
82Number

2021Publication Year

2021-03-22T09:02:01ZAcceptance in
OA@INAF

Discos simulators documentationTitle

CARBONI, GIUSEPPE; BUTTU, MarcoAuthors

O.A. CagliariAffiliation of first
author

http://hdl.handle.net/20.500.12386/30723;
http://dx.doi.org/10.20371/INAF/TechRep/82

Handle

DISCOS Simulators Documentation
Release 1.0

Giuseppe Carboni, Marco Buttu

Mar 17, 2021

CONTENTS:

1 Introduction 1
1.1 About this project . 1
1.2 The DISCOS Control Software . 2

2 The Framework 3
2.1 Networking layer . 4

2.1.1 The Simulator class . 4
2.1.2 The Server class . 4
2.1.3 Handler classes of a Server . 5

2.2 Simulation layer . 7
2.2.1 The System class . 7
2.2.2 The MultiTypeSystem class . 9

3 User guide 11
3.1 Package setup . 11
3.2 Run the simulators . 11

4 Developers documentation 13
4.1 How to implement a simulator . 13

4.1.1 The servers list . 13
4.1.2 Custom commands . 14
4.1.3 Useful functions . 14

4.2 Testing environment . 15
4.2.1 Dependencies . 15
4.2.2 Run all tests at once . 15
4.2.3 Run the linter . 15
4.2.4 Run the unit tests . 15
4.2.5 Check the testing coverage . 16
4.2.6 Test the documentation . 16

5 The simulators.utils library 17
5.1 The Utils library . 17

Bibliography 25

Index 27

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 About this project

DISCOS Simulators: a framework for writing hardware simulators for the DISCOS control software
Giuseppe Carboni <giuseppe.carboni@inaf.it>

This document describes the DISCOS Simulators framework. This framework was designed with the purpose of
providing a means to integrate several hardware simulators of the three Italian radio telescopes (especially the Sardinia
Radio Telescope) under the same environment.

Writing a simulator helps the developers in writing good code for the actual control software of the radio telescope,
the DISCOS control software. Being able to test the control software code without having to rely on the hardware
represents a huge advantage in the development and maintenance processes, it provides a way to test each new addition
or modification to the code, making sure that the control software keeps behaving as expected. Furthermore, the
framework allows to test how the control software code reacts under expected error conditions, in fact, it provides an
easy way to simulate unlikely scenarios that are very difficult or, in some cases, impossible to replicate by only using
the hardware. This allows the developers to write more reliable and robust code, that is likely capable to allow the user
to recover from an error condition without having to resort to a complete reboot of the system.

Having a fast way to write a simulator of a new incoming device, also allows to easily verify that the communication
protocol on which the software developing team and the provider of the new device agreed upon, is working as
expected. In case some of the tests yield different results between the simulator and the real hardware, it is easier to
understand which one of the two parties committed an implementation error, whether it is a bug in the code of the
control software or in the firmware of the device (or just in an update of one of the two).

In order to do so, it is necessary to have a simulator for each critical component of the radio telescope. Since the
vast majority of the communications between the control software and the devices (or the simulator, in this case) are
carried on via network, under similar circumstances, having a framework already capable of handling these kind of
communications on its own, is priceless. It allows the developers to focus on the simulator code and communication
protocol, without having to re-write anything related to the communication infrastructure, providing the same simple
architecture for all the simulators.

Another important aim of this project is that it opens the possibility of performing automated tests of the control
software code. A suite of simulators, capable of reproducing various different scenarios, can be exploited to write and
execute a great variety of tests whenever a modification to the control software code gets pushed to the main online
repository. This workflow is called continuous integration. [1]

Chapter two of this document describes the framework in detail, its structure, its layers and the classes that compose it.
Chapter three explains how to install the package and run the simulators. Chapter four goes into detail in describing
how to write a new simulator, test it, and integrate it into the framework. In chapter five, the reader will find the
documentation of the utils library, which contains several useful functions to easily perform some recurrent tasks such
as format conversions.

