Planning with Critical Section Macros: Theory and Practice

Lukáš Chrpa

CHRPALUK@FEL.CVUT.CZ

Faculty Of Electrical Engineering, Czech Technical University in Prague

Mauro Vallati School of Computing and Engineering, University of Huddersfield M.VALLATI@HUD.AC.UK

Abstract

Macro-operators (macros) are a well-known technique for enhancing performance of planning engines by providing "short-cuts" in the state space. Existing macro learning systems usually generate macros by considering most frequent action sequences in training plans. Unfortunately, frequent action sequences might not capture meaningful activities as a whole, leading to a limited beneficial impact for the planning process.

In this paper, inspired by resource locking in critical sections in parallel computing, we propose a technique that generates macros able to capture whole activities in which limited resources (e.g., a robotic hand, or a truck) are used. Specifically, such a *Critical Section* macro starts by *locking* the resource (e.g., grabbing an object), continues by *using* the resource (e.g., manipulating the object) and finishes by *releasing* the resource (e.g., dropping the object). Hence, such a macro bridges states in which the resource is locked and cannot be used. We also introduce versions of Critical Section macros dealing with multiple resources and phased locks. Usefulness of macros is evaluated using a range of state-of-the-art planners, and a large number of benchmarks from the deterministic and learning tracks of recent editions of the International Planning Competition.

1. Introduction

Automated planning is an important research area of Artificial Intelligence that deals with the problem of finding a sequence of actions whose application in an initial state of the environment leads to a desired goal state (Ghallab, Nau, & Traverso, 2004). Automated planning has been successfully applied in challenging real-world domains, including drilling (Fox, Long, Tamboise, & Isangulov, 2018), transport (Vallati, Magazzeni, Schutter, Chrpa, & Mc-Cluskey, 2016; Cardellini, Maratea, Vallati, Boleto, & Oneto, 2021), smart grid (Thiébaux, Coffrin, Hijazi, & Slaney, 2013), UAV control (Ramírez, Papasimeon, Lipovetzky, Benke, Miller, Pearce, Scala, & Zamani, 2018), e-learning (Garrido, Morales, & Serina, 2012) and mining (Lipovetzky, Burt, Pearce, & Stuckey, 2014).

Since 1998, the International Planning Competition $(IPC)^1$ has been organised and is increasingly attracting the attention of the automated planning community. IPCs are a driving factor for developing domain-independent planning engines, predominantly based on heuristic search (Bonet & Geffner, 2001), that accept planning task specification in the PDDL language (Mcdermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins, 1998) on the input and output a plan (if it exists). This decoupling between the planning

^{1.} http://ipc.icaps-conference.org

^{©1993} AI Access Foundation. All rights reserved.

engine and the planning task specification supports the use of reformulation techniques, that can automatically re-formulate planning models provided as input to the engines, while keeping to the same input language, in order to increase the efficiency of planning engines and increase the range of problems solved.

A very well-known reformulation approach is the generation of macro-operators, macros for short, that encapsulate sequences of (primitive) planning operators. Macros are encoded as ordinary planning operators and, hence, they can be easily added into planning domain models such that standard planning engines can straightforwardly take advantage of them. Macros, informally speaking, provide short-cuts in the state space and, consequently, planning engines can generate plans in a smaller number of steps. This comes at the cost of increased branching factor, since macros often have much more instances than primitive operators and thus their use might introduce additional overheads as well as larger memory requirements. Although in theory the use of macros might reduce complexity of planning (Korf, 1985), in practice, macros are considered only if they are frequently used in solution plans (Hofmann, Niemueller, & Lakemeyer, 2017), their number of instances is small (Chrpa, Vallati, & McCluskey, 2014), or they address weaknesses of a specific planning engine (Coles, Fox, & Smith, 2007).

In this paper we present a detailed study of *Critical Section Macros (CSMs)*, that are inspired by parallel computing critical sections, and show their beneficial impact on the performance of domain-independent planning engines. In parallel computing, a *critical* section is a part of the code that deals with one or more shared resources such that the resources are initially locked (to prevent other processes or threads to concurrently access them), then processed and at the end they are released. In automated planning we can observe parts of plans that share similar characteristics of critical sections. For example, a hand of a robotic barman can be understood as a shared (or limited) resource, since the hand can hold at most one object at a time. Then a sequence of actions starting with the hand grasping a shaker, following with shaking the cocktail, pouring the cocktail into a glass and cleaning the shaker, and finishing by releasing the shaker can be referred to as a critical section. Assembling such an action sequence into a (Critical Section) macro bridges states in which the resource is locked and cannot be used (e.g. the hand cannot grasp a different object at the same time). Consequently, it might, to some extent, mitigate the incorrect assumption of some heuristics (e.g. delete-related ones) that a resource can be used with multiple objects simultaneously. Due to their nature, CSMs can sometimes replace primitive operators they are assembled from and/or can be effectively combined with other macro generating techniques.

Contributions of this paper, in which we significantly extend the work presented in our conference paper (Chrpa & Vallati, 2019), are as follows:

- We describe the concept of standard and phased resource locks.
- We define and describe the concept of *Critical Section Macros* (CSMs).
- We consider complex variants of CSMs, namely multi-locks CSMs and multi-phased lock CSMs.
- We introduce the concept of compound CSMs that, in a nutshell, account for incremental construction of more complex CSMs from simple ones.

- We consider the aggressive approach of CSM use in which we eliminate replaced original operators.
- We provide an extensive and detailed empirical evaluation on a broad range of domains.

The remainder of this work is organised as follows. Section 2 contextualises the proposed approach with regards to existing related work. The necessary background, in terms of classical planning, macros and outer entanglements, is given in Section 3. Critical Section Macros and their compound variant are formally introduced in Sections 4 and 5, and the approach for extracting such macros is provided in Section 6. The experimental analysis is presented in Section 7. Finally, in Section 8, conclusions are given.

2. Related Work

Using macros dates back to 1970s and 1980s. REFLECT (Dawson & Siklóssy, 1977) builds macro-operators from pairs of primitive operators that can be successively applied and share at least one argument. MORRIS (Minton, 1988) learns macro-operators from parts of plans appearing frequently (S-macros) or being potentially useful despite having low priority (Tmacros). Macro Problem Solver (Korf, 1985) learns macros for particular non-serialisable sub-goals (e.g. in Rubik's cube).

Recent planner-independent techniques aim at improving performance of any standard planner. MacroFF (Botea, Enzenberger, Müller, & Schaeffer, 2005) generates macros according to several pre-defined rules (e.g., the "locality rule") that apply on adjacent actions in training plans. Wizard (Newton, Levine, Fox, & Long, 2007) learns macros from training plans by exploiting genetic programming. Alhossaini and Beck (2013) select problemspecific macros from a given pool of macros (hand-coded or generated by another technique). Dulac, Pellier, Fiorino, and Janiszek (2013) exploit n-gram algorithm to analyse training plans to learn macros. DBMP/S (Hofmann et al., 2017) applies Map Reduce for learning macros from a larger set of training plans. The recent extension of DBMP/S supports ADL features (Hofmann, Niemueller, & Lakemeyer, 2020). CAP (Asai & Fukunaga, 2015) exploits component abstraction (introduced by MacroFF) for generating sub-goal specific macros.

MUM (Chrpa et al., 2014) leverages "outer entanglements", which are relations between operators and initial or goal atoms (Chrpa, Vallati, & McCluskey, 2018), as a heuristic for generating macros step by step (i.e., assembling two "macro candidates", which can be both primitive operators or macros, in a given step). Generated macros have limited number of instances, specifically, the number of macro instances has to be in the same order of magnitude as the number of primitive operator instances. Junghanns and Schaeffer (2001) introduce the concept of "tunnel macros" aiming at bypassing "uninteresting" intermediate states for the Sokoban game. The idea of "tunnel macros" was later elaborated in the context of breaking variable coupling in order to decompose abstracted planning tasks (Haslum, 2007). Conceptually, CSMs, which are the contribution of this paper, can be seen as "tunnel macros" in the sense of bypassing states in which the (limited) resource is being used. BloMa (Chrpa & Siddiqui, 2015) leverages block deordering, which rearranges plans into "blocks" that can no longer be deordered (Siddiqui & Haslum, 2012), for generating longer macros. In particular, BloMa generates a large pool of macros from "macroblocks", which are derived from "blocks" by applying a set of rules, that is later reduced by applying (strict) frequency requirements. CSMs, in contrast to other macro generating techniques, have a specific structure capturing whole activities in which limited resources are used. Although the aim of generating meaningful long macros is similar to BloMa, CSMs are targeted to bypassing states in which limited resources are being used that in consequence might help, for example, delete-relaxation-based approaches to make better heuristic estimates. CSMs can be combined with "chaining" macro generation approaches such as MUM, as shown in our previous work (Chrpa & Vallati, 2019).

Macro generation is not limited to classical planning, a few recent works concern the use of macros in plan repair in numeric planning (Scala, 2014; Scala & Torasso, 2015).

Several works go in the opposite direction of macros. Haslum and Jonsson (2000) proposed a method that identifies and removes "redundant" actions, i.e. actions whose effects can be achieved by sequences of other actions. In other words, the method identifies and removes macros from the planning task description. From another perspective, operator schema splitting (Areces, Bustos, Dominguez, & Hoffmann, 2014) deals with decomposing complex planning operators into simpler ones; basically, the contrary of what macro generation approaches are aiming at. It should be mentioned that these works do not contradict the usefulness of macro generation techniques, they just highlight the importance of careful selection of useful macros, or careful positioning of macros in domain models (Vallati, Chrpa, McCluskey, & Hutter, 2021) – and to some extent, the importance of the wider knowledge engineering process of encoding domain models (McCluskey, Vaquero, & Vallati, 2017).

3. Classical Planning

Classical planning is concerned with finding a (partially or totally ordered) sequence of actions transforming the static, deterministic and fully observable environment from the given initial state to a desired goal state (Ghallab et al., 2004; Mcdermott et al., 1998).

In the classical representation, a *planning task* consists of a *planning domain model* and a *planning problem*, where the planning domain model describes the environment and defines planning operators while the planning problem defines concrete objects, an initial state and a set of goals. The environment is described by *predicates* that are specified via a unique identifier and terms (variable symbols or constants). For example, a predicate (at ?t ?p), where at is a unique identifier, and ?t and ?p are variable symbols, denotes that a truck ?t is at a location ?p. Predicates thus capture general relations between objects.

Definition 1. A planning task is a pair $\Pi = (Dom_{\Pi}, Prob_{\Pi})$ where a planning domain model $Dom_{\Pi} = (P_{\Pi}, Ops_{\Pi})$ is a pair consisting of a finite set of predicates P_{Π} and planning operators Ops_{Π} , and a planning problem $Prob_{\Pi} = (Objs_{\Pi}, I_{\Pi}, G_{\Pi})$ is a triple consisting of a finite set of objects $Objs_{\Pi}$, initial state I_{Π} and goal G_{Π} .

Let ats_{Π} be the set of all **atoms** that are formed from the predicates P_{Π} by substituting the objects $Objs_{\Pi}$ for the predicates' arguments. In other words, an atom is an **instance** of a predicate (in the rest of the paper when we use the term instance, we mean an instance that is fully ground). A **state** is a subset of ats_{Π} , and the **initial state** I_{Π} is a distinguished state. The goal G_{Π} is a non-empty subset of ats_{Π} , and a goal state is any state that contains the goal G_{Π} .

Notice that the semantics of state reflects the full observability of the environment. That is, that for a state s, atoms present in s are assumed to be true in s, while atoms not present in s are assumed to be false in s.

Planning operators are the mean that allows to modify the environment. They consist of *preconditions*, i.e., what must hold prior an operators' application, and *effects*, i.e., what is changed after operators' application. Specifically, we distinguish between *delete effects*, i.e., what becomes false, and *add effects*, i.e., what becomes true after applying the operator. *Actions* are instances of planning operators, i.e., operators' arguments as well as corresponding variable symbols in operators' preconditions and effects are substituted by objects (constants). Planning operators capture general types of activities that can be performed. Planning operators can be instantiated to actions in order to capture given activities between concrete objects.

Definition 2. A planning operator o = (name(o), pre(o), del(o), add(o)) is specified such that $name(o) = op_name(x_1, ..., x_k)$, where op_name is a unique identifier and $x_1, ..., x_k$ are all the variable symbols (arguments) appearing in the operator, pre(o) is a set of predicates representing the precondition of o, del(o) and add(o) are sets of predicates representing the negative (or delete) and positive (or add) effects of o.

Actions are instances of planning operators that are formed by substituting objects, defined in a planning problem, for operators' arguments as well as for corresponding variable symbols in operators' preconditions and effects. An action a = (pre(a), del(a), add(a)) is **applicable** in a state s if and only if $pre(a) \subseteq s$. Application of a in s, if possible, results in a state $(s \setminus del(a)) \cup add(a)$.

We define a *transition function* $\gamma : S \times A^n \to S$, where S is a set of states, A is a set of actions and n is a non-negative integer, as follows:

$$\begin{split} \gamma(s, \langle \rangle) &= s \\ \gamma(s, \langle a \rangle) &= (s \setminus del(a)) \cup add(a) \text{ if } a \text{ is applicable in } s, \text{ or undefined otherwise} \\ \gamma(s, \langle a_1, a_2, \dots, a_n \rangle) &= \gamma(\gamma(s, \langle a_1 \rangle), \langle a_2, \dots, a_n \rangle), \text{ or undefined if } \gamma(s, \langle a_1 \rangle) \text{ is undefined} \end{split}$$

A solution of a planning task is a sequence of actions transforming the environment from the given initial state to a goal state.

Definition 3. A plan is a sequence of actions. A plan is a solution of a planning task Π , a solution plan of Π in other words, if and only if a consecutive application of the actions from the plan starting in the initial state of Π results in the goal state of Π .

Given a planning task Π , we say that a state s' is **reachable** from a state s if and only if there exists a sequence of actions such that their consecutive application starting in s results in s'. We say that atoms p and q are **mutex** if and only if no reachable state contains both of them. We also say that a set of atoms is a **mutex group** if and only if in each reachable state at most one atom from the set is true. We say that an action a_i is an **achiever** for an action a_j if an only if $add(a_i) \cap pre(a_j) \neq \emptyset$. We also say that actions a_i and a_j are **independent** if and only if $del(a_i) \cap (pre(a_j) \cup add(a_j)) = \emptyset$ and $del(a_j) \cap (pre(a_i) \cup add(a_i)) = \emptyset$. We also say that actions a_i and a_j are **equivalent** if and only if for each state s it is the case that $\gamma(s, a_i) = \gamma(s, a_j)$ or both $\gamma(s, a_i)$ and $\gamma(s, a_j)$ are undefined.

3.1 Running Examples

Throughout the paper, we will use examples from several benchmark domains that were introduced in the International Planning Competitions².

BlocksWorld (Bw, in short) is perhaps the best known domain in the planning community. In Bw, the task is to rearrange towers of blocks by a robotic hand. A "clear" block (i.e., nothing is stacked on that block) can be *picked up* from the table if the robotic hand is free. A "clear" block can be *unstacked* from another block if the robotic hand is free. A block can be *put down* on the table if held by the robotic hand. Similarly, a block can be *stacked* on another "clear" block if held by the robotic hand.

The *Transport* domain is a variant of a logistics domain in which packages have to be delivered by limited-capacity trucks from their locations of origin to their destination locations. A package can be *picked up* by a truck if they both are at the same location and the truck has sufficient capacity to carry the package. A package can be *dropped* by the truck if the package is inside the truck. A truck can *drive* from one location to another if the locations are connected by road.

In the *Storage* domain, crates have to be delivered by hoists from the areas of their origin to the areas of their destination. A "free" hoist can *pick up* a crate if the hoist is located in the area next to the area in which the crate is placed. A hoist can *drop* the crate to a free store area next to the area the hoist is located. A hoist can *move* to a free adjacent store area. A hoist can *go out* from the store area to an adjacent transit area and, finally, a hoist can *go in* to a free adjacent store area from the transit area the hoist is located.

The *Barman* domain models a robotic barman which has to prepare a collection of drinks and cocktails. The robotic barman has two hands that can be used to carry and manipulate containers (shots or shakers). Cocktails are prepared in a shaker to which the barman has to put required ingredients (two of them). Ingredients can be poured from dispensers to shots and then put to the shaker that has to be clean before use. The shot has to be clean as well before use unless it is used for the same ingredient as before.

3.2 Macro-actions and Macro-operators

Sequences of actions can be assembled into single actions, called macro-actions. Macroactions can be understood as short-cuts in state-transition systems representing planning tasks. Plan generation might hence be done in a smaller number of steps. Macro-actions are formally defined as follows.

Definition 4. Let $\langle a_1, \ldots a_n \rangle$ be a sequence of actions. We say that $a_{1,\ldots,n}$ is a macroaction over $\langle a_1, \ldots a_n \rangle$ if and only if for each state s it is the case that $\gamma(s, a_{1,\ldots,n}) = \gamma(s, \langle a_1, \ldots a_n \rangle)$ or both $\gamma(s, a_{1,\ldots,n})$ and $\gamma(s, \langle a_1, \ldots a_n \rangle)$ are undefined.

^{2.} http://ipc.icaps-conference.org

Algorithm 1 Assembling Macro-actions from a sequence of actions

Require: $\langle a_1, \ldots a_n \rangle$ **Ensure:** $a_{1,\ldots,n}$ 1: **function** ASSEMBLETWO (a_i, a_j) 2: $pre(a_{i,j}) \leftarrow pre(a_i) \cup (pre(a_j) \setminus add(a_i))$ 3: $del(a_{i,j}) \leftarrow (del(a_i) \setminus add(a_i)) \cup del(a_j)$ 4: $add(a_{i,j}) \leftarrow (add(a_i) \setminus del(a_j)) \cup add(a_j)$ 5: **return** $a_{i,j}$ 6: **end function** 7: **for** i = 1 to n - 1 **do**

8: $a_{1,\dots,i+1} \leftarrow \text{AssembleTwo}(a_{1\dots,i}, a_{i+1})$ 9: **end for**

We also say that $a_{1,...,n}$ is sound if and only if for each $1 < i \leq n$ it is the case that $pre(a_i) \cap \bigcup_{j=1}^{i-1} (del(a_j) \setminus \bigcup_{l=j}^{i-1} add(a_l)) = \emptyset$.

A macro-action $a_{1,...,n}$ can be assembled from a sequence of actions $\langle a_1, \ldots, a_n \rangle$ as shown in Algorithm 1. The algorithm iteratively assembles actions one by one until the required macro-action is created.

At a more general level, macro-operators encapsulate sequences of ordinary planning operators and as actions are grounded instances of planning operators, macro-actions are instances of macro-operators. Also, macro-operators are domain-specific rather than problem-specific and hence they can be added into a domain model and exploited in a *planner in-dependent* way (e.g. encoded in PDDL). We generalise Definition 4 for macro-operators as follows.

Definition 5. Let $\langle o_1, \ldots o_n \rangle$ be a sequence of planning operators. We say that $o_{1,\ldots,n}$ is a **macro-operator** over $\langle o_1, \ldots o_n \rangle$ if for each instance $a_{1,\ldots,n}$ of $o_{1,\ldots,n}$ it is the case that $a_{1,\ldots,n}$ is a macro-action over $\langle a_1, \ldots a_n \rangle$, where for each $1 \leq i \leq n$ it holds that a_i is an instance of o_i .

We also say that $o_{1,\dots,n}$ is sound if and only if each of its instances is sound as well.

Macro-operators, in the most general case, contain all the variable symbols (parameters) of operators they are assembled from. However, it is useful to bind some variables to be equal. For example, in BlocksWorld, assembling two operators pickup(?x) and stack(?z ?y) into a macro-operator makes sense if ?x and ?z are equal since we would like to stack the same block we picked up. Instead of explicitly putting equality constraints into macro-operators' preconditions, we unify equal variables by renaming substitutions. That is, in our example, renaming ?z to ?x, so the macro-operator pickup-stack(?x ?y) has two parameters.

Note that hereinafter we will use the term *macro* to refer to both macro-actions and macro-operators. Where not clear from the context we will use the notions macro-action/macro-operator to disambiguate. Another type of variable binding is *inequality constraints*, which might be necessary to handle a possible source of unsoundness of macro-operators (Chrpa, 2010b). For example, in the BlocksWorld domain, a macro pickup-stack(?x ?y) that has (clear

?x)(ontable ?x)(clear ?y)(handempty) in its precondition can be instantiated into pickupstack(A A) that is applicable if (clear A)(ontable A)(handempty) is true in some state. However, actions (pickup A) and stack(A A) cannot be applied consecutively because (pickup A) deletes (clear A) which is required by stack(A A). By generalising this observation we can see that if some (different) variable symbols are substituted by the same constants, a macro-operator might become unsound. To avoid such cases, a constraint requiring different instantiation of affected variable symbols, i.e., the inequality constraint, is added into macro-operator's precondition (e.g. (not (= ?x ?y)) is added into pickup-stack(?x ?y)'s precondition).

3.3 Outer Entanglements

Outer Entanglements are relations between planning operators and initial or goal predicates, and have been introduced as a technique for eliminating potentially unnecessary instances of these operators (Chrpa et al., 2018).

Generally speaking, entanglements by init capture situations where only instances of a given operator that requires instances of a certain predicate present in the initial state are needed to solve the problem. Similarly, entanglements by goal capture situations where only instances of a given operator that achieves instances of a certain predicate present in the goal are needed to solve the problem.

For example, in the BlocksWorld domain, the operator unstack is entangled by init with the predicate on, since we need to unstack blocks only from their initial positions. Similarly, the operator stack is entangled by goal with the predicate on, since we need to stack blocks only to their goal positions.

