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ABSTRACT
The Fermi Large Area Telescope (Fermi -LAT) 3FHL catalog is the latest catalog of > 10 GeV

sources and will remain an important resource for the high-energy community for the foreseeable
future. Therefore, it is crucial that this catalog is made complete by providing associations for most
sources. In this paper, we present the results of the X-ray analysis of 38 3FHL sources. We found
a single bright X-ray source in 20 fields, two sources each in two fields and none for the remaining
16. The analysis of the properties of the 22 3FHL fields with X-ray sources led us to believe that
most (∼ 19/22) are of extra-galactic origin. A machine-learning algorithm was used to determine the
source type and we find that 15 potential blazars are likely BL Lacertae objects (BL Lacs). This is
consistent with the fact that BL Lacs are by far the most numerous population detected above > 10

GeV in the 3FHL.

1. INTRODUCTION

Gamma rays can provide insight into the most pow-
erful objects in the universe. The very first sensitive
census of the γ-ray sky came in 1993 when the Energy
Gamma Ray Experiment Telescope (EGRET; Fichtel
et al. 1993) on the Compton Gamma Ray Observatory
(CGRO) completed a survey of the γ-ray sky above 50
MeV. This revealed many high-energy astrophysical ob-
jects, such as active galactic nuclei (AGN), gamma-ray
bursts, supernova remnants, and pulsars. In 2008, the
Large Area Telescope (LAT; Atwood et al. 2009) on
board the Fermi gamma-ray space telescope took the
next step in γ-ray astrophysics with its improved sensi-
tivity and resolution over EGRET by factors of 100 and
3, respectively. Fermi -LAT is sensitive to the detec-
tion of hard-spectrum sources (emission > 10 GeV) as
demonstrated in the 1FHL (514 objects detected above
10 GeV) and the 2FHL (360 objects detected above
50 GeV). The newest catalog in this series, the 3FHL
(Ajello et al. 2017), provided a significant improvement
with the detection of 1556 sources between 10 GeV and
2 TeV relying on the first 7 years of LAT data.
However, upon release, the 3FHL had 200 sources

listed as either unknown (i.e., associated with a source
of unknown nature) or lacking a firm association in any
other wavelength. The median positional resolution of
2.3′ hinders the easy identification of the counterpart.
Finding these counterparts is critical because a complete
catalog will enable the study of energetics and emission
mechanisms for all source populations within it. More-

over, blazars (AGN with relativistic jets pointed towards
the observer at a viewing angle, θv < 10◦) detected
above 10 GeV are powerful probes of the extragalac-
tic background light (EBL, Domínguez & Ajello 2015),
the integrated emission of all stars and galaxies in the
Universe, which can shed insight into cosmological ap-
plications such as the measurement of the Hubble con-
stant (Domínguez et al. 2019). However, that requires
knowledge of their redshift. Associating the sources is
thus the first step towards measuring their redshift and
employing them for cosmological studies. Additionally,
a complete 3FHL will be a critical resource for future
observations with the upcoming Cherenkov Telescope
Array (CTA; Hassan et al. 2017; The Fermi-LAT col-
laboration 2019).
One way to find potential associations is by perform-

ing X-ray observations of the fields of γ-ray sources. The
mechanisms responsible for creating the γ-ray emission
in blazars, i.e., the synchrotron self-Compton process or
the external Compton process, also emit in the X-rays
(Böttcher 2007). This is what motivates an X-ray search
of γ-ray sources potentially associated to blazars. This
X-ray radiation can localize the potential counterpart
with greater reliability due to their ∼arcsecond posi-
tional uncertainties (see e.g. Stroh & Falcone 20131,
Parkinson et al. 2016; Paiano et al. 2017). In addition,
this improved positional localization enables the pre-

1 https://www.swift.psu.edu/unassociated/
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cise detection of the optical counterpart from the Ultra-
Violet/Optical Telescope (UVOT, Roming et al. 2005),
on board the Neil Gehrels Swift Observatory (Gehrels
et al. 2004). Knowing the exact position will enable the
follow up from ground based telescopes to measure the
redshifts of these sources.
Kaur et al. (2019) have provided a likely association

for 52 out of the 200 unassociated 3FHL sources using
the X-ray Telescope (XRT, Burrows et al. 2005) also on
board Swift. This leaves ∼150 3FHL unassociated ob-
jects. Here, we follow the same approach and we analyze
the Swift observations of 38 3FHL unassociated sources
with the aim of identifying potential counterparts and
understanding their nature. A machine learning algo-
rithm is used here, for the sources which are believed to
be associated to blazars, to understand whether they are
flat-spectrum radio quasars (FSRQs, i.e., blazars with
optical emission lines of equivalent width > 5Å) or BL
Lacertae objects (BL Lacs, i.e., blazars with no emission
lines in their optical spectrum) according to their spec-
tral properties, such as the spectral photon index, color
differences and variability.
This paper is organized as follows: §2 discusses the

multiwavelength data acquisition and analysis. The re-
sults from this analysis are reported in §3. Then in §4,
we describe our machine learning algorithm to classify
these sources into BL Lacs and FSRQs and the corre-
sponding results. Finally, §5 contains the discussion and
conclusions based upon our analysis.