1

DISCOS Simulators Documentation, Release 1.0

1.2 The DISCOS Control Software

The following paragraph describes the DISCOS control software. These lines were taken from the official DISCOS
documentation. [2]

“DISCOS (Development of the Italian Single-dish COntrol System) is the control software produced for the Italian
radio telescopes. It is a distributed system based on ACS (ALMA Common Software) [3] commanding all the devices
of the telescope and allowing the user to perform single-dish observations in the most common modes. As of today, the
code specifically implemented for the telescopes (i.e. excluding the huge ACS framework) amounts to about 650000
lines. Even VLBI (or guest-backend) observations partly rely on DISCOS, as it must be used to perform the focus
selection and the frontend setup.”

Fig. 1.1: The DISCOS console user interface.

2 Chapter 1. Introduction

CHAPTER

TWO

THE FRAMEWORK

The framework is written in Python 2.7. This Python version was chosen to maintain compatibility with the ACS
default Python version. By matching the two versions, all the simulators can be executed on the same machine where
the DISCOS control software is running, no matter if it is a production, a development, a physical or a virtual machine.

The framework architecture is composed of two layers. The topmost layer is in charge of handling network communi-
cations, it behaves as a server, listening for incoming connections from clients and relaying every received byte to the
other layer of the framework, the simulation layer. This layer is where received commands are parsed and executed, it
can faithfully replicate the behavior of the hardware it is supposed to simulate, or it can simply answer back to clients
with a simple response, whether the latter is the correct one or not, to simulate an error condition and thoroughly test
the DISCOS control software.

Fig. 2.1: Framework layers and communication behavior.

3

https://www.python.org/download/releases/2.7/

DISCOS Simulators Documentation, Release 1.0

2.1 Networking layer

2.1.1 The Simulator class

The Simulator class represents the topmost layer of the framework. Each simulator system can have multiple instances
or servers to be launched (i.e. the Active Surface simulator has 96 different instances), this class has the task to start a
server process for each of the instances needed for the given simulator.

class simulators.server.Simulator(system_module, **kwargs)
This class represents the whole simulator, composed of one or more servers.

Parameters system_module (module that implements the System class,
string) – the module that implements the System class.

start(daemon=False)
Starts a simulator by instancing the servers listed in the given module.

Parameters daemon (bool) – if true, the server processes are created as daemons, meaning
that when this simulator object is destroyed, they get destroyed as well. Default value is
false, meaning that the server processes will continue to run even if the simulator object gets
destroyed. To stop these processes, method stop must be called.

stop()
Stops a simulator by sending the custom $system_stop% command to all servers of the given simulator.

2.1.2 The Server class

As previously mentioned, every simulator exposes one or multiple server instances via network connection. Each
server instance is an object of the Server class, its purpose it to listen on a given port for incoming communi-
cations from any client. This class inherits from the SocketServer.ThreadingMixIn class and, depending on which
type of socket it will use, it also inherits either from the SocketServer.ThreadingTCPServer class or from the Sock-
etServer.ThreadingUDPServer class. The reader can find more information about the system parameter in the The
System class section.

class simulators.server.Server(system, server_type, kwargs, l_address=None,
s_address=None)

This class inherits from the ThreadingMixIn class. It can instance a server for the given address(es). The server
can either be a TCP or a UDP server, depending on which server_type argument is provided. Also, the server
could be a listening server, if param l_address is provided, or a sending server, if param s_address is provided.
If both addresses are provided, the server acts as both as a listening server and a sending server. Be aware that
if the server both listens and sends to its clients, l_address and s_address must not share the same endpoint (IP
address and/or port should be different).

Parameters

• system (System class that inherits from ListeningServer or/
and SendingServer) – the desired simulator system module

• server_type (ThreadingTCPServer or ThreadingUDPServer) – the type
of threading server to be used

• kwargs (dict) – the arguments to pass to the system instance constructor method

• l_address ((ip, port)) – the address of the server that exposes the System.parse()
method

• s_address ((ip, port)) – the address of the server that exposes the Sys-
tem.subscribe() and System.unsubscribe() methods

4 Chapter 2. The Framework

DISCOS Simulators Documentation, Release 1.0

serve_forever(poll_interval=0.05)
Overrides the base class serve_forever method. Before calling the base method, which would stay in a
loop until the process is stopped, it starts the eventual child server as a daemon thread.

Parameters poll_interval (float) – the interval used by the class to check for incoming
shutdown requests

start()
Starts a daemon thread which calls the serve_forever method. The server is therefore started as a daemon.

stop()
Stops the server and its eventual child.