Definition 6. Let $\Pi = (D, P)$ be a planning task, where P = (Obj, I, G) is a planning problem and D = (P, O) is a domain model. We say that operator $o \in O$ is **entangled by init (resp., goal)** with a predicate $p \in P$ if and only if $p \in pre(o)$ (resp., $p \in add(o)$) and there exists a solution plan π of Π such that for every o's instance $a \in \pi$ and for every p's instance p_{qnd} it holds: $p_{qnd} \in pre(a) \Rightarrow p_{qnd} \in I$ (resp., $p_{qnd} \in add(a) \Rightarrow p_{qnd} \in G$).

Outer entanglements have been used as a reformulation technique, as they can be directly encoded into a problem instance. The way outer entanglements are encoded is inspired by one of their properties: given a static predicate p_s (p_s is not a part of effects of any operator), an operator o is entangled by init with p_s if and only if $p_s \in pre(o)$ (Chrpa & Barták, 2009). For an operator o being entangled by init (resp., goal) with a predicate p, a supplementary static predicate p' that "clones" p is introduced and put into pre(o). Initial (resp., goal) instances of p are cloned and put into the initial state.

Formally, let Π be a planning task, I be its initial state and G its goal. Let an operator o be entangled by init (resp., goal) with a predicate p. Then Π is reformulated as follows (Chrpa et al., 2018):

- 1. Add a new static predicate p' having the same arguments as p to the domain model of $\Pi.$
- 2. Add p' into o's precondition such that p' has the same arguments as p which is in precondition (resp., add effects) of o.

3. Add instances of p' which correspond to instances of p in I (resp., in G) into I.

To give an example, operator unstack(?x ?y) that is entangled by init with (on ?x ?y) is modified such that a new static predicate (ei_on ?x ?y) is added to its precondition. Then, assuming that, for example, (on A B) and (on B C) are present in the initial state of a planning task, the initial state of the reformulated planning task will contain (ei_on A B) and (ei_on B C).

4. Critical Section Macros (CSMs)

In parallel computing, critical sections are used to regulate the access to resources, to guarantee the integrity of the overall system by avoiding situations where multiple different processes are concurrently modifying a shared resource. To prevent other processes (or threads) to access the resource while it is in use, the resource is locked at the beginning of the critical section, then the required operations are made with the resource by the process that is locking it, and then –at the end of critical section– the resource is released and is therefore available for other processes.

In planning, we can observe that some subsequences of actions in plans replicate the underlying structure of critical sections, i.e., locking a resource, using it, and releasing it. In BlocksWorld, the robotic hand can be seen as a resource. When the robotic hand picksup or unstacks a block it becomes locked, that is, no other block can be carried by the robotic hand at that time. When the robotic hand stacks or puts-down the block it is holding, then the hand is released, that is, it can be used to manipulate other blocks. A more complicated example can be found in the Barman domain, in which a robotic barman prepares cocktails. Here, a critical section activity, for instance, involves grabbing a shaker (locking robot's hand), shaking a cocktail, pouring the cocktail into a shot, cleaning the shaker before putting it back on the table (releasing robot's hand).

The rationale behind CSMs is to *bridge* resource use with a single macro. Such macros can hence capture a whole activity that deals with a limited resource (or more limited resources). This might be beneficial, for instance, for planning techniques incorporating delete-relaxation, i.e., ignoring delete effects of actions (Hoffmann & Nebel, 2001). For states in which a resource is available, delete-relaxation heuristics might incorrectly assume that the resource can be simultaneously used by multiple objects (e.g. a robotic hand holding multiple blocks at the same time), potentially leading to inaccurate heuristic estimates.

Technically speaking, a free resource, as well as a locked resource, is represented by corresponding atoms. For example, (handfree) represents a free resource (the robotic hand) while (holding a) represents a locked resource (the robotic hand carrying block a).

We recognise critical activities by identifying mutex atoms p and q that represent a free and a locked resource, respectively. We consider two different conditions for p and q such that one has to be met in order to recognise p and q as a lock. In the first condition, the arguments of q must be a superset (not necessarily proper) of the arguments of p. Arguably, since q represents a locked resource, it might contain additional arguments referring to why the resource is locked (e.g. a hand holding an object), however, it cannot contain fewer arguments (in order to recover a corresponding atom p after releasing the resource). In the second condition, p and q must have the same name and the same number of arguments but they differ at exactly one argument. Such a condition refers to a situation, for example, where a predicate represents a capacity of a resource (e.g. a truck). One argument describes the capacity of the resource (in that argument in which p and q differ) while the other arguments describe the resource itself (e.g. a truck).

Locking and releasing resources is done by specific actions. An action that deletes p and adds q, a *locker*, locks a given resource. Analogously, an action that deletes q and adds p, a *releaser*, releases (unlocks) the given resource. An action having q in its precondition but not deleting it, a *user*, uses the given resource. This idea is formalised as follows (note that args(p) represents the set of arguments of a predicate p).

Definition 7. Let Π be a planning task and ats_{Π} be atoms and A_{Π} be actions (defined in Π). Let $p, q \in ats_{\Pi}$ be atoms that are mutex and where (i) $args(p) \subseteq args(q)$, or (ii) name(p) = name(q) and $|args(p) \cap args(q)| + 1 = |args(p)| = |args(q)|$. We say that an action $a \in A_{\Pi}$ is a p, q-locker if $p \in del(a)$ and $q \in add(a)$. We also say that $a' \in A_{\Pi}$ is a p, q-releaser if $q \in del(a')$ and $p \in add(a')$. We also say that $a'' \in A_{\Pi}$ is a q-user if $q \in pre(a'') \setminus (del(a'') \setminus add(a''))$. We denote the pair p, q as a lock.

The above definition considers single-phased locks, i.e., resources are locked/released by one action only. However, it might be the case that locking and/or releasing a resource has to be done in multiple steps. For illustration, multi-phase locks might account for capacity of a truck that might carry at most k packages. Then, a sequence of "pick" actions might account for a multi-phase locker and a sequence of "drop" actions might account for a multi-phase releaser. To consider multi-phased locks, we extend Definition 7 as follows.

Definition 8. Let Π be a planning task and ats_{Π} be atoms and A_{Π} be actions (defined in Π). Let $p^1, \ldots, p^k \in ats_{\Pi}$ be atoms forming a mutex group and where (i) $args(p^1) \subseteq \cdots \subseteq args(p^k)$, or (ii) $name(p^1) = \cdots = name(p^k)$ and $|\bigcap_{i=1}^k args(p^i)| + 1 = |args(p^1)| = \cdots = |args(p^k)|$. We say that a sequence of actions a^{l_1}, \ldots, a^{l_m} forms a p^1, \ldots, p^k -locker if for each $i \in \{1, \ldots, m\}$ it is the case that a^{l_i} is a $p^{c_i}, p^{c_{i+1}}$ -locker, where $1 = c_1 < c_2 < \cdots < c_m < c_{m+1} = k$. Similarly, we say that a sequence of actions a^{r_1}, \ldots, a^{r_n} forms a p^1, \ldots, p^k -releaser if for each $i \in \{1, \ldots, n\}$ it is the case that a^{r_i} is a $p^{d_{i+1}}, p^{d_i}$ -releaser, where $k = d_1 > d_2 > \cdots > d_n > d_{n+1} = 1$. We denote the sequence p^1, \ldots, p^k as a phased lock.

We say that p^1, \ldots, p^k -locker and p^1, \ldots, p^k -releaser are **balanced** if and only if m = nand for the indices it is the case that $c_1 = d_{n+1}, c_2 = d_n, \ldots, c_{n+1} = d_1$.

It should be noted that one action can be a locker/releaser or a part of action sequence forming a locker/releaser for more locks (single- or multi-phased).

In the following subsections, we describe in detail three kinds of CSMs, the simple ones that use a single-phased lock such that they start with a locker and end up with a releaser over that (single) lock, and the complex ones that involve multi-phased locks or multiple locks.

4.1 Single-phased Single-lock CSMs

A Single-phased Single-lock (SpSI) CSM, in general, encapsulates a sequence of actions starting with a *locker* and ending up with a *releaser*. Such an action sequence might also contain *users* and "gluing" actions. A gluing action, roughly speaking, is an action that

cannot be moved before the locker or after the releaser without compromising the sequence – by invalidating a precondition of some action or by achieving a different outcome than the original action sequence. To give an example, an action sequence – pick(truck pkg loc1), drive(truck loc1 loc2), drop(truck pkg loc2) – can form a CSM. The drive action is a gluing action as it neither can be moved before pick, since these actions are not independent because drive deletes pick's precondition, nor can be moved after drop, since drive achieves a fact required by drop. In another action sequence – pick(truck pkg loc1), drive(truck loc1 loc2), drop(truck pkg loc2) –, we can see that we can move the latter drive action (drive(truck2 loc2 loc3), drop(truck pkg loc2) –, we can see that we can move the latter drive actions are independent. Note that the latter drive action can also be moved before pick as it is independent with both pick and the former drive action (drive(truck loc1 loc2)) and none of these actions is an achiever for it (the latter drive action).

We define the notion of a "potentially gluing" action that unifies the conditions under which the action can be considered as "gluing" within a CSM.

Definition 9. Let $a_{1,...,k}$ be a macro over $\langle a_1, \ldots, a_k \rangle$. We say that an action a_i , where 1 < i < k, is a **potentially gluing action** with respect to $a_{1,...,k}$ if the following conditions hold:

- there exists an action a_j , where $1 \le j < i$, such that a_i and a_j are not independent or a_j is an achiever for a_i
- there exists an action a_m, where i < m ≤ k, such that a_i and a_m are not independent or a_i is an achiever for a_m

Formally, a CSM with a single-phased single lock is defined as follows.

Definition 10. Let Π be a planning task and ats_{Π} be atoms and A_{Π} be actions (defined in Π). Let $a_1, a_2, \ldots, a_k \in A_{\Pi}$ be actions. We say that $a_{1,\ldots,k}$ is a **Single-phased Single-lock** Critical Section Macro over a lock p, q ($p, q \in ats_{\Pi}$) if it is a macro over a sequence of actions $\langle a_1, \ldots, a_k \rangle$ such that

- i) a_1 is a p, q-locker
- ii) a_i , where 1 < i < k, is either a q-user, or a potentially gluing action not being a q-user (a gluing action, for short)
- *iii)* a_k *is a* p, q*-releaser*

Furthermore, we can classify SpSl CSMs into the following categories with regards to their shape.

Trivial – CSM contains only a locker and a releaser

Using – CSM contains also users, besides a locker and a releaser

Gluing – CSM contains also gluing operators, besides a locker and a releaser

Full – CSM contains all types of operators

For example, a macro pickup-stack(?x ?y), representing that a block ?x is moved from the table to a block ?y, is a CSM consisting of only a locker (pickup(?x)) and a releaser (stack(?x ?y)) and hence is classified as *trivial*. In Storage instead, a macro go_out-lift-go_in(?hoist ?storearea1 ?transitarea ?crate ?storearea2 ?place), representing that ?hoist initially moves from ?storearea1 to ?transitarea in order to lift ?crate from ?place in ?storearea2 and then moves back to ?storearea1, is a CSM consisting of a locker (go_out(?hoist ?storearea1 ?transitarea)), a releaser (go_in(?hoist ?transitarea ?storearea1)) and a user (lift(?hoist ?crate ?storearea2 ?transitarea ?place)) and hence is classified as *using*. In a variant of Transport in which each truck can carry at most one package, a macro pick-drive-drop(?truck ?package ?location1 ?location2), representing that ?truck delivers ?package from ?location1 to ?location2, is a CSM consisting of a locker (pick(?truck ?package ?location1)), a releaser (drop(?truck ?package ?location2)) and a gluing action (drive(?truck ?location1 ?location2)) and hence is classified as *gluing*.

4.2 Single-Phased Multi-lock Critical Section Macros

Operators involved in one CSM might be lockers or releasers for other CSMs. That said, a SpSl CSM might contain a part of another CSM (could be more than one). Consequently, some CSMs might overlap, i.e., sharing a common subsequence of actions, and such a situation might be impractical during planning, as the planner might use only one of these macros. To give an example, in the Storage domain we can find two SpSl CSMs (parameters are omitted for the sake of clarity): go_out-lift-go_in (see Section 4.1) and lift-go_in-drop, where the hoist lifts a crate, moves from the transit area to a store area and then drops the crate. These CSMs overlap in the lift and go_in actions.

To deal with this issue we introduce *Single-phased Multi-lock (SpMl) CSMs* that contain multiple lockers and releasers.

Definition 11. Let Π be a planning task and ats_{Π} be atoms and A_{Π} be actions (defined in Π). Let $a_1, a_2, \ldots, a_k \in A_{\Pi}$ be actions. We say that $a_{1,\ldots,k}$ is a **Single-phased Multi-lock** Critical Section Macro over a set of locks $p^1, q^1, p^2, q^2, \ldots, p^l, q^l$ $(p^1, q^1, p^2, q^2, \ldots, p^l, q^l \in ats_{\Pi})$ if it is a macro over a sequence of actions $\langle a_1, \ldots, a_k \rangle$ such that

- (i) a_1 is a p^i, q^i -locker
- (ii) a_i , where 1 < i < k, is either
 - (a) a q^x -user, where there exists j < i such that a_j is a p^x, q^x -locker and there exists m > i such that a_m is a p^x, q^x -releaser
 - (b) a p^v, q^v -releaser, where $1 \le v \le l$, there exists $1 \le m < i$ such that a_m is a p^v, q^v -locker
 - (c) a potentially gluing action which is neither a q^x -user nor a p^v, q^v -releaser as in (a) or (b), respectively (a gluing action, for short)
 - (d) a p^v, q^v -locker, where $1 \le v \le l$, there exists m, where $i < m \le k$, such that a_m is a p^v, q^v -releaser, and a_i is a q^x -user $(x \ne v)$, a gluing action, or a p^x, q^x -releaser $(x \ne v)$.
- (iii) a_k is a p^j, q^j -releaser

Let $locks(i) = \{a_j \mid j \leq i, a_j \text{ is a } p^v, q^v \text{-locker}, 1 \leq v \leq l\}$ be a set of lockers up to the index i and $rels(i) = \{a_j \mid j \leq i, a_j \text{ is a } p^v, q^v \text{-releaser}, 1 \leq v \leq l\}$ be a set of releasers up to the index i. It is the case for each $1 \leq i \leq k-1$ that |locks(i)| > |rels(i)|.

Returning to the above Storage domain example, we can construct a SpMl CSM – go_out-lift-go_in-drop (parameters are omitted for the sake of clarity) representing that a hoist moves to a transit area, lifts a crate from an adjacent store area, returns back to the store area the hoist was before and drops the crate to a (different) adjacent store area. By constructing such a CSM, we effectively deal with the above mentioned overlap.

Note that if a SpMl CSM starts with a p^i, q^i -locker and ends with a p^i, q^i -releaser, it also classifies as a SpSl CSM, where the other lockers and releasers count as users or gluing actions.

4.3 Multi-phased Single-lock Critical Section Macros

More complex situations involve multi-phased locks, that is, a sequence of actions need to be applied to get the lock and similarly a sequence of other actions need to be applied to release the lock. *Multi-phased Single-lock (MpSl) CSMs* are defined as follows.

Definition 12. Let Π be a planning task and ats_{Π} be atoms and A_{Π} be actions (defined in Π). Let $a_1, a_2, \ldots, a_k \in A_{\Pi}$ be actions. We say that $a_{1,\ldots,k}$ is a **Multi-phased Single-lock** Critical Section Macro over a multi-phased lock p^1, p^2, \ldots, p^l ($p^1, p^2, \ldots, p^l \in ats_{\Pi}$) if it is a macro over a sequence of actions $\langle a_1, \ldots, a_k \rangle$ such that

- (i) there exist $1 = l_1 < \cdots < l_m < r_1 < \cdots r_n = k$ such that a^{l_1}, \ldots, a^{l_m} forms a p^1, p^2, \ldots, p^l -locker and a^{r_1}, \ldots, a^{r_n} forms a p^1, p^2, \ldots, p^l -releaser
- (ii) a_i , where 1 < i < k and $i \notin \{l_1, \ldots, l_m, r_1, \ldots, r_n\}$, is a p^x -user $(1 \le x \le l)$, or a potentially gluing action not being a p^x -user (a gluing action, for short)

For example, in the Transport domain, a MpSl CSM, is pick-pick-drive-drop-drive-drop. The macro represents that a truck initially picks up two packages at the same location and delivers the first package to a location adjacent to the location of origin, and the second package to a location adjacent to the first delivery location.

Note that if a MpSl CSM starts with a p^1, p^2 -locker and finishes with a p^1, p^2 -releaser (it is always the case for balanced locks), it is also a SpSl CSM (the other actions being part of the phased lock will count as gluing actions).

It is possible to define *Multi-phased Multi-lock (MpMl) CSMs* that, roughly speaking, would combine Definitions 11 and 12. To give an example, in the Barman domain, we can have two SpSl CSMs, i.e., 1) grasping a shot, filling a shot by an ingredient, pouring the shot to the shaker, cleaning the shot, filling the shot by another ingredient, pouring the shot to the shaker, cleaning the shot, leaving the shot, 2) grasping a shaker, shaking a cocktail, serving the cocktail, emptying, cleaning and leaving the shaker, and one MpSl CSM, i.e., 3) pouring the shot to the shaker, cleaning the shot, filling the shot, filling the shot with another ingredient, pouring the shot to the shaker, cleaning the shot, leaving the shot, grasping the shot, grasping the shaker, shaking the cocktail, serving it and emptying the shaker. For the first and second CSM, the limited resource is a barman's hand which holds a shot in the first case and the shaker in the second case. For the third macro, the limited resource is the capacity of the shaker.

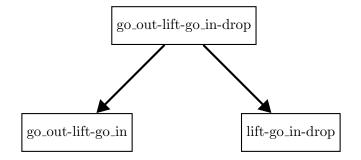


Figure 1: Example of a SpMl CSM in the Storage Domain.

shaker is filled by two pouring actions and emptied by the "pouring to shot" action and the "empty" action. It can be observed that the third macro overlaps with the other two. To deal with the overlap, we can generate a MpMl CSM, i.e., grasping a shot, filling a shaker with ingredients and leaving the shot, grasping the shaker, shaking a cocktail, serving the cocktail, cleaning the shaker and leaving the shaker.

5. Compound Critical Section Macros

As macros are encoded as ordinary actions, this fact can be leveraged for assembling more complex CSMs from simpler ones. In particular, we might only need a method that learns SpSl CSMs (we refer to this type of macros as simple CSMs) and by iterative use of the method, we can construct more complex CSMs (i.e., SpMl, MpSl or even MpMl CSMs). Also, as we learn CSMs from training plans, which might be noisy (e.g., contain some peculiarities such as very suboptimal action sequences, or redundant actions), it seems to be a more feasible option to learn CSMs incrementally as shorter macros might be easier to identify in noisy plans.

Initially, we define the notion of *compound CSMs* that captures the property where one CSM (strictly) incorporates a simpler CSM.

Definition 13. Let $a_{1,...,k}$ be a Critical Section Macro over the sequence of actions $\langle a_1, \ldots, a_k \rangle$. Let $a_{i,...,i+m}$ be another Critical Section Macro over the sequence of actions $\langle a_i, a_{i+1}, \ldots, a_{i+m} \rangle$ such that $1 \leq i < i+m \leq k$. Then, we say that $a_{1,...,k}$ incorporates $a_{i,...,i+m}$. If (m-1) < k, then we also say that $a_{1,...,k}$ strictly incorporates $a_{i,...,i+m}$

We say that a Critical Section Macro cm is **compound** if there exists a Critical Section Macro m such that cm strictly incorporates m.

As can be observed from Definition 13, Compound CSMs form hierarchies which are defined by the relation of strict incorporation.

Definition 14. Let m be a (compound) Critical Section Macro. We say that $\mathcal{H}(m)$ is a **Critical Section Macro hierarchy** over m, where $\mathcal{H}(m) = (N, E)$ is a directed graph such that $N = \{m_i \mid m \text{ incorporates } m_i\}$ is a set of nodes and $E = \{(m_i, m_j) \mid m_i, m_j \in$ N, m_i strictly incorporates $m_j, \nexists m_k : m_i$ strictly incorporates $m_k \land m_k$ strictly incorporates $m_j\}$ is a set of edges. We say that a Critical Section Macro m_p is **primitive** with respect to $\mathcal{H}(m)$ if and only if there is no outgoing edge from the m_p node in $\mathcal{H}(m)$. For the recent Storage example, the SpMl CSM – $go_out-lift-go_in-drop$ – has two primitive successors in its CSM hierarchy, i.e., $go_out-lift-go_in$ and $lift-go_in-drop$, as depicted in Figure 1.

Since macros are encoded as ordinary actions, we can leverage such a property to condense more complex CSMs by replacing a strictly incorporated action sequences forming CSMs by actual macros.

Definition 15. Let $a_{1,...,i,...,i+m,...,k}$ be a Critical Section Macro over the sequence of actions $\langle a_1, \ldots, a_i, \ldots, a_{i+m}, \ldots, a_k \rangle$. Let $a_{i,...,i+m}$ be another Critical Section Macro over the sequence of actions $\langle a_i, a_{i+1}, \ldots, a_{i+m} \rangle$ such that $a_{1,...,i,...,i+m,...,k}$ strictly incorporates $a_{i,...,i+m}$. We say that a Critical Section Macro $a_{1,...,\{i,...,i+m\},...,k}$, over $\langle a_1, \ldots, a_{i,...,i+m}, \ldots, a_k \rangle$, is a **condensation** of $a_{1,...,i+m,...,k}$ with respect to $a_{i,...,i+m}$.

We say that a Critical Section Macro is **maximally condensed** if its Critical Section Macro hierarchy contains exactly one node.

Lemma 16. For any triplet of Critical Section Macros, m_c, m, m' , such that m_c is a condensation of m with respect to m', it is the case that m_c and m are equivalent.