2. DATA

2.1. Observations

As part of the Swift guest investigator cycle 14
(proposal 1417063, PI: Ajello2), Swift-XRT observed 20
bright unassociated 3FHL sources without any previous
X-ray observation. Then, we cross-matched the remain-
ing 119 unassociated and 9 unknown class sources in
the 3FHL catalog with archival Swift observations. We
found 97 unassociated 3FHL sources that had been ob-
served with Swift-XRT. We selected observations where
the 3FHL source fell within 20′ of the XRT pointing
and had an XRT exposure > 2 ks to ensure reasonable
statistics. This left us with 18 additional sources. For
each target, we stacked all the XRT exposures found in
the archive.

2.2. Swift XRT Data Analysis

2 https://swift.gsfc.nasa.gov/proposals/c14_acceptarg.html#
abstracts

The analysis was performed using HEASARC version
6.26.13 and XSPEC version 12.10.14 for the spectral fit-
ting. The source spectra were extracted using a circu-
lar region with a radius ranging from 10′′−15′′ depend-
ing on the brightness of the source. The background
spectra were obtained from an annular region centered
on the source with inner radius 35.4′′ and outer radius
70.7′′. All spectra were fit in the 0.3−10 keV regime with
the Tuebingen-Boulder ISM absorption model (tbabs,
Wilms et al. 2000). The Galactic column densities in
the direction of the sources were determined following
Kalberla et al. (2005). Most spectra were binned with
3 counts per bin while the remaining five sources were
bright enough to use 10 counts per bin. Spectral fitting
was performed with C-statistic for the low-count sources
and χ2 statistics for the remaining5. The parameters of
all X-ray sources are reported in Table 1.

2.3. Swift-UVOT Data Analysis

All of the sources observed by XRT also had an ob-
servation conducted in at least one Swift-UVOT filter
(except 3FHL J0737.5+6534 and 3FHL J1907.0+0713).
The data were downloaded from the HEASARC archive
and each cleaned sky image was loaded into DS9. A 5′′

circular region was created at the position of the XRT
source. In some cases, the UVOT counterpart was not
centered in the XRT region, so this circle was moved
slightly (no more than 3′′) to enclose the entire source.
3FHL J1439.9−3955, 3FHL J1719.0−5348, and 3FHL
J2030.4+2236 required a 4′′ region to eliminate any over-
lap from a bright source nearby. Since the UVOT fields
for these sources were crowded, it was not possible to
select the usual annular background region around the
source. Instead circular regions of radii 20′′ were selected
for the background from within the field where no other
source was present. We provide AB magnitudes for all
the detected UVOT counterparts of the XRT sources.
3FHL J1405.1−6118 is not included in the results due
to an extremely high extinction value of AV = 67.86.
The results of the analysis are listed below in Table 2.

2.4. Archival Data

The NASA/IPAC Extragalactic Database (NED)7

and SIMBAD8 were used to provide information at
lower energies about the X-ray sources adopting a search

3 https://heasarc.gsfc.nasa.gov/docs/software.html
4 https://heasarc.gsfc.nasa.gov/xanadu/xspec/
5 If c-stat was used, the results are in agreement.
6 AV represents the extinction in the V band.
7 https://ned.ipac.caltech.edu/simplesearch
8 http://simbad.u-strasbg.fr/simbad/

https://swift.gsfc.nasa.gov/proposals/c14_acceptarg.html#abstracts
https://swift.gsfc.nasa.gov/proposals/c14_acceptarg.html#abstracts
https://heasarc.gsfc.nasa.gov/docs/software.html
https://heasarc.gsfc.nasa.gov/xanadu/xspec/
https://ned.ipac.caltech.edu/simplesearch
http://simbad.u-strasbg.fr/simbad/
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radius of 5′′. These results can be found in Table 3.

