp. Or) set. On top of that, corresponding instances
of p and q must not be simultaneously present in initial states of the considered planning
tasks (otherwise the instances of p and q are not mutex). Note that our notion of mutex
corresponds with the notion of Fact Alternating Mutex (Fiser & Komenda, 2018).

6.1 Constructing Single-phased Single-lock Critical Section Macros

Algorithm 2 describes the method for learning SpSl CSMs from a set of training plans.
Initially, quadruples (p, q,Ol, Or) are determined (Line 1). For each training plan, we de-
termine all possible locker/releaser pairs (al, ar) with corresponding instances of the locks
(pg, qg) (Line 3). Then, we iterate through the locker/releaser pairs (Lines 4–14). Besides
al (pg, qg-locker) and ar (pg, qg-releaser) we consider qg-users into a possible macro-action
(Line 5). Other actions placed in between al and ar are checked whether they can be moved
away (either before al or after ar). This is done by the ConsiderDependent function. The

17

Chrpa, & Vallati

Algorithm 2 Learning (SpSl) CSMs from training plans

1: cs← {(p, q,Ol, Or) | ol ∈ Ol is a p, q-locker; or ∈ Or is a p, q-releaser}
2: for each 〈a1, . . . , an〉 in Training Plans do
3: lr pairs ← {(al, ar, pg, qg) | (p, q,Ol, Or) ∈ cs; r > l; al, ar, pg, qg are instances of
ol ∈ Ol, or ∈ Or, p, q respectively; pg ∈ del(al) ∩ add(ar); qg ∈ add(al) ∩ del(ar)}

4: for each (al, ar, pg, qg) ∈ lr pairs do
5: in ma← {ak | l < k < r; qg ∈ pre(ak)} ∪ {al, ar}
6: out ma← {ak | l < k < r; ak 6∈ in ma}
7: ConsiderDependent(in ma,out ma)
8: if (optional) some gluing action added an extra argument then
9: continue

10: end if
11: ma←CreateMacro(in ma)
12: ConsiderGoalAchieving(ma)
13: ConsiderConnected(ma)
14: AddMacro(mcr db,ma)
15: end for
16: end for
17: FilterUnderrepresentedMacros(mcr db,ν1)
18: RefineMacroOperators(mcr db)

19: function ConsiderDependent(in ma,out ma)
20: while ∃k : {i | ai ∈ out ma; i < k} = ∅ and {ai | ai ∈ in ma; i < k; ai is an achiever

for ak or ai is not independent with ak} = ∅ do
21: out ma← out ma \ {ak}
22: end while
23: while ∃k : {j | aj ∈ out ma; j > k} = ∅ and {aj | aj ∈ in ma; j > k; ak is an

achiever for aj or aj is not independent with ak} = ∅ do
24: out ma← out ma \ {ak}
25: end while
26: in ma← in ma ∪ out ma
27: end function

idea of how intermediate actions can be moved away, formalised in Definition 9, is based on
the observation that: if for two adjacent actions a, a′ in a plan (in this order), it is the case
that a and a′ are independent and a is not an achiever for a′, then a, a′ can be swapped
without compromising the correctness of the plan (a similar approach has been used by
MUM (Chrpa et al., 2014)). Those actions that cannot be moved away are gluing actions
(see ii) in Definition 10). See Section 4.1 for details. Optionally, we might not consider
macro-actions where some of the gluing actions introduced one or more extra arguments
(Line 8) to prevent a possibly large number of instances of macro-operators, refined from
such macro-actions (Line 18). After the macro-action is created by assembling the sequence
of actions in in ma (Line 11), it is checked whether it is goal achieving, i.e., whether some of
its add effects are goal atoms. Goal achieving macro-operators (refined from goal-achieving

18

Planning with Critical Section Macros

Algorithm 3 A high-level routine for learning SpSl CSMs

1: Generate training plans by solving training problem instances
2: Learn (SpSl) CSMs by applying Algorithm 2 and add the macro-operators into the

domain model
3: Generate plans by solving training problem instances with the enhanced domain model
4: Eliminate macro-operators that are underrepresented in the plans, i.e., their number is

below ν2

5: Learn and apply Outer Entanglements on the remaining macro-operators

macro-actions), in fact, are entangled by goal with some predicate whose instances are
present in the goal. On top of that, if a macro-action is goal achieving we check whether
the macro-action is connected, i.e., its precondition atoms that contain some of the argu-
ments of the goal achieving atoms are also present in the initial state. That is, we try
to identify whether there are predicates a macro-operator (refined from connected macro-
actions) is entangled by init with such that each of the predicates has at least one shared
argument with a predicate the macro-operator is entangled by goal with. Note that the
concept of connected macros was discussed by Chrpa, Vallati, and McCluskey (2015).

A macro database (mcr db) groups together macro-actions that are assembled from the
same action sequence, have the same argument binding, are goal achieving for the same
predicates (or not goal achieving at all) and are connected by the same predicates (or not
connected at all). Before refining macro-operators from the (remaining) groups of macro-
actions in the macro database (Line 18), which is done analogously to other macro learning
techniques (Botea et al., 2005; Chrpa, 2010b), macro-actions that are underrepresented,
i.e., their number in the macro database is below a specified threshold ν1, are filtered out
(Line 17). Note that underrepresented macro-operators, in the Machine Learning terminol-
ogy, can be understood as noise in training data. They are, for example, problem-specific
macros that do not generalise for a class of planning problems, or capture peculiarities in
training plans. Such macros are very unlikely to be beneficial. Other macro learning tech-
niques such as MacroFF (Botea et al., 2005) or MUM (Chrpa et al., 2014) also eliminate
underrepresented macros for the same reason. If the macro database contains more groups
referring to a macro assembled from the same action sequence (but there are differences
in the constraints) we prefer the most constrained version of the macro (i.e., we prefer
connected over goal achieving and goal achieving over unconstrained macros).

The whole procedure of learning (SpSl) CSMs is summarised in Algorithm 3 (the pro-
cedure is inspired by BloMa (Chrpa & Siddiqui, 2015)): It might often be the case that
the number of learned macro-operators (after step 2) is rather large and there also might
be overlaps in operator sequences macros are assembled from. Generating the plans again,
but now with the enhanced domain model, will identify possibly useful and useless macros,
according the frequency of their use in the plans (ν2 is the threshold). Note that such a
strategy has also been exploited by MacroFF (Botea et al., 2005) and BloMa (Chrpa &
Siddiqui, 2015). Applying Outer Entanglements on the remaining macros has been shown
to be a useful strategy to reduce the number of their possible instances (Chrpa, 2010a) and
such a strategy was also used by BloMa (Chrpa & Siddiqui, 2015).

19

Chrpa, & Vallati

Algorithm 4 A high-level routine for learning compound CSMs

1: Generate training plans by solving training problem instances (with the enhanced do-
main model since the second iteration)

2: Learn CSMs by applying Algorithm 2 (macros in the current enhanced domain model
are considered as ordinary operators)

3: If new macro-operators are generated, enhance the domain model and go to step 1
4: Generate plans by solving training problem instances with the enhanced domain model
5: Eliminate macro-operators that are underrepresented in the plans, i.e., their number is

below ν2

6: Learn and apply Outer Entanglements on the remaining macro-operators

6.2 Constructing Compound Critical Section Macros

Compound CSMs are composed from primitive actions/operators as well as other CSMs
(see Definition 13). That said, compound CSMs can be constructed from simpler CSMs.
The consequence of Proposition 17 is that we can incrementally build any “interesting”
SpMl CSM3 by repeatedly using the algorithm for identifying SpSl CSMs (Algorithm 2).
Analogously, the consequence of Proposition 18 is that we can incrementally build any
“interesting” MpSl CSM with a balanced lock. Consequently, we can incrementally build
any “interesting” MpMl CSM with balanced multi-phased locks.

To summarise the procedure for incrementally generating compound CSMs as in Algo-
rithm 4, SpSl CSMs are initially learned by Algorithm 2, then these CSMs are encoded
into the domain model as ordinary operators, then Algorithm 2 is applied again to learn
compound CSMs, which if generated are also encoded into the domain model, and the pro-
cess continues until no new (compound) CSMs are generated. At the end, underrepresented
CSMs are eliminated and Outer Entanglements applied on the remaining CSMs in the same
way as the SpSl CSM generation procedure does in Algorithm 3.

Technically, in each iteration of the compound CSM learning method, we move up
in CSM hierarchy. Initially, we can identify only SpSl CSMs. Note that SpSl CSMs
might not be necessarily primitive, i.e., even a SpSl CSM might strictly incorporate an-
other CSM. In our Storage example (see Figure 1), we can initially learn primitive SpSl
CSMs – go to transit-lift-go back and lift-go back-drop. In the second iteration, we can learn
SpMl CSM – go to transit-lift-go back-drop.

Besides generating “interesting” complex CSMs, the incremental method for generating
compound macros has two practical benefits. One benefit is about being more robust to
noise in training plans. Shorter macros can be identified more easily. For longer macros the
issue is that, besides higher “chance” for noise to prevent identifying such macros, longer
macros are (much) less frequent despite being possibly (very) useful. Hence, it is more likely
that trying to identify more complex CSM at once might fail due to noise in training plans.
The other, perhaps not so obvious, benefit is in keeping the number of candidate macros
reasonably low. If we generate all possible CSMs (including the complex ones) at once, the
number of macros might be (very) high. Since between different CSMs there will be a lot

3. For each SpMl CSM which cannot be incrementally built there exists an equivalent SpMl CSM we can
incrementally build (see Proposition 17 for details).

20

Planning with Critical Section Macros

of overlaps (a simple example of overlaps can be seen in the Storage domain), only a small
number of candidate CSMs will be useful. However, with a large number of complex CSMs
even training tasks might be difficult to solve for planners and hence step 4 of Algorithm 4
would have likely failed in some occasions.

6.3 Aggressive Approach

Adding sound macro-operators into a domain model does not compromise completeness.
On the other hand, the size of (grounded) representation can considerably grow as macros
often have more instances than ordinary operators, due to a larger number of arguments.
Consequently, planners might suffer with increased memory requirements and with extra
burden in pre-processing.

To mitigate such an issue, original operators that are effectively replaced by macros can
be removed from the domain model. CSMs have a good potential to replace original oper-
ators that operate with particular resources because the activities these macros represent
have to be usually performed either as whole or not at all. For example, in a variant of the
Transport domain, where all locations are connected with each other, a CSM pick-drive-drop
replaces original operators pick and drop (unless some truck initially carries some package
or it is required that some truck carries a package in the goal).

The aggressive version of our CSM approach consists of the following steps:

1. Generate CSMs (simple or compound) and add them into the domain model.

2. Remove the first and the last operators of each CSM (i.e., lockers and releasers) from
the domain model.

3. Generate plans for the training problem instances with the modified domain model.

4. If some task cannot be solved, then fail (removed original operators are necessary).

5. Otherwise analyse the plans and eventually remove also those operators whose in-
stances are never used in these plans.

The aggressive approach can compromise completeness as it can remove original oper-
ators that might be necessary to solve some (non-training) tasks. On the other hand, by
removing original operators the aggressive approach can (sometimes considerably) reduce
the size of the representation, and prune the search space. In the above Transport example,
removing the pick and drop operators prunes out states in which a package is inside a truck
and thus considerably reduces the size of (grounded) representation. The risk of making
a task unsolvable can be alleviated by incorporating aggressive approaches into portfolios
containing conservative components (e.g., the original model, a model with macros but
containing all original operators).

7. Experimental Evaluation

This experimental analysis aims at: (i) assessing the capabilities of the introduced ap-
proaches to extend domain models with CSMs that can improve the performance of domain-
independent planning engines; (ii) comparing the performance gap between the complete

21

Chrpa, & Vallati

and incomplete (aggressive) CSMs, and (iii) comparing the proposed CSMs with state-of-
the-art techniques, MUM (Chrpa et al., 2014) and BloMa (Chrpa & Siddiqui, 2015).