Proof. The claim immediately follows from Definition 4.

The above definition gives an intuition of how more complex CSMs can be incrementally constructed from simpler CSMs. In particular, we show how more complex CSMs can be generated while having only a method for generating simple (SpSl) CSMs. The case of SpMl CSMs is shown in the following proposition.

Proposition 17. For each Single-phased Multi-lock Critical Section Macro m, there exists an equivalent Single-Phased Multi-lock Critical Section Macro m' whose Critical Section Macro hierarchy $\mathcal{H}(m')$ has the following property. For each node m_n in $\mathcal{H}(m')$ (it holds that m' incorporates m_n) it is the case that a maximally condensed Critical Section Macro equivalent to m_n is a Single-phased Single-lock Critical Section Macro.

Proof. Initially, we show that for each SpMl CSM m we can find an equivalent SpMl CSM m' such that for each lock considered in m, m' incorporates a SpSl CSM over that lock.

Without loss of generality let us assume that p, q is a lock and $\langle a_i, \ldots, a_{i+r-1}, a_{i+r}, a_{i+r+1}, \ldots, a_{i+m} \rangle$ is a subsequence of the sequence of actions m is assembled from, where a_i is a p, q-locker, a_{i+m} is a p, q-releaser and a_{i+r} is neither a p, q-user nor a gluing action (as in ii) of Definition 10). Hence, the action subsequence does not form a CSM because of a_{i+r} . As a_{i+r} is not a potentially gluing action (see Def. 9) there are two possibilities. If it is the case that a_{i+r} is independent with all actions a_i, \ldots, a_{i+r-1} and no action a_{i+j} ($0 \le j < r$) is an achiever for a_{i+r} , then we can move a_{i+r} before a_i . The independence condition ensures that a_{i+r} will not delete preconditions for a_i, \ldots, a_{i+r-1} as well as these actions will not delete add effects of a_{i+r} . Also, these actions are not important to satisfy the precondition of a_{i+r} as none is the achiever for it . Analogously, if it is the case that a_{i+r} is independent with all actions a_{i+r+1} and an achiever for none of them, then we can move a_{i+r} after a_{i+m} .

Hence, m' can be constructed from m by moving the a_{i+r} actions as above. Note that since the a_{i+r} actions have to meet condition (ii) in Definition 11 they cannot be moved outside the macro (i.e., either before the first locker or after the last releaser).

Next, we show that for each node m_c of $\mathcal{H}(m')$ it is the case that its maximally condensed equivalent is a SpSl CSM. If m_c starts with a locker and ends with a releaser for the same lock(s), then m_c is also a SpSl CSM (see Definition 10). It is straightforward to see that a maximally condensed CSM, equivalent to m_c , is also a SpSl CSM. If m_c starts with a locker and ends with a releaser for at least one different lock, then there exist two CSMs that are successors of m_c in $\mathcal{H}(m')$ as follows (note that more than the two following successors might exist). Let us assume that m_c is a CSM over $\langle a_i, \ldots, a_i \rangle$. Let k be the smallest k such that k > i and $\langle a_k, \ldots, a_j \rangle$ forms a CSM. Consequently, this CSM is a successor of m_c in $\mathcal{H}(m')$. Such k exists because if a_j is a releaser for a lock that a_i is not a locker for, then a different action in m_c has to be that locker. Note that a_k does not necessarily have to be that locker, it might be a locker for a different lock of m_c . We can also observe that there is a releaser a_u with $k \leq u < j$ for a lock for which a_i is a locker but a_j is not a releaser. If a_u was placed before a_k , then all locks would have been released before a_k and hence m_c would not have been a valid CSM (see Definition 11). A condensation of m_c with respect to $\langle a_k, \ldots, a_j \rangle$ is a SpSl CSM since the CSM over $\langle a_k, \ldots, a_j \rangle$ is a releaser of lock(s) that a_i is the locker for (as the releaser a_u is part of the incorporated CSM).

We can also find the largest l such that l < j and $\langle a_i, \ldots, a_l \rangle$ forms a CSM, which is a successor of m_c in $\mathcal{H}(m')$. In analogy to the previous case, we can observe that there is a locker a_v with $i < v \leq l$ for a lock for which a_j is a releaser but a_i is not a locker. A condensation of m_c with respect to $\langle a_i, \ldots, a_l \rangle$ is a SpSl CSM since the CSM over $\langle a_i, \ldots, a_l \rangle$ is a locker of lock(s) that a_j is the releaser for.

It can be straightforwardly observed that a successor of SpMl CSM in a CSM hierarchy has at least one less lock and all primitive CSMs are SpSl CSMs (otherwise they would have had at least two successors as described above).

To understand the practical consequences of the above proposition (including the proof), we recall the Storage example. We also assume that we can only identify SpSl CSMs. Hence sequences in form – go_out-lift-go_in-drop – would not be immediately identified as SpMl CSMs. Yet we can identify subsequences – go_out-lift-go_in – and – lift-go_in-drop – as SpSl CSMs (see Figure 1). We can condense both subsequeces into macros. As the subsequences overlap, only one of them would be a part of the SpMl macro. For the first subsequence, we get CSM1-drop. CSM1 inherits the locker property from the lift action and hence CSM1-drop forms a compound SpSl CSM. For the second subsequence, we then get – go_out-CSM2. CSM2 inherits the releaser property from the go_in action and hence go_out-CSM2 also forms a compound SpSl CSM.

In a similar fashion, MpSl CSMs, where multi-phased locks are balanced, can be incrementally constructed from SpSl CSMs.

Proposition 18. For each Multi-phased Single-lock Critical Section Macro m, where the lock is balanced, there exists an equivalent Multi-phased Single-lock Critical Section Macro m' whose Critical Section Macro hierarchy $\mathcal{H}(m')$ has the following property. For each node m_n in $\mathcal{H}(m')$ (it holds that m' incorporates m_n) it is the case that a maximally condensed Critical Section Macro equivalent to m_n is a Single-phased Single-lock Critical Section Section Macro.

Proof. In analogy to proof of Proposition 17, we can obtain m' from m by moving actions that are neither users nor gluing actions before the lockers or after the releasers.

Let m' be a MpSl over p^1, \ldots, p^k -lock. Let m^i be a CSM over p^i, \ldots, p^k -lock with $1 \leq i < k$ such that m' incorporates m^i . We can observe directly from Definition 12 that m^i strictly incorporates m^j for every $1 \leq i < j < k$. We can also observe that a condensation of m^i with respect to m^{i+1} $(1 \leq i < k-1)$ is a maximally condensed SpSl CSM over p^i, p^{i+1} -lock $(m^{i+1}$ becomes a p^{i+1} -user). Finally, we can observe that m^{k-1} is a SpSl CSM over (single-phased) p^{k-1}, p^k -lock, which is primitive in $\mathcal{H}(m')$.

For MpSl CSMs, the CSM hierarchy is linear, so the bottom-up construction of MpSl CSMs is straightforward. In Transport we might, for example, initially generate a SpSl CSM – pick-drive-drop, which is condensed to CSM1. Then we might, for example, generate a compound SpSl CSM – pick-CSM1-drive-drop – which is equivalent to MpSl CSM – pick-pick-drive-drop. Technically, as we deal with balanced locks the macro in each level of the hierarchy is a SpSl CSM. Hence, it might be possible to identify MpSl CSMs with balanced locks at once even if we assume that we can only identify SpSl CSMs. In practice, however, the bottom-up incremental approach might be useful to deal with noise in training plans or to limit the number of macros' arguments (see Section 6).

By combining proposition 17 and 18 we can also construct MpMl CSMs, where multiphased locks are balanced.

6. Constructing Critical Section Macros from Training Plans

To learn CSMs from training plans, we have to determine locks, lockers and releasers. Since macro-operators are a domain-specific (or class-of-problems-specific) kind of knowledge, locks, lockers and releasers have to be in lifted form. We capture the information in quadruples (p, q, O_l, O_r) , where p, q are predicates and O_l, O_r are sets of operators defined in the given domain model. Then, for each p_g and q_g being instances of p and q, respectively, and forming a lock, it is the case that for each operator $o_l \in O_l$ there exists its instance being a p_g, q_g -locker and for each operator $o_r \in O_r$ there exists its instance being a p_g, q_g -releaser. The quadruples (p, q, O_l, O_r) are determined by considering whether each operator, defined in the domain model, that deletes p (resp. q) adds the corresponding variant of q (resp. p). Such operators then form the O_l (resp. O_r) set. On top of that, corresponding instances of p and q must not be simultaneously present in initial states of the considered planning tasks (otherwise the instances of p and q are not mutex). Note that our notion of mutex corresponds with the notion of Fact Alternating Mutex (Fiser & Komenda, 2018).

6.1 Constructing Single-phased Single-lock Critical Section Macros

Algorithm 2 describes the method for learning SpSl CSMs from a set of training plans. Initially, quadruples (p, q, O_l, O_r) are determined (Line 1). For each training plan, we determine all possible locker/releaser pairs (a_l, a_r) with corresponding instances of the locks (p_g, q_g) (Line 3). Then, we iterate through the locker/releaser pairs (Lines 4–14). Besides a_l $(p_g, q_g$ -locker) and a_r $(p_g, q_g$ -releaser) we consider q_g -users into a possible macro-action (Line 5). Other actions placed in between a_l and a_r are checked whether they can be moved away (either before a_l or after a_r). This is done by the ConsiderDependent function. The

Algorithm 2 Learning (SpSl) CSMs from training plans 1: $cs \leftarrow \{(p, q, O_l, O_r) \mid o_l \in O_l \text{ is a } p, q\text{-locker}; o_r \in O_r \text{ is a } p, q\text{-releaser}\}$ 2: for each $\langle a_1, \ldots, a_n \rangle$ in Training_Plans do $lr_pairs \leftarrow \{(a_l, a_r, p_g, q_g) \mid (p, q, O_l, O_r) \in cs; r > l; a_l, a_r, p_g, q_g \text{ are instances of } \}$ 3: $o_l \in O_l, o_r \in O_r, p, q$ respectively; $p_g \in del(a_l) \cap add(a_r); q_g \in add(a_l) \cap del(a_r)$ for each $(a_l, a_r, p_g, q_g) \in lr_pairs$ do 4: $in_ma \leftarrow \{a_k \mid l < k < r; q_g \in pre(a_k)\} \cup \{a_l, a_r\}$ 5: $out_ma \leftarrow \{a_k \mid l < k < r; a_k \notin in_ma\}$ 6: ConsiderDependent(*in_ma,out_ma*) 7: if (optional) some gluing action added an extra argument then 8: 9: continue end if 10: $ma \leftarrow \text{CreateMacro}(in_ma)$ 11: Consider Goal Achieving(ma)12:ConsiderConnected(ma)13:AddMacro(*mcr_db,ma*) 14: end for 15:16: end for 17: FilterUnderrepresentedMacros (mcr_{db},ν_{1}) 18: RefineMacroOperators(mcr_db) 19: function CONSIDERDEPENDENT(*in_ma,out_ma*) while $\exists k : \{i \mid a_i \in out_ma; i < k\} = \emptyset$ and $\{a_i \mid a_i \in in_ma; i < k; a_i \text{ is an achiever}$ 20: for a_k or a_i is not independent with a_k = \emptyset **do** $out_ma \leftarrow out_ma \setminus \{a_k\}$ 21:22: end while while $\exists k : \{j \mid a_j \in out_ma; j > k\} = \emptyset$ and $\{a_j \mid a_j \in in_ma; j > k; a_k \text{ is an } k\}$ 23:achiever for a_i or a_j is not independent with a_k = \emptyset do $out_ma \leftarrow out_ma \setminus \{a_k\}$ 24:25:end while $in_ma \leftarrow in_ma \cup out_ma$ 26:27: end function

idea of how intermediate actions can be moved away, formalised in Definition 9, is based on the observation that: if for two adjacent actions a, a' in a plan (in this order), it is the case that a and a' are independent and a is not an achiever for a', then a, a' can be swapped without compromising the correctness of the plan (a similar approach has been used by MUM (Chrpa et al., 2014)). Those actions that cannot be moved away are gluing actions (see ii) in Definition 10). See Section 4.1 for details. Optionally, we might not consider macro-actions where some of the gluing actions introduced one or more extra arguments (Line 8) to prevent a possibly large number of instances of macro-operators, refined from such macro-actions (Line 18). After the macro-action is created by assembling the sequence of actions in in_ma (Line 11), it is checked whether it is goal achieving, i.e., whether some of its add effects are goal atoms. Goal achieving macro-operators (refined from goal-achieving

Algorithm	3	А	high-lev	el r	outine	for	learning	SpSl	CSMs	

- 1: Generate training plans by solving training problem instances
- 2: Learn (SpSl) CSMs by applying Algorithm 2 and add the macro-operators into the domain model
- 3: Generate plans by solving training problem instances with the enhanced domain model
- 4: Eliminate macro-operators that are underrepresented in the plans, i.e., their number is below ν_2
- 5: Learn and apply Outer Entanglements on the remaining macro-operators

macro-actions), in fact, are entangled by goal with some predicate whose instances are present in the goal. On top of that, if a macro-action is goal achieving we check whether the macro-action is *connected*, i.e., its precondition atoms that contain some of the arguments of the goal achieving atoms are also present in the initial state. That is, we try to identify whether there are predicates a macro-operator (refined from connected macroactions) is entangled by init with such that each of the predicates has at least one shared argument with a predicate the macro-operator is entangled by goal with. Note that the concept of connected macros was discussed by Chrpa, Vallati, and McCluskey (2015).

A macro database (mcr_db) groups together macro-actions that are assembled from the same action sequence, have the same argument binding, are goal achieving for the same predicates (or not goal achieving at all) and are connected by the same predicates (or not connected at all). Before refining macro-operators from the (remaining) groups of macroactions in the macro database (Line 18), which is done analogously to other macro learning techniques (Botea et al., 2005; Chrpa, 2010b), macro-actions that are underrepresented, i.e., their number in the macro database is below a specified threshold ν_1 , are filtered out (Line 17). Note that underrepresented macro-operators, in the Machine Learning terminology, can be understood as noise in training data. They are, for example, problem-specific macros that do not generalise for a class of planning problems, or capture peculiarities in training plans. Such macros are very unlikely to be beneficial. Other macro learning techniques such as MacroFF (Botea et al., 2005) or MUM (Chrpa et al., 2014) also eliminate underrepresented macros for the same reason. If the macro database contains more groups referring to a macro assembled from the same action sequence (but there are differences in the constraints) we prefer the most constrained version of the macro (i.e., we prefer connected over goal achieving and goal achieving over unconstrained macros).

The whole procedure of learning (SpSl) CSMs is summarised in Algorithm 3 (the procedure is inspired by BloMa (Chrpa & Siddiqui, 2015)): It might often be the case that the number of learned macro-operators (after step 2) is rather large and there also might be overlaps in operator sequences macros are assembled from. Generating the plans again, but now with the enhanced domain model, will identify possibly useful and useless macros, according the frequency of their use in the plans (ν_2 is the threshold). Note that such a strategy has also been exploited by MacroFF (Botea et al., 2005) and BloMa (Chrpa & Siddiqui, 2015). Applying Outer Entanglements on the remaining macros has been shown to be a useful strategy to reduce the number of their possible instances (Chrpa, 2010a) and such a strategy was also used by BloMa (Chrpa & Siddiqui, 2015). Algorithm 4 A high-level routine for learning compound CSMs

- 1: Generate training plans by solving training problem instances (with the enhanced domain model since the second iteration)
- 2: Learn CSMs by applying Algorithm 2 (macros in the current enhanced domain model are considered as ordinary operators)
- 3: If new macro-operators are generated, enhance the domain model and go to step 1
- 4: Generate plans by solving training problem instances with the enhanced domain model
- 5: Eliminate macro-operators that are underrepresented in the plans, i.e., their number is below ν_2
- 6: Learn and apply Outer Entanglements on the remaining macro-operators

6.2 Constructing Compound Critical Section Macros

Compound CSMs are composed from primitive actions/operators as well as other CSMs (see Definition 13). That said, compound CSMs can be constructed from simpler CSMs. The consequence of Proposition 17 is that we can incrementally build any "interesting" SpMl CSM³ by repeatedly using the algorithm for identifying SpSl CSMs (Algorithm 2). Analogously, the consequence of Proposition 18 is that we can incrementally build any "interesting" MpSl CSM with a balanced lock. Consequently, we can incrementally build any "interesting" MpMl CSM with balanced multi-phased locks.

To summarise the procedure for incrementally generating compound CSMs as in Algorithm 4, SpSl CSMs are initially learned by Algorithm 2, then these CSMs are encoded into the domain model as ordinary operators, then Algorithm 2 is applied again to learn compound CSMs, which if generated are also encoded into the domain model, and the process continues until no new (compound) CSMs are generated. At the end, underrepresented CSMs are eliminated and Outer Entanglements applied on the remaining CSMs in the same way as the SpSl CSM generation procedure does in Algorithm 3.

Technically, in each iteration of the compound CSM learning method, we move up in CSM hierarchy. Initially, we can identify only SpSl CSMs. Note that SpSl CSMs might not be necessarily primitive, i.e., even a SpSl CSM might strictly incorporate another CSM. In our Storage example (see Figure 1), we can initially learn primitive SpSl CSMs – go_to_transit-lift-go_back and lift-go_back-drop. In the second iteration, we can learn SpMl CSM – go_to_transit-lift-go_back-drop.

Besides generating "interesting" complex CSMs, the incremental method for generating compound macros has two practical benefits. One benefit is about being more robust to noise in training plans. Shorter macros can be identified more easily. For longer macros the issue is that, besides higher "chance" for noise to prevent identifying such macros, longer macros are (much) less frequent despite being possibly (very) useful. Hence, it is more likely that trying to identify more complex CSM at once might fail due to noise in training plans. The other, perhaps not so obvious, benefit is in keeping the number of candidate macros reasonably low. If we generate all possible CSMs (including the complex ones) at once, the number of macros might be (very) high. Since between different CSMs there will be a lot

^{3.} For each SpMl CSM which cannot be incrementally built there exists an equivalent SpMl CSM we can incrementally build (see Proposition 17 for details).

of overlaps (a simple example of overlaps can be seen in the Storage domain), only a small number of candidate CSMs will be useful. However, with a large number of complex CSMs even training tasks might be difficult to solve for planners and hence step 4 of Algorithm 4 would have likely failed in some occasions.

6.3 Aggressive Approach

Adding sound macro-operators into a domain model does not compromise completeness. On the other hand, the size of (grounded) representation can considerably grow as macros often have more instances than ordinary operators, due to a larger number of arguments. Consequently, planners might suffer with increased memory requirements and with extra burden in pre-processing.

To mitigate such an issue, original operators that are effectively replaced by macros can be removed from the domain model. CSMs have a good potential to replace original operators that operate with particular resources because the activities these macros represent have to be usually performed either as whole or not at all. For example, in a variant of the Transport domain, where all locations are connected with each other, a CSM pick-drive-drop replaces original operators pick and drop (unless some truck initially carries some package or it is required that some truck carries a package in the goal).

The aggressive version of our CSM approach consists of the following steps:

- 1. Generate CSMs (simple or compound) and add them into the domain model.
- 2. Remove the first and the last operators of each CSM (i.e., lockers and releasers) from the domain model.
- 3. Generate plans for the training problem instances with the modified domain model.
- 4. If some task cannot be solved, then fail (removed original operators are necessary).
- 5. Otherwise analyse the plans and eventually remove also those operators whose instances are never used in these plans.

The aggressive approach can compromise completeness as it can remove original operators that might be necessary to solve some (non-training) tasks. On the other hand, by removing original operators the aggressive approach can (sometimes considerably) reduce the size of the representation, and prune the search space. In the above Transport example, removing the **pick** and **drop** operators prunes out states in which a package is inside a truck and thus considerably reduces the size of (grounded) representation. The risk of making a task unsolvable can be alleviated by incorporating aggressive approaches into portfolios containing conservative components (e.g., the original model, a model with macros but containing all original operators).

7. Experimental Evaluation

This experimental analysis aims at: (i) assessing the capabilities of the introduced approaches to extend domain models with CSMs that can improve the performance of domainindependent planning engines; (ii) comparing the performance gap between the complete and incomplete (aggressive) CSMs, and (iii) comparing the proposed CSMs with state-ofthe-art techniques, MUM (Chrpa et al., 2014) and BloMa (Chrpa & Siddiqui, 2015).

7.1 Benchmarks and Planning Engines

We considered a range of well-known benchmark domains from both deterministic and learning tracks of IPCs. In particular: Elevators, Floortile, GED, Hiking, Termes, and Transport from the deterministic track of IPCs 2011, 2014 and 2018, and Barman, Blocksworld (Bw), Depots, Gold Miner (Gold), Gripper, Matching-Bw, Rovers, Sokoban, and Thoughtful from the learning track of IPCs 2008 and 2011. We have also considered the Storage domain from IPC 2006, that was used for evaluating the BloMa technique (Chrpa & Siddiqui, 2015). We did not include in the experimental analysis domains from the aforementioned competitions, where no CSMs were generated, and domains that include unsupported ADL features (we partially support only negative preconditions). Note that we modified the Transport domain such that the Drive action has constant cost of 20 since our implementation does not fully support cost increase by numeric fluents.

As testing instances, for each domain we used those exploited in IPCs. There are 20 instances for the domains included in the deterministic tracks (except Storage), and 30 instances for the learning track benchmarks and Storage.

We selected 8 state-of-the-art planning engines, according to their results in the IPCs while considering a diverse range of planning techniques they leverage, namely: FF (Hoffmann & Nebel, 2001), LAMA (Richter & Westphal, 2010), Probe (Lipovetzky, Ramirez, Muise, & Geffner, 2014), MpC (Rintanen, 2014), Mercury (Katz & Hoffmann, 2014), Yahsp3 (Vidal, 2014), FDSS 2018 (Seipp & Röger, 2018) and Dual BFWS (Lipovetzky, Ramirez, Frances, & Geffner, 2018). We aimed at including planning engines exploiting very different planning techniques, to better capture the impact of the generated macros on a wide range of approaches.