3. RESULTS

In the sample of 38 unassociated 3FHL sources, 22
contained at least one X-ray object in the field. Of these
22, 11 were high-latitude (|b| > 10◦) and 11 were low-
latitude (|b| ≤ 10◦). As discussed in §3.3, it is highly
unlikely these sources are chance coincidences. Two of
the 3FHL sources had two X-ray objects within 4′ of
the 95% confidence region boundary, leaving us with 24
X-ray sources to analyze.
Approximately 80% of the objects in the 3FHL cat-

alog are associated with blazars (FSRQs, BL Lacs, or
blazar candidates of uncertain type, BCUs) with this
fraction increasing to ∼90% if low-latitude sources are
excluded. Considering all the unassociated sources we
analyzed have a 3FHL photon index between 1.2 and 3.5
and an energy flux between 0.5×10−12 erg cm−2 s−1 and
7.5×10−12 erg cm−2 s−1, we calculated the fraction of
sources classified as blazars in the 3FHL with a photon
index and energy flux in that range. Approximately 96%
are blazars independent of Galactic latitude, however, if
we only consider high-latitude sources, this increases to
98%.
We also compared the unassociated sources’ multi-

wavelength data with that of classified blazars and
Galactic objects. Figure 1 displays the XRT flux
(0.3−10 keV) and 3FHL flux (10GeV−1TeV) vs the
photon index for the 24 analyzed sources, 439 3FHL
sources classified as BL Lacs or FSRQs, and Galactic
3FHL sources. There is not a large discrepancy in the
left plot with an average blazar X-ray photon index of
2.19 ± 0.60 compared to the average Galactic X-ray pho-
ton index of 1.86 ± 0.79, with the unassociated sources
seemingly distributed evenly around both. However, the
right plot clearly shows blazars with a harder photon
index than Galactic objects, 2.25 ± 0.63 compared to
3.18 ± 1.29, and the 22 unassociated sources analyzed
are even harder than the average blazars, aligning more
with BL Lacs. This trend is further elucidated in Fig-
ure 2 as the distribution of the photon spectral indices of
unassociated sources is more aligned with the distribu-
tion of blazars than that of Galactic sources. Moreover,
Figure 3 displays a region of the infrared color-color
space known as the WISE blazar strip (Massaro et al.
2012). Galactic objects are much more likely to have a
w2 (4.6 µm) magnitude greater than or equal to w1 (3.4
µm) while blazars and the unassociated sources exhibit
the reverse. Again, the unassociated sources most fre-
quently fall into/near the BL Lac region which agrees
with the fact that BL Lacs populate 80% of the clas-

sified extragalactic sources in the 3FHL. Based on the
above, the likely fraction of blazars among the 22 unas-
sociated 3FHL sources analyzed here is 19/22. Of the 11
high-latitude and 11 low-latitude, 10 and 9 are likely to
be blazars, respectively. While some of these sources do
not have radio data available, the properties described
above indicate a blazar nature.
The three sources not believed to be blazars are

3FHL J0737.5+6534, 3FHL J1405.1−6118, and 3FHL
J1907.0+0713, all of which are described as pulsar-like
candidates in Hui et al. (2020). More specifically, Hui
et al. (2020) identifies 3FHL J1405.1−6118 as a new
γ-ray binary. In addition to being a potential pulsar,
3FHL J1907.0+0713 is at low Galactic latitude (b =
−0.14◦) and has a photon index (Γγ = 3.3) more typi-
cal of Galactic objects in the 3FHL.
According to Abdollahi et al. (2020) and Ajello et al.

(2020), 3FHL J0737.5+6534 is associated with the star-
forming galaxy NGC 2403. However, Xi et al. (2020)
believes the γ-ray emission originated from the super-
nova SN 2004dj. Our analysis finds an X-ray source
2.28′ away from the 3FHL region that is spatially co-
incident with a high mass X-ray binary in NGC 2403,
RX J073655.7+653542. Due to these findings, we have
excluded it from consideration as a blazar.
Another important application of the study of

3FHL unassociated sources is the indirect detection
of dark matter. Coronado-Blázquez et al. (2019a)
and Coronado-Blázquez et al. (2019b) accomplish this
through the use of archival Swift observations. We note
that the only source shared between those two works
and our analysis is 3FHL J0359.4−0235. We believe this
source is a blazar, not dark matter, because its proper-
ties align well with known blazars as visible in Figures
1 and 2.
For all sources in Table 1, we report UVOT magni-

tudes and archival counterparts at different wavelengths
in Tables 2 and 3, respectively.