7.1 Benchmarks and Planning Engines

We considered a range of well-known benchmark domains from both deterministic and learn-
ing tracks of IPCs. In particular: Elevators, Floortile, GED, Hiking, Termes, and Transport
from the deterministic track of IPCs 2011, 2014 and 2018, and Barman, Blocksworld (Bw),
Depots, Gold Miner (Gold), Gripper, Matching-Bw, Rovers, Sokoban, and Thoughtful from
the learning track of IPCs 2008 and 2011. We have also considered the Storage domain from
IPC 2006, that was used for evaluating the BloMa technique (Chrpa & Siddiqui, 2015). We
did not include in the experimental analysis domains from the aforementioned competitions,
where no CSMs were generated, and domains that include unsupported ADL features (we
partially support only negative preconditions). Note that we modified the Transport do-
main such that the Drive action has constant cost of 20 since our implementation does not
fully support cost increase by numeric fluents.

As testing instances, for each domain we used those exploited in IPCs. There are 20
instances for the domains included in the deterministic tracks (except Storage), and 30
instances for the learning track benchmarks and Storage.

We selected 8 state-of-the-art planning engines, according to their results in the IPCs
while considering a diverse range of planning techniques they leverage, namely: FF (Hoff-
mann & Nebel, 2001), LAMA (Richter & Westphal, 2010), Probe (Lipovetzky, Ramirez,
Muise, & Geffner, 2014), MpC (Rintanen, 2014), Mercury (Katz & Hoffmann, 2014),
Yahsp3 (Vidal, 2014), FDSS 2018 (Seipp & Röger, 2018) and Dual BFWS (Lipovetzky,
Ramirez, Frances, & Geffner, 2018). We aimed at including planning engines exploiting
very different planning techniques, to better capture the impact of the generated macros on
a wide range of approaches.

7.2 Evaluation Metrics

Three metrics were used to evaluate planners’ performance, namely coverage (number of
solved problems), PAR10 score and IPC quality score. For each testing task a time limit of
900 seconds and a memory limit of 4 GB is applied (as in the learning tracks of IPCs). All
the experiments were conducted on Intel Xeon E5-2620 v4 2.10 GHz with 32GB RAM.

Penalised Average Runtime (PAR10) score is a metric usually exploited in machine
learning and algorithm configuration techniques. This metric trades off coverage and run-
time for solved problems: if a planner p solves a problem instance Π in time t ≤ T (T = 900s
in our case), then PAR10 (p,Π) = t, otherwise PAR10 (p,Π) = 10T (i.e., 9000s in our case).

IPC quality score is defined as in the learning track of IPC-7 (Coles, Coles, Olaya,
Jiménez, Lòpez, Sanner, & Yoon, 2012). For an encoding e of a problem instance Π,
IPC(Π, e) is 0 if Π is unsolved in e, and (m∗Π/mΠ,e)), where mΠ,e is the cost of the plan of Π
in e and m∗Π is the minimum cost of the plan of Π in any considered encodings, otherwise.

22

Planning with Critical Section Macros

7.3 Learning

Similarly to other macro learning techniques (Chrpa et al., 2014; Chrpa & Siddiqui, 2015),
we considered 6 training tasks per each domain such that their plan length was mostly
within 30-80 actions4. One training plan was considered per training task.

For each individual domain, out of all considered planners, a planner which generates
best quality training plans, i.e., the minimum sum of the lengths of the plans or the minimum
sum of the costs of the plans (depending whether action costs are/not considered), is selected
to generate training plans for that domain. This methodology, used also by BloMa (Chrpa &
Siddiqui, 2015), follows an intuition that good quality training plans yield to most promising
knowledge for all planners rather than when each planner generates training plans for itself,
which has been empirically verified in the recent work (Chrpa & Vallati, 2019).

The thresholds for underrepresented macros, ν1 and ν2 (see Algorithms 2,3 and 4) were
set according to results of preliminary experiments. In particular, ν1 was set to maximum
of 1/2 of the number of the training tasks and 1/3 occurrences of the most frequent macro,
while ν2 was set to the number of training tasks. The thresholds are set more conservatively
than in the BloMa approach (Chrpa & Siddiqui, 2015) as CSMs are more “focused”. The
number of occurrences of the most frequent macro identified in training plans indicates how
many times a useful macro should occur. Setting the ν1 threshold to 1/3 of the occurrences
of the most frequent macro turned up to be a reasonable compromise (note that BloMa
considered the threshold of 1/2 of the occurrences of the most frequent macro). In Floortile,
for example, the most frequent macro has 108 occurrences while the second most frequent
macro has 23 occurrences (there were 29 detected macros in total). Although out of these 29
macros only 16 passed the lower threshold, i.e., 1/2 of the training tasks, they still possessed
considerable burden for the planning process. The ν1 threshold, however, eliminated all the
identified macros, except the most frequent one, which had improved the planning process
(especially, in the aggressive version). The lower threshold of ν1, that is, 1/2 of the number
of the training tasks is very conservative, on the other hand, it can still effectively filter
out useless macros that occur once or twice and rather than general knowledge they reflect
peculiarities of individual training plans. On the other hand, such a low threshold allows
to consider possibly useful macros. A good example can be found in the Hiking domain,
where one useful macro has initially only 4 occurrences (the most frequent macro has 7).
Note that that macro after generating training plans with macros (step 3 in Algorithm 3)
occurred 12 times in the (macro-enhanced) training plans and hence the macro passed the ν2

threshold. That threshold (ν2) ensures that there is at least one macro per training problem
in average which has shown to be reasonable as it eliminates possibly useless macros but
conservative enough to keep more complex (often compound) macros that are useful but
not that frequent.

The learning process usually took at most several seconds with some notable exceptions
such as compound CSM generation in Sokoban and Transport, where the learning process
took more than 10 minutes. Also, in Hiking during compound CSM generation the planner
(FF) crashed (buffer overflow) in Step 4 of Algorithm 4. Note that the plan generation is

4. For the IPC 2011 domains, we used provided problem generators while for the IPC 2008 domains, we
selected the tasks from the provided sets of bootstrap tasks. For the deterministic track domains, we
used problem instances from the optimal track, if available, or the satisficing track otherwise.

23

Chrpa, & Vallati

the most computationally expensive part of the learning process, and can be done offline –
so it does not have any impact on the performance of the planning engines that are going
to exploit generated macros5.

7.4 Complete (Conservative) Approaches

Table 1 gives an overview of the average performance achieved by the considered planning
engines on the selected benchmarks, when using the original domain model (O) or the
models extended with the learnt CSMs. In particular, extended with simple CSMs with
(C) and without argument limit (nC), i.e., whether the extra argument check on Line 8 of
Algorithm 2 is enabled or not, and compound CSMs with (cC) and without argument limit
(ncC). Detailed results, showing planning engine by domain performance, are provided in
Appendix A.1.

Considering the coverage results shown in Table 1, it is easy to notice that the use of
models extended with CSMs can usually considerably improve the performance of domain-
independent planning engines. Only in four domains, namely Termes, Transport, Gold-
miner and Thoughtful, the use of macros leads to a slight underperformance when compared
to the original domain model. The only case in which the use of macros is significantly
reducing the solving capabilities of planning engines is in Transport, when compound CSMs
without argument limits are used: learnt macros have a very large number of instances, that
makes basically impossible to solve any instance due to its grounded size. Overall, CSMs
have a very beneficial impact on planners’ performance on the considered benchmarks.

Imposing argument limits for macros is not new (Botea et al., 2005; Chrpa, 2010b)
and the rationale behind it is to avoid generating macros with a possibly huge number of
instances. Hence it is not a big surprise that CSMs do often perform better with argument
limit than without it (it is more apparent for compound CSMs, especially in the Transport
domain). However, there are some exceptions to the rule. One example is the GED domain.
By lifting the argument limit constraint, we are able to learn a useful CSM which captures
genome cutting and splicing (in this order). On top of that, arguments of that macro
are strongly intertwined by learnt entanglements and hence such a macro despite having
extra arguments has only a few instances. Another example, where lifting the argument
limit constraint was beneficial, concerns the Hiking domain, where a useful compound CSM
was generated. The macro, assembled from 12 primitive operators, captures the activity of
transporting and setting up a tent in a hikers’ walking destination, performing the walk and
returning the tent back to its former place. Contrary to the GED macro, arguments of the
Hiking macro are only loosely intertwined. Hence, the number of instances of the Hiking
macro is relatively large (about 45% of the number of instances of the original operators).
Yet, such a drawback of the macro is outweighed by its length and by its (very) frequent
use in plans.

Table 1 also shows PAR10 and IPC quality results. The use of models enhanced with
macros is usually reflected in better PAR10 score; this comes as no surprise, since PAR10
mixes runtime and coverage – that are exactly the aspects that macros aim at improving.
With regards to IPC quality, that measures a trade-off between quality of generated plans
and coverage, we can see that the use of macros does not have a detrimental impact on

5. Our code and benchmarks can be found at: https://github.com/lchrpa/CSMs.

24

Planning with Critical Section Macros

Coverage PAR10 IPC quality
Domain O C nC cC ncC O C nC cC ncC O C nC cC ncC

Elevators 16.8 19.4 19.4 18.5 18.5 1494.8 299.2 300.6 713.6 703.3 15.3 16.6 16.6 14.6 14.6
Floortile 8.4 8.5 8.5 8.5 8.5 5251.2 5192.2 5190.8 5191.2 5189.7 8.4 6.4 6.4 6.4 6.4
GED 13.8 - 15.6 - 15.6 2830.1 - 1984.1 - 1984.4 12.4 - 14.5 - 14.5
Hiking 13.5 17.0 13.3 - 17.8 3000.8 1382.3 3107.9 - 1034.1 12.4 12.2 9.4 - 11.4
Termes 6.0 5.3 5.5 5.0 3.6 6320.3 6669.4 6542.5 6787.6 7380.4 5.3 4.4 4.7 3.5 2.6
Transport 14.1 10.3 11.6 10.1 0.0 2697.6 4464.6 3858.1 4521.1 9000.0 12.7 8.9 10.1 8.9 0.0

Barman 7.1 21.9 22.0 30.0 30.0 6918.8 2521.0 2509.7 47.7 42.3 5.6 21.1 21.3 30.0 30.0
Bw 16.4 22.6 22.6 22.9 22.6 4137.1 2261.1 2268.3 2188.9 2268.8 11.7 21.3 21.3 21.4 21.3
Depots 10.9 11.8 11.8 11.8 11.9 5833.0 5535.0 5535.1 5538.3 5501.1 9.7 11.3 11.3 11.3 11.4
Gold 29.8 28.6 29.5 28.6 29.5 77.8 433.0 158.0 433.0 158.1 26.2 24.0 22.9 24.0 22.9
Gripper 0.9 11.1 11.0 11.0 11.0 8753.6 5706.3 5746.3 5746.1 5746.5 0.8 11.1 11.0 11.0 11.0
Match-Bw 15.6 27.0 27.0 27.0 27.0 4330.9 914.7 914.3 914.1 914.9 13.0 26.3 26.3 26.3 26.3
Rovers 23.3 24.3 24.1 24.3 24.0 2193.9 1902.6 1946.0 1910.8 1974.1 22.6 23.4 23.3 23.7 23.4
Sokoban 25.5 27.0 23.9 26.8 23.9 1373.7 935.8 1963.7 1004.5 1963.3 23.0 23.8 20.3 23.5 20.3
Storage 22.8 22.1 22.1 23.1 23.1 3272.5 3559.1 3559.1 3125.9 3124.5 20.2 20.2 20.2 21.7 21.7
Thoughtful 19.0 18.6 18.6 18.6 18.6 3305.5 3420.8 3421.1 3422.2 3422.2 18.3 18.0 18.0 18.0 18.0

Overall 13.5 16.2 16.1 16.6 15.8 3497.5 2738.4 2744.6 2596.9 2961.8 12.1 14.8 14.6 15.3 14.4

Table 1: Average Results: (O)riginal models with CSM enhanced models, namely CSMs
with (C) and without argument limit (nC). Compound CSMs with (cC) and without ar-
gument limit (ncC). Totals do not include GED and Hiking domains, for which some set
of macros were not generated. Top part of the table shows results on deterministic bench-
marks, excl. Storage (20 instances per domain), bottom on learning, incl. Storage (30).
Coloured cells indicate best performance for the corresponding metric.

the quality of generated plans: this can be better observed in domains where coverage is
similar, like Thoughtful and Storage.