7.2 Evaluation Metrics

Three metrics were used to evaluate planners' performance, namely *coverage* (number of solved problems), *PAR10 score* and *IPC quality score*. For each testing task a time limit of 900 seconds and a memory limit of 4 GB is applied (as in the learning tracks of IPCs). All the experiments were conducted on Intel Xeon E5-2620 v4 2.10 GHz with 32GB RAM.

Penalised Average Runtime (PAR10) score is a metric usually exploited in machine learning and algorithm configuration techniques. This metric trades off coverage and runtime for solved problems: if a planner p solves a problem instance Π in time $t \leq T$ (T = 900s in our case), then $PAR10(p, \Pi) = t$, otherwise $PAR10(p, \Pi) = 10T$ (i.e., 9000s in our case).

IPC quality score is defined as in the learning track of IPC-7 (Coles, Coles, Olaya, Jiménez, Lòpez, Sanner, & Yoon, 2012). For an encoding e of a problem instance Π , $IPC(\Pi, e)$ is 0 if Π is unsolved in e, and $(m_{\Pi}^*/m_{\Pi,e})$, where $m_{\Pi,e}$ is the cost of the plan of Π in e and m_{Π}^* is the minimum cost of the plan of Π in any considered encodings, otherwise.

7.3 Learning

Similarly to other macro learning techniques (Chrpa et al., 2014; Chrpa & Siddiqui, 2015), we considered 6 training tasks per each domain such that their plan length was mostly within 30-80 actions⁴. One training plan was considered per training task.

For each individual domain, out of all considered planners, a planner which generates best quality training plans, i.e., the minimum sum of the lengths of the plans or the minimum sum of the costs of the plans (depending whether action costs are/not considered), is selected to generate training plans for that domain. This methodology, used also by BloMa (Chrpa & Siddiqui, 2015), follows an intuition that good quality training plans yield to most promising knowledge for all planners rather than when each planner generates training plans for itself, which has been empirically verified in the recent work (Chrpa & Vallati, 2019).

The thresholds for underrepresented macros, ν_1 and ν_2 (see Algorithms 2,3 and 4) were set according to results of preliminary experiments. In particular, ν_1 was set to maximum of 1/2 of the number of the training tasks and 1/3 occurrences of the most frequent macro, while ν_2 was set to the number of training tasks. The thresholds are set more conservatively than in the BloMa approach (Chrpa & Siddiqui, 2015) as CSMs are more "focused". The number of occurrences of the most frequent macro identified in training plans indicates how many times a useful macro should occur. Setting the ν_1 threshold to 1/3 of the occurrences of the most frequent macro turned up to be a reasonable compromise (note that BloMa considered the threshold of 1/2 of the occurrences of the most frequent macro). In Floortile, for example, the most frequent macro has 108 occurrences while the second most frequent macro has 23 occurrences (there were 29 detected macros in total). Although out of these 29 macros only 16 passed the lower threshold, i.e., 1/2 of the training tasks, they still possessed considerable burden for the planning process. The ν_1 threshold, however, eliminated all the identified macros, except the most frequent one, which had improved the planning process (especially, in the aggressive version). The lower threshold of ν_1 , that is, 1/2 of the number of the training tasks is very conservative, on the other hand, it can still effectively filter out useless macros that occur once or twice and rather than general knowledge they reflect peculiarities of individual training plans. On the other hand, such a low threshold allows to consider possibly useful macros. A good example can be found in the Hiking domain, where one useful macro has initially only 4 occurrences (the most frequent macro has 7). Note that that macro after generating training plans with macros (step 3 in Algorithm 3) occurred 12 times in the (macro-enhanced) training plans and hence the macro passed the ν_2 threshold. That threshold (ν_2) ensures that there is at least one macro per training problem in average which has shown to be reasonable as it eliminates possibly useless macros but conservative enough to keep more complex (often compound) macros that are useful but not that frequent.

The learning process usually took at most several seconds with some notable exceptions such as compound CSM generation in Sokoban and Transport, where the learning process took more than 10 minutes. Also, in Hiking during compound CSM generation the planner (FF) crashed (buffer overflow) in Step 4 of Algorithm 4. Note that the plan generation is

^{4.} For the IPC 2011 domains, we used provided problem generators while for the IPC 2008 domains, we selected the tasks from the provided sets of bootstrap tasks. For the deterministic track domains, we used problem instances from the optimal track, if available, or the satisficing track otherwise.

the most computationally expensive part of the learning process, and can be done offline – so it does not have any impact on the performance of the planning engines that are going to exploit generated macros⁵.

7.4 Complete (Conservative) Approaches

Table 1 gives an overview of the average performance achieved by the considered planning engines on the selected benchmarks, when using the original domain model (O) or the models extended with the learnt CSMs. In particular, extended with simple CSMs with (C) and without argument limit (nC), i.e., whether the extra argument check on Line 8 of Algorithm 2 is enabled or not, and compound CSMs with (cC) and without argument limit (ncC). Detailed results, showing planning engine by domain performance, are provided in Appendix A.1.

Considering the coverage results shown in Table 1, it is easy to notice that the use of models extended with CSMs can usually considerably improve the performance of domainindependent planning engines. Only in four domains, namely Termes, Transport, Goldminer and Thoughtful, the use of macros leads to a slight underperformance when compared to the original domain model. The only case in which the use of macros is significantly reducing the solving capabilities of planning engines is in Transport, when compound CSMs without argument limits are used: learnt macros have a very large number of instances, that makes basically impossible to solve any instance due to its grounded size. Overall, CSMs have a very beneficial impact on planners' performance on the considered benchmarks.

Imposing argument limits for macros is not new (Botea et al., 2005; Chrpa, 2010b) and the rationale behind it is to avoid generating macros with a possibly huge number of instances. Hence it is not a big surprise that CSMs do often perform better with argument limit than without it (it is more apparent for compound CSMs, especially in the Transport domain). However, there are some exceptions to the rule. One example is the GED domain. By lifting the argument limit constraint, we are able to learn a useful CSM which captures genome cutting and splicing (in this order). On top of that, arguments of that macro are strongly intertwined by learnt entanglements and hence such a macro despite having extra arguments has only a few instances. Another example, where lifting the argument limit constraint was beneficial, concerns the Hiking domain, where a useful compound CSM was generated. The macro, assembled from 12 primitive operators, captures the activity of transporting and setting up a tent in a hikers' walking destination, performing the walk and returning the tent back to its former place. Contrary to the GED macro, arguments of the Hiking macro are only loosely intertwined. Hence, the number of instances of the Hiking macro is relatively large (about 45% of the number of instances of the original operators). Yet, such a drawback of the macro is outweighed by its length and by its (very) frequent use in plans.

Table 1 also shows PAR10 and IPC quality results. The use of models enhanced with macros is usually reflected in better PAR10 score; this comes as no surprise, since PAR10 mixes runtime and coverage – that are exactly the aspects that macros aim at improving. With regards to IPC quality, that measures a trade-off between quality of generated plans and coverage, we can see that the use of macros does not have a detrimental impact on

^{5.} Our code and benchmarks can be found at: https://github.com/lchrpa/CSMs.

		С	overa	ige				PAR10)			IPO	C qua	lity	
Domain	0	С	nC	сC	ncC	0	С	nC	cC	ncC	0	С	nC	сC	ncC
Elevators	16.8	19.4	19.4	18.5	18.5	1494.8	299.2	300.6	713.6	703.3	15.3	16.6	16.6	14.6	14.6
Floortile	8.4	8.5	8.5	8.5	8.5	5251.2	5192.2	5190.8	5191.2	5189.7	8.4	6.4	6.4	6.4	6.4
GED	13.8	-	15.6	-	15.6	2830.1	-	1984.1	-	1984.4	12.4	-	14.5	-	14.5
Hiking	13.5	17.0	13.3	-	17.8	3000.8	1382.3	3107.9	-	1034.1	12.4	12.2	9.4	-	11.4
Termes	6.0	5.3	5.5	5.0	3.6	6320.3	6669.4	6542.5	6787.6	7380.4	5.3	4.4	4.7	3.5	2.6
Transport	14.1	10.3	11.6	10.1	0.0	2697.6	4464.6	3858.1	4521.1	9000.0	12.7	8.9	10.1	8.9	0.0
Barman	7.1	21.9	22.0	30.0	30.0	6918.8	2521.0	2509.7	47.7	42.3	5.6	21.1	21.3	30.0	30.0
Bw	16.4	22.6	22.6	22.9	22.6	4137.1	2261.1	2268.3	2188.9	2268.8	11.7	21.3	21.3	21.4	21.3
Depots	10.9	11.8	11.8	11.8	11.9	5833.0	5535.0	5535.1	5538.3	5501.1	9.7	11.3	11.3	11.3	11.4
Gold	29.8	28.6	29.5	28.6	29.5	77.8	433.0	158.0	433.0	158.1	26.2	24.0	22.9	24.0	22.9
Gripper	0.9	11.1	11.0	11.0	11.0	8753.6	5706.3	5746.3	5746.1	5746.5	0.8	11.1	11.0	11.0	11.0
Match-Bw	15.6	27.0	27.0	27.0	27.0	4330.9	914.7	914.3	914.1	914.9	13.0	26.3	26.3	26.3	26.3
Rovers	23.3	24.3	24.1	24.3	24.0	2193.9	1902.6	1946.0	1910.8	1974.1	22.6	23.4	23.3	23.7	23.4
Sokoban	25.5	27.0	23.9	26.8	23.9	1373.7	935.8	1963.7	1004.5	1963.3	23.0	23.8	20.3	23.5	20.3
Storage	22.8	22.1	22.1	23.1	23.1	3272.5	3559.1	3559.1	3125.9	3124.5	20.2	20.2	20.2	21.7	21.7
Thoughtful	19.0	18.6	18.6	18.6	18.6	3305.5	3420.8	3421.1	3422.2	3422.2	18.3	18.0	18.0	18.0	18.0
Overall	13.5	16.2	16.1	16.6	15.8	3497.5	2738.4	2744.6	2596.9	2961.8	12.1	14.8	14.6	15.3	14.4

Table 1: Average Results: (O)riginal models with CSM enhanced models, namely CSMs with (C) and without argument limit (nC). Compound CSMs with (cC) and without argument limit (ncC). Totals do not include GED and Hiking domains, for which some set of macros were not generated. Top part of the table shows results on deterministic benchmarks, excl. Storage (20 instances per domain), bottom on learning, incl. Storage (30). Coloured cells indicate best performance for the corresponding metric.

the quality of generated plans: this can be better observed in domains where coverage is similar, like Thoughtful and Storage.

With regards to the generated CSMs, Table 2 provides an overview of the extracted set of macros, in terms of the number of CSMs per type and equality of learnt macro sets among the different approaches (where applicable). As it is apparent, in many of the considered benchmarks, the macro sets are identical: this is partially due to the structure of the domain models that might allow only some specific kinds of CSMs. Regarding types of SpSl CSMs (or simple CSMs, in other words) we can observe that Trivial CSMs considerably improve planners' performance in Bw and Matching-Bw domains. In other domains, where Trivial CSMs were generated the performance difference (with respect to the original domains) is negligible. For the Using CSMs, we can observe a great performance improvement in Barman while, in contrary, decrease of performance in Termes. Similarly, Gluing CSMs work very well in Gripper but underperform in Transport. With regards to complex CSMs, we can observe that MpMl CSMs perform very well in Hiking and Barman while the use of MpSI CSMs in Termes and Transport leads to (considerable) performance decrease. These domains are, however, the only domains in which MpMl or MpSl CSMs were generated and thus the observations we made here are inconclusive in general. Regarding SpMl CSMs we observed an increase of performance in Rovers and Storage while in Termes the performance was worse. In summary, there does not seem to be any (significant) correlation between the type of CSMs and its effect on planners' performance.

	S	imple	e CSN	Л	Sim	ple C	SM (NL)	(Compo	und CS	M	Co	mpoun	d CSM	(NL)
Domain	Triv	Use	Glu	Full	Triv	Use	Glu	Full	[SpSl	SpMl	MpSl	MpMl	SpSl	SpMl	MpSl	MpMl
Elevators	0	1	1	0	S	imple	e CSN	Л	1	Simple	e CSM	*		Simpl	e CSM	*
Floortile	0	1	0	0		imple	e CSN	Λ		Simpl	le CSM			Simp	le CSM	1
GED		N,	A/A		0	0	1	0		Ν	ſ/A			Simp	le CSM	1
Hiking	0	1	0	1	0	1	0	2		Ν	ſ/A		0	0	0	1
Storage	1	1	0	0	s	imple	e CSN	Λ	1	1	0	0		Ċompo	und CS	SM
Termes	0	3	0	0	0	4	0	0	6	1	0	0	6	0	1	0
Transport	0	0	2	0	0	0	2	0	1	Simpl	le CSM		2	0	1	0
Barman	0	2	0	0	s	imple	e CSN	Λ	2	0	0	1	(Ċompo	und CS	ŚМ
Bw	3	0	0	0		imple	e CSN	Λ	1	Simpl	le CSM			Simp	le CSM	1
Depots	2	0	0	0		imple	e CSN	Л		Simpl	le CSM			Simp	le CSM	1
Gold	0	1	0	0	0	0	0	1		Simpl	le CSM			imple	CSM (I	NL)
Gripper	0	0	1	0	s	imple	e CSN	Λ		Simpl	le CSM			Simp	le CSM	1
Matching-Bw	6	0	0	0		imple	e CSN	Λ		Simpl	le CSM			Simp	le CSM	1
Rovers	1	1	0	0	s	imple	e CSN	Л	1	1	0	0	(Compo	und CS	SM
Sokoban	1	0	0	0	1	0	1	0	1	Simpl	le CSM		S	imple	CSM (I	NL)
Thoughtful	1	0	0	0	s	imple	e CSN	Λ		Simpl	le CSM			Simp	le CSN	1

Table 2: Numbers of generated macros per type. NL represents "no argument limit". N/A represents "no macro generated". The set name in the row (e.g. Simple CSM) represents that the given set is the same as the one stated. * means that the given set differs from the stated one by outer entanglements.

Table 3 shows how the coverage performance of the considered planning engines are affected by the use of domain models enhanced by CSMs and Compound CSMs. For both set of macros, we considered the version with argument limit as, according to Table 1, they allow to deliver the best overall performance. The coverage results confirm that the generated macros are usually beneficial for the planning engines in the majority of the benchmark domains. Interestingly, the impact of macros seems to be more related to the domain model structure, rather than on the specific characteristics of planning engines. In benchmark domains where macros are beneficial, the improvement is usually noticeable for most (all) of the planning engines. As previously discussed, in four domains, namely Termes, Transport, Gold-miner and Thoughtful, the use of macros leads to a slight underperformance when compared to the original domain model.

To give a better overview of the overall performance of the original models and of the models enhanced with macro actions, Figure 2 provides a graphical representation of coverage performance. Given a considered planning model, the figure shows, for each domain, the percentage of planning engines that solved few instances (< 33%), around half of the instances (between 33% and 66%), and most of the instances (> 66%). The figure presents the results achieved by the considered planners running with the original domain models (a), and with the two best CSM enhanced models –as for Table 1: CSMs with argument limit (b), and compound CSMs with argument limit (c). As it is apparent, the enhanced models are generally allowing planning engines to solve a larger number of instances within the allowed CPU-time limit.

As a rule of thumb a macro that is goal achieving and captures frequent and nontrivial activity usually considerably improves planners' performance. Besides the above GED and Hiking examples, our approach can generate a useful compound CSM in the Barman domain. The macro, assembled from 14 primitive operators, captures the whole process of cocktail preparation, i.e., putting required ingredients into the shaker, shaking

Elev	vato	\mathbf{rs}		Flo	orti	ile		Hi	kin	g		Tran	ispo	ort		Te	rme	es	
	0	С	cC		0	С	cC		0	С	cC		0	С	cC		Ο	С	cC
\mathbf{FF}	0	20	20	FF	2	2	2	FF	9	18	-	\mathbf{FF}	0	1	1	FF	0	0	0
LAMA	20	20	19	LAMA	6	7	7	LAMA	19	15	-	LAMA	17	15	13	LAMA	14	14	13
Probe	19	20	20	Probe	4	4	4	Probe	20	20	-	Probe	16	13	13	Probe	7	6	5
MpC	15	15	18	MpC	20	20	20	MpC	0	$\overline{7}$	-	MpC	0	0	0	Mp	0	0	0
Mercury	20	20	20	Mercury	7	7	7	Mercury	12	20	-	mMrcury	20	11	11	Mercury	13	9	10
Yahsp	20	20	13	Yahsp	6	6	6	Yahsp	17	18	-	Yahsp	20	8	8	Yahsp	0	0	0
BFWS	20	20	20	BFWS	2	2	2	BFWS	11	18	-	BFWS	20	20	20	BFWS	2	3	3
FDSS	20	20	18	FDSS	20	20	20	FDSS	20	20	-	FDSS	20	14	15	FDSS	12	10	9
Ba	rma	n]	Зw			De	pot	s		G	old			Gr	ippe	er	
	Ο	С	cC		0	С	cC		0	С	cC		0	С	cC		Ο	С	cC
FF	0	30	30	FF	0	8	8	FF	1	11	11	\mathbf{FF}	30	27	27	FF	0	28	28
LAMA	2	30	30	LAMA	28	29	29	LAMA	1	0	0	LAMA	30	30	30	LAMA	7	30	30
Probe	5	5	30	Probe	27	30	30	Probe	30	30	30	Probe	30	30	30	Probe	0	0	0
MpC	0	0	30	MpC	0	29	29	MpC	2	2	2	MpC	30	30	30	MpC	0	0	0
Mercury	26	30	30	Mercury	19	30	30	Mercury	0	0	0	Mercury	30	26	26	Mercury	0	25	25
Yahsp	0	30	30	Yahsp	28	27	28	Yahsp	22	20	20	Yahsp	28	26	26	Yahsp	0	0	0
BFWS	0	20	30	BFWS	4	3	3	BFWS	11	16	16	BFWS	30	30	30	BFWS	0	5	5
FDSS	24	30	30	FDSS	25	25	26	FDSS	20	15	15	FDSS	30	30	30	FDSS	0	1	0
Match	ning	ς-Βv	v	Ro	over	s		Sol	coba	an		Sto	rag	e		Tho	ıght	ful	
	0	С	cC		0	С	cC		0	С	cC		0	С	cC		0	С	cC
FF	13	27	27	FF	1	7	8	FF	19	23	23	FF	18	19	19	FF	17	20	20
LAMA	26	29	29	LAMA	30	30	29	LAMA	21	20	20	LAMA	19	20	21	LAMA	25	23	23
Probe	13	30	30	Probe	30	29	30	Probe	25	30	29	Probe	21	29	29	Probe	21	23	23
MpC	0	23	23	MpC	16	17	16	MpC	30	30	30	MpC	29	18	18	MpC	0	0	0
Mercury	10	22	22	Mercury	28	29	29	Mercury	23	24	23	Mercury	20	18	21	Mercury	21	17	17
Yahsp	21	26	26	Yahsp	30	30	30	Yahsp	26	29	29	Yahsp	22	21	23	Yahsp	8	6	6
BFWS	12	29	29	BFWS	21	22	22	BFWS	30	30	30	BFWS	30	30	29	BFWS	30	30	30
FDSS	30	30	30	FDSS	30	30	30	FDSS	30	30	30	FDSS	23	22	25	FDSS	30	30	30

Table 3: Coverage Results: (O)riginal models, CSMs with argument limit (C), Compound CSMs with argument limit (cC). GED domain is omitted since no macros for those sets were generated. First row of the table shows results on deterministic benchmarks; the other rows shows results on learning benchmarks. Coloured cells indicate best performance.

the cocktail and cleaning the shaker afterwards for further use. On the flip side, macros that are complex, having a lot of instances and are only occasionally used in plans have usually detrimental effects on planners' performance. It can be seen, for example, in Sokoban, where one compound CSM involves two move operators in between of two push operators. Such a macro has potentially a lot of instances while it is only occasionally used in plans. In Transport, for the no argument limit compound CSM set, the issue is much more apparent. One potentially problematic macro has four drive operators in between pickup and drop operators. Another potentially problematic macro has four drive operators in between two pickup and two drop operators. Both macros have rather huge number of instances while not being used in plans very often. This highlights one of the weaknesses of the proposed CSMs: they may not work well in domains where the critical sections are of variable length, in terms of actions that are between the locker and the releaser.

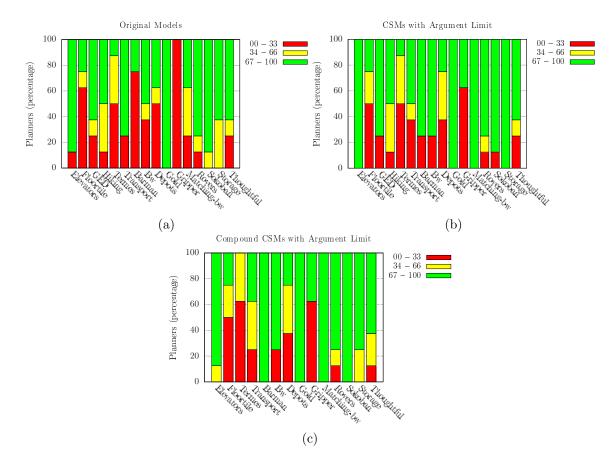


Figure 2: For each domain, the percentages of planners able to solve: more than 66% (green); between 34 and 66 % (yellow); and less than 33% of the instances (red). (a) using the original domain model, (b) using models reformulated with CSMs with argument limit, and (c) using models reformulated with Compound CSMs with argument limit.