3.1. 4FGL-DR2 Associations

According to the second data release of the 4FGL
catalog (4FGL-DR2, Abdollahi et al. 2020), 7 of our
22 unassociated 3FHL sources have new associations
with at least an 85% probability. Five of these associa-
tions are consistent with the X-ray sources reported in
Table 1 (3FHL J0233.5+06579, 3FHL J0933.5−5240,
3FHL J1439.9−3955, 3FHL J1917.9+033110, 3FHL
J2321.6−1618). The other two associations are dis-
cussed in more detail below. Of the 7 new associations,

9 Right source in Figure 4.
10 Left source in Figure 5.
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Figure 1. The left image shows the distribution of X-ray photon indices versus XRT fluxes (0.3−10 keV) and the right shows
the γ-ray photon indices versus the 3FHL fluxes (10GeV−1TeV). The red circles represent known FSRQs, the blue circles
represent known BL Lacs, and the green known Galactic sources. The blue and green lines represent the average photon index
value for blazars and Galactic sources respectively. The yellow stars are the high-latitude sources in our sample and the cyan
stars are the low-latitude sources. We note that BCUs from the 3FHL are mostly found in the locus occupied by FSRQs and
BL Lacs.
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Figure 2. The normalized distributions of photon indices
for blazars, Galactic sources, and the sample of unassociated
sources with a γ-ray flux < 7 ×10−12 erg cm−2 s−1.

five are classified as BCUs while two are still of unknown
class (3FHL J1917.9+0331 and 3FHL J1927.5+0153),
meaning that the counterpart is also an unassociated
source. All seven of these sources have been consid-
ered as blazars in this work and were included in our
machine learning classification. Considering how the
spectral properties of 3FHL J1917.9+0331 and 3FHL
J1927.5+0153 align well with blazars, we included them
in our machine learning algorithm despite having an
unknown classification in the 4FGL-DR2.

3.1.1. 3FHL J0648.3+1744

The 4FGL-DR2 reports GB6 J0648+1749 as the as-
sociation with a 90% probability, while the XRT source
had no radio data available, and are thus not reported
in Table 3. GB6 J0648+1749 lies 1.2′ outside of the
3FHL 95% confidence region whereas the XRT source is
inside. Therefore, we believe the XRT source, SWIFT
J064827+174423, is the more likely counterpart to the
3FHL source.

3.1.2. 3FHL J1927.5+0153

NVSS J192729+015353 is reported as the association
for 3FHL J1927.5+0153 in the 4FGL-DR2 with an 86%
probability whereas no radio data was available for the
XRT source. Although both sources are inside the 3FHL
95% confidence region, the XRT source is only 6′′ away
from the region’s center while NVSS J192729+015353
is 34′′ away. Furthermore, the XRT source has a po-
tential WISE association that falls within the blazar
strip while NVSS J192729+015353 has no WISE as-
sociation. This is significant because the WISE data
supports its blazar classification. For these reasons, we
believe our XRT source is the more likely counterpart
of 3FHL J1927.5+0153, yet it is possible these are all

the same source if the NVSS positional uncertainty was
underestimated.

3.2. Multiple X-Ray Sources

3FHL J0233.5+0657 and 3FHL J1917.9+0331 are the
two sources with multiple X-ray sources. The XRT field
of 3FHL J0233.5+0657 can be viewed in Figure 4. Since
it is high-latitude, we aimed to discover which of these
two X-ray sources most likely matched our above con-
clusion of being a blazar. We found that both had
a radio counterpart, NVSS J023341+065609 (left) and
NVSS J023330+065525 (right), which is often expected
because blazars emit in radio through synchrotron radi-
ation (Böttcher 2007). Next, both displayed very similar
SEDs with the two-hump spectrum indicative of blazars.
Finally, both are considered radio loud, i.e. a radio flux
density to optical flux density ratio11 > 10, with a ratio
of 314 ± 14 (left) and 438 ± 4 (right).
With all those results being so similar, we looked

into the sources’ variability in an effort to understand
their nature. The left image in Figure 4 shows the field
during the ∼3.1 ks taken from XRT and the right five
months later. As is evident, the right source decreases
significantly in flux (2.67 ×10−12 erg cm−2 s−1 to 0.23
×10−12 erg cm−2 s−1). This increases its likelihood of
being a variable blazar. However, because the properties
of both sources are blazar-like, it is impossible to con-
fidently derive which is the likely counterpart of 3FHL
J0233.5+0657.
The source 3FHL J1917.9+0331 also had two bright

(Flux0.3−10keV > 10−12 erg cm−2s−1) X-ray sources in
the field as seen in Figure 5. While being inside the
3FHL region makes the left source the more likely coun-
terpart, we wanted to verify it with additional infor-
mation. Our analysis revealed the left source has an
X-ray photon index of 2.45± 0.43 and a flux0.3−10keV =
1.31×10−12 erg cm−2s−1, both consistent with blazars
as evident in Figure 1. Moreover, the left source has
WISE and radio counterparts while the right lacks radio
data. Therefore, we conclude that the left X-ray source
(SWIFT J191804+033030), which falls within the 95%
3FHL error region, is the more likely X-ray counterpart
for 3FHL J1917.9+0331.