With regards to the generated CSMs, Table 2 provides an overview of the extracted set
of macros, in terms of the number of CSMs per type and equality of learnt macro sets among
the different approaches (where applicable). As it is apparent, in many of the considered
benchmarks, the macro sets are identical: this is partially due to the structure of the domain
models that might allow only some specific kinds of CSMs. Regarding types of SpSl CSMs
(or simple CSMs, in other words) we can observe that Trivial CSMs considerably improve
planners’ performance in Bw and Matching-Bw domains. In other domains, where Trivial
CSMs were generated the performance difference (with respect to the original domains)
is negligible. For the Using CSMs, we can observe a great performance improvement in
Barman while, in contrary, decrease of performance in Termes. Similarly, Gluing CSMs
work very well in Gripper but underperform in Transport. With regards to complex CSMs,
we can observe that MpMl CSMs perform very well in Hiking and Barman while the use of
MpSl CSMs in Termes and Transport leads to (considerable) performance decrease. These
domains are, however, the only domains in which MpMl or MpSl CSMs were generated and
thus the observations we made here are inconclusive in general. Regarding SpMl CSMs we
observed an increase of performance in Rovers and Storage while in Termes the performance
was worse. In summary, there does not seem to be any (significant) correlation between the
type of CSMs and its effect on planners’ performance.

25

Chrpa, & Vallati

Simple CSM Simple CSM (NL) Compound CSM Compound CSM (NL)
Domain Triv Use Glu Full Triv Use Glu Full SpSl SpMl MpSl MpMl SpSl SpMl MpSl MpMl
Elevators 0 1 1 0 Simple CSM Simple CSM∗ Simple CSM∗

Floortile 0 1 0 0 Simple CSM Simple CSM Simple CSM
GED N/A 0 0 1 0 N/A Simple CSM
Hiking 0 1 0 1 0 1 0 2 N/A 0 0 0 1
Storage 1 1 0 0 Simple CSM 1 1 0 0 Compound CSM
Termes 0 3 0 0 0 4 0 0 6 1 0 0 6 0 1 0
Transport 0 0 2 0 0 0 2 0 Simple CSM 2 0 1 0
Barman 0 2 0 0 Simple CSM 2 0 0 1 Compound CSM
Bw 3 0 0 0 Simple CSM Simple CSM Simple CSM
Depots 2 0 0 0 Simple CSM Simple CSM Simple CSM
Gold 0 1 0 0 0 0 0 1 Simple CSM Simple CSM (NL)
Gripper 0 0 1 0 Simple CSM Simple CSM Simple CSM
Matching-Bw 6 0 0 0 Simple CSM Simple CSM Simple CSM
Rovers 1 1 0 0 Simple CSM 1 1 0 0 Compound CSM
Sokoban 1 0 0 0 1 0 1 0 Simple CSM Simple CSM (NL)
Thoughtful 1 0 0 0 Simple CSM Simple CSM Simple CSM

Table 2: Numbers of generated macros per type. NL represents “no argument limit”. N/A
represents “no macro generated”. The set name in the row (e.g. Simple CSM) represents
that the given set is the same as the one stated. ∗ means that the given set differs from the
stated one by outer entanglements.

Table 3 shows how the coverage performance of the considered planning engines are
affected by the use of domain models enhanced by CSMs and Compound CSMs. For both
set of macros, we considered the version with argument limit as, according to Table 1,
they allow to deliver the best overall performance. The coverage results confirm that the
generated macros are usually beneficial for the planning engines in the majority of the
benchmark domains. Interestingly, the impact of macros seems to be more related to the
domain model structure, rather than on the specific characteristics of planning engines. In
benchmark domains where macros are beneficial, the improvement is usually noticeable for
most (all) of the planning engines. As previously discussed, in four domains, namely Termes,
Transport, Gold-miner and Thoughtful, the use of macros leads to a slight underperformance
when compared to the original domain model.

To give a better overview of the overall performance of the original models and of
the models enhanced with macro actions, Figure 2 provides a graphical representation
of coverage performance. Given a considered planning model, the figure shows, for each
domain, the percentage of planning engines that solved few instances (< 33%), around
half of the instances (between 33% and 66%), and most of the instances (> 66%). The
figure presents the results achieved by the considered planners running with the original
domain models (a), and with the two best CSM enhanced models –as for Table 1: CSMs
with argument limit (b), and compound CSMs with argument limit (c). As it is apparent,
the enhanced models are generally allowing planning engines to solve a larger number of
instances within the allowed CPU-time limit.

As a rule of thumb a macro that is goal achieving and captures frequent and non-
trivial activity usually considerably improves planners’ performance. Besides the above
GED and Hiking examples, our approach can generate a useful compound CSM in the
Barman domain. The macro, assembled from 14 primitive operators, captures the whole
process of cocktail preparation, i.e., putting required ingredients into the shaker, shaking

26

Planning with Critical Section Macros

Elevators Floortile Hiking Transport Termes

O C cC O C cC O C cC O C cC O C cC

FF 0 20 20 FF 2 2 2 FF 9 18 - FF 0 1 1 FF 0 0 0
LAMA 20 20 19 LAMA 6 7 7 LAMA 19 15 - LAMA 17 15 13 LAMA 14 14 13
Probe 19 20 20 Probe 4 4 4 Probe 20 20 - Probe 16 13 13 Probe 7 6 5
MpC 15 15 18 MpC 20 20 20 MpC 0 7 - MpC 0 0 0 Mp 0 0 0
Mercury 20 20 20 Mercury 7 7 7 Mercury 12 20 - mMrcury 20 11 11 Mercury 13 9 10
Yahsp 20 20 13 Yahsp 6 6 6 Yahsp 17 18 - Yahsp 20 8 8 Yahsp 0 0 0
BFWS 20 20 20 BFWS 2 2 2 BFWS 11 18 - BFWS 20 20 20 BFWS 2 3 3
FDSS 20 20 18 FDSS 20 20 20 FDSS 20 20 - FDSS 20 14 15 FDSS 12 10 9

Barman Bw Depots Gold Gripper

O C cC O C cC O C cC O C cC O C cC

FF 0 30 30 FF 0 8 8 FF 1 11 11 FF 30 27 27 FF 0 28 28
LAMA 2 30 30 LAMA 28 29 29 LAMA 1 0 0 LAMA 30 30 30 LAMA 7 30 30
Probe 5 5 30 Probe 27 30 30 Probe 30 30 30 Probe 30 30 30 Probe 0 0 0
MpC 0 0 30 MpC 0 29 29 MpC 2 2 2 MpC 30 30 30 MpC 0 0 0
Mercury 26 30 30 Mercury 19 30 30 Mercury 0 0 0 Mercury 30 26 26 Mercury 0 25 25
Yahsp 0 30 30 Yahsp 28 27 28 Yahsp 22 20 20 Yahsp 28 26 26 Yahsp 0 0 0
BFWS 0 20 30 BFWS 4 3 3 BFWS 11 16 16 BFWS 30 30 30 BFWS 0 5 5
FDSS 24 30 30 FDSS 25 25 26 FDSS 20 15 15 FDSS 30 30 30 FDSS 0 1 0

Matching-Bw Rovers Sokoban Storage Thoughtful

O C cC O C cC O C cC O C cC O C cC

FF 13 27 27 FF 1 7 8 FF 19 23 23 FF 18 19 19 FF 17 20 20
LAMA 26 29 29 LAMA 30 30 29 LAMA 21 20 20 LAMA 19 20 21 LAMA 25 23 23
Probe 13 30 30 Probe 30 29 30 Probe 25 30 29 Probe 21 29 29 Probe 21 23 23
MpC 0 23 23 MpC 16 17 16 MpC 30 30 30 MpC 29 18 18 MpC 0 0 0
Mercury 10 22 22 Mercury 28 29 29 Mercury 23 24 23 Mercury 20 18 21 Mercury 21 17 17
Yahsp 21 26 26 Yahsp 30 30 30 Yahsp 26 29 29 Yahsp 22 21 23 Yahsp 8 6 6
BFWS 12 29 29 BFWS 21 22 22 BFWS 30 30 30 BFWS 30 30 29 BFWS 30 30 30
FDSS 30 30 30 FDSS 30 30 30 FDSS 30 30 30 FDSS 23 22 25 FDSS 30 30 30

Table 3: Coverage Results: (O)riginal models, CSMs with argument limit (C), Compound
CSMs with argument limit (cC). GED domain is omitted since no macros for those sets
were generated. First row of the table shows results on deterministic benchmarks; the other
rows shows results on learning benchmarks. Coloured cells indicate best performance.

the cocktail and cleaning the shaker afterwards for further use. On the flip side, macros that
are complex, having a lot of instances and are only occasionally used in plans have usually
detrimental effects on planners’ performance. It can be seen, for example, in Sokoban,
where one compound CSM involves two move operators in between of two push operators.
Such a macro has potentially a lot of instances while it is only occasionally used in plans. In
Transport, for the no argument limit compound CSM set, the issue is much more apparent.
One potentially problematic macro has four drive operators in between pickup and drop
operators. Another potentially problematic macro has four drive operators in between two
pickup and two drop operators. Both macros have rather huge number of instances while
not being used in plans very often. This highlights one of the weaknesses of the proposed
CSMs: they may not work well in domains where the critical sections are of variable length,
in terms of actions that are between the locker and the releaser.

27

Chrpa, & Vallati

0

20

40

60

80

100

E

l

e

v

a

t

o

r

s

F

l

o

o

r

t

i

l

e

G

E

D

H

i

k

i

n

g

T

e

r

m

e

s

T

r

a

n

s

p

o

r

t

B

a

r

m

a

n

B

w

D

e

p

o

t

s

G

o

l

d

G

r

i

p

p

e

r

M

a

t

h

i

n

g

-

b

w

R

o

v

e

r

s

S

o

k

o

b

a

n

S

t

o

r

a

g

e

T

h

o

u

g

h

t

f

u

l

P

l

a

n

n

e

r

s

(

p

e

r

e

n

t

a

g

e

)

Original Models

00 � 33

34 � 66

67 � 100

(a)

0

20

40

60

80

100

E

l

e

v

a

t

o

r

s

F

l

o

o

r

t

i

l

e

G

E

D

H

i

k

i

n

g

T

e

r

m

e

s

T

r

a

n

s

p

o

r

t

B

a

r

m

a

n

B

w

D

e

p

o

t

s

G

o

l

d

G

r

i

p

p

e

r

M

a

t

h

i

n

g

-

b

w

R

o

v

e

r

s

S

o

k

o

b

a

n

S

t

o

r

a

g

e

T

h

o

u

g

h

t

f

u

l

P

l

a

n

n

e

r

s

(

p

e

r

e

n

t

a

g

e

)

CSMs with Argument Limit

00 � 33

34 � 66

67 � 100

(b)

0

20

40

60

80

100

E

l

e

v

a

t

o

r

s

F

l

o

o

r

t

i

l

e

T

e

r

m

e

s

T

r

a

n

s

p

o

r

t

B

a

r

m

a

n

B

w

D

e

p

o

t

s

G

o

l

d

G

r

i

p

p

e

r

M

a

t

h

i

n

g

-

b

w

R

o

v

e

r

s

S

o

k

o

b

a

n

S

t

o

r

a

g

e

T

h

o

u

g

h

t

f

u

l

P

l

a

n

n

e

r

s

(

p

e

r

e

n

t

a

g

e

)

Compound CSMs with Argument Limit

00 � 33

34 � 66

67 � 100

(c)

Figure 2: For each domain, the percentages of planners able to solve: more than 66%
(green); between 34 and 66 % (yellow); and less than 33% of the instances (red). (a) using
the original domain model, (b) using models reformulated with CSMs with argument limit,
and (c) using models reformulated with Compound CSMs with argument limit.

7.4.1 Aggressive (Incomplete) Approaches

Despite the excellent improvements that can be achieved by the complete approaches, as
shown in the previous section, one may argue that the aggressive approach presented in
Section 6.3 may further improve the benefits of using CSMs – even though at the cost of
compromising completeness. Table 4 gives an overview of the average performance achieved
by the considered planning engines on the selected benchmarks, when using the original
domain model (O) or the models extended with CSMs learnt by using the Aggressive version
of the approaches. The table includes only domains in which the aggressive approach could
remove original operators without losing solvability of any training task. Detailed results,
showing planning engine by domain performance, are provided in Appendix A.2.