7.4.1 Aggressive (Incomplete) Approaches

Despite the excellent improvements that can be achieved by the complete approaches, as shown in the previous section, one may argue that the aggressive approach presented in Section 6.3 may further improve the benefits of using CSMs – even though at the cost of compromising completeness. Table 4 gives an overview of the average performance achieved by the considered planning engines on the selected benchmarks, when using the original domain model (O) or the models extended with CSMs learnt by using the Aggressive version of the approaches. The table includes only domains in which the aggressive approach could remove original operators without losing solvability of any training task. Detailed results, showing planning engine by domain performance, are provided in Appendix A.2.

As expected, the use of the aggressive approach can lead to a considerable improvement of planning performance, when compared to the original models with a notable exception of the Transport domain. In most of the cases, the use of the aggressive approach allows the planning engine to solve all the benchmark instances and, noteworthy, each planner managed to solve testing instances in Floortile and Depots in less than 1 second in average

		\mathbf{C}	overa	age				PAR10)			IPO	C qua	ality	
Domain	0	AC	AnC	AcC	AncC	0	AC	AnC	AcC	AncC	0	AC	AnC	AcC	AncC
Floortile	8.4	20.0	20.0	20.0	20.0	5251.2	0.1	0.1	0.1	0.1	8.3	18.2	18.2	18.2	18.2
Hiking	13.5	-	16.0	-	-	3000.8	-	1884.4	-	-	12.6	-	13.1	-	-
Transport	14.1	-	-	-	0.0	2697.6	-	-	-	9000.0	14.1	-	-	-	0.0
Barman	7.1	26.4	26.4	30.0	30.0	6918.8	1100.5	1100.1	3.5	3.3	5.6	26.4	26.4	30.0	30.0
Bw	16.4	25.6	25.6	25.6	25.6	4137.1	1324.8	1324.9	1324.6	1324.3	12.1	24.5	24.5	24.5	24.5
Depots	10.9	30.0	30.0	30.0	30.0	5833.0	0.1	0.1	0.1	0.1	7.2	29.8	29.8	29.8	29.8
Gripper	0.9	30.0	30.0	30.0	30.0	8753.6	44.1	44.5	44.2	43.3	0.9	29.9	29.9	29.9	29.9
Match-Bw	15.6	28.1	28.1	28.1	28.1	4330.9	562.5	562.5	562.5	562.5	12.3	27.5	27.5	27.5	27.5
Overall	9.9	26.7	26.7	27.3	27.3	5870.8	505.4	505.4	322.5	322.3	7.7	26.0	26.0	26.6	26.6

Table 4: Average Results: Results comparing the (O)riginal models with aggressive CSM enhanced models, namely CSMs with (AC) and without argument limit (AnC). Compound CSMs with (AcC) and without argument limit (AncC). Overall averages do not include Hiking and Transport domains, for which some set of macros were not generated. Top part of the table shows results on deterministic benchmarks (20 instances per domain), bottom on learning (30). Coloured cells indicate best performance for the corresponding metric.

Domain	AC	AnC	AcC	AncC
Floortile	*	*	*	*
Hiking	-	\odot	-	-
Transport	-	-	-	\odot
Barman	*	*	\diamond	\$
Bw	*	*	*	*
Depots	*	*	*	*
Gripper	*	*	*	*
Matching-Bw	*	*	*	*

Table 5: Comparison of sets of learned macros by the aggressive version, namely CSMs with (AC) and without argument limit (AnC). Compound CSMs with (AcC) and without argument limit (AncC). For a given domain, sets with the same symbol are identical.

(see Appendix A.2 for details). However, we have to emphasise that there is no guarantee about the completeness of such models (besides the training tasks). The aggressive approach can be used together with complete approaches in portfolios. In such a setting, we can benefit from performance boost of the aggressive approach while alleviating the risk of tasks becoming unsolvable as the complete approaches can still solve the task. In its most straightforward implementation, such a portfolio can run for half of the available CPU-time a planning engine on the enhanced domain model, and the remaining half on the original domain model. Considering the results shown for AncC in Table 4, the described portfolio would allow to maintain the excellent performance of planning engines on the vast majority of the benchmark domains, and would also allow planning engines to solve instances from the Transport domain.

Table 5 shows how the sets generated by the different approaches relate to each other. In most of the cases, the aggressive approaches are generating the same sets of macros; the only difference can be found in the Barman domain.

7.4.2 Comparison Against the State of the Art

To contextualise the performance of the proposed complete and incomplete techniques to learn CSMs, this section provides a comparison against the state of the art of techniques for learning macros for classical planning. In this analysis we consider the MUM and the BloMa approaches, that have been shown to consistently generate high quality macros. MUM (Chrpa et al., 2014) is a state-of-the-art chaining macro generation approach (macros are being constructed iteratively), which aims at keeping the number of possible instances of macros at most at the same order of magnitude as the number of instances of primitive operators they are assembled from. BloMa (Chrpa & Siddiqui, 2015) generates macros from macro-blocks, which are part of plans that are causally bound (cannot be further deordered). BloMa thus aims at generating longer macros that capture meaningful activities, an analogous philosophy to CSMs. For the comparison, we selected the most promising set of both conservative and aggressive CSMs by considering only the training instances. In domains with more different sets of CSMs, we selected the one having minimum product of the ratios of the number of steps in plans (macros count as one step) and the number of instantiated actions with respect to the original models for the training problem instances. The intuition behind the selection is that minimising the number of steps needed to generate plans as well as the number of actions (instances of both of macros and primitive operators) is usually beneficial for planning engines.

Table 6 gives an overview of the average performance achieved by the considered planning engines on all the selected benchmarks, when running on the original domain model, the model enhanced by macros learnt using MUM, BloMa, (conservative) CSMs (CS), and aggressive CSMs (ACS). Detailed results, showing planning engine by domain performance, are provided in Appendix A.3. The presented results indicate that ACS is generally the best option in terms of coverage and runtime: it allows planning engines to consistently deliver their best performance. There are, however, two exception to the rule. In Hiking, CS performance are slightly better while, in Transport, ACS "inherited" macros that have way too many instances, which prohibited to solve any problem. With regards to MUM and BloMa, both CS and ACS are usually able to generate macros that better improve the performance of planning engines on average. In some domains, differences are very significant, such as in Hiking, Barman and Matching-Bw. In a few cases, the models enhanced using MUM or BloMa macros allow planning engine to outperform CS and ACS, albeit marginally.

Now, we give a more detailed overview on difference between MUM, BloMa and (A)CS. MUM failed to generate macros in 6 domains. In domains such as Barman or Hiking, MUM's "instance wise" nature prevented macro generation while in Bw, interestingly, failing to identify outer entanglements in the initial step of the macro learning process resulted in failure to generate any macro. BloMa, on the other hand, succeeded to generate macros in all domains, except Floortile. All the methods generated the same set of macros in Depots and Gripper (note that small discrepancies in results are caused by different ordering of elements in enhanced domain models). In Matching-Bw, for instance, MUM and BloMa generated only 2 macros each, both being subsets of 6 macros generated by CS. BloMa

		С	overa	ıge				PAR1	0			IPC	C qua	lity	
Planner	0	Μ	В	CS	ACS	0	M	В	CS	ACS	0	Μ	В	CS	ACS
Elevator	16.8	-	16.4	19.4	-	1494.8	-	1697.8	299.2	-	14.7	-	14.4	15.3	-
Floortile	8.4	8.8	-	8.5	20.0	5251.2	5081.4	-	5192.2	0.1	8.1	8.1	-	6.2	18.0
GED	13.8	13.0	15.0	15.6	-	2830.1	3172.8	2284.8	1984.1	-	11.6	11.1	9.7	13.7	-
Hiking	13.5	-	0.3	17.8	16.0	3000.8	-	8887.5	1034.1	1884.4	12.4	-	0.2	11.6	12.5
Termes	6.0	3.6	5.4	5.3	-	6320.3	7395.0	6610.6	6669.4	-	5.5	2.3	4.2	4.6	-
Transport	14.1	-	13.0	11.6	0.0	2697.6	-	3223.1	3858.1	9000.0	13.0	-	11.4	10.3	0.0
Barman	7.1	-	9.9	30.0	30.0	6918.8	-	6169.8	49.1	3.5	5.6	-	8.6	30.0	30.0
Bw	16.4	-	14.9	22.9	25.6	4137.1	-	4588.8	2189.8	1324.8	10.8	-	12.0	20.2	23.3
Depots	10.9	11.8	12.1	11.8	30.0	5833.0	5542.3	5424.8	5535.0	0.1	7.2	8.2	8.3	8.2	29.7
Gold	29.8	27.0	30.0	29.5	-	77.8	910.9	0.2	158.0	-	26.0	22.6	20.9	22.5	-
Gripper	0.9	11.0	11.0	11.1	30.0	8753.6	5746.9	5746.5	5706.3	44.1	0.8	11.0	11.0	11.1	29.5
Match-Bw	15.6	17.5	4.6	27.0	28.1	4330.9	3764.1	7613.5	914.7	562.5	11.8	13.9	3.6	24.0	26.7
Rovers	23.3	20.9	20.4	24.3	-	2193.9	2878.6	3027.9	1910.8	-	22.5	18.1	19.7	23.6	-
Sokoban	25.5	-	25.0	27.0	-	1373.7	-	1529.2	935.8	-	23.0	-	20.4	23.8	-
Storage	22.8	23.5	23.6	23.1	-	3272.5	2943.5	2878.1	3125.9	-	19.3	21.1	21.6	21.1	-
Thoughtful	19.0	19.3	18.8	18.6	-	3305.5	3232.6	3384.3	3420.8	-	18.1	18.1	17.9	17.7	-

Table 6: Average Results: Results comparing the (O)riginal models with macro enhanced models, namely (M)UM, (B)loMa, CSMs (CS) and the Aggressive CSMs (ACS). "-" indicates that no macros has been learnt by the considered approach. Top part of the table shows results on deterministic benchmarks, excl. Storage (20 instances per domain), bottom on learning, incl. Storage (30). Coloured cells indicate best performance for the corresponding metric.

learned macros that were "submacros" of SpSl CSMs learned in Hiking and Barman⁶. In Hiking, such a "submacro" had a very detrimental effect on planners' performance. In Storage, BloMa generated a different SpMl CSM than CS did (and BloMa's macro slightly outperformed ours).

The above observations show that state-of-the-art techniques such as MUM or BloMa are able to learn some CSMs, although as our experiments shown, only short ones. The results shown that CSMs are usually (albeit not always) beneficial to a wide range of planning techniques and hence methods tailored for generating CSMs can be very useful for classes of domains in which limited resources are considered.

8. Conclusion

Critical Section Macros, introduced and described in this paper, are inspired by their counterpart in parallel computing. They capture the whole activities in which limited resources are being used (e.g., a robotic hand holding an object). We described three variants of CSMs, the simple one with Single-phased Single-lock, and two more complex variants, one concerning multiple locks (i.e., dealing with multiple limited resources) and the other concerning multi-phased locks (e.g., a truck gets full after loading several packages). Further, we introduced the concept of compound CSMs that allows constructing more complex CSMs incrementally starting from simple ones using the method for generating SpS1 CSMs and

^{6.} By "submacros" we mean macros assembled from subsequences of operators the CSMs we refer to were assembled

have shown theoretically that by such a method we can generate all "interesting" SpMl CSMs and MpSl CSMs with balanced locks (and consequently also MpMl CSMs with balanced locks). We presented algorithms for learning (both simple and compound) CSMs from training plans, and described an aggressive variant of CSMs, where at least first and last operators from which CSMs are assembled are removed from the domain model. This can compromise the completeness of the use of CSMs, but has the potential to lead to even more substantial performance improvements.

Our empirical evaluation demonstrated the usefulness of CSMs across a wide range of benchmark domains and planning engines. The use of CSMs allowed planning engines to outperform the original model, MUM macros (Chrpa et al., 2014) and BloMa macros (Chrpa & Siddiqui, 2015) in 11 out of 16 domains. Compound CSMs considerably increased planners' performance in Barman and Hiking domains. The aggressive version of CSMs achieved the most impressive results in Floortile, Barman and Depots. The results indicate that long, goal achieving and frequent CSMs tend to improve planners' performance the most (as in Barman and Hiking).

In the future, we plan to investigate possibilities of adapting CSMs into numerical and temporal domains, possibly leveraging the notion of numerical entanglements (Chrpa, Scala, & Vallati, 2015). This may prove beneficial as numerical fluents often refer to resource use and hence the concept of CSMs can be successfully applied in numeric planning. As CSMs capture whole activities in which one or more resources are used, it might be natural to use them in temporal planning too.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive feedback that helped to considerably improve the paper.

This research was funded by the Czech Science Foundation (project no. 18-07252S) and by the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 "Research Center for Informatics". Mauro Vallati was supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1].

References

- Alhossaini, M. A., & Beck, J. C. (2013). Instance-specific remodelling of planning domains by adding macros and removing operators. In *Proceedings of SARA*, pp. 16–24.
- Areces, C., Bustos, F., Dominguez, M., & Hoffmann, J. (2014). Optimizing planning domains by automatic action schema splitting. In *Proc. of ICAPS*, pp. 11–19.
- Asai, M., & Fukunaga, A. (2015). Solving large-scale planning problems by decomposition and macro generation. In *ICAPS*, pp. 16–24.
- Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1-2), 5–33.
- Botea, A., Enzenberger, M., Müller, M., & Schaeffer, J. (2005). Macro-FF: improving AI planning with automatically learned macro-operators. *Journal of Artificial Intelli*gence Research (JAIR), 24, 581–621.

- Cardellini, M., Maratea, M., Vallati, M., Boleto, G., & Oneto, L. (2021). In-station train dispatching: A PDDL+ planning approach. In Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling, ICAPS, pp. 450–458.
- Chrpa, L. (2010a). Combining learning techniques for classical planning: Macro-operators and entanglements. In *Proceedings of ICTAI*, Vol. 2, pp. 79–86.
- Chrpa, L. (2010b). Generation of macro-operators via investigation of action dependencies in plans. *Knowledge Engineering Review*, 25(3), 281–297.
- Chrpa, L., & Barták, R. (2009). Reformulating planning problems by eliminating unpromising actions. In *Proceedings of SARA*, pp. 50–57.
- Chrpa, L., & Vallati, M. (2019). Improving domain-independent planning via critical section macro-operators. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, pp. 7546–7553.
- Chrpa, L., Scala, E., & Vallati, M. (2015). Towards a reformulation based approach for efficient numeric planning: Numeric outer entanglements. In *Proceedings of the Eighth* Annual Symposium on Combinatorial Search, SOCS, pp. 166–170. AAAI Press.
- Chrpa, L., & Siddiqui, F. H. (2015). Exploiting block deordering for improving planners efficiency. In *IJCAI*, pp. 1537–1543.
- Chrpa, L., Vallati, M., & McCluskey, T. L. (2014). MUM: a technique for maximising the utility of macro-operators by constrained generation and use. In *ICAPS*, pp. 65–73.
- Chrpa, L., Vallati, M., & McCluskey, T. L. (2015). On the online generation of effective macro-operators. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pp. 1544–1550.
- Chrpa, L., Vallati, M., & McCluskey, T. L. (2018). Outer entanglements: a general heuristic technique for improving the efficiency of planning algorithms. J. Exp. Theor. Artif. Intell., 30(6), 831–856.
- Coles, A., Fox, M., & Smith, A. (2007). Online identification of useful macro-actions for planning. In *Proceedings of ICAPS*, pp. 97–104.
- Coles, A., Coles, A., Olaya, A. G., Jiménez, S., Lòpez, C. L., Sanner, S., & Yoon, S. (2012). A survey of the seventh international planning competition. *AI Magazine*, 33, 83–88.
- Dawson, C., & Siklóssy, L. (1977). The role of preprocessing in problem solving systems. In Proceedings of IJCAI, pp. 465–471.
- Dulac, A., Pellier, D., Fiorino, H., & Janiszek, D. (2013). Learning useful macro-actions for planning with n-grams. In *ICTAI*, pp. 803–810.
- Fiser, D., & Komenda, A. (2018). Fact-alternating mutex groups for classical planning. J. Artif. Intell. Res., 61, 475–521.
- Fox, M., Long, D., Tamboise, G., & Isangulov, R. (2018). Creating and executing a well construction/operation plan.. US Patent App. 15/541,381.
- Garrido, A., Morales, L., & Serina, I. (2012). Using AI planning to enhance e-learning processes. In Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling, ICAPS. AAAI.

- Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning, theory and practice. Morgan Kaufmann.
- Haslum, P. (2007). Reducing accidental complexity in planning problems. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pp. 1898–1903.
- Haslum, P., & Jonsson, P. (2000). Planning with reduced operator sets. In Proceedings of AIPS, pp. 150–158.
- Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research (JAIR), 14, 253–302.
- Hofmann, T., Niemueller, T., & Lakemeyer, G. (2017). Initial results on generating macro actions from a plan database for planning on autonomous mobile robots. In *ICAPS*, pp. 498–503.
- Hofmann, T., Niemueller, T., & Lakemeyer, G. (2020). Macro operator synthesis for adl domains. In Proceedings on the European Conference on Artificial Intelligence (ECAI).
- Junghanns, A., & Schaeffer, J. (2001). Sokoban: Enhancing general single-agent search methods using domain knowledge. Artif. Intell., 129(1-2), 219–251.
- Katz, M., & Hoffmann, J. (2014). Mercury planner: Pushing the limits of partial delete relaxation. In The Eighth IPC. Description of Participant Planners of the Deterministic Track, pp. 43–47.
- Korf, R. (1985). Macro-operators: A weak method for learning. Artificial Intelligence, 26(1), 35–77.
- Lipovetzky, N., Burt, C. N., Pearce, A. R., & Stuckey, P. J. (2014). Planning for mining operations with time and resource constraints. In *Proceedings of the International Conference on Automated Planning and Scheduling.*
- Lipovetzky, N., Ramirez, M., Frances, G., & Geffner, H. (2018). Best-first width search in the ipc2018: Complete, simulated, and polynomial variants. In *The Ninth International Planning Competition. Description of Participant Planners of the Deterministic Track.*
- Lipovetzky, N., Ramirez, M., Muise, C., & Geffner, H. (2014). Width and inference based planners: Siw, bfs(f), and probe. In *The Eighth IPC. Description of Participant Planners of the Deterministic Track*, pp. 6–7.
- McCluskey, T. L., Vaquero, T. S., & Vallati, M. (2017). Engineering knowledge for automated planning: Towards a notion of quality. In *Proceedings of the Knowledge Capture Conference, K-CAP*, pp. 14:1–14:8.
- Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., & Wilkins, D. (1998). PDDL - The Planning Domain Definition Language. Tech. rep. TR-98-003, Yale Center for Computational Vision and Control,.
- Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. In Proceedings of AAAI, pp. 564–569.
- Newton, M. A. H., Levine, J., Fox, M., & Long, D. (2007). Learning macro-actions for arbitrary planners and domains. In *Proceedings of ICAPS*, pp. 256–263.

- Ramírez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A. R., Scala, E., & Zamani, M. (2018). Integrated hybrid planning and programmed control for real time UAV maneuvering. In *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*, AAMAS, pp. 1318–1326.
- Richter, S., & Westphal, M. (2010). The LAMA planner: guiding cost-based anytime planning with landmarks. *Journal Artificial Intelligence Research (JAIR)*, 39, 127–177.
- Rintanen, J. (2014). Madagascar: Scalable planning with sat. In *The Eighth IPC. Description of Participant Planners of the Deterministic Track*, pp. 66–70.
- Scala, E. (2014). Plan repair for resource constrained tasks via numeric macro actions. In Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014.
- Scala, E., & Torasso, P. (2015). Deordering and numeric macro actions for plan repair. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1673–1681.
- Seipp, J., & Röger, G. (2018). Fast downward stone soup 2018. In The Ninth International Planning Competition. Description of Participant Planners of the Deterministic Track.
- Siddiqui, F., & Haslum, P. (2012). Block-structured plan deordering. In 25th Australasian Joint Conference, Vol. 7691 of LNAI, pp. 803–814.
- Thiébaux, S., Coffrin, C., Hijazi, H., & Slaney, J. (2013). Planning with mip for supply restoration in power distribution systems. In Proceedings of the International Joint Conference on Artificial Intelligence.
- Vallati, M., Chrpa, L., McCluskey, T. L., & Hutter, F. (2021). On the importance of domain model configuration for automated planning engines. J. Autom. Reason., 65(6), 727– 773.
- Vallati, M., Magazzeni, D., Schutter, B. D., Chrpa, L., & McCluskey, T. L. (2016). Efficient macroscopic urban traffic models for reducing congestion: A PDDL+ planning approach. In *Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence*, pp. 3188–3194. AAAI Press.
- Vidal, V. (2014). Yahsp3 and yahsp3-mt in the 8th international planning competition. In The Eighth IPC. Description of Participant Planners of the Deterministic Track, pp. 64–65.

Appendix A. Detailed Results

In the following, we provide the detailed results of the performed experiments.