3.3. Chance Coincidence

Following the procedure laid out in Xi et al. (2020), we
used a Poisson distribution to determine the likelihood
of finding another X-ray source of similar flux inside
the 3FHL 95% uncertainty region. We calculated the

11 Radio flux at 5GHz and optical flux in the B band.
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Figure 3. The WISE blazar strip in the color space w1 (3.4µm) − w2 (4.6µm) vs w2 − w3 (12µm). The blue and red circles
represent 439 known BL Lacs and FSRQs used in our machine learning algorithm while known Galactic sources are in green.
The coordinates for the strip can be found in Massaro et al. (2012). The arrows represent sources with only an upper limit on
the w3 magnitude. Two Galactic sources with a w1−w2 value < -1 are not shown to improve readability.

NVSS J023341+065609

NVSS J0233330+065525

2’

N

E

3FHL J0233.5+0657

2’

N

E

NVSS J023330+065525

3FHL J0233.5+0657

NVSS J023341+065609

Figure 4. 0.3−10.0 keV Swift-XRT images of 3FHL J0233.5+0657. The left image was taken in June 2018 with an exposure of
∼3.1 ks. The right image was taken in November 2018 as a part of the Swift guest investigator cycle 14 and has an exposure time
of ∼3.7 ks. The green circle in both images represents the 95% confidence interval from the 3FHL catalog. A source appears in
the left image that is barely visible in the right, suggesting it is variable. The small green circles represent the XRT coordinates
from Table 1 with their associated uncertainties. The NVSS counterparts are given an uncertainty radius of 5′′to be visible,
when their actual size is ∼0.8′′.

chance probability as:

Pch = 1− exp[−π(R2
0 + 4σ2

γ)Σ(> Fth)], (1)

where R0 is the angular distance between the 3FHL
source and the X-ray source, σγ is the 95% uncertainty
radius of the 3FHL source, and Σ(>Fth) is the surface
density of X-ray sources with flux greater than Fth. Our

sample has an average R0 = 2′ and σγ = 2.3′. Using the
newly released 4XMM-DR9 (Webb et al. 2020), we cal-
culated a lower limit source density of 2.2 degrees−2 at
high-latitudes and with a flux > 2.25 ×10−12 erg cm−2

in the 0.2−12 keV band. This value was extrapolated
from the average flux calculated in the 0.3−10 keV band
observed by XRT. These values give an estimate for the
probability of chance coincidence equal to 1.5 ×10−5.



3FHL Identification 7

2’

N

E

WISEA J191743.73+033315.6

NVSS 191803+033032

3FHL J1917.9+0331

Figure 5. 0.3−10.0 keV Swift-XRT image of 3FHL
J1917.9+0331. This image is comprised of three exposures
all taken in September 2017 and totals up to ∼8 ks. The
green circle represents the 95% confidence interval from the
3FHL catalog. The NVSS counterparts are given an uncer-
tainty radius of 5′′to be visible, when their actual size is
∼0.7′′.
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4. CLASSIFICATION WITH MACHINE LEARNING

Generally, multiwavelength analysis is necessary to
accurately classify every Fermi -LAT detected source.
However, collecting all the necessary data is highly time-
intensive, leading to a growing number of unidentified
sources in each Fermi -LAT catalog release. Despite this
challenge, the majority of sources in the catalog are as-
sociated with blazars. Given that 19 of our sources are
consistent with blazars as reported in §3, we proceeded
to determine their blazar type. In order to classify each
source, we incorporated five parameters (displayed in
Table 4) into our algorithm with the ability to differenti-
ate BL Lacs from FSRQs. These parameters were taken
from the 3FHL, 1SXPS (Evans et al. 2014), and ALL-
WISE catalogs (Cutri & et al. 2013), and are described
further in §4.3. Several machine-learning techniques
have been successful in their classification of Fermi -LAT
unidentified sources, e.g., Ackermann et al. (2012), Mira-
bal et al. (2012), Mirabal et al. (2016), Parkinson et al.
(2016), Salvetti et al. (2017), and Kaur et al. (2019). In
this work, we employed two of the most commonly used
methods: Decision Tree (DT; Quinlan & Shapiro 1990)
and Random Forest (Breiman 2001).