As expected, the use of the aggressive approach can lead to a considerable improvement
of planning performance, when compared to the original models with a notable exception
of the Transport domain. In most of the cases, the use of the aggressive approach allows
the planning engine to solve all the benchmark instances and, noteworthy, each planner
managed to solve testing instances in Floortile and Depots in less than 1 second in average

28

Planning with Critical Section Macros

Coverage PAR10 IPC quality
Domain O AC AnC AcC AncC O AC AnC AcC AncC O AC AnC AcC AncC

Floortile 8.4 20.0 20.0 20.0 20.0 5251.2 0.1 0.1 0.1 0.1 8.3 18.2 18.2 18.2 18.2
Hiking 13.5 - 16.0 - - 3000.8 - 1884.4 - - 12.6 - 13.1 - -
Transport 14.1 - - - 0.0 2697.6 - - - 9000.0 14.1 - - - 0.0

Barman 7.1 26.4 26.4 30.0 30.0 6918.8 1100.5 1100.1 3.5 3.3 5.6 26.4 26.4 30.0 30.0
Bw 16.4 25.6 25.6 25.6 25.6 4137.1 1324.8 1324.9 1324.6 1324.3 12.1 24.5 24.5 24.5 24.5
Depots 10.9 30.0 30.0 30.0 30.0 5833.0 0.1 0.1 0.1 0.1 7.2 29.8 29.8 29.8 29.8
Gripper 0.9 30.0 30.0 30.0 30.0 8753.6 44.1 44.5 44.2 43.3 0.9 29.9 29.9 29.9 29.9
Match-Bw 15.6 28.1 28.1 28.1 28.1 4330.9 562.5 562.5 562.5 562.5 12.3 27.5 27.5 27.5 27.5

Overall 9.9 26.7 26.7 27.3 27.3 5870.8 505.4 505.4 322.5 322.3 7.7 26.0 26.0 26.6 26.6

Table 4: Average Results: Results comparing the (O)riginal models with aggressive CSM
enhanced models, namely CSMs with (AC) and without argument limit (AnC). Compound
CSMs with (AcC) and without argument limit (AncC). Overall averages do not include
Hiking and Transport domains, for which some set of macros were not generated. Top part
of the table shows results on deterministic benchmarks (20 instances per domain), bottom
on learning (30). Coloured cells indicate best performance for the corresponding metric.

Domain AC AnC AcC AncC

Floortile ? ? ? ?
Hiking - � - -
Transport - - - �
Barman ? ? � �
Bw ? ? ? ?
Depots ? ? ? ?
Gripper ? ? ? ?
Matching-Bw ? ? ? ?

Table 5: Comparison of sets of learned macros by the aggressive version, namely CSMs
with (AC) and without argument limit (AnC). Compound CSMs with (AcC) and without
argument limit (AncC). For a given domain, sets with the same symbol are identical.

(see Appendix A.2 for details). However, we have to emphasise that there is no guarantee
about the completeness of such models (besides the training tasks). The aggressive approach
can be used together with complete approaches in portfolios. In such a setting, we can
benefit from performance boost of the aggressive approach while alleviating the risk of
tasks becoming unsolvable as the complete approaches can still solve the task. In its most
straightforward implementation, such a portfolio can run for half of the available CPU-time
a planning engine on the enhanced domain model, and the remaining half on the original
domain model. Considering the results shown for AncC in Table 4, the described portfolio
would allow to maintain the excellent performance of planning engines on the vast majority
of the benchmark domains, and would also allow planning engines to solve instances from
the Transport domain.

Table 5 shows how the sets generated by the different approaches relate to each other.
In most of the cases, the aggressive approaches are generating the same sets of macros; the
only difference can be found in the Barman domain.

29

Chrpa, & Vallati

7.4.2 Comparison Against the State of the Art

To contextualise the performance of the proposed complete and incomplete techniques to
learn CSMs, this section provides a comparison against the state of the art of techniques
for learning macros for classical planning. In this analysis we consider the MUM and
the BloMa approaches, that have been shown to consistently generate high quality macros.
MUM (Chrpa et al., 2014) is a state-of-the-art chaining macro generation approach (macros
are being constructed iteratively), which aims at keeping the number of possible instances
of macros at most at the same order of magnitude as the number of instances of primitive
operators they are assembled from. BloMa (Chrpa & Siddiqui, 2015) generates macros
from macro-blocks, which are part of plans that are causally bound (cannot be further de-
ordered). BloMa thus aims at generating longer macros that capture meaningful activities,
an analogous philosophy to CSMs. For the comparison, we selected the most promising set
of both conservative and aggressive CSMs by considering only the training instances. In
domains with more different sets of CSMs, we selected the one having minimum product
of the ratios of the number of steps in plans (macros count as one step) and the number of
instantiated actions with respect to the original models for the training problem instances.
The intuition behind the selection is that minimising the number of steps needed to generate
plans as well as the number of actions (instances of both of macros and primitive operators)
is usually beneficial for planning engines.

Table 6 gives an overview of the average performance achieved by the considered plan-
ning engines on all the selected benchmarks, when running on the original domain model,
the model enhanced by macros learnt using MUM, BloMa, (conservative) CSMs (CS), and
aggressive CSMs (ACS). Detailed results, showing planning engine by domain performance,
are provided in Appendix A.3. The presented results indicate that ACS is generally the
best option in terms of coverage and runtime: it allows planning engines to consistently
deliver their best performance. There are, however, two exception to the rule. In Hiking,
CS performance are slightly better while, in Transport, ACS “inherited” macros that have
way too many instances, which prohibited to solve any problem. With regards to MUM
and BloMa, both CS and ACS are usually able to generate macros that better improve the
performance of planning engines on average. In some domains, differences are very signif-
icant, such as in Hiking, Barman and Matching-Bw. In a few cases, the models enhanced
using MUM or BloMa macros allow planning engine to outperform CS and ACS, albeit
marginally.

Now, we give a more detailed overview on difference between MUM, BloMa and (A)CS.
MUM failed to generate macros in 6 domains. In domains such as Barman or Hiking, MUM’s
“instance wise” nature prevented macro generation while in Bw, interestingly, failing to
identify outer entanglements in the initial step of the macro learning process resulted in
failure to generate any macro. BloMa, on the other hand, succeeded to generate macros in
all domains, except Floortile. All the methods generated the same set of macros in Depots
and Gripper (note that small discrepancies in results are caused by different ordering of
elements in enhanced domain models). In Matching-Bw, for instance, MUM and BloMa
generated only 2 macros each, both being subsets of 6 macros generated by CS. BloMa

30

Planning with Critical Section Macros

Coverage PAR10 IPC quality
Planner O M B CS ACS O M B CS ACS O M B CS ACS

Elevator 16.8 - 16.4 19.4 - 1494.8 - 1697.8 299.2 - 14.7 - 14.4 15.3 -
Floortile 8.4 8.8 - 8.5 20.0 5251.2 5081.4 - 5192.2 0.1 8.1 8.1 - 6.2 18.0
GED 13.8 13.0 15.0 15.6 - 2830.1 3172.8 2284.8 1984.1 - 11.6 11.1 9.7 13.7 -
Hiking 13.5 - 0.3 17.8 16.0 3000.8 - 8887.5 1034.1 1884.4 12.4 - 0.2 11.6 12.5
Termes 6.0 3.6 5.4 5.3 - 6320.3 7395.0 6610.6 6669.4 - 5.5 2.3 4.2 4.6 -
Transport 14.1 - 13.0 11.6 0.0 2697.6 - 3223.1 3858.1 9000.0 13.0 - 11.4 10.3 0.0

Barman 7.1 - 9.9 30.0 30.0 6918.8 - 6169.8 49.1 3.5 5.6 - 8.6 30.0 30.0
Bw 16.4 - 14.9 22.9 25.6 4137.1 - 4588.8 2189.8 1324.8 10.8 - 12.0 20.2 23.3
Depots 10.9 11.8 12.1 11.8 30.0 5833.0 5542.3 5424.8 5535.0 0.1 7.2 8.2 8.3 8.2 29.7
Gold 29.8 27.0 30.0 29.5 - 77.8 910.9 0.2 158.0 - 26.0 22.6 20.9 22.5 -
Gripper 0.9 11.0 11.0 11.1 30.0 8753.6 5746.9 5746.5 5706.3 44.1 0.8 11.0 11.0 11.1 29.5
Match-Bw 15.6 17.5 4.6 27.0 28.1 4330.9 3764.1 7613.5 914.7 562.5 11.8 13.9 3.6 24.0 26.7
Rovers 23.3 20.9 20.4 24.3 - 2193.9 2878.6 3027.9 1910.8 - 22.5 18.1 19.7 23.6 -
Sokoban 25.5 - 25.0 27.0 - 1373.7 - 1529.2 935.8 - 23.0 - 20.4 23.8 -
Storage 22.8 23.5 23.6 23.1 - 3272.5 2943.5 2878.1 3125.9 - 19.3 21.1 21.6 21.1 -
Thoughtful 19.0 19.3 18.8 18.6 - 3305.5 3232.6 3384.3 3420.8 - 18.1 18.1 17.9 17.7 -

Table 6: Average Results: Results comparing the (O)riginal models with macro enhanced
models, namely (M)UM, (B)loMa, CSMs (CS) and the Aggressive CSMs (ACS). “-” indi-
cates that no macros has been learnt by the considered approach. Top part of the table shows
results on deterministic benchmarks, excl. Storage (20 instances per domain), bottom on
learning, incl. Storage (30). Coloured cells indicate best performance for the corresponding
metric.

learned macros that were “submacros” of SpSl CSMs learned in Hiking and Barman6. In
Hiking, such a “submacro” had a very detrimental effect on planners’ performance. In
Storage, BloMa generated a different SpMl CSM than CS did (and BloMa’s macro slightly
outperformed ours).

The above observations show that state-of-the-art techniques such as MUM or BloMa are
able to learn some CSMs, although as our experiments shown, only short ones. The results
shown that CSMs are usually (albeit not always) beneficial to a wide range of planning
techniques and hence methods tailored for generating CSMs can be very useful for classes
of domains in which limited resources are considered.

8. Conclusion

Critical Section Macros, introduced and described in this paper, are inspired by their coun-
terpart in parallel computing. They capture the whole activities in which limited resources
are being used (e.g., a robotic hand holding an object). We described three variants of
CSMs, the simple one with Single-phased Single-lock, and two more complex variants, one
concerning multiple locks (i.e., dealing with multiple limited resources) and the other con-
cerning multi-phased locks (e.g., a truck gets full after loading several packages). Further,
we introduced the concept of compound CSMs that allows constructing more complex CSMs
incrementally starting from simple ones using the method for generating SpSl CSMs and

6. By “submacros” we mean macros assembled from subsequences of operators the CSMs we refer to were
assembled

31

Chrpa, & Vallati

have shown theoretically that by such a method we can generate all “interesting” SpMl
CSMs and MpSl CSMs with balanced locks (and consequently also MpMl CSMs with bal-
anced locks). We presented algorithms for learning (both simple and compound) CSMs
from training plans, and described an aggressive variant of CSMs, where at least first and
last operators from which CSMs are assembled are removed from the domain model. This
can compromise the completeness of the use of CSMs, but has the potential to lead to even
more substantial performance improvements.

Our empirical evaluation demonstrated the usefulness of CSMs across a wide range of
benchmark domains and planning engines. The use of CSMs allowed planning engines to
outperform the original model, MUM macros (Chrpa et al., 2014) and BloMa macros (Chrpa
& Siddiqui, 2015) in 11 out of 16 domains. Compound CSMs considerably increased plan-
ners’ performance in Barman and Hiking domains. The aggressive version of CSMs achieved
the most impressive results in Floortile, Barman and Depots. The results indicate that long,
goal achieving and frequent CSMs tend to improve planners’ performance the most (as in
Barman and Hiking).