A.1 Conservative Version

		C	Cover	rage				PAR1	0			IPO	C qua	lity	
Planner	0	С	nC	cC	ncC	0	С	nC	сC	ncC	0	С	nC	сC	ncC
								vators							
ff	0	20	20	20	20	9000	22	18	92	38	0.0	19.5	19.5	17.3	17.3
lama	20	20	20	19	19	36	10	11	482	482	19.9	14.3	14.3	11.1	11.1
probe	19	20	20	20	20	602	25	44	23	29	18.4	18.7	18.7	17.3	17.3
Mp	15	15	15	18	18	2256	2258	2258	911	911	13.7	12.5	12.5	17.1	17.1
mercury	20 20	20	20 20	20	20	4.1 23	13	$\frac{14}{33}$	40 3227	$\frac{28}{3650}$	19.7	15.7	15.7	13.9	13.9
yahsp	20	20 20	20	13 20	12 20		41 5.3				11.9	19.4	19.4	11.1	10.3
BFWS FDSS	20	20	20	18	19	7.0 30	5.5 19	$\frac{5.6}{21}$	5.1 929	$5.4 \\ 483$	$19.6 \\ 19.5$	$16.6 \\ 16.4$	$16.6 \\ 16.4$	16.7 11.9	$16.7 \\ 12.7$
TD55	20	20	20	10	13	50		ortile	323	400	15.5	10.4	10.4	11.5	12.1
ff	2	2	2	2	2	8100	8107	8102	8105	8105	2.0	1.7	1.7	1.7	1.7
lama	6	7	7	7	7	6367	5897	5895	5895	5897	6.0	4.8	4.8	4.8	4.8
probe	4	4	4	4	4	7204	7237	7234	7236	7221	4.0	2.8	2.8	2.8	2.8
Mp	20	20	20	20	20	0.1	0.1	0.1	0.1	0.1	19.9	14.4	14.4	14.4	14.4
mercury	7	7	7	7	7	5889	5874	5874	5874	5871	7.0	4.6	4.6	4.6	4.6
yahsp	6	6	6	6	6	6347	6322	6321	6319	6323	6.0	5.2	5.2	5.2	5.2
BFWS	2	2	2	2	2	8102	8100	8100	8100	8100	2.0	1.8	1.8	1.8	1.8
FDSS	20	20	20	20	20	0.6	0.3	0.3	0.3	0.3	20.0	15.9	15.9	15.9	15.9
							G	ED							
ff	0	-	6	-	6	9000	-	6306	-	6306	0.0	-	6.0	-	6.0
lama	20	-	20	-	20	3.0	-	6.2	-	5.9	18.3	-	19.6	-	19.6
probe	20	-	20	-	20	55	-	73	-	74	15.2	-	16.6	-	16.6
Mp	2	-	2	-	2	8101	-	8100	-	8100	2.0	-	2.0	-	2.0
mercury	20	-	20 20	-	20 20	3.8	-	5.9	-	$5.6 \\ 5.8$	19.1	-	18.2	-	18.2
yahsp BFWS	11 17	-	20	-	20 17	4113 1359	-	$6.6 \\ 1363$	-	1366	$9.5 \\ 16.7$	-	17.3 17.0	-	$17.3 \\ 17.0$
FDSS	20		20		20	6.1	_	1303		1300	18.3	-	19.6		19.6
TD55	20	-	20	-	20	0.1		king	-	12	10.0	-	15.0	-	15.0
ff	9	18	12	-	17	5077	963	3699	-	1378	8.3	15.7	8.1	-	9.5
lama	19	15	11	-	20	566	2312	4111	-	57	19.0	9.4	6.4	-	11.6
probe	20	20	20	-	20	13	7.1	102	-	1.9	18.2	15.9	18.5	-	10.2
Mp	0	7	1	-	10	9000	5850	8550	-	4501	0.0	7.0	0.4	-	8.1
mercury	12	20	13	-	18	3769	29	3217	-	936	11.0	13.9	10.9	-	13.8
yahsp	17	18	14	-	20	1457	949	2811	-	26	12.2	8.0	6.8	-	17.7
BFWS	11	18	16	-	17	4065	905	1804	-	1350	10.9	14.3	9.4	-	8.9
FDSS	20	20	19	-	20	59	43	569	-	23	19.2	13.5	14.8	-	11.2
<i>a</i>	1.4.0	10	10	1.4.0	10			orage		1000					1 - 0
ff	18	19	19	19	19	5403	4953	4954	4967	4966	17.6	17.3	17.3	17.8	17.8
lama	$\frac{19}{21}$	20 29	20 29	21 29	21 29	$4957 \\ 4050$	$4508 \\ 507$	4508	4101 476	$\begin{array}{c c} 4101 \\ 469 \\ \end{array}$	16.6 20.8	$17.8 \\ 26.8$	$17.8 \\ 26.8$	$19.9 \\ 26.4$	$19.9 \\ 26.4$
probe Mp	21	18	29 18	18	29 18	4050	5400	$505 \\ 5400$	5400	$\frac{409}{5400}$	20.8	20.8	15.6	17.5	17.5
mercury	29	18	18	21	18 21	454	5400 5400	$5400 \\ 5400$	4066	4065	25.9	15.0 16.2	15.0 16.2	20.2	17.5 20.2
yahsp	20	21	21	23	23	3612	4050	4050	3172	3165	15.7	19.5	19.5	22.1	20.2
BFWS	30	30	30	29	29	1.6	33	34	476	484	27.4	28.8	28.8	27.4	27.4
FDSS	23	22	22	25	25	3187	3622	3622	2349	2346	17.8	19.2	19.2	22.5	22.3
					· · · · · ·			mes							
ff	0	0	1	0	0	9000	9000	8554	9000	9000	0.0	0.0	1.0	0.0	0.0
lama	14	14	14	13	12	2747	2784	2754	3249	3647	12.0	12.2	12.1	8.3	8.5
probe	7	6	7	5	6	5900	6363	5884	6819	6331	6.5	5.2	5.8	3.2	4.4
Mp	0	0	0	0	0	9000	9000	9000	9000	9000	0.0	0.0	0.0	0.0	0.0
mercury	13	9	9	10	1	3196	5044	4978	4610	8550	12.3	6.7	7.5	7.2	0.8
yahsp	0	0	0	0	0	9000	9000	9000	9000	9000	0.0	0.0	0.0	0.0	0.0
BFWS	2	3	2	3	2	8100	7655	8107	7662	8110	1.7	2.8	1.8	2.5	1.9
FDSS	12	10	11	9	8	3619	4509	4063	4961	5405	10.2	8.6	9.7	6.6	5.0
ff		1	4	1		0000		nsport 7970	0575		0.0	1.0	3.8	1.0	0.0
ff lama	0	1 15	4	1 13	0	$9000 \\ 1442$	$8570 \\ 2385$	7270	8575 3228	9000 9000	0.0	$1.0 \\ 13.0$	3.8 17.2	$1.0 \\ 11.3$	0.0
lama probe	17	$15 \\ 13$	19	13	0	1442	32385	$\frac{558}{1165}$	3228	9000	15.8	13.0 12.2	17.2	11.3 12.2	0.0
Mp probe	0	0	0	0	0	9000	9000	9000	9000	9000	0.0	0.0	0.0	0.0	0.0
mercury	20	11	9	11	0	13	4129	4984	4131	9000	20.0	5.8	4.6	5.8	0.0
yahsp	20	8	3	8	0	1.5	5555	7700	5598	9000	16.2	8.0	2.5	8.0	0.0
BFWS	20	20	20	20	0	15	30	23	26	9000	18.4	19.1	17.6	19.1	0.0
FDSS	20	14	20	15	0	165	2814	165	2382	9000	17.4	12.2	18.1	13.4	0.0
~		-	Ť	,							1				

Table 7: Results comparing the (O)riginal models with CSM enhanced models, namely CSMs with (C) and without argument limit (nC). Compound CSMs with (cC) and without argument limit (ncC).

Tables 7 and 8 show detailed results of planners' performance achieved by the considered planners on the considered benchmark domains, when using the original domain model (O) or the models extended with CSMs with (C) and without argument limit (nC), i.e., whether the "extra argument" check on Line 8 of Algorithm 2 is enabled or not, and Compound CSMs with (cC) and without argument limit (ncC).

A.2 Aggressive Version

Tables 9 and 10 show detailed results of planners' performance achieved by the considered planners on the considered benchmark domains, when using the original domain model (O) or the models extended with the aggressive variant of CSMs with (AC) and without argument limit (AnC), i.e., whether the "extra argument" check on Line 8 of Algorithm 2 is enabled or not, and Compound CSMs with (ACC) and without argument limit (AnC).

A.3 Comparing against the state of the art

Tables 11 and 12 show detailed results of planners' performance achieved by the considered planners on the considered benchmark domains, when using the original domain model (O) or the models extended with the (M)UM macros, (B)LoMa macros, the conservative variant of CSMs (the most promising sets of CSMs were considered), the aggressive variant of CSMs (the most promising sets of the aggressive CSMs were considered).

	1	(Covei	age		1		PAR10)			IP	C qual	lity	
Planner	0	С	nC	cC	ncC	0	C	nC rman	сC	ncC	0	С	nC	cC	ncC
ff	0	30	30	30	30	9000	1.1	0.9	0.1	0.1	0.0	30.0	30.0	30.0	30.0
lama	2	30	30	30	30	8418	183	372	12	13	1.7	26.4	26.4	30.0	30.0
probe	5	5	5	30	30	7581	7596	7607	47	44	3.4	5.0	5.0	30.0	30.0
Mp mercury	$ \begin{array}{c} 0 \\ 26 \end{array} $	030	$\begin{array}{c} 0\\ 30 \end{array}$	30	$\frac{30}{30}$	9000 1307	$9000 \\ 51$	9000 74	145 14	146 14	$0.0 \\ 18.0$	$0.0 \\ 28.8$	$0.0 \\ 28.8$	30.0	$\frac{30.0}{29.9}$
yahsp	0	30	30	30	30	9000	185	150	0.3	0.3	0.0	29.1	29.1	30.0	30.0
BFWS	0	20	21	30	30	9000	3006	2727	3.0	2.7	0.0	19.9	20.9	30.0	30.0
FDSS	24	30	30	30	30	2044	146	147 bw	160	118	22.0	29.9	29.9	29.9	29.9
ff	0	8	8	8	8	9000	6602	6602	6601	6602	0.0	8.0	8.0	8.0	8.0
lama	28	29	29	29	29	656	345	366	349	346	25.4	24.8	24.8	24.8	24.8
probe	27	30	30	30	30	1101	83	111	68	129	25.0	$29.2 \\ 29.0$	29.2	29.2 29.0	29.2
Mp mercury	0 19	29 30	$\frac{29}{30}$	29 30	29 30	9000 3327	$435 \\ 19$	439 24	430 21	437 19	0.0 8.2	30.0	29.0 30.0	30.0	$29.0 \\ 30.0$
yahsp	28	27	27	28	27	631	933	933	660	931	7.6	27.0	27.0	28.0	27.0
BFWS	4	3	3	3	3	7814	8109	8109	8107	8109	3.4	2.5	2.5	2.5	2.5
FDSS	25	25	25	26	25	1568	1563 de	1562 pots	1275	1577	23.6	20.2	20.2	19.8	20.2
ff	1	11	11	11	12	8703	5789	5792	5797	5511	1.0	10.8	10.8	10.8	11.8
lama	1	0	0	0	0	8724	9000	9000	9000	9000	1.0	0.0	0.0	0.0	0.0
probe	30	30 2	30	30 2	$\frac{30}{2}$	36	14	26	26	26	27.5	28.8	28.8 2.0	28.8	$28.8 \\ 2.0$
Mp mercury	2	0	2 0		2	8400 9000	8400 9000	8400 9000	8400 9000	$8400 \\ 9000$	$1.6 \\ 0.0$	2.0 0.0	0.0	2.0	2.0
yahsp	22	20	20	20	20	2479	3036	3020	3028	3032	16.8	19.2	19.2	19.2	19.2
BFWS	11	16	16	16	16	5759	4309	4311	4306	4308	9.6	15.3	15.3	15.3	15.3
FDSS	20	15	15	15	15	3563	4732	4732 old	4749	4732	20.0	14.0	14.0	14.0	14.0
ff	30	27	29	27	29	11	921	331	928	333	30.0	27.0	22.8	27.0	22.8
lama	30	30	28	30	28	0.1	77	600	77	600	21.5	25.5	22.8	25.5	22.8
probe	30	30	30	30	30	0.0	0.0	0.0	0.0	0.0	30.0	23.5	22.0	23.5	22.0
Mp mercury	30 30	$\frac{30}{26}$	$\frac{30}{30}$	$\begin{vmatrix} 30 \\ 26 \end{vmatrix}$	$\frac{30}{30}$	0.0	$0.0 \\ 1242$	0.0	0.0 1241	0.0	$29.3 \\ 23.0$	$21.2 \\ 24.6$	22.2 19.7	21.2 24.6	$22.2 \\ 19.7$
yahsp	28	26	29	26	29	610	1242	332	1222	331	20.0	18.5	27.0	18.5	27.0
BFWS	30	30	30	30	30	0.0	0.0	0.0	0.0	0.0	30.0	27.2	22.9	27.2	22.9
FDSS	30	30	30	30	30	0.1	0.2	0.2	0.2	0.2	28.8	27.2	24.9	27.2	24.9
ff	0	28	28	28	28	9000	gr: 686	pper 712	713	735	0.0	28.0	28.0	28.0	28.0
lama	7	30	30	30	30	7029	69	75	71	63	6.5	30.0	30.0	30.0	30.0
probe	0	0	0	0	0	9000	9000	9000	9000	9000	0.0	0.0	0.0	0.0	0.0
Mp	0	$\begin{vmatrix} 0 \\ 25 \end{vmatrix}$	$0 \\ 25$	$\begin{vmatrix} 0 \\ 25 \end{vmatrix}$	$0 \\ 25$	9000	$9000 \\ 1653$	9000 1664	9000 1665	$9000 \\ 1654$	$0.0 \\ 0.0$	$0.0 \\ 25.0$	0.0 25.0	0.0 25.0	0.0
mercury yahsp	0	0	0	0	0	9000	9000	9000	9000	9000	0.0	0.0	0.0	0.0	$25.0 \\ 0.0$
BFWS	Ŏ	5	5	5	5	9000	7516	7519	7520	7520	0.0	5.0	5.0	5.0	5.0
FDSS	0	1	0	0	0	9000	8726	9000	9000	9000	0.0	1.0	0.0	0.0	0.0
ff	13	27	27	27	27	5160	900 matc.	hing-by 900	v 900	900	10.6	27.0	27.0	27.0	27.0
lama	26	29	29	29	29	1201	301	301	301	301	23.1	27.1	27.1	27.1	27.1
probe	13	30	30	30	30	5104	0.3	0.4	0.3	0.3	7.3	30.0	30.0	30.0	30.0
Mp	0	23	$\frac{23}{22}$	23	$\frac{23}{22}$	9000	2105	2104	2103	2105	0.0	23.0	23.0	23.0	23.0
mercury yahsp	$\frac{10}{21}$	22 26	22	22	22	6025 2725	$2425 \\ 1216$	$2425 \\ 1214$	$2426 \\ 1214$	$2425 \\ 1214$	8.2 15.8	$21.9 \\ 25.8$	$21.9 \\ 25.8$	21.9 25.8	$21.9 \\ 25.8$
BFWS	12	29	29	29	29	5431	369	369	367	373	11.0	28.0	28.0	28.0	28.0
FDSS	30	30	30	30	30	1.1	1.2	1.2	1.2	1.1	28.1	27.4	27.4	27.4	27.4
ff	1	7	6	8	7	8714	rc 6998	vers 7293	6698	7022	0.9	6.9	5.9	7.8	6.8
lama	30	30	30	29	29	96	95	96	417	405	29.1	28.9	28.9	28.2	28.2
probe	30	29	29	30	30	338	603	617	322	224	29.5	28.5	28.5	29.2	29.2
Mp	16	17	17	16	16	4384	4102	4104	4405	4382	15.5	16.8	16.8	15.6	15.6
mercury yahsp	28 30	29 30	$\frac{29}{30}$	29 30	$\frac{28}{30}$	766 10	446 9.5	491 9.7	458 10	751 10	$26.7 \\ 29.2$	$27.5 \\ 28.4$	27.5 28.4	28.5 29.7	$27.5 \\ 29.7$
BFWS	21	22	22	22	22	2971	2666	2662	2686	2681	20.8	20.4 21.1	20.4	29.7	29.7
FDSS	30	30	30	30	30	272	301	295	290	318	29.0	29.2	29.2	28.9	28.9
ff	110	- 0.0	96	0.0	96	2221		oban 1609	2114	1610	17.9	10.6	22.6	19.6	22.6
ff lama	19 21	23 20	$\frac{26}{22}$	23 20	$\frac{26}{22}$	3331 2729	$2117 \\ 3034$	2435	3034	$ \begin{array}{c} 1610 \\ 2437 \end{array} $	17.9	$19.6 \\ 15.8$	22.6 19.3	19.6	$22.6 \\ 19.3$
probe	25	30	1	29	1	1519	65	8729	340	8728	22.7	27.8	0.6	26.8	0.6
Mp	30	30	30	30	30	0.8	2.2	1.4	2.6	1.5	28.5	26.2	25.2	26.2	25.2
mercury yahsp	23 26	24 29	22 30	23 29	$\frac{22}{30}$	2158 1237	$ 1878 \\ 367 $	2482 48	$2151 \\ 371$	$ \begin{array}{ } 2484 \\ 47 \end{array} $	$20.5 \\ 18.6$	$20.6 \\ 26.9$	$19.3 \\ 24.3$	19.6 26.9	$ \begin{array}{c} 19.3 \\ 24.3 \end{array} $
BFWS	30	30	30 30	30	30	0.7	1.0	394	1.0	$\frac{47}{388}$	28.8	20.9	24.3 26.5	20.9	24.5 26.5
FDSS	30	30	30	30	30	14	22	11	22	11	27.4	24.8	24.7	24.8	24.7
a de la de l	1.1=	0.0	0.0	0.0	0.0	0000		ightful	0001		10.1	10.0	10.0	10.0	10.2
ff lama	17 25	20 23	$\frac{20}{23}$	20 23	$\frac{20}{23}$	3900 1503	3001 2103	$3001 \\ 2103$	$3001 \\ 2103$	$ \begin{array}{c} 3001 \\ 2103 \end{array} $	$16.4 \\ 24.4$	$19.3 \\ 22.2$	$19.3 \\ 22.2$	19.3 22.2	$ \begin{array}{c} 19.3 \\ 22.2 \end{array} $
probe	21	23	23	23	23	2709	2103	2103	2103	2103 2107	19.1	22.4	22.4	22.4	22.2 22.4
Mp	0	0	0	0	0	9000	9000	9000	9000	9000	0.0	0.0	0.0	0.0	0.0
mercury	21	17	17	17	17	2704	3903	3903	3903	3903	20.8	16.6	16.6	16.6	16.6
yahsp BFWS	8 30	6 30	$\frac{6}{30}$	$\begin{vmatrix} 6 \\ 30 \end{vmatrix}$	$\frac{6}{30}$	6603 1.6	7218 1.7	7218 1.6	7228 1.8	7228 1.7	7.8 29.3	$5.9 \\ 29.4$	$5.9 \\ 29.4$	5.9 29.4	$\frac{5.9}{29.4}$
FDSS	30	30	30	30	30	23	34	35	34	34	28.9	28.4	28.4	28.4	28.4
										· · · · ·					

Table 8: Results comparing the (O)riginal models with CSM enhanced models, namely simple CSMs with (C) and without argument limit (nC). Compound CSMs with (cC) and without argument limit (ncC).

			Cove	rage				PAR	10			II	^P C qua	lity	
Planner	0	AC	AnC	AcC	AncC	0	AC	AnC	AcC	AncC	0	AC	AnC	AcC	AncC
							floo	rtile							
ff	2	20	20	20	20	8100	0.1	0.1	0.1	0.1	2.0	19.8	19.8	19.8	19.8
lama	6	20	20	20	20	6367	0.2	0.2	0.2	0.2	6.0	17.9	17.9	17.9	17.9
probe	4	20	20	20	20	7204	0.1	0.1	0.1	0.1	3.9	19.2	19.2	19.2	19.2
Mp	20	20	20	20	20	0.1	0.1	0.1	0.1	0.1	20.0	15.3	15.3	15.3	15.3
mercury	7	20	20	20	20	5889	0.2	0.2	0.2	0.2	7.0	17.9	17.9	17.9	17.9
yahsp	6	20	20	20	20	6347	0.2	0.2	0.2	0.2	5.9	19.8	19.8	19.8	19.8
BFWS	2	20	20	20	20	8102	0.0	0.0	0.0	0.0	2.0	19.6	19.6	19.6	19.6
FDSS	20	20	20	20	20	0.6	0.3	0.2	0.3	0.2	19.9	16.1	16.1	16.1	16.1
							Hil	ting							
ff	9	-	16	-	-	5077	-	1966	-	-	9.0	-	14.9	-	-
lama	19	-	14	-	-	566	-	2789	-	-	18.6	-	9.5	-	-
probe	20	-	20	-	-	13	-	59	-	-	18.3	-	18.5	-	-
Mp	0	-	4	-	-	9000	-	7202	-	-	0.0	-	4.0	-	-
mercury	12	-	18	-	-	3769	-	1007	-	-	11.2	-	16.9	-	-
yahsp	17	-	18	-	-	1457	-	1044	-	-	13.8	-	13.0	-	-
BFWS	11	-	18	-	-	4065	-	909	-	-	11.0	-	12.9	-	-
FDSS	20	-	20	-	-	59	-	99	-	-	19.2	-	15.2	-	-
							tran	sport							
ff	0	-	-	-	0	9000	-	-	-	9000	0.0	-	-	-	0.0
lama	17	-	-	-	0	1442	-	-	-	9000	17.0	-	-	-	0.0
probe	16	-	-	-	0	1944	-	-	-	9000	16.0	-	-	-	0.0
Mp	0	-	-	-	0	9000	-	-	-	9000	0.0	-	-	-	0.0
mercury	20	-	-	-	0	13	-	-	-	9000	20.0	-	-	-	0.0
yahsp	20	-	-	-	0	1.5	-	-	-	9000	20.0	-	-	-	0.0
BFWS	20	-	-	-	0	15	-	-	-	9000	20.0	-	-	-	0.0
FDSS	20	-	-	-	0	165	-	-	-	9000	20.0	-	-	-	0.0

Table 9: Results comparing the (O)riginal models with aggressive CSM enhanced models, namely CSMs with (AC) and without argument limit (AnC). Compound CSMs with (AcC) and without argument limit (AncC).