4.1. Decision Tree

The DT classifier is a supervised machine-learning
algorithm that uses particular parameters based on the
input data to split it into two or more categories. The
data is continually split into branches and nodes and
concludes only when each data point is designated to
one of the categories. The nodes are split using the Gini
index, an impurity measurement, which determines the
parameter that can best separate the data, thus max-
imizing the accuracy of classification. The Gini impu-
rity parameter states how likely it is to improperly la-
bel a data point. The DT algorithm reduces this value
by splitting the sample into branches until this index
reaches its minimum of zero. The index is defined as

G = 1−
J∑
i=1

p2i , (2)

where J is the total number of categories and pi is the
fraction of items labeled with category i in the data
sample. A larger G value indicates a greater level of
disparity between the two classes for a given parameter.
The DT is split until G reaches zero, thus assigning each
data set a class along the way. A data set with known
classification is split into two groups: one to train the
classifier and the other to test its accuracy. Then, the
classifier can assess an unclassified data set.

4.2. Random Forest

The random forest method is the most commonly
used supervised machine-learning technique for both
classification and regression. This works as an ensemble
algorithm following the same principles as a DT classi-
fier. In a random forest classifier, numerous DT algo-
rithms are run with each assigning a class to every data
point. The combined result of these predicted classes is
the final result for each source in the data set. The ran-
dom forest is preferred over a single DT because it solves
the problem of overfitting (Hastie et al. 2009). This
method was used to classify each source in our sample
as a BL Lac or an FSRQ with an associated probability.

4.3. Sample and Parameter Selection

We utilized the DT and Random Forest classifiers
implemented in sklearn0.20.0 library (Pedregosa et al.
2012) in python 2.7 on a sample of 439 3FHL blazars
(336 BL Lac objects and 103 FSRQs). This sample
was chosen from the 3FHL catalog because they pos-
sess known values for all five parameters listed in Table
4. Our goal was to follow the process established in
Kaur et al. (2019) and include the 3FGL Index as the
sixth parameter, but 16 of our 24 unassociated X-ray
sources did not have a 3FGL photon index. We found
22 of our 24 X-ray sources had a 4FGL photon index,
but including it in our machine learning produced iden-
tical classifications with similar probabilities. Therefore,
we did not include the 4FGL photon index in our algo-
rithm. The five parameters chosen have been shown to
distinguish BL Lacs from FSRQs. Generally, BL Lac ob-
jects exhibit harder spectra in Gamma rays (e.g., Abdo
et al. 2010; Ackermann et al. 2015) and softer in X-rays
(e.g., Donato et al. 2001) when compared to FSRQs as
is visible in Figure 1. Therefore, we selected the γ-ray
photon index from the 3FHL catalog and the X-ray pho-
ton index from the 1SXPS catalog. Moreover, Massaro
et al. (2012) introduced a method to classify blazars of
unknown type using a four-filters WISE color-color dia-
gram (also used in D’Abrusco et al. 2014). From their
diagram and Figure 3, it can be seen that BL Lac objects
occupy the bluer region of the parameter space. Finally,
FSRQs exhibit more variability than BL Lacs, which
is quantified by the Variability Bayesian Blocks in the
3FHL. The values range from 1 to 15, where 1 implies
no variability and 15 implies high variability. 20% of the
sample was separated into a test set with the remaining
80% being used to train the classifiers.

4.4. Results

Of the 19 unidentified 3FHL sources believed to be
blazars, three of them could not be included in our al-
gorithm because they did not have a WISE counterpart
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Table 2. Swift-UVOTMagnitudes The
sources in bold are high-latitude.