In the future, we plan to investigate possibilities of adapting CSMs into numerical and
temporal domains, possibly leveraging the notion of numerical entanglements (Chrpa, Scala,
& Vallati, 2015). This may prove beneficial as numerical fluents often refer to resource use
and hence the concept of CSMs can be successfully applied in numeric planning. As CSMs
capture whole activities in which one or more resources are used, it might be natural to use
them in temporal planning too.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive feedback that helped
to considerably improve the paper.

This research was funded by the Czech Science Foundation (project no. 18-07252S) and
by the OP VVV funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics”. Mauro Vallati was supported by a UKRI Future Leaders Fellowship [grant
number MR/T041196/1].

References

Alhossaini, M. A., & Beck, J. C. (2013). Instance-specific remodelling of planning domains
by adding macros and removing operators. In Proceedings of SARA, pp. 16–24.

Areces, C., Bustos, F., Dominguez, M., & Hoffmann, J. (2014). Optimizing planning do-
mains by automatic action schema splitting. In Proc. of ICAPS, pp. 11–19.

Asai, M., & Fukunaga, A. (2015). Solving large-scale planning problems by decomposition
and macro generation. In ICAPS, pp. 16–24.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1-
2), 5–33.

Botea, A., Enzenberger, M., Müller, M., & Schaeffer, J. (2005). Macro-FF: improving AI
planning with automatically learned macro-operators. Journal of Artificial Intelli-
gence Research (JAIR), 24, 581–621.

32

Planning with Critical Section Macros

Cardellini, M., Maratea, M., Vallati, M., Boleto, G., & Oneto, L. (2021). In-station train
dispatching: A PDDL+ planning approach. In Proceedings of the Thirty-First Inter-
national Conference on Automated Planning and Scheduling, ICAPS, pp. 450–458.

Chrpa, L. (2010a). Combining learning techniques for classical planning: Macro-operators
and entanglements. In Proceedings of ICTAI, Vol. 2, pp. 79–86.

Chrpa, L. (2010b). Generation of macro-operators via investigation of action dependencies
in plans. Knowledge Engineering Review, 25 (3), 281–297.

Chrpa, L., & Barták, R. (2009). Reformulating planning problems by eliminating unpromis-
ing actions. In Proceedings of SARA, pp. 50–57.

Chrpa, L., & Vallati, M. (2019). Improving domain-independent planning via critical section
macro-operators. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence, pp. 7546–7553.

Chrpa, L., Scala, E., & Vallati, M. (2015). Towards a reformulation based approach for
efficient numeric planning: Numeric outer entanglements. In Proceedings of the Eighth
Annual Symposium on Combinatorial Search, SOCS, pp. 166–170. AAAI Press.

Chrpa, L., & Siddiqui, F. H. (2015). Exploiting block deordering for improving planners
efficiency. In IJCAI, pp. 1537–1543.

Chrpa, L., Vallati, M., & McCluskey, T. L. (2014). MUM: a technique for maximising the
utility of macro-operators by constrained generation and use. In ICAPS, pp. 65–73.

Chrpa, L., Vallati, M., & McCluskey, T. L. (2015). On the online generation of effective
macro-operators. In Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 1544–1550.

Chrpa, L., Vallati, M., & McCluskey, T. L. (2018). Outer entanglements: a general heuristic
technique for improving the efficiency of planning algorithms. J. Exp. Theor. Artif.
Intell., 30 (6), 831–856.

Coles, A., Fox, M., & Smith, A. (2007). Online identification of useful macro-actions for
planning. In Proceedings of ICAPS, pp. 97–104.

Coles, A., Coles, A., Olaya, A. G., Jiménez, S., Lòpez, C. L., Sanner, S., & Yoon, S. (2012).
A survey of the seventh international planning competition. AI Magazine, 33, 83–88.

Dawson, C., & Siklóssy, L. (1977). The role of preprocessing in problem solving systems.
In Proceedings of IJCAI, pp. 465–471.

Dulac, A., Pellier, D., Fiorino, H., & Janiszek, D. (2013). Learning useful macro-actions for
planning with n-grams. In ICTAI, pp. 803–810.

Fiser, D., & Komenda, A. (2018). Fact-alternating mutex groups for classical planning. J.
Artif. Intell. Res., 61, 475–521.

Fox, M., Long, D., Tamboise, G., & Isangulov, R. (2018). Creating and executing a well
construction/operation plan.. US Patent App. 15/541,381.

Garrido, A., Morales, L., & Serina, I. (2012). Using AI planning to enhance e-learning pro-
cesses. In Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS. AAAI.

33

Chrpa, & Vallati

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning, theory and practice.
Morgan Kaufmann.

Haslum, P. (2007). Reducing accidental complexity in planning problems. In IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hy-
derabad, India, January 6-12, 2007, pp. 1898–1903.

Haslum, P., & Jonsson, P. (2000). Planning with reduced operator sets. In Proceedings of
AIPS, pp. 150–158.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research (JAIR), 14, 253–302.

Hofmann, T., Niemueller, T., & Lakemeyer, G. (2017). Initial results on generating macro
actions from a plan database for planning on autonomous mobile robots. In ICAPS,
pp. 498–503.

Hofmann, T., Niemueller, T., & Lakemeyer, G. (2020). Macro operator synthesis for adl
domains. In Proceedings oo the European Conference on Artificial Intelligence (ECAI).

Junghanns, A., & Schaeffer, J. (2001). Sokoban: Enhancing general single-agent search
methods using domain knowledge. Artif. Intell., 129 (1-2), 219–251.

Katz, M., & Hoffmann, J. (2014). Mercury planner: Pushing the limits of partial delete re-
laxation. In The Eighth IPC. Description of Participant Planners of the Deterministic
Track, pp. 43–47.

Korf, R. (1985). Macro-operators: A weak method for learning. Artificial Intelligence, 26 (1),
35–77.

Lipovetzky, N., Burt, C. N., Pearce, A. R., & Stuckey, P. J. (2014). Planning for mining
operations with time and resource constraints. In Proceedings of the International
Conference on Automated Planning and Scheduling.

Lipovetzky, N., Ramirez, M., Frances, G., & Geffner, H. (2018). Best-first width search in
the ipc2018: Complete, simulated, and polynomial variants. In The Ninth Interna-
tional Planning Competition. Description of Participant Planners of the Deterministic
Track.

Lipovetzky, N., Ramirez, M., Muise, C., & Geffner, H. (2014). Width and inference based
planners: Siw, bfs(f), and probe. In The Eighth IPC. Description of Participant Plan-
ners of the Deterministic Track, pp. 6–7.

McCluskey, T. L., Vaquero, T. S., & Vallati, M. (2017). Engineering knowledge for auto-
mated planning: Towards a notion of quality. In Proceedings of the Knowledge Capture
Conference, K-CAP, pp. 14:1–14:8.

Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). PDDL - The Planning Domain Definition Language. Tech. rep.
TR-98-003, Yale Center for Computational Vision and Control,.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning.
In Proceedings of AAAI, pp. 564–569.

Newton, M. A. H., Levine, J., Fox, M., & Long, D. (2007). Learning macro-actions for
arbitrary planners and domains. In Proceedings of ICAPS, pp. 256–263.

34

Planning with Critical Section Macros

Ramı́rez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A. R., Scala,
E., & Zamani, M. (2018). Integrated hybrid planning and programmed control for
real time UAV maneuvering. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS, pp. 1318–1326.

Richter, S., & Westphal, M. (2010). The LAMA planner: guiding cost-based anytime plan-
ning with landmarks. Journal Artificial Intelligence Research (JAIR), 39, 127–177.

Rintanen, J. (2014). Madagascar: Scalable planning with sat. In The Eighth IPC. Descrip-
tion of Participant Planners of the Deterministic Track, pp. 66–70.

Scala, E. (2014). Plan repair for resource constrained tasks via numeric macro actions. In
Proceedings of the Twenty-Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014.

Scala, E., & Torasso, P. (2015). Deordering and numeric macro actions for plan repair. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1673–1681.

Seipp, J., & Röger, G. (2018). Fast downward stone soup 2018. In The Ninth Interna-
tional Planning Competition. Description of Participant Planners of the Deterministic
Track.

Siddiqui, F., & Haslum, P. (2012). Block-structured plan deordering. In 25th Australasian
Joint Conference, Vol. 7691 of LNAI, pp. 803–814.

Thiébaux, S., Coffrin, C., Hijazi, H., & Slaney, J. (2013). Planning with mip for supply
restoration in power distribution systems. In Proceedings of the International Joint
Conference on Artificial Intelligence.

Vallati, M., Chrpa, L., McCluskey, T. L., & Hutter, F. (2021). On the importance of domain
model configuration for automated planning engines. J. Autom. Reason., 65 (6), 727–
773.

Vallati, M., Magazzeni, D., Schutter, B. D., Chrpa, L., & McCluskey, T. L. (2016). Effi-
cient macroscopic urban traffic models for reducing congestion: A PDDL+ planning
approach. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pp. 3188–3194. AAAI Press.

Vidal, V. (2014). Yahsp3 and yahsp3-mt in the 8th international planning competition. In
The Eighth IPC. Description of Participant Planners of the Deterministic Track, pp.
64–65.

35

Chrpa, & Vallati

Appendix A. Detailed Results

In the following, we provide the detailed results of the performed experiments.

A.1 Conservative Version

Coverage PAR10 IPC quality
Planner O C nC cC ncC O C nC cC ncC O C nC cC ncC

elevators
ff 0 20 20 20 20 9000 22 18 92 38 0.0 19.5 19.5 17.3 17.3
lama 20 20 20 19 19 36 10 11 482 482 19.9 14.3 14.3 11.1 11.1
probe 19 20 20 20 20 602 25 44 23 29 18.4 18.7 18.7 17.3 17.3
Mp 15 15 15 18 18 2256 2258 2258 911 911 13.7 12.5 12.5 17.1 17.1
mercury 20 20 20 20 20 4.1 13 14 40 28 19.7 15.7 15.7 13.9 13.9
yahsp 20 20 20 13 12 23 41 33 3227 3650 11.9 19.4 19.4 11.1 10.3
BFWS 20 20 20 20 20 7.0 5.3 5.6 5.1 5.4 19.6 16.6 16.6 16.7 16.7
FDSS 20 20 20 18 19 30 19 21 929 483 19.5 16.4 16.4 11.9 12.7

floortile
ff 2 2 2 2 2 8100 8107 8102 8105 8105 2.0 1.7 1.7 1.7 1.7
lama 6 7 7 7 7 6367 5897 5895 5895 5897 6.0 4.8 4.8 4.8 4.8
probe 4 4 4 4 4 7204 7237 7234 7236 7221 4.0 2.8 2.8 2.8 2.8
Mp 20 20 20 20 20 0.1 0.1 0.1 0.1 0.1 19.9 14.4 14.4 14.4 14.4
mercury 7 7 7 7 7 5889 5874 5874 5874 5871 7.0 4.6 4.6 4.6 4.6
yahsp 6 6 6 6 6 6347 6322 6321 6319 6323 6.0 5.2 5.2 5.2 5.2
BFWS 2 2 2 2 2 8102 8100 8100 8100 8100 2.0 1.8 1.8 1.8 1.8
FDSS 20 20 20 20 20 0.6 0.3 0.3 0.3 0.3 20.0 15.9 15.9 15.9 15.9

GED
ff 0 - 6 - 6 9000 - 6306 - 6306 0.0 - 6.0 - 6.0
lama 20 - 20 - 20 3.0 - 6.2 - 5.9 18.3 - 19.6 - 19.6
probe 20 - 20 - 20 55 - 73 - 74 15.2 - 16.6 - 16.6
Mp 2 - 2 - 2 8101 - 8100 - 8100 2.0 - 2.0 - 2.0
mercury 20 - 20 - 20 3.8 - 5.9 - 5.6 19.1 - 18.2 - 18.2
yahsp 11 - 20 - 20 4113 - 6.6 - 5.8 9.5 - 17.3 - 17.3
BFWS 17 - 17 - 17 1359 - 1363 - 1366 16.7 - 17.0 - 17.0
FDSS 20 - 20 - 20 6.1 - 12 - 12 18.3 - 19.6 - 19.6