			Cove	rage				PAR1	0			II	PC qua	lity	
Planner	0	AC	AnC	AcC	AncC	0	AC	AnC	AcC	AncC	0	AC	AnC	AcC	AncC
							barr	nan							
ff	0	30	30	30	30	9000	0.3	0.3	0.1	0.1	0.0	30.0	30.0	30.0	30.0
lama	2	30	30	30	30	8418	7.8	7.6	6.8	6.4	1.7	30.0	30.0	30.0	30.0
probe	5	30	30	30	30	7581	74	69	5.8	4.0	3.4	30.0	30.0	30.0	30.0
Mp	0	1	1	30	30	9000	8700	8700	1.3	1.5	0.0	1.0	1.0	30.0	30.0
mercury	26	30	30	30	30	1307	4.9	4.8	6.0	6.2	18.0	30.0	30.0	30.0	30.0
yahsp	0	30	30	30	30	9000	6.1	7.6	0.1	0.1	0.0	30.0	30.0	30.0	30.0
BFWS	0	30	30	30	30	9000	1.1	1.3	0.4	0.3	0.0	30.0	30.0	30.0	30.0
FDSS	24	30	30	30	30	2044	10	10	7.6	7.6	22.0	30.0	30.0	30.0	30.0
							b								
ff	0	28	28	28	28	9000	608	608	607	607	0.0	28.0	28.0	28.0	28.0
lama	28	28	28	28	28	656	610	609	609	608	25.6	24.9	24.9	24.9	24.9
probe	27	30	30	30	30	1101	0.2	0.2	0.2	0.2	24.8	29.2	29.2	29.2	29.2
Mp	0	18	18	18	18	9000	3600	3600	3600	3600	0.0	18.0	18.0	18.0	18.0
mercury	19	11	11	11	11	3327	5734	5735	5734	5733	14.5	11.0	11.0	11.0	11.0
yahsp BFWS	28 4	30 30	30 30	30 30	30 30	631 7814	0.0 36	0.0 37	$0.0 \\ 37$	$0.0 \\ 36$	6.8 1.5	30.0 30.0	$30.0 \\ 30.0$	$30.0 \\ 30.0$	$30.0 \\ 30.0$
		30 30	30	30						36 9.8	23.2	24.8		24.8	24.8
FDSS	25	30	30	30	30	1568	9.8 dep	9.8	9.8	9.8	23.2	24.8	24.8	24.8	24.8
ff	1	30	30	30	30	8703	0.0	0.0	0.0	0.0	0.6	30.0	30.0	30.0	30.0
lama	1	30	30	30	30	8724	0.0	0.0	0.0	0.0	0.0	30.0	30.0	30.0	30.0
probe	30	30	30	30	30	36	0.2	0.2	0.2	0.2	26.3	29.8	29.8	29.8	29.8
Mp	2	30	30	30	30	8400	0.0	0.0	0.0	0.0	1.3	30.0	30.0	30.0	30.0
mercury	0	30	30	30	30	9000	0.2	0.2	0.2	0.2	0.0	30.0	30.0	30.0	30.0
yahsp	22	30	30	30	30	2479	0.0	0.0	0.0	0.0	2.5	30.0	30.0	30.0	30.0
BFWS	11	30	30	30	30	5759	0.0	0.0	0.0	0.0	6.9	30.0	30.0	30.0	30.0
FDSS	20	30	30	30	30	3563	0.3	0.3	0.3	0.3	19.9	28.5	28.5	28.5	28.5
						1	grip	per			1				
ff	0	30	30	30	30	9000	9.2	9.2	8.3	9.2	0.0	30.0	30.0	30.0	30.0
lama	7	30	30	30	30	7029	2.8	2.7	2.8	2.8	7.0	29.4	29.4	29.4	29.4
probe	0	30	30	30	30	9000	11	11	10	8.3	0.0	29.9	29.9	29.9	29.9
Mp	0	30	30	30	30	9000	0.7	0.7	0.7	0.7	0.0	30.0	30.0	30.0	30.0
mercury	0	30	30	30	30	9000	2.1	2.1	2.2	2.1	0.0	30.0	30.0	30.0	30.0
yahsp	0	30	30	30	30	9000	0.1	0.1	0.1	0.1	0.0	30.0	30.0	30.0	30.0
BFWS	0	30	30	30	30	9000	323	326	325	319	0.0	30.0	30.0	30.0	30.0
FDSS	0	30	30	30	30	9000	4.2	4.2	4.1	4.3	0.0	30.0	30.0	30.0	30.0
							matchi								
ff	13	30	30	30	30	5160	0.0	0.0	0.0	0.0	10.1	30.0	30.0	30.0	30.0
lama	26	30	30	30	30	1201	0.1	0.1	0.1	0.1	22.0	28.4	28.4	28.4	28.4
probe	13	30	30	30	30	5104	0.0	0.0	0.0	0.0	7.4	30.0	30.0	30.0	30.0
Mp	0	20	20	20	20	9000	3000	3000	3000	3000	0.0	20.0	20.0	20.0	20.0
mercury	10	25	25	25	25	6025	1500	1500	1500	1500	8.1	25.0	25.0	25.0	25.0
yahsp	21	30	30	30	30	2725	0.0	0.0	0.0	0.0	14.8	29.4	29.4	29.4	29.4
BFWS	12	30	30	30	30	5431	0.0	0.0	0.0	0.0	9.9	28.8	28.8	28.8	28.8
FDSS	30	30	30	30	30	1.1	0.1	0.1	0.1	0.1	26.4	28.2	28.2	28.2	28.2

Table 10: Results comparing the (O)riginal models with aggressive CSM enhanced models, namely CSMs with (AC) and without argument limit (AnC). Compound CSMs with (AcC) and without argument limit (AncC).

<u>п</u>		(Cove	rage				PAR10)			IP	C qua	lity	
Planner	0	Μ	B	CS	ACS	0	М	B	CS	ACS	0	M	B	CS	ACS
	~		_			-		vators			-		_		
ff	0	-	17	20	-	9000	_	1486	22	-	0.0	_	13.2	14.7	-
	20	_	20	20	_	36	_	134	10	_	19.7	_	15.4	14.1	_
	19	-	$\frac{20}{20}$	20	-	602		134	25		16.0	-	19.4 19.7		-
1			-				-			-				16.0	
	15	-	6	15	-	2256	-	6302	2258	-	14.4	-	4.6	13.3	-
	20	-	20	20	-	4.1	-	54	13	-	19.2	-	17.5	15.2	-
yahsp	20	-	11	20	-	23	-	4052	41	-	11.1	-	10.3	18.5	-
BFWS	20	-	20	20	-	7.0	-	8.5	5.3	-	18.3	-	19.1	15.4	-
FDSS	20	-	17	20	-	30	-	1405	19	-	18.6	_	15.6	15.5	-
							flo	ortile		II					
ff	2	2	-	2	20	8100	8100	-	8107	0.1	2.0	1.7	-	1.7	19.8
lama	6	7	_	7	20	6367	5905	_	5897	0.2	5.8	6.4	_	4.4	17.5
	4	5	_	4	20			-		0.2		4.6	-	2.7	
probe						7204	6751		7237		3.8				19.2
	20	20	-	20	20	0.1	0.1	-	0.1	0.1	19.8	18.6	-	14.2	15.2
mercury	7	7	-	7	20	5889	5890	-	5874	0.2	6.6	6.4	-	4.4	17.6
yahsp	6	7	-	6	20	6347	5905	-	6322	0.2	5.7	6.4	-	5.0	19.6
BFWS	2	2	-	2	20	8102	8100	-	8100	0.0	2.0	1.8	-	1.8	19.6
FDSS	20	20	-	20	20	0.6	0.3	-	0.3	0.3	19.3	18.7	-	15.4	15.5
					L 1			ED		ı – I	. <u> </u>				
ff	0	1	2	6	-	9000	8550	8106	6306	-	0.0	0.8	1.8	6.0	-
	20	20	20	20	-	3.0	2.7	11	6.2	-	17.5	18.5	13.1	18.8	-
	20 20	20 20	20 18				2.7 97								
				20	-	55		1043	73	-	13.6	16.7	10.1	15.0	-
Mp	2	4	1	2	-	8101	7201	8551	8100	-	2.0	4.0	0.9	2.0	-
	20	0	20	20	-	3.8	9000	15	5.9	-	19.1	0.0	8.0	18.2	-
	11	20	20	20	-	4113	6.9	73	6.6	-	8.1	15.0	14.1	15.0	-
BFWS	17	19	19	17	-	1359	520	452	1363	-	14.7	15.9	16.6	15.0	-
FDSS	20	20	20	20	-	6.1	4.5	27	12	-	17.9	17.6	13.1	19.2	-
							Hi	king							
ff	9	-	0	17	16	5077	-	9000	1378	1966	9.0	-	0.0	10.9	14.9
	19	-	Ő	20	14	566	-	9000	57	2789	18.6	-	0.0	11.3	9.5
	20	_	ŏ	20	20	13	_	9000	1.9	59	18.3	_	0.0	10.0	18.5
1															
Mp	0	-	0	10	4	9000	-	9000	4501	7202	0.0	-	0.0	9.1	3.8
	12	-	1	18	18	3769	-	8550	936	1007	11.0	-	1.0	13.1	16.4
	17	-	0	20	18	1457	-	9000	26	1044	12.1	-	0.0	17.7	8.7
	11	-	0	17	18	4065	-	9000	1350	909	11.0	-	0.0	9.3	12.9
FDSS	20	-	1	20	20	59	-	8550	23	99	19.2	-	0.5	11.1	15.1
							sto	orage							
ff	18	18	19	19	-	5403	5404	4950	4967	-	17.3	16.3	16.9	17.3	-
	19	24	21	21	-	4957	2706	4050	4101	-	15.8	22.2	19.9	18.7	-
	21	21	28	29	_	4050	4052	930	476	_	20.8	17.9	25.1	26.8	_
	29	25	26	18	-	4050	2253	1801	5400		20.8	20.9	22.4	17.4	_
	29	$\frac{23}{24}$	$\frac{20}{21}$	21	-	454 4515	2253 2743	4051	4066	-	18.8	20.9 22.0	19.9		-
	20				- 1		4140					44.0			
	00					2610	2640					10.6		19.5	
BFWS	22	22	21	23	-	3612	3642	4051	3172	-	14.7	19.6	19.5	20.8	-
	30	$\frac{22}{29}$	$\frac{21}{30}$	$\frac{23}{29}$	-	1.6	451	$\begin{array}{c} 4051 \\ 2.0 \end{array}$	$3172 \\ 476$	-	$14.7 \\ 26.9$	27.0	$19.5 \\ 28.3$	$20.8 \\ 26.9$	-
		22	21	23			$\begin{array}{c} 451 \\ 2297 \end{array}$	$4051 \\ 2.0 \\ 3190$	3172		14.7		19.5	20.8	
FDSS	30	$\frac{22}{29}$	$\frac{21}{30}$	$\frac{23}{29}$		$\begin{array}{c} 1.6\\ 3187\end{array}$	451 2297 te:	4051 2.0 3190 rmes	3172 476 2349		$14.7 \\ 26.9$	27.0	$19.5 \\ 28.3$	$20.8 \\ 26.9 \\ 21.5$	
FDSS ff	30 23 0	22 29 25	$ \begin{array}{c} 21 \\ 30 \\ 23 \end{array} $ 1	23 29 25		1.6 3187 9000	451 2297 te: 8572	4051 2.0 3190 rmes 8568	3172 476 2349 9000		14.7 26.9 17.5	27.0 22.6	19.5 28.3 21.1 1.0	20.8 26.9 21.5	
FDSS ff	30 23	22 29 25	21 30 23	23 29 25	-	$\begin{array}{c} 1.6\\ 3187\end{array}$	451 2297 te:	4051 2.0 3190 rmes	3172 476 2349		$14.7 \\ 26.9 \\ 17.5$	$27.0 \\ 22.6$	$19.5 \\ 28.3 \\ 21.1$	$20.8 \\ 26.9 \\ 21.5$	-
FDSS ff lama	30 23 0 14	22 29 25 1 11	$21 \\ 30 \\ 23 \\ 1 \\ 14$	23 29 25 0 14	-	$ \begin{array}{r} 1.6 \\ 3187 \\ 9000 \\ 2747 \\ \end{array} $	451 2297 te: 8572 4131	4051 2.0 3190 rmes 8568 2804	3172 476 2349 9000 2784		$ \begin{array}{r} 14.7 \\ 26.9 \\ 17.5 \\ \hline 0.0 \\ 12.1 \\ \end{array} $	$27.0 \\ 22.6 \\ 1.0 \\ 7.1 \\ $	19.5 28.3 21.1 1.0 10.3	$20.8 \\ 26.9 \\ 21.5 \\ 0.0 \\ 12.3 \\ $	-
FDSS ff lama probe	30 23 0 14 7	22 29 25 1 11 1 1	$21 \\ 30 \\ 23 \\ 1 \\ 14 \\ 6 \\ 1$	23 29 25 0 14 6		$ \begin{array}{r} 1.6 \\ 3187 \\ 9000 \\ 2747 \\ 5900 \\ \end{array} $	451 2297 te: 8572 4131 8564	4051 2.0 3190 rmes 8568 2804 6331	3172 476 2349 9000 2784 6363		$ \begin{array}{r} 14.7 \\ 26.9 \\ 17.5 \\ \hline 0.0 \\ 12.1 \\ 6.4 \\ \end{array} $	$27.0 \\ 22.6 \\ 1.0 \\ 7.1 \\ 0.3 \\ $	$ \begin{array}{r} 19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ \end{array} $	20.826.921.50.012.35.2	
FDSS ff lama probe Mp	30 23 0 14 7 0	22 29 25 1 11 1 0	$21 \\ 30 \\ 23 \\ 11 \\ 14 \\ 6 \\ 0 \\ 0$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 0 \\ 0$	- - - - - -	$ \begin{array}{r} 1.6\\3187\\9000\\2747\\5900\\9000\\\end{array} $	451 2297 te: 8572 4131 8564 9000	4051 2.0 3190 rmes 8568 2804 6331 9000	$3172 \\ 476 \\ 2349 \\ 9000 \\ 2784 \\ 6363 \\ 9000 \\ $	- - - - - -	$ \begin{array}{r} 14.7 \\ 26.9 \\ 17.5 \\ \hline 0.0 \\ 12.1 \\ 6.4 \\ 0.0 \\ \end{array} $	$27.0 \\ 22.6 \\ 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ $	$ \begin{array}{r} 19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ \end{array} $	$\begin{array}{c} 20.8 \\ 26.9 \\ 21.5 \\ \hline 0.0 \\ 12.3 \\ 5.2 \\ 0.0 \\ \end{array}$	- - - - - -
FDSS ff lama probe Mp mercury	30 23 0 14 7 0 13	$22 \\ 29 \\ 25 \\ 1 \\ 11 \\ 1 \\ 0 \\ 8 \\ 8 \\ $	$21 \\ 30 \\ 23 \\ 11 \\ 14 \\ 6 \\ 0 \\ 12 \\ 12 \\ 11 \\ 10 \\ 12 \\ 10 \\ 10 $	23 29 25 0 14 6 0 9	- - - - - - -	$ \begin{array}{r} 1.6\\3187\\9000\\2747\\5900\\9000\\3196\end{array} $	451 2297 te: 8572 4131 8564 9000 5444	4051 2.0 3190 rmes 8568 2804 6331 9000 3674	3172 476 2349 9000 2784 6363 9000 5044	- - - - - - -	$ \begin{array}{r} 14.7\\26.9\\17.5\\\hline 0.0\\12.1\\6.4\\0.0\\12.5\\\hline \end{array} $	$ \begin{array}{c} 27.0 \\ 22.6 \\ \hline 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ \end{array} $	$ \begin{array}{r} 19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ \end{array} $	$20.8 \\ 26.9 \\ 21.5 \\ 0.0 \\ 12.3 \\ 5.2 \\ 0.0 \\ 6.9 \\ $	- - - - - - -
FDSS ff lama probe Mp mercury yahsp	$\begin{array}{c} 30\\ 23 \end{array}$ $\begin{array}{c} 0\\ 14\\ 7\\ 0\\ 13\\ 0 \end{array}$	$22 \\ 29 \\ 25 \\ 11 \\ 11 \\ 0 \\ 8 \\ 0 \\ 0$	$21 \\ 30 \\ 23 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 0$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	- - - - - - - -	$ \begin{array}{r} 1.6\\3187\\9000\\2747\\5900\\9000\\3196\\9000\\\end{array} $	451 2297 te: 8572 4131 8564 9000 5444 9000	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000	3172 476 2349 9000 2784 6363 9000 5044 9000	- - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ \end{array}$	$27.0 \\ 22.6 \\ \hline 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ 0.0 \\ \hline $	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 10.0 \\ 10.1 $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$	- - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS	$\begin{array}{c} 30\\ 23 \end{array}$ $\begin{array}{c} 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2 \end{array}$	$22 \\ 29 \\ 25 \\ 111 \\ 1 \\ 0 \\ 8 \\ 0 \\ 2 \\ 2$	$21 \\ 30 \\ 23 \\ 11 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 10 \\ 10$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 3 \\ $	- - - - - - - - - -	$\begin{array}{c} 1.6 \\ 3187 \\ \hline 9000 \\ 2747 \\ 5900 \\ 9000 \\ 3196 \\ 9000 \\ 8100 \\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101	$\begin{array}{r} 3172\\ 476\\ 2349\\ \hline \\ 9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ \end{array}$	- - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ \end{array}$	$27.0 \\ 22.6 \\ 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ 0.0 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.0 \\ 1.$	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$	- - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS	$\begin{array}{c} 30\\ 23 \end{array}$ $\begin{array}{c} 0\\ 14\\ 7\\ 0\\ 13\\ 0 \end{array}$	$22 \\ 29 \\ 25 \\ 11 \\ 11 \\ 0 \\ 8 \\ 0 \\ 0$	$21 \\ 30 \\ 23 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 0$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	- - - - - - - -	$ \begin{array}{r} 1.6\\3187\\9000\\2747\\5900\\9000\\3196\\9000\\\end{array} $	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407	3172 476 2349 9000 2784 6363 9000 5044 9000	- - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ \end{array}$	$27.0 \\ 22.6 \\ \hline 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ 0.0 \\ \hline $	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 10.0 \\ 10.1 $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$	- - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS	$\begin{array}{c} 30\\ 23\\ \hline 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \end{array}$	$22 \\ 29 \\ 25 \\ 111 \\ 1 \\ 0 \\ 8 \\ 0 \\ 2 \\ 2$	$21 \\ 30 \\ 23 \\ 11 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 1.6\\ 3187\\ \hline \\ 9000\\ 2747\\ 5900\\ 9000\\ 3196\\ 9000\\ 8100\\ 3619\\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 sport	$\begin{array}{c} 3172\\ 476\\ 2349\\ \hline\\ 9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ 4509\\ \end{array}$	- - - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \end{array}$	$27.0 \\ 22.6 \\ 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ 0.0 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.0 \\ 1.$	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 1.7 \\ 5.9 \\ 1.7 \\ 5.9 \\ 1.7 \\ $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$ $\begin{array}{c} 0.0\\ 12.3\\ 5.2\\ 0.0\\ 6.9\\ 0.0\\ 2.9\\ 9.3\\ \end{array}$	- - - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS	$\begin{array}{c} 30\\ 23 \end{array}$ $\begin{array}{c} 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2 \end{array}$	$22 \\ 29 \\ 25 \\ 111 \\ 1 \\ 0 \\ 8 \\ 0 \\ 2 \\ 2$	$21 \\ 30 \\ 23 \\ 11 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 12 \\ 0 \\ 2 \\ 10 \\ 10$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 3 \\ $	- - - - - - - - - -	$\begin{array}{c} 1.6 \\ 3187 \\ \hline 9000 \\ 2747 \\ 5900 \\ 9000 \\ 3196 \\ 9000 \\ 8100 \\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407	$\begin{array}{r} 3172\\ 476\\ 2349\\ \hline \\ 9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ \end{array}$	- - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ \end{array}$	$27.0 \\ 22.6 \\ 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ 0.0 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.0 \\ 1.$	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$	- - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS ff	$\begin{array}{c} 30\\ 23\\ \hline 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \end{array}$	$22 \\ 29 \\ 25 \\ 111 \\ 1 \\ 0 \\ 8 \\ 0 \\ 2 \\ 2$	$21 \\ 30 \\ 23 \\ 11 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 1.6\\ 3187\\ \hline \\ 9000\\ 2747\\ 5900\\ 9000\\ 3196\\ 9000\\ 8100\\ 3619\\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 sport	$\begin{array}{c} 3172\\ 476\\ 2349\\ \hline\\ 9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ 4509\\ \end{array}$	- - - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \end{array}$	$\begin{array}{c} 27.0 \\ 22.6 \\ \hline 1.0 \\ 7.1 \\ 0.3 \\ 0.0 \\ 4.4 \\ 0.0 \\ 1.8 \\ 3.8 \\ \end{array}$	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 1.7 \\ 5.9 \\ 1.7 \\ 5.9 \\ 1.7 \\ $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$ $\begin{array}{c} 0.0\\ 12.3\\ 5.2\\ 0.0\\ 6.9\\ 0.0\\ 2.9\\ 9.3\\ \end{array}$	- - - - - - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS ff lama	$\begin{array}{c} 30\\ 23\\ \hline 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \hline 0\\ 17\\ \end{array}$	$22 \\ 29 \\ 25 \\ 11 \\ 1 \\ 0 \\ 8 \\ 0 \\ 2 \\ 6 \\ - \\ - \\ -$	$ \begin{array}{c} 21 \\ 30 \\ 23 \\ \end{array} $ $ \begin{array}{c} 1 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ \end{array} $ $ \begin{array}{c} 11 \\ 18 \\ \end{array} $	$ \begin{array}{c} 23\\29\\25\\\\ 0\\14\\6\\0\\9\\0\\3\\10\\\\ 4\\19\end{array} $	- - - - - - - - - - - - - - - - - - -	1.6 3187 9000 2747 5900 9000 3196 9000 8100 3619 9000 1442	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340 tran	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 isport 4157 1001	3172 476 2349 9000 2784 6363 9000 5044 9000 7655 4509 7270 558	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \hline \\ 0.0\\ 16.1\\ \hline \end{array}$	27.0 22.6 1.0 7.1 0.3 0.0 4.4 0.0 1.8 3.8	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 10.5 \\ 15.6 \\ 15.6 \\ 10.5 \\ 15.6 \\ 10.5 \\ $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$	- - - - - - - - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS ff lama probe	$\begin{array}{c} 30\\ 23\\ \hline 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \hline 0\\ 17\\ 16\\ \end{array}$	$22 \\ 29 \\ 25 \\ 11 \\ 11 \\ 0 \\ 8 \\ 0 \\ 2 \\ 6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} 21 \\ 30 \\ 23 \\ \end{array}$ $\begin{array}{c} 1 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ \end{array}$ $\begin{array}{c} 11 \\ 18 \\ 20 \\ \end{array}$	$\begin{array}{c} 23\\ 29\\ 25\\ \end{array}\\ \begin{array}{c} 0\\ 14\\ 6\\ 0\\ 9\\ 0\\ 3\\ 10\\ \end{array}\\ \begin{array}{c} 4\\ 19\\ 18\\ \end{array}$	- - - - - - - - - - - - - - - - - - -	1.6 3187 9000 2747 5900 9000 3196 9000 8100 3619 9000 1442 1944	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340 tran - -	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 isport 4157 1001 114	$\begin{array}{c} 3172\\ 476\\ 2349\\ \hline\\ 9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ 4509\\ \hline\\ 7270\\ 558\\ 1165\\ \end{array}$	- - - - - - - - - - - - - - - - 9000 9000	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \hline \\ 0.0\\ 16.1\\ 14.4\\ \end{array}$	27.0 22.6 1.0 7.1 0.3 0.0 4.4 0.0 1.8 3.8	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 10.5 \\ 15.6 \\ 17.4 \\ 17.4 \\ 19.5 \\ 15.6 \\ 17.4 \\ 10.5 \\ 17.4 \\ 10.5 \\ $	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}$	- - - - - - - - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS fDSS ff lama probe Mp	$\begin{array}{c} 30\\ 23\\ 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \end{array}$ $\begin{array}{c} 0\\ 17\\ 16\\ 0\\ \end{array}$	22 29 25 1 11 1 1 0 8 0 2 6 - - -	$\begin{array}{c} 21 \\ 30 \\ 23 \\ \end{array}$ $\begin{array}{c} 1 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ \end{array}$ $\begin{array}{c} 11 \\ 18 \\ 20 \\ 5 \\ \end{array}$	$23 \\ 29 \\ 25 \\ 0 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 10 \\ 4 \\ 19 \\ 18 \\ 0 \\ 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 1.6\\ 3187\\ \hline \\ 9000\\ 2747\\ 5900\\ 3196\\ 9000\\ 8100\\ 3619\\ \hline \\ 9000\\ 1442\\ 1944\\ 9000\\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340 tran -	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 1sport 4157 1001 114 6751	$\begin{array}{r} 3172\\ 476\\ 2349\\ \hline\\ 9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ 4509\\ \hline\\ 7270\\ 558\\ 1165\\ 9000\\ \end{array}$	- - - - - - - - - - - - - 9000 9000 900	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \hline \\ 0.0\\ 16.1\\ 14.4\\ 0.0\\ \end{array}$	27.0 22.6 1.0 7.1 0.3 0.0 4.4 0.0 1.8 3.8	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 10.5 \\ 15.6 \\ 17.4 \\ 5.0 \\ 17.4 \\ 5.0 \\ 10.5 \\ 15.6 \\ 17.4 \\ 5.0 \\ 10.5 \\ 10.$	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \hline \\ 0.0\\ 12.3\\ 5.2\\ 0.0\\ 6.9\\ 0.0\\ 2.9\\ 9.3\\ \hline \\ 3.7\\ 17.5\\ 17.2\\ 0.0\\ \end{array}$	- - - - - - - - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS ff lama probe Mp mercury	$\begin{array}{c} 30\\ 23\\ \end{array}\\ 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \end{array}\\ 0\\ 17\\ 16\\ 0\\ 20\\ \end{array}$	22 29 25 1 11 1 1 0 8 0 2 6	$\begin{array}{c} 21 \\ 30 \\ 23 \\ \end{array}$ $\begin{array}{c} 1 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ \end{array}$ $\begin{array}{c} 11 \\ 18 \\ 20 \\ 5 \\ 0 \\ \end{array}$	$23 \\ 29 \\ 25 \\ 25 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 10 \\ 4 \\ 19 \\ 18 \\ 0 \\ 9 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 1.6\\ 3187\\ \hline \\ 9000\\ 2747\\ 5900\\ 9000\\ 3196\\ 9000\\ 8100\\ 3619\\ \hline \\ 9000\\ 1442\\ 1944\\ 9000\\ 13\\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340 tran - -	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 1590rt 4157 1001 114 6751 9000	3172 476 2349 9000 2784 6363 9000 5044 9000 7655 4509 7270 558 1165 9000 4984	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \hline \\ 0.0\\ 16.1\\ 14.4\\ 0.0\\ 20.0\\ \end{array}$	27.0 22.6 1.0 7.1 0.3 0.0 4.4 0.0 1.8 3.8	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 10.5 \\ 15.6 \\ 17.4 \\ 5.0 \\ 0.0 \\ 0.0 \\ 10.5 \\ 10.$	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}\\ \begin{array}{c} 0.0\\ 12.3\\ 5.2\\ 0.0\\ 6.9\\ 0.0\\ 2.9\\ 9.3\\ \end{array}\\ \begin{array}{c} 3.7\\ 17.5\\ 17.2\\ 0.0\\ 4.6\\ \end{array}$	- - - - - - - - - - - - - - - - - - -
FDSS ff lama probe Mp mercury yahsp BFWS FDSS ff lama probe Mp mercury yahsp	$\begin{array}{c} 30\\ 23\\ \end{array}\\ 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \end{array}\\ 0\\ 17\\ 16\\ 0\\ 20\\ 20\\ \end{array}$	22 29 25 1 11 1 1 0 8 0 2 6 - - - - - -	$\begin{array}{c} 21 \\ 30 \\ 23 \\ \end{array}$ $\begin{array}{c} 1 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ \end{array}$ $\begin{array}{c} 11 \\ 18 \\ 20 \\ 5 \\ 0 \\ 10 \\ \end{array}$	$\begin{array}{c} 23\\ 29\\ 25\\ \end{array}\\ \begin{array}{c} 0\\ 14\\ 6\\ 0\\ 9\\ 0\\ 3\\ 10\\ \end{array}\\ \begin{array}{c} 4\\ 19\\ 18\\ 0\\ 9\\ 3\\ \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 1.6\\ 3187\\ \hline \\ 9000\\ 2747\\ 5900\\ 9000\\ 3196\\ 9000\\ 8100\\ 3619\\ \hline \\ 9000\\ 1442\\ 1944\\ 9000\\ 13\\ 1.5\\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340 tran - -	4051 2.0 3190 mes 8568 2804 6331 9000 3674 9000 8101 5407 1001 114 6751 9000 4636	$\begin{array}{r} 3172\\ 476\\ 2349\\ \hline \\9000\\ 2784\\ 6363\\ 9000\\ 5044\\ 9000\\ 7655\\ 4509\\ \hline \\7270\\ 558\\ 1165\\ 9000\\ 4984\\ 7700\\ \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \hline \\ 0.0\\ 16.1\\ 14.4\\ 0.0\\ 20.0\\ 16.4\\ \hline \end{array}$	27.0 22.6 1.0 7.1 0.3 0.0 4.4 0.0 1.8 3.8	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 10.5 \\ 15.6 \\ 17.4 \\ 5.0 \\ 0.0 \\ 8.2 \\ 10.5 \\ 10.6 \\ 17.4 \\ 10.6 \\ 10.$	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \hline \\ 0.0\\ 12.3\\ 5.2\\ 0.0\\ 6.9\\ 0.0\\ 2.9\\ 9.3\\ \hline \\ 3.7\\ 17.5\\ 17.2\\ 0.0\\ 4.6\\ 2.7\\ \end{array}$	- - - - - - - - - - - - - - - - - - -
FDSS ff lama probe Mp BFWS FDSS ff lama probe Mp mercury yahsp BFWS BFWS BFWS	$\begin{array}{c} 30\\ 23\\ \end{array}\\ 0\\ 14\\ 7\\ 0\\ 13\\ 0\\ 2\\ 12\\ \end{array}\\ 0\\ 17\\ 16\\ 0\\ 20\\ \end{array}$	22 29 25 1 11 1 1 0 8 0 2 6	$\begin{array}{c} 21 \\ 30 \\ 23 \\ \end{array}$ $\begin{array}{c} 1 \\ 14 \\ 6 \\ 0 \\ 12 \\ 0 \\ 2 \\ 8 \\ \end{array}$ $\begin{array}{c} 11 \\ 18 \\ 20 \\ 5 \\ 0 \\ \end{array}$	$23 \\ 29 \\ 25 \\ 25 \\ 14 \\ 6 \\ 0 \\ 9 \\ 0 \\ 3 \\ 10 \\ 4 \\ 19 \\ 18 \\ 0 \\ 9 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 1.6\\ 3187\\ \hline \\ 9000\\ 2747\\ 5900\\ 9000\\ 3196\\ 9000\\ 8100\\ 3619\\ \hline \\ 9000\\ 1442\\ 1944\\ 9000\\ 13\\ \end{array}$	451 2297 te: 8572 4131 8564 9000 5444 9000 8109 6340 tran - -	4051 2.0 3190 rmes 8568 2804 6331 9000 3674 9000 8101 5407 1590rt 4157 1001 114 6751 9000	3172 476 2349 9000 2784 6363 9000 5044 9000 7655 4509 7270 558 1165 9000 4984	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 14.7\\ 26.9\\ 17.5\\ \hline \\ 0.0\\ 12.1\\ 6.4\\ 0.0\\ 12.5\\ 0.0\\ 1.7\\ 10.9\\ \hline \\ 0.0\\ 16.1\\ 14.4\\ 0.0\\ 20.0\\ \end{array}$	27.0 22.6 1.0 7.1 0.3 0.0 4.4 0.0 1.8 3.8	$19.5 \\ 28.3 \\ 21.1 \\ 1.0 \\ 10.3 \\ 5.1 \\ 0.0 \\ 9.4 \\ 0.0 \\ 1.7 \\ 5.9 \\ 10.5 \\ 15.6 \\ 17.4 \\ 5.0 \\ 0.0 \\ 0.0 \\ 10.5 \\ 10.$	$\begin{array}{c} 20.8\\ 26.9\\ 21.5\\ \end{array}\\ \begin{array}{c} 0.0\\ 12.3\\ 5.2\\ 0.0\\ 6.9\\ 0.0\\ 2.9\\ 9.3\\ \end{array}\\ \begin{array}{c} 3.7\\ 17.5\\ 17.2\\ 0.0\\ 4.6\\ \end{array}$	- - - - - - - - - - - - - - - - - - -