Source Name W2 M2 W1 U B V

J0057.9+6325 > 11.65 > 10.02 > 12.56 > 13.80 > 14.01 14.10± 0.27

J0233.5+0657 19.85± 0.16 20.04± 0.29 19.40± 0.18 19.08± 0.19 18.71± 0.23 > 18.48

J0233.5+0657 20.29± 0.23 20.25± 0.32 19.68± 0.23 19.00± 0.18 > 19.15 > 18.42

J0359.4−0235 > 19.36 > 18.72 > 18.95 > 18.69 > 18.06 > 17.39

J0528.4+3851 > 11.65 > 9.92 > 12.74 > 14.31 > 14.55 > 14.89

J0648.3+1744 > 20.43 > 19.93 19.78± 0.36 19.31± 0.31 > 18.79 > 18.04

J0933.5−5240 > 7.69 > 5.68 > 9.84 > 12.22 > 12.86 > 13.57

J1439.9−3955 19.66± 0.13 19.30± 0.15 18.94± 0.13 18.43± 0.10 17.93± 0.11 17.54± 0.14

J1451.8−4145 19.96± 0.21 19.68± 0.25 19.89± 0.28 19.28± 0.22 18.34± 0.18 18.38± 0.36

J1719.0−5348 > 19.76 > 19.03 > 19.33 18.24± 0.18 16.82± 0.10 15.89± 0.09

J1855.3+0751 > −7.61 > −12.12 > −2.75 > 2.72 > 4.85 > 7.45

J1917.9+0331 > 16.67 > 15.58

J1917.9+0331 > 15.40 > 16.31

J1927.5+0153 17.25± 0.09

J2030.2−5037 21.10± 0.17

J2030.4+2236 19.82± 0.22 18.75± 0.15

J2104.5+2117 19.38± 0.34 18.69± 0.21

J2105.9+7508 > 16.65

J2159.6−4619 19.12± 0.05

J2239.5−2439 20.34± 0.20

J2321.6−1618 18.35± 0.06

Figure 6. The feature importance for each parameter in
our Random Forest classifier. Here "VBB" represents the
parameter Variability Bayesian Blocks.

listed in Table 3. Including 3FHL J0233.5+0657 with
two X-ray objects, we had 17 sources in our algorithm.
The feature importance, i.e., a score that expresses the
relative importance of each parameter used in the clas-
sification, for our five parameters is shown in Figure 6
while results from the machine learning classification al-
gorithms are displayed in Table 5. Figure 6 clearly in-
dicates that the WISE colors w1−w2 had the greatest
impact on classifying our sample while the Variability
Bayesian Blocks had the least due to the small differ-
ences in variability between the 17 sources. We em-

ployed our DT classifier on the test data set (67 BL Lac
objects and 21 FSRQs) and yielded an accuracy of 84%.
When this classifier was applied to the unclassified sam-
ple of 17 sources, it classified 16 as BL Lac objects and
3FHL J0528.4+3851 as an FSRQ. The DT classifier only
provides binary probabilities, either 100% or 0%, i.e., a
source is identified as a BL Lac if the probability is 100%
and an FSRQ if the probability is 0%. The Random For-
est classifier yielded similar results. With an accuracy of
93%, it found 15 sources to be BL Lac objects, which is
consistent with the plots in Figures 1 and 3, and matches
the results from the DT algorithm. The remaining two
sources remain undetermined via RF method (probabil-
ities 64% for 3FHL J0528.4+3851 and 65% for 3FHL
J0648.3+1744) whereas DT classifies these as an FSRQ
and BL Lac, respectively.
When using the Random Forest classifier, the receiver

operating characteristic curve (ROC) is used to assess
the accuracy of this binary classifier. The ROC plots
the true positive rate (TPR, number of true positive re-
sults) against the false positive rate (FPR, number of
incorrect positive results) at differing thresholds. The
accuracy is determined by finding the area under the
ROC curve with 1 being the maximum value signifying
all correct results. The ROC curve had an area of ∼0.97,
signifying an accurate classifier, and is displayed below
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Table 3. Multi-Wavelength Data

3FHL Radio 2MASS WISE Ultraviolet

J0057.9+6325 NVSS J005758+632636 J00575838+6326390 J005758.38+632639.3 ...
J0233.5+0657 a NVSS J023341+065609 J02334098+0656114 J023340.99+065611.1 GALEX J023340.97+065611.4
J0233.5+0657 b NVSS J023330+065525 J02332999+0655260 J023329.97+065526.3 GALEX J023329.9+065528
J0359.4−0235 NVSS J035923−023501 J03592349−0235022 J035923.48−023501.8 ...
J0528.4+3851 NVSS J052831+385156 ... J052831.61+385200.5 ...
J0648.3+1744 ... J06482642+1744235 J064826.73+174422.5 ...
J0737.5+6534 ... J07365473+6535277 ... ...
J0933.5−5240 TGSSADR J093333.2−524020 J09333316−5240192 J093333.17−524019.3 ...
J1405.1−6118 ... J14051441−6118282 J140514.40−611827.7 ...
J1439.9−3955 NVSS J143951−395517 J14395085−3955185 J143950.86−395518.8 ...
J1451.8−4145 ... J14514931−4145034 J145149.34−414503.6 ...
J1719.0−5348 MGPS J171855−535042 J17185595−5350484 ... ...
J1855.3+0751 NVSS J185520+075140 ... ... ...
J1907.0+0713 ... J19070619+0719545 ... ...
J1917.9+0331 c NVSS J191803+033032 J19180361+0330300 J191803.60+033031.1 ...
J1917.9+0331 d ... ... J191743.73+033315.6 ...
J1927.5+0153 ... ... J192731.14+015357.9 ...
J2030.2−5037 TGSSADR J203023.9−503411 ... J203024.04−503413.0 GALEX J203024.0-503413
J2030.4+2236 NVSS J203031+223439 ... ... ...
J2104.5+2117 NVSS J210415+211805 ... J210415.92+211808.2 ...
J2105.9+7508 NVSS J210606+750926 ... J210605.46+750920.7 ...
J2159.6−4619 ... ... J215936.14−461953.9 ...
J2239.5−2439 NVSS J223928−243943 J22392882−2439441 J223928.82−243944.2 ...
J2321.6−1618 NVSS J232137−161935 J23213700−1619282 J232136.98−161928.3 GALEX J232136.9-161928

a Left source in Figure 4.
b Right source in Figure 4.
c Inside 3FHL in Figure 5.
d Outside 3FHL in Figure 5.