Hiking
ff 9 18 12 - 17 5077 963 3699 - 1378 8.3 15.7 8.1 - 9.5
lama 19 15 11 - 20 566 2312 4111 - 57 19.0 9.4 6.4 - 11.6
probe 20 20 20 - 20 13 7.1 102 - 1.9 18.2 15.9 18.5 - 10.2
Mp 0 7 1 - 10 9000 5850 8550 - 4501 0.0 7.0 0.4 - 8.1
mercury 12 20 13 - 18 3769 29 3217 - 936 11.0 13.9 10.9 - 13.8
yahsp 17 18 14 - 20 1457 949 2811 - 26 12.2 8.0 6.8 - 17.7
BFWS 11 18 16 - 17 4065 905 1804 - 1350 10.9 14.3 9.4 - 8.9
FDSS 20 20 19 - 20 59 43 569 - 23 19.2 13.5 14.8 - 11.2

storage
ff 18 19 19 19 19 5403 4953 4954 4967 4966 17.6 17.3 17.3 17.8 17.8
lama 19 20 20 21 21 4957 4508 4508 4101 4101 16.6 17.8 17.8 19.9 19.9
probe 21 29 29 29 29 4050 507 505 476 469 20.8 26.8 26.8 26.4 26.4
Mp 29 18 18 18 18 454 5400 5400 5400 5400 25.9 15.6 15.6 17.5 17.5
mercury 20 18 18 21 21 4515 5400 5400 4066 4065 19.5 16.2 16.2 20.2 20.2
yahsp 22 21 21 23 23 3612 4050 4050 3172 3165 15.7 19.5 19.5 22.1 22.1
BFWS 30 30 30 29 29 1.6 33 34 476 484 27.4 28.8 28.8 27.4 27.4
FDSS 23 22 22 25 25 3187 3622 3622 2349 2346 17.8 19.2 19.2 22.5 22.3

termes
ff 0 0 1 0 0 9000 9000 8554 9000 9000 0.0 0.0 1.0 0.0 0.0
lama 14 14 14 13 12 2747 2784 2754 3249 3647 12.0 12.2 12.1 8.3 8.5
probe 7 6 7 5 6 5900 6363 5884 6819 6331 6.5 5.2 5.8 3.2 4.4
Mp 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
mercury 13 9 9 10 1 3196 5044 4978 4610 8550 12.3 6.7 7.5 7.2 0.8
yahsp 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
BFWS 2 3 2 3 2 8100 7655 8107 7662 8110 1.7 2.8 1.8 2.5 1.9
FDSS 12 10 11 9 8 3619 4509 4063 4961 5405 10.2 8.6 9.7 6.6 5.0

transport
ff 0 1 4 1 0 9000 8570 7270 8575 9000 0.0 1.0 3.8 1.0 0.0
lama 17 15 19 13 0 1442 2385 558 3228 9000 15.8 13.0 17.2 11.3 0.0
probe 16 13 18 13 0 1944 3234 1165 3229 9000 13.8 12.2 16.8 12.2 0.0
Mp 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
mercury 20 11 9 11 0 13 4129 4984 4131 9000 20.0 5.8 4.6 5.8 0.0
yahsp 20 8 3 8 0 1.5 5555 7700 5598 9000 16.2 8.0 2.5 8.0 0.0
BFWS 20 20 20 20 0 15 30 23 26 9000 18.4 19.1 17.6 19.1 0.0
FDSS 20 14 20 15 0 165 2814 165 2382 9000 17.4 12.2 18.1 13.4 0.0

Table 7: Results comparing the (O)riginal models with CSM enhanced models, namely
CSMs with (C) and without argument limit (nC). Compound CSMs with (cC) and without
argument limit (ncC).

36

Planning with Critical Section Macros

Tables 7 and 8 show detailed results of planners’ performance achieved by the considered
planners on the considered benchmark domains, when using the original domain model (O)
or the models extended with CSMs with (C) and without argument limit (nC), i.e., whether
the “extra argument” check on Line 8 of Algorithm 2 is enabled or not, and Compound
CSMs with (cC) and without argument limit (ncC).

A.2 Aggressive Version

Tables 9 and 10 show detailed results of planners’ performance achieved by the considered
planners on the considered benchmark domains, when using the original domain model
(O) or the models extended with the aggressive variant of CSMs with (AC) and without
argument limit (AnC), i.e., whether the “extra argument” check on Line 8 of Algorithm 2
is enabled or not, and Compound CSMs with (AcC) and without argument limit (AncC).

A.3 Comparing against the state of the art

Tables 11 and 12 show detailed results of planners’ performance achieved by the considered
planners on the considered benchmark domains, when using the original domain model (O)
or the models extended with the (M)UM macros, (B)LoMa macros, the conservative variant
of CSMs (the most promising sets of CSMs were considered), the aggressive variant of CSMs
(the most promising sets of the aggressive CSMs were considered).

37

Chrpa, & Vallati

Coverage PAR10 IPC quality
Planner O C nC cC ncC O C nC cC ncC O C nC cC ncC

barman
ff 0 30 30 30 30 9000 1.1 0.9 0.1 0.1 0.0 30.0 30.0 30.0 30.0
lama 2 30 30 30 30 8418 183 372 12 13 1.7 26.4 26.4 30.0 30.0
probe 5 5 5 30 30 7581 7596 7607 47 44 3.4 5.0 5.0 30.0 30.0
Mp 0 0 0 30 30 9000 9000 9000 145 146 0.0 0.0 0.0 30.0 30.0
mercury 26 30 30 30 30 1307 51 74 14 14 18.0 28.8 28.8 29.9 29.9
yahsp 0 30 30 30 30 9000 185 150 0.3 0.3 0.0 29.1 29.1 30.0 30.0
BFWS 0 20 21 30 30 9000 3006 2727 3.0 2.7 0.0 19.9 20.9 30.0 30.0
FDSS 24 30 30 30 30 2044 146 147 160 118 22.0 29.9 29.9 29.9 29.9

bw
ff 0 8 8 8 8 9000 6602 6602 6601 6602 0.0 8.0 8.0 8.0 8.0
lama 28 29 29 29 29 656 345 366 349 346 25.4 24.8 24.8 24.8 24.8
probe 27 30 30 30 30 1101 83 111 68 129 25.0 29.2 29.2 29.2 29.2
Mp 0 29 29 29 29 9000 435 439 430 437 0.0 29.0 29.0 29.0 29.0
mercury 19 30 30 30 30 3327 19 24 21 19 8.2 30.0 30.0 30.0 30.0
yahsp 28 27 27 28 27 631 933 933 660 931 7.6 27.0 27.0 28.0 27.0
BFWS 4 3 3 3 3 7814 8109 8109 8107 8109 3.4 2.5 2.5 2.5 2.5
FDSS 25 25 25 26 25 1568 1563 1562 1275 1577 23.6 20.2 20.2 19.8 20.2

depots
ff 1 11 11 11 12 8703 5789 5792 5797 5511 1.0 10.8 10.8 10.8 11.8
lama 1 0 0 0 0 8724 9000 9000 9000 9000 1.0 0.0 0.0 0.0 0.0
probe 30 30 30 30 30 36 14 26 26 26 27.5 28.8 28.8 28.8 28.8
Mp 2 2 2 2 2 8400 8400 8400 8400 8400 1.6 2.0 2.0 2.0 2.0
mercury 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
yahsp 22 20 20 20 20 2479 3036 3020 3028 3032 16.8 19.2 19.2 19.2 19.2
BFWS 11 16 16 16 16 5759 4309 4311 4306 4308 9.6 15.3 15.3 15.3 15.3
FDSS 20 15 15 15 15 3563 4732 4732 4749 4732 20.0 14.0 14.0 14.0 14.0

gold
ff 30 27 29 27 29 11 921 331 928 333 30.0 27.0 22.8 27.0 22.8
lama 30 30 28 30 28 0.1 77 600 77 600 21.5 25.5 22.8 25.5 22.8
probe 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 30.0 23.5 22.0 23.5 22.0
Mp 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 29.3 21.2 22.2 21.2 22.2
mercury 30 26 30 26 30 1.3 1242 0.4 1241 0.3 23.0 24.6 19.7 24.6 19.7
yahsp 28 26 29 26 29 610 1224 332 1222 331 20.0 18.5 27.0 18.5 27.0
BFWS 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 30.0 27.2 22.9 27.2 22.9
FDSS 30 30 30 30 30 0.1 0.2 0.2 0.2 0.2 28.8 27.2 24.9 27.2 24.9

gripper
ff 0 28 28 28 28 9000 686 712 713 735 0.0 28.0 28.0 28.0 28.0
lama 7 30 30 30 30 7029 69 75 71 63 6.5 30.0 30.0 30.0 30.0
probe 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
Mp 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
mercury 0 25 25 25 25 9000 1653 1664 1665 1654 0.0 25.0 25.0 25.0 25.0
yahsp 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
BFWS 0 5 5 5 5 9000 7516 7519 7520 7520 0.0 5.0 5.0 5.0 5.0
FDSS 0 1 0 0 0 9000 8726 9000 9000 9000 0.0 1.0 0.0 0.0 0.0

matching-bw
ff 13 27 27 27 27 5160 900 900 900 900 10.6 27.0 27.0 27.0 27.0
lama 26 29 29 29 29 1201 301 301 301 301 23.1 27.1 27.1 27.1 27.1
probe 13 30 30 30 30 5104 0.3 0.4 0.3 0.3 7.3 30.0 30.0 30.0 30.0
Mp 0 23 23 23 23 9000 2105 2104 2103 2105 0.0 23.0 23.0 23.0 23.0
mercury 10 22 22 22 22 6025 2425 2425 2426 2425 8.2 21.9 21.9 21.9 21.9
yahsp 21 26 26 26 26 2725 1216 1214 1214 1214 15.8 25.8 25.8 25.8 25.8
BFWS 12 29 29 29 29 5431 369 369 367 373 11.0 28.0 28.0 28.0 28.0
FDSS 30 30 30 30 30 1.1 1.2 1.2 1.2 1.1 28.1 27.4 27.4 27.4 27.4

rovers
ff 1 7 6 8 7 8714 6998 7293 6698 7022 0.9 6.9 5.9 7.8 6.8
lama 30 30 30 29 29 96 95 96 417 405 29.1 28.9 28.9 28.2 28.2
probe 30 29 29 30 30 338 603 617 322 224 29.5 28.5 28.5 29.2 29.2
Mp 16 17 17 16 16 4384 4102 4104 4405 4382 15.5 16.8 16.8 15.6 15.6
mercury 28 29 29 29 28 766 446 491 458 751 26.7 27.5 27.5 28.5 27.5
yahsp 30 30 30 30 30 10 9.5 9.7 10 10 29.2 28.4 28.4 29.7 29.7
BFWS 21 22 22 22 22 2971 2666 2662 2686 2681 20.8 21.1 21.1 21.6 21.6
FDSS 30 30 30 30 30 272 301 295 290 318 29.0 29.2 29.2 28.9 28.9

sokoban
ff 19 23 26 23 26 3331 2117 1609 2114 1610 17.9 19.6 22.6 19.6 22.6
lama 21 20 22 20 22 2729 3034 2435 3034 2437 19.2 15.8 19.3 15.8 19.3
probe 25 30 1 29 1 1519 65 8729 340 8728 22.7 27.8 0.6 26.8 0.6
Mp 30 30 30 30 30 0.8 2.2 1.4 2.6 1.5 28.5 26.2 25.2 26.2 25.2
mercury 23 24 22 23 22 2158 1878 2482 2151 2484 20.5 20.6 19.3 19.6 19.3
yahsp 26 29 30 29 30 1237 367 48 371 47 18.6 26.9 24.3 26.9 24.3
BFWS 30 30 30 30 30 0.7 1.0 394 1.0 388 28.8 28.6 26.5 28.6 26.5
FDSS 30 30 30 30 30 14 22 11 22 11 27.4 24.8 24.7 24.8 24.7

thoughtful
ff 17 20 20 20 20 3900 3001 3001 3001 3001 16.4 19.3 19.3 19.3 19.3
lama 25 23 23 23 23 1503 2103 2103 2103 2103 24.4 22.2 22.2 22.2 22.2
probe 21 23 23 23 23 2709 2106 2107 2107 2107 19.1 22.4 22.4 22.4 22.4
Mp 0 0 0 0 0 9000 9000 9000 9000 9000 0.0 0.0 0.0 0.0 0.0
mercury 21 17 17 17 17 2704 3903 3903 3903 3903 20.8 16.6 16.6 16.6 16.6
yahsp 8 6 6 6 6 6603 7218 7218 7228 7228 7.8 5.9 5.9 5.9 5.9
BFWS 30 30 30 30 30 1.6 1.7 1.6 1.8 1.7 29.3 29.4 29.4 29.4 29.4
FDSS 30 30 30 30 30 23 34 35 34 34 28.9 28.4 28.4 28.4 28.4

Table 8: Results comparing the (O)riginal models with CSM enhanced models, namely
simple CSMs with (C) and without argument limit (nC). Compound CSMs with (cC) and
without argument limit (ncC).