Table 11: Results comparing the (O)riginal models with macro enhanced models, namely (M)UM, (B)loMa, CSMs (CS) and the Aggressive CSMs (ACS).

	1	(Cove	rage		PAR10					IPC quality				
Planner	0	Μ	В	CS	ACS	0	Μ	В	CS	ACS	0	M	B	ĊS	ACS
barman															20.0
ff lama		-	$0 \\ 20$	$\frac{30}{30}$	30 30	$9000 \\ 8418$	-	$9000 \\ 3233$	0.1 12	$ \begin{array}{c} 0.1 \\ 6.8 \end{array} $	0.0	-	$0.0 \\ 18.4$	30.0	$30.0 \\ 30.0$
probe	$\frac{2}{5}$	-	11	30	30	7581	-	5737	47	5.8	3.4	-	8.7	30.0	30.0
Mp	ŏ	-	0	30	30	9000	-	9000	145	1.3	0.0	-	0.0	30.0	30.0
mercury	26	-	14	30	30	1307	-	4976	14	6.0	18.0	-	9.9	30.0	30.0
yahsp	0	-	0	30	30	9000	-	9000	0.3	0.1	0.0	-	0.0	30.0	30.0
BFWS	0	-	$\frac{4}{30}$	30	30 30	9000	-	7824	3.0	0.4	0.0	-	3.4	30.0	30.0
FDSS	24	-	30	30	30	2044	-	588	160	7.6	22.0	-	28.0	29.9	29.9
bw ff 0 - 1 8 28 9000 - 8700 6602 608 0.0 - 0.9 7.7 28.0															28.0
lama	28	-	29	29	28	656	-	356	345	610	24.3	-	21.7	23.6	23.4
probe	27	-	30	30	30	1101	-	182	83	0.2	24.1	-	29.5	28.1	28.3
Mp	0	-	0	29	18	9000	-	9000	435	3600	0.0	-	0.0	27.7	16.7
mercury yahsp	19 28	-	$\frac{11}{24}$	$\frac{30}{27}$	11 30	3327 631	-	$5777 \\ 1834$	19 933	$5734 \\ 0.0$	8.2	-	10.0 17.4	30.0 23.4	$9.2 \\ 27.2$
BFWS	4	-	24	3	30	7814	_	8427	8109	36	1.5	_	0.9	1.4	30.0
FDSS	25	-	22	25	30	1568	-	2434	1563	9.8	22.4	-	15.7	18.3	23.7
depots															
ff	1	9	11	11	30	8703	6386	5758	5789	0.0	0.6	6.0	6.9	7.4	30.0
lama	1	0	0	0	30	8724	9000	9000	9000	0.2	0.3	0.0	0.0	0.0	30.0
probe Mp	$\frac{30}{2}$	$\frac{30}{2}$	$\frac{30}{2}$	$\frac{30}{2}$	30 30	$36 \\ 8400$	$\frac{26}{8400}$	$\frac{26}{8400}$	$14 \\ 8400$	$0.0 \\ 0.0$	26.2	$26.4 \\ 1.6$	27.0 1.6	27.5 1.6	29.7 30.0
mercury		0	0	0	30	9000	9000	9000	9000	0.0	0.0	0.0	0.0	0.0	30.0
yahsp	22	20	20	20	30	2479	3032	3031	3036	0.0	2.5	3.2	3.2	3.2	30.0
BFWS	11	18	19	16	30	5759	3762	3450	4309	0.0	6.8	14.3	14.0	11.8	29.6
FDSS	20	15	15	15	30	3563	4732	4733	4732	0.3	19.9	13.8	13.8	13.8	28.3
gold ff 30 22 30 29 - 11 2402 0.2 331 - 30.0 20.6 23.3 22.8 -															
ff lama	30 30	$\frac{22}{30}$	$\frac{30}{30}$	$\frac{29}{28}$	-	11 0.1	2402 17	0.2 0.3	331 600	-	30.0 23.3	20.6 20.9	23.3 20.4	22.8 24.9	-
probe	30	30	30	30	-	0.0	1.8	0.0	0.0	-	29.0	26.1	25.0	24.9	-
Mp	30	30	30	30	-	0.0	0.1	0.0	0.0	-	28.3	25.5	18.8	21.4	-
mercury	30	29	30	30	-	1.3	301	0.3	0.4	-	23.0	23.1	20.5	20.0	-
yahsp	28	27	30	29	-	610	965	0.0	332	-	17.2	23.1	16.3	23.4	-
BFWS	30	18	30	30	-	0.0	3600	0.1	0.0	-	30.0	12.8	19.6	22.9	-
FDSS	30	30	30	30	-	0.1	0.3	0.6	0.2	-	27.1	28.4	23.1	23.3	-
ff	0	28	28	28	30	9000	718	ipper 708	686	9.2	0.0	28.0	28.0	28.0	30.0
lama	7	30	30	30	30	7029	68	74	69	2.8	6.5	30.0	30.0	30.0	25.8
probe	0	0	0	0	30	9000	9000	9000	9000	11	0.0	0.0	0.0	0.0	30.0
Mp	0	0	0	0	30	9000	9000	9000	9000	0.7	0.0	0.0	0.0	0.0	30.0
mercury	0	25	25	25	30	9000	1671	1671	1653	2.1	0.0	24.9	24.9	24.9	29.9
yahsp BFWS	0	$0 \\ 5$		$^{0}_{5}$	30 30	9000 9000	$9000 \\ 7518$	$9000 \\ 7519$	$9000 \\ 7516$	0.1 323	0.0	$ \begin{array}{c} 0.0 \\ 4.9 \end{array} $	$ \begin{array}{c} 0.0 \\ 4.9 \end{array} $	$ \begin{array}{c} 0.0 \\ 4.9 \end{array} $	$30.0 \\ 30.0$
FDSS	0	0	0	1	30	9000	9000	9000	8726	4.2	0.0	0.0	0.0	1.0	29.9
				-				hing-by			0.0	0.0			-0.0
ff	13	9	0	27	30	5160	6308	9000	900	0.0	10.0	7.6	0.0	26.8	29.7
lama	26	26	0	29	30	1201	1201	9000	301	0.1	21.5	21.0	0.0	25.0	27.7
probe	13	17	0	30	30	5104	3904	9000	0.3	0.0	7.3	11.1	0.0	29.5	29.5
Mp mercury	0 10	$ \begin{array}{c} 0 \\ 14 \end{array} $	$ \begin{array}{c} 0 \\ 22 \end{array} $	$\frac{23}{22}$	20 25	9000 6025	$9000 \\ 4804$	$9000 \\ 2405$	$2105 \\ 2425$	$3000 \\ 1500$	0.0 7.5	$0.0 \\ 11.9$	$0.0 \\ 17.7$	17.0 21.1	$19.9 \\ 24.1$
yahsp	21	28	0	26	30	2725	622	9000	1216	0.0	13.4	20.9	0.0	22.7	27.7
BFWS	12	16	Õ	29	30	5431	4273	9000	369	0.0	9.7	13.3	0.0	25.3	28.2
FDSS	30	30	15	30	30	1.1	1.1	4503	1.2	0.1	24.9	25.4	10.7	24.2	26.6
		-	_	_				vers							
ff	1	$\frac{0}{20}$	$\frac{2}{20}$	8	- 1	8714	9000	8423	6698	-	0.9	0.0	1.9	7.9	-]
lama probe	30 30	$\frac{30}{24}$	$\frac{30}{25}$	$\frac{29}{30}$	-	96 338	$\frac{88}{2151}$	$94 \\ 1868$	417 322	-	29.2	$24.6 \\ 21.8$	$28.9 \\ 24.2$	28.3 29.2	-
Mp	16	10^{24}	10	30 16	-	4384	6125	6107	4405	-	15.3	7.7	9.9	15.3	-
mercury	28	27	29	29	-	766	1026	408	458	-	26.5	22.4	27.8	28.3	-
yahsp	30	30	30	30	-	10	10	10	10	-	28.9	29.4	28.8	29.4	-
BFWS	21	16	7	22	-	2971	4446	7034	2686	-	20.8	13.2	6.9	21.6	-
FDSS 30 30 30 - 272 183 279 290 - 29.1 25.5 29.0 29.1 - sokoban															-
ff	19	-	19	23	-	3331	-	3327	2117	-	17.9	-	16.7	19.8	-
lama	21		14	20	_	2729	_	4861	3034		19.6	-	11.8	15.9	
probe	25	-	28	30	-	1519	-	631	65	-	20.9	-	24.3	25.8	-
Mp	30	-	30	30	-	0.8	-	0.6	2.2	-	27.7	-	28.4	25.4	-
mercury	23	-	23	24	-	2158	-	2152	1878	-	21.3	-	18.9	21.3	-
yahsp DEWS	26	-	$\frac{26}{30}$	29	-	1237	-	1251	367	-	19.6	-	14.9	28.4	-
BFWS FDSS	30 30	-	30 30	$\frac{30}{30}$	-	0.7	-	1.3 10	1.0 22	-	28.7 27.9	-	$26.5 \\ 21.3$	$28.5 \\ 25.3$	-
	1.50		50	50		**	tho	ightful		· · · · · · · · · · · · · · · · · · ·		· · ·	21.0	20.0	L
ff	17	19	20	20	-	3900	3301	3001	3001	-	16.4	17.8	19.0	19.0	-
lama	25	22	23	23	-	1503	2403	2103	2103		24.1	21.0	21.9	21.9	-
probe	21	26	24	23	-	2709	1207	1808	2106	-	18.8	23.7	22.6	21.5	-
Mp	0	0	0	0	-	9000	9000	9000	9000	-	0.0	0.0	0.0	0.0	-
mercury yahsp	$\frac{21}{8}$	20 7		$17 \\ 6$		$2704 \\ 6603$	$3009 \\ 6904$	$3903 \\ 7224$	$3903 \\ 7218$	-	20.5	$19.4 \\ 6.4$	$16.4 \\ 5.9$	16.4 5.9	-
BFWS	30	30	30	30	- - -	1.6	1.7	1.7	1.7	-	29.1	28.7	29.3	29.2	-
FDSS	30	30	30	30	-	23	35	34	34	-	28.2	27.8	27.7	27.7	-
I															

Table 12: Results comparing the (O)riginal models with macro enhanced models, namely (M)UM, (B)loMa, CSMs (CS) and the Aggressive CSMs (ACS).