Table 4. Parameters for Blazar Classification

Parameter Catalog References

X-ray Photon Index Table 1 for unknown sample See Table 1
1SXPS for training set Evans et al. (2014)

Variability Bayesian Blocks 3FHL Ajello et al. (2017)
w1−w2 AllWISE Cutri & et al. (2013)
w2−w3 AllWISE Cutri & et al. (2013)

Gamma-ray Photon Index 3FHL Ajello et al. (2017)

in Figure 7.
We note that other methods exist, such as Neural Net-

works implemented in Chiaro et al. (2019) and Kovače-
vić et al. (2019), however, we are unable to fully compare
the results as only one source (3FHL J2321.6−1618)
is shared between this work and theirs (on which they
agree).

5. DISCUSSION AND CONCLUSION

Figure 7. The ROC curve from the Random Forest method
for the test sample. This curve yielded an area under the
curve of 0.97. The diagonal line represents the nondiscrimi-
natory curve, i.e., any data points on/below this line would
represent non-diagnostic results.

The primary objective of this paper was to con-
tinue the identification of all remaining 200 unclassified
sources in the Fermi 3FHL catalog. Classifying every
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Table 5. Machine Learning Results
Listed are the results from the Decision Tree
and Random Forest algorithms with the lat-
ter’s associated probability of accurate classi-
fication. “...” signifies the class could not be
determined at a 90% confidence level.

3FHL DT Pred RF Pred RF Prob

J0057.9+6325 bll bll 1.0
J0233.5+0657a bll bll 0.99
J0233.5+0657b bll bll 1.0
J0359.4−0235 bll bll 1.0
J0528.4+3851 fsrq ... ...
J0648.3+1744 bll ... ...
J0933.5−5240 bll bll 0.95
J1439.9−3955 bll bll 1.0
J1451.8−4145 bll bll 0.96
J1917.9+0331 bll bll 1.0
J1927.5+0153 bll bll 1.0
J2030.2−5037 bll bll 1.0
J2104.5+2117 bll bll 1.0
J2105.9+7508 bll bll 0.96
J2159.6−4619 bll bll 1.0
J2239.5−2439 bll bll 1.0
J2321.6−1618 bll bll 1.0

a Left source.
b Right source.

source in the 3FHL catalog is necessary to completely
understand the energetics and emission mechanisms
of the high-energy universe. In this work, we ana-
lyzed Swift-XRT observations of 38 3FHL sources and
found at least one potential X-ray counterpart for 22 of
them. To begin classifying our sample as Galactic or
extragalactic, we compared their multiwavelength data
against classified blazars and Galactic sources. While
the X-ray data does not reveal any strong trend, γ-
rays make it clear that our sample aligns more with

blazars, in that both have a harder photon index than
Galactic sources. Furthermore, the unassociated sources
populate the blazar, and BL Lacs more specifically, re-
gion of the WISE blazar strip while Galactic sources
have a much lower w1−w2 value. Due to these results,
we believe the majority of these unassociated sources
(∼ 19/22) to be blazars. The remaining three sources
have an uncertain nature, but are likely a star form-
ing galaxy (3FHL J0737.5+6534) and pulsars (3FHL
J1405.16118 and 3FHL J1907.0+0713).
Towards the goal of fully classifying these sources, we

implemented our machine learning algorithm to deter-
mine whether the 19 sources are BL Lacs or FSRQs.
We classified these sources using their X-ray and γ-ray
photon indices, WISE colors w1−w2 and w2−w3, and
Variability Bayesian Blocks from the 3FHL catalog.
The numerical description of how useful these parame-
ters were, i.e., the feature importance, indicate w1−w2
had the greatest impact on the classification. Of the 17
sources with the necessary data, 15 were classified as
BL Lacs by our Random Forest classifier and 2 (3FHL
J0528.4+3851 and 3FHL J0648.3+1744) are undeter-
mined. Using the UVOT data reported in Table 2, we
will plan observations with the SARA telescopes that
will allow us to obtain redshifts and confirm the results
of our classifier, thus getting one step closer to complet-
ing the 3FHL catalog.
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