38

Planning with Critical Section Macros

Coverage PAR10 IPC quality
Planner O AC AnC AcC AncC O AC AnC AcC AncC O AC AnC AcC AncC

floortile
ff 2 20 20 20 20 8100 0.1 0.1 0.1 0.1 2.0 19.8 19.8 19.8 19.8
lama 6 20 20 20 20 6367 0.2 0.2 0.2 0.2 6.0 17.9 17.9 17.9 17.9
probe 4 20 20 20 20 7204 0.1 0.1 0.1 0.1 3.9 19.2 19.2 19.2 19.2
Mp 20 20 20 20 20 0.1 0.1 0.1 0.1 0.1 20.0 15.3 15.3 15.3 15.3
mercury 7 20 20 20 20 5889 0.2 0.2 0.2 0.2 7.0 17.9 17.9 17.9 17.9
yahsp 6 20 20 20 20 6347 0.2 0.2 0.2 0.2 5.9 19.8 19.8 19.8 19.8
BFWS 2 20 20 20 20 8102 0.0 0.0 0.0 0.0 2.0 19.6 19.6 19.6 19.6
FDSS 20 20 20 20 20 0.6 0.3 0.2 0.3 0.2 19.9 16.1 16.1 16.1 16.1

Hiking
ff 9 - 16 - - 5077 - 1966 - - 9.0 - 14.9 - -
lama 19 - 14 - - 566 - 2789 - - 18.6 - 9.5 - -
probe 20 - 20 - - 13 - 59 - - 18.3 - 18.5 - -
Mp 0 - 4 - - 9000 - 7202 - - 0.0 - 4.0 - -
mercury 12 - 18 - - 3769 - 1007 - - 11.2 - 16.9 - -
yahsp 17 - 18 - - 1457 - 1044 - - 13.8 - 13.0 - -
BFWS 11 - 18 - - 4065 - 909 - - 11.0 - 12.9 - -
FDSS 20 - 20 - - 59 - 99 - - 19.2 - 15.2 - -

transport
ff 0 - - - 0 9000 - - - 9000 0.0 - - - 0.0
lama 17 - - - 0 1442 - - - 9000 17.0 - - - 0.0
probe 16 - - - 0 1944 - - - 9000 16.0 - - - 0.0
Mp 0 - - - 0 9000 - - - 9000 0.0 - - - 0.0
mercury 20 - - - 0 13 - - - 9000 20.0 - - - 0.0
yahsp 20 - - - 0 1.5 - - - 9000 20.0 - - - 0.0
BFWS 20 - - - 0 15 - - - 9000 20.0 - - - 0.0
FDSS 20 - - - 0 165 - - - 9000 20.0 - - - 0.0

Table 9: Results comparing the (O)riginal models with aggressive CSM enhanced models,
namely CSMs with (AC) and without argument limit (AnC). Compound CSMs with (AcC)
and without argument limit (AncC).

39

Chrpa, & Vallati

Coverage PAR10 IPC quality
Planner O AC AnC AcC AncC O AC AnC AcC AncC O AC AnC AcC AncC

barman
ff 0 30 30 30 30 9000 0.3 0.3 0.1 0.1 0.0 30.0 30.0 30.0 30.0
lama 2 30 30 30 30 8418 7.8 7.6 6.8 6.4 1.7 30.0 30.0 30.0 30.0
probe 5 30 30 30 30 7581 74 69 5.8 4.0 3.4 30.0 30.0 30.0 30.0
Mp 0 1 1 30 30 9000 8700 8700 1.3 1.5 0.0 1.0 1.0 30.0 30.0
mercury 26 30 30 30 30 1307 4.9 4.8 6.0 6.2 18.0 30.0 30.0 30.0 30.0
yahsp 0 30 30 30 30 9000 6.1 7.6 0.1 0.1 0.0 30.0 30.0 30.0 30.0
BFWS 0 30 30 30 30 9000 1.1 1.3 0.4 0.3 0.0 30.0 30.0 30.0 30.0
FDSS 24 30 30 30 30 2044 10 10 7.6 7.6 22.0 30.0 30.0 30.0 30.0

bw
ff 0 28 28 28 28 9000 608 608 607 607 0.0 28.0 28.0 28.0 28.0
lama 28 28 28 28 28 656 610 609 609 608 25.6 24.9 24.9 24.9 24.9
probe 27 30 30 30 30 1101 0.2 0.2 0.2 0.2 24.8 29.2 29.2 29.2 29.2
Mp 0 18 18 18 18 9000 3600 3600 3600 3600 0.0 18.0 18.0 18.0 18.0
mercury 19 11 11 11 11 3327 5734 5735 5734 5733 14.5 11.0 11.0 11.0 11.0
yahsp 28 30 30 30 30 631 0.0 0.0 0.0 0.0 6.8 30.0 30.0 30.0 30.0
BFWS 4 30 30 30 30 7814 36 37 37 36 1.5 30.0 30.0 30.0 30.0
FDSS 25 30 30 30 30 1568 9.8 9.8 9.8 9.8 23.2 24.8 24.8 24.8 24.8

depots
ff 1 30 30 30 30 8703 0.0 0.0 0.0 0.0 0.6 30.0 30.0 30.0 30.0
lama 1 30 30 30 30 8724 0.2 0.2 0.2 0.2 0.3 30.0 30.0 30.0 30.0
probe 30 30 30 30 30 36 0.0 0.0 0.0 0.0 26.3 29.8 29.8 29.8 29.8
Mp 2 30 30 30 30 8400 0.0 0.0 0.0 0.0 1.3 30.0 30.0 30.0 30.0
mercury 0 30 30 30 30 9000 0.2 0.2 0.2 0.2 0.0 30.0 30.0 30.0 30.0
yahsp 22 30 30 30 30 2479 0.0 0.0 0.0 0.0 2.5 30.0 30.0 30.0 30.0
BFWS 11 30 30 30 30 5759 0.0 0.0 0.0 0.0 6.9 30.0 30.0 30.0 30.0
FDSS 20 30 30 30 30 3563 0.3 0.3 0.3 0.3 19.9 28.5 28.5 28.5 28.5

gripper
ff 0 30 30 30 30 9000 9.2 9.2 8.3 9.2 0.0 30.0 30.0 30.0 30.0
lama 7 30 30 30 30 7029 2.8 2.7 2.8 2.8 7.0 29.4 29.4 29.4 29.4
probe 0 30 30 30 30 9000 11 11 10 8.3 0.0 29.9 29.9 29.9 29.9
Mp 0 30 30 30 30 9000 0.7 0.7 0.7 0.7 0.0 30.0 30.0 30.0 30.0
mercury 0 30 30 30 30 9000 2.1 2.1 2.2 2.1 0.0 30.0 30.0 30.0 30.0
yahsp 0 30 30 30 30 9000 0.1 0.1 0.1 0.1 0.0 30.0 30.0 30.0 30.0
BFWS 0 30 30 30 30 9000 323 326 325 319 0.0 30.0 30.0 30.0 30.0
FDSS 0 30 30 30 30 9000 4.2 4.2 4.1 4.3 0.0 30.0 30.0 30.0 30.0

matching-bw
ff 13 30 30 30 30 5160 0.0 0.0 0.0 0.0 10.1 30.0 30.0 30.0 30.0
lama 26 30 30 30 30 1201 0.1 0.1 0.1 0.1 22.0 28.4 28.4 28.4 28.4
probe 13 30 30 30 30 5104 0.0 0.0 0.0 0.0 7.4 30.0 30.0 30.0 30.0
Mp 0 20 20 20 20 9000 3000 3000 3000 3000 0.0 20.0 20.0 20.0 20.0
mercury 10 25 25 25 25 6025 1500 1500 1500 1500 8.1 25.0 25.0 25.0 25.0
yahsp 21 30 30 30 30 2725 0.0 0.0 0.0 0.0 14.8 29.4 29.4 29.4 29.4
BFWS 12 30 30 30 30 5431 0.0 0.0 0.0 0.0 9.9 28.8 28.8 28.8 28.8
FDSS 30 30 30 30 30 1.1 0.1 0.1 0.1 0.1 26.4 28.2 28.2 28.2 28.2

Table 10: Results comparing the (O)riginal models with aggressive CSM enhanced models,
namely CSMs with (AC) and without argument limit (AnC). Compound CSMs with (AcC)
and without argument limit (AncC).

40

Planning with Critical Section Macros

Coverage PAR10 IPC quality
Planner O M B CS ACS O M B CS ACS O M B CS ACS

elevators
ff 0 - 17 20 - 9000 - 1486 22 - 0.0 - 13.2 14.7 -
lama 20 - 20 20 - 36 - 134 10 - 19.7 - 15.4 14.1 -
probe 19 - 20 20 - 602 - 141 25 - 16.0 - 19.7 16.0 -
Mp 15 - 6 15 - 2256 - 6302 2258 - 14.4 - 4.6 13.3 -
mercury 20 - 20 20 - 4.1 - 54 13 - 19.2 - 17.5 15.2 -
yahsp 20 - 11 20 - 23 - 4052 41 - 11.1 - 10.3 18.5 -
BFWS 20 - 20 20 - 7.0 - 8.5 5.3 - 18.3 - 19.1 15.4 -
FDSS 20 - 17 20 - 30 - 1405 19 - 18.6 - 15.6 15.5 -

floortile
ff 2 2 - 2 20 8100 8100 - 8107 0.1 2.0 1.7 - 1.7 19.8
lama 6 7 - 7 20 6367 5905 - 5897 0.2 5.8 6.4 - 4.4 17.5
probe 4 5 - 4 20 7204 6751 - 7237 0.1 3.8 4.6 - 2.7 19.2
Mp 20 20 - 20 20 0.1 0.1 - 0.1 0.1 19.8 18.6 - 14.2 15.2
mercury 7 7 - 7 20 5889 5890 - 5874 0.2 6.6 6.4 - 4.4 17.6
yahsp 6 7 - 6 20 6347 5905 - 6322 0.2 5.7 6.4 - 5.0 19.6
BFWS 2 2 - 2 20 8102 8100 - 8100 0.0 2.0 1.8 - 1.8 19.6
FDSS 20 20 - 20 20 0.6 0.3 - 0.3 0.3 19.3 18.7 - 15.4 15.5

GED
ff 0 1 2 6 - 9000 8550 8106 6306 - 0.0 0.8 1.8 6.0 -
lama 20 20 20 20 - 3.0 2.7 11 6.2 - 17.5 18.5 13.1 18.8 -
probe 20 20 18 20 - 55 97 1043 73 - 13.6 16.7 10.1 15.0 -
Mp 2 4 1 2 - 8101 7201 8551 8100 - 2.0 4.0 0.9 2.0 -
mercury 20 0 20 20 - 3.8 9000 15 5.9 - 19.1 0.0 8.0 18.2 -
yahsp 11 20 20 20 - 4113 6.9 73 6.6 - 8.1 15.0 14.1 15.0 -
BFWS 17 19 19 17 - 1359 520 452 1363 - 14.7 15.9 16.6 15.0 -
FDSS 20 20 20 20 - 6.1 4.5 27 12 - 17.9 17.6 13.1 19.2 -

Hiking
ff 9 - 0 17 16 5077 - 9000 1378 1966 9.0 - 0.0 10.9 14.9
lama 19 - 0 20 14 566 - 9000 57 2789 18.6 - 0.0 11.3 9.5
probe 20 - 0 20 20 13 - 9000 1.9 59 18.3 - 0.0 10.0 18.5
Mp 0 - 0 10 4 9000 - 9000 4501 7202 0.0 - 0.0 9.1 3.8
mercury 12 - 1 18 18 3769 - 8550 936 1007 11.0 - 1.0 13.1 16.4
yahsp 17 - 0 20 18 1457 - 9000 26 1044 12.1 - 0.0 17.7 8.7
BFWS 11 - 0 17 18 4065 - 9000 1350 909 11.0 - 0.0 9.3 12.9
FDSS 20 - 1 20 20 59 - 8550 23 99 19.2 - 0.5 11.1 15.1

storage
ff 18 18 19 19 - 5403 5404 4950 4967 - 17.3 16.3 16.9 17.3 -
lama 19 24 21 21 - 4957 2706 4050 4101 - 15.8 22.2 19.9 18.7 -
probe 21 21 28 29 - 4050 4052 930 476 - 20.8 17.9 25.1 26.8 -
Mp 29 25 26 18 - 454 2253 1801 5400 - 22.6 20.9 22.4 17.4 -
mercury 20 24 21 21 - 4515 2743 4051 4066 - 18.8 22.0 19.9 19.5 -
yahsp 22 22 21 23 - 3612 3642 4051 3172 - 14.7 19.6 19.5 20.8 -
BFWS 30 29 30 29 - 1.6 451 2.0 476 - 26.9 27.0 28.3 26.9 -
FDSS 23 25 23 25 - 3187 2297 3190 2349 - 17.5 22.6 21.1 21.5 -

termes
ff 0 1 1 0 - 9000 8572 8568 9000 - 0.0 1.0 1.0 0.0 -
lama 14 11 14 14 - 2747 4131 2804 2784 - 12.1 7.1 10.3 12.3 -
probe 7 1 6 6 - 5900 8564 6331 6363 - 6.4 0.3 5.1 5.2 -
Mp 0 0 0 0 - 9000 9000 9000 9000 - 0.0 0.0 0.0 0.0 -
mercury 13 8 12 9 - 3196 5444 3674 5044 - 12.5 4.4 9.4 6.9 -
yahsp 0 0 0 0 - 9000 9000 9000 9000 - 0.0 0.0 0.0 0.0 -
BFWS 2 2 2 3 - 8100 8109 8101 7655 - 1.7 1.8 1.7 2.9 -
FDSS 12 6 8 10 - 3619 6340 5407 4509 - 10.9 3.8 5.9 9.3 -

transport
ff 0 - 11 4 0 9000 - 4157 7270 9000 0.0 - 10.5 3.7 0.0
lama 17 - 18 19 0 1442 - 1001 558 9000 16.1 - 15.6 17.5 0.0
probe 16 - 20 18 0 1944 - 114 1165 9000 14.4 - 17.4 17.2 0.0
Mp 0 - 5 0 0 9000 - 6751 9000 9000 0.0 - 5.0 0.0 0.0
mercury 20 - 0 9 0 13 - 9000 4984 9000 20.0 - 0.0 4.6 0.0
yahsp 20 - 10 3 0 1.5 - 4636 7700 9000 16.4 - 8.2 2.7 0.0
BFWS 20 - 20 20 0 15 - 16 23 9000 19.1 - 17.3 18.3 0.0
FDSS 20 - 20 20 0 165 - 110 165 9000 18.0 - 17.1 18.7 0.0

Table 11: Results comparing the (O)riginal models with macro enhanced models, namely
(M)UM, (B)loMa, CSMs (CS) and the Aggressive CSMs (ACS).

41

Chrpa, & Vallati

Coverage PAR10 IPC quality
Planner O M B CS ACS O M B CS ACS O M B CS ACS

barman
ff 0 - 0 30 30 9000 - 9000 0.1 0.1 0.0 - 0.0 30.0 30.0
lama 2 - 20 30 30 8418 - 3233 12 6.8 1.7 - 18.4 30.0 30.0
probe 5 - 11 30 30 7581 - 5737 47 5.8 3.4 - 8.7 30.0 30.0
Mp 0 - 0 30 30 9000 - 9000 145 1.3 0.0 - 0.0 30.0 30.0
mercury 26 - 14 30 30 1307 - 4976 14 6.0 18.0 - 9.9 30.0 30.0
yahsp 0 - 0 30 30 9000 - 9000 0.3 0.1 0.0 - 0.0 30.0 30.0
BFWS 0 - 4 30 30 9000 - 7824 3.0 0.4 0.0 - 3.4 30.0 30.0
FDSS 24 - 30 30 30 2044 - 588 160 7.6 22.0 - 28.0 29.9 29.9

bw
ff 0 - 1 8 28 9000 - 8700 6602 608 0.0 - 0.9 7.7 28.0
lama 28 - 29 29 28 656 - 356 345 610 24.3 - 21.7 23.6 23.4
probe 27 - 30 30 30 1101 - 182 83 0.2 24.1 - 29.5 28.1 28.3
Mp 0 - 0 29 18 9000 - 9000 435 3600 0.0 - 0.0 27.7 16.7
mercury 19 - 11 30 11 3327 - 5777 19 5734 8.2 - 10.0 30.0 9.2
yahsp 28 - 24 27 30 631 - 1834 933 0.0 6.1 - 17.4 23.4 27.2
BFWS 4 - 2 3 30 7814 - 8427 8109 36 1.5 - 0.9 1.4 30.0
FDSS 25 - 22 25 30 1568 - 2434 1563 9.8 22.4 - 15.7 18.3 23.7

depots
ff 1 9 11 11 30 8703 6386 5758 5789 0.0 0.6 6.0 6.9 7.4 30.0
lama 1 0 0 0 30 8724 9000 9000 9000 0.2 0.3 0.0 0.0 0.0 30.0
probe 30 30 30 30 30 36 26 26 14 0.0 26.2 26.4 27.0 27.5 29.7
Mp 2 2 2 2 30 8400 8400 8400 8400 0.0 1.3 1.6 1.6 1.6 30.0
mercury 0 0 0 0 30 9000 9000 9000 9000 0.2 0.0 0.0 0.0 0.0 30.0
yahsp 22 20 20 20 30 2479 3032 3031 3036 0.0 2.5 3.2 3.2 3.2 30.0
BFWS 11 18 19 16 30 5759 3762 3450 4309 0.0 6.8 14.3 14.0 11.8 29.6
FDSS 20 15 15 15 30 3563 4732 4733 4732 0.3 19.9 13.8 13.8 13.8 28.3

gold
ff 30 22 30 29 - 11 2402 0.2 331 - 30.0 20.6 23.3 22.8 -
lama 30 30 30 28 - 0.1 17 0.3 600 - 23.3 20.9 20.4 24.9 -
probe 30 30 30 30 - 0.0 1.8 0.0 0.0 - 29.0 26.1 25.0 21.2 -
Mp 30 30 30 30 - 0.0 0.1 0.0 0.0 - 28.3 25.5 18.8 21.4 -
mercury 30 29 30 30 - 1.3 301 0.3 0.4 - 23.0 23.1 20.5 20.0 -
yahsp 28 27 30 29 - 610 965 0.0 332 - 17.2 23.1 16.3 23.4 -
BFWS 30 18 30 30 - 0.0 3600 0.1 0.0 - 30.0 12.8 19.6 22.9 -
FDSS 30 30 30 30 - 0.1 0.3 0.6 0.2 - 27.1 28.4 23.1 23.3 -

gripper
ff 0 28 28 28 30 9000 718 708 686 9.2 0.0 28.0 28.0 28.0 30.0
lama 7 30 30 30 30 7029 68 74 69 2.8 6.5 30.0 30.0 30.0 25.8
probe 0 0 0 0 30 9000 9000 9000 9000 11 0.0 0.0 0.0 0.0 30.0
Mp 0 0 0 0 30 9000 9000 9000 9000 0.7 0.0 0.0 0.0 0.0 30.0
mercury 0 25 25 25 30 9000 1671 1671 1653 2.1 0.0 24.9 24.9 24.9 29.9
yahsp 0 0 0 0 30 9000 9000 9000 9000 0.1 0.0 0.0 0.0 0.0 30.0
BFWS 0 5 5 5 30 9000 7518 7519 7516 323 0.0 4.9 4.9 4.9 30.0
FDSS 0 0 0 1 30 9000 9000 9000 8726 4.2 0.0 0.0 0.0 1.0 29.9

matching-bw
ff 13 9 0 27 30 5160 6308 9000 900 0.0 10.0 7.6 0.0 26.8 29.7
lama 26 26 0 29 30 1201 1201 9000 301 0.1 21.5 21.0 0.0 25.0 27.7
probe 13 17 0 30 30 5104 3904 9000 0.3 0.0 7.3 11.1 0.0 29.5 29.5
Mp 0 0 0 23 20 9000 9000 9000 2105 3000 0.0 0.0 0.0 17.0 19.9
mercury 10 14 22 22 25 6025 4804 2405 2425 1500 7.5 11.9 17.7 21.1 24.1
yahsp 21 28 0 26 30 2725 622 9000 1216 0.0 13.4 20.9 0.0 22.7 27.7
BFWS 12 16 0 29 30 5431 4273 9000 369 0.0 9.7 13.3 0.0 25.3 28.2
FDSS 30 30 15 30 30 1.1 1.1 4503 1.2 0.1 24.9 25.4 10.7 24.2 26.6

rovers
ff 1 0 2 8 - 8714 9000 8423 6698 - 0.9 0.0 1.9 7.9 -
lama 30 30 30 29 - 96 88 94 417 - 29.2 24.6 28.9 28.3 -
probe 30 24 25 30 - 338 2151 1868 322 - 29.4 21.8 24.2 29.2 -
Mp 16 10 10 16 - 4384 6125 6107 4405 - 15.3 7.7 9.9 15.3 -
mercury 28 27 29 29 - 766 1026 408 458 - 26.5 22.4 27.8 28.3 -
yahsp 30 30 30 30 - 10 10 10 10 - 28.9 29.4 28.8 29.4 -
BFWS 21 16 7 22 - 2971 4446 7034 2686 - 20.8 13.2 6.9 21.6 -
FDSS 30 30 30 30 - 272 183 279 290 - 29.1 25.5 29.0 29.1 -

sokoban
ff 19 - 19 23 - 3331 - 3327 2117 - 17.9 - 16.7 19.8 -
lama 21 - 14 20 - 2729 - 4861 3034 - 19.6 - 11.8 15.9 -
probe 25 - 28 30 - 1519 - 631 65 - 20.9 - 24.3 25.8 -
Mp 30 - 30 30 - 0.8 - 0.6 2.2 - 27.7 - 28.4 25.4 -
mercury 23 - 23 24 - 2158 - 2152 1878 - 21.3 - 18.9 21.3 -
yahsp 26 - 26 29 - 1237 - 1251 367 - 19.6 - 14.9 28.4 -
BFWS 30 - 30 30 - 0.7 - 1.3 1.0 - 28.7 - 26.5 28.5 -
FDSS 30 - 30 30 - 14 - 10 22 - 27.9 - 21.3 25.3 -

thoughtful
ff 17 19 20 20 - 3900 3301 3001 3001 - 16.4 17.8 19.0 19.0 -
lama 25 22 23 23 - 1503 2403 2103 2103 - 24.1 21.0 21.9 21.9 -
probe 21 26 24 23 - 2709 1207 1808 2106 - 18.8 23.7 22.6 21.5 -
Mp 0 0 0 0 - 9000 9000 9000 9000 - 0.0 0.0 0.0 0.0 -
mercury 21 20 17 17 - 2704 3009 3903 3903 - 20.5 19.4 16.4 16.4 -
yahsp 8 7 6 6 - 6603 6904 7224 7218 - 7.7 6.4 5.9 5.9 -
BFWS 30 30 30 30 - 1.6 1.7 1.7 1.7 - 29.1 28.7 29.3 29.2 -
FDSS 30 30 30 30 - 23 35 34 34 - 28.2 27.8 27.7 27.7 -

Table 12: Results comparing the (O)riginal models with macro enhanced models, namely
(M)UM, (B)loMa, CSMs (CS) and the Aggressive CSMs (ACS).

42