The Server class is capable of behaving in three different ways. The first one is to act as a listening server, a server
that awaits for incoming commands and sends back the answers to the client. The second possible behavior is to act
as a sending server, sending its status message periodically to its clients after they start any communication. Finally,
a server can act as a combined version of the aforementioned two. It is therefore able to behave as both listening and
sending server on two different ports but relaying incoming commands to and sending the status of a single simulator
object to its connected clients. Depending on how a server is configured to behave, it will use different handler classes
to manage communications with its clients.

2.1.3 Handler classes of a Server

The handler class of a server object, is the endpoint class, in charge of handling any communication between the server
object and its underlying simulator. Depending on the type of handler a server object has underneath, its behavior when
receiving a message will be different.

The BaseHandler class

The main handler class in the framework is the BaseHandler class. It inherits from the BaseRequestHandler class.

class simulators.server.BaseHandler(request, client_address, server)
This is the base handler class from which ListenHandler and SendHandler classes are inherited. It only de-
fines the custom header and tail for accepting some commands not related to the system protocol, and the
_execute_custom_command method to parse the received custom command.

Example A $system_stop% command will stop the server, a $error% command will configure the
system in order to respond with errors, etc.

custom_header = '$'

custom_tail = '%'

_execute_custom_command(msg_body)
This method accepts a custom command (without the custom header and tail) formatted as com-
mand_name:par1,par2,. . . ,parN. It then parses the command and its parameters and tries to call the sys-
tem’s equivalent method, also handling unexpected exceptions.

Parameters msg_body (string) – the custom command message without the custom header
and tail ($ and % respectively)

setup()
Method that gets called whenever a client connects to the server.

The BaseHandler class alone is not able to handle any incoming message, its only purpose in fact is to act as a base
class for the following two classes, providing its children classes the _execute_custom_command method.

2.1. Networking layer 5

DISCOS Simulators Documentation, Release 1.0

The ListenHandler class

The ListenHandler class, as its name suggests, listens for incoming messages from any client, and relays these mes-
sages to the underlying simulator. If the simulator answers with a response message, the message is then relayed back
to the client.

class simulators.server.ListenHandler(request, client_address, server)

handle()
Method that gets called right after the setup method ends its execution. It handles incoming messages,
whether they are received via a TCP or a UDP socket. It passes down the System class the received
messages one byte at a time in order for the System.parse() method to work properly. It then returns the
System response when received from the System class. It also constantly listens for custom commands that
do not belong to a specific System class, but are useful additions to the framework with the purpose of
reproducing a specific scenario (i.e. some error condition).

The SendHandler class

The SendHandler class, as soon as a client opens a communication channel, starts retrieving and sending periodically
the status message of its underlying simulator class to its connected clients.

class simulators.server.SendHandler(request, client_address, server)

handle()
Method that gets called right after the setup method ends its execution. It handles messages that the server
has to periodically send to its connected client(s). It also constantly listens for custom commands that
do not belong to a specific System class, but are useful additions to the framework with the purpose of
reproducing a specific scenario (i.e. some error condition).

6 Chapter 2. The Framework

DISCOS Simulators Documentation, Release 1.0

2.2 Simulation layer

2.2.1 The System class

The System class is the main class of any hardware simulator. It is the class in charge of parsing any incoming
command received from the Handler object of the Server, and/or periodically provide the status of the simulator it is
supposed to be mimicking.

The BaseSystem class

The BaseSystem class is simply bare implementation of a full System class. This class is the right place where to
implement any custom method that can be helpful to handle some behavior that is common to all simulators. As
it can be seen from the API below, it is the case of system_greet() and system_stop() methods, which have to be
defined for every simulator. They can be overridden in case a System object has to behave differently than the default
implementation.

class simulators.common.BaseSystem
System class from which every other System class is inherited. If a custom command that can be useful for every
kind of simulator has to be implemented, this class is the right place.

static system_greet()
Override this method to define a greeting message to send to the clients as soon as they connect.

Returns the greeting message to sent to connected clients.

static system_stop()
Sends back to the server the message $server_shutdown% ordering it to stop accepting requests, to close
its socket and to shut down.

Returns a message telling the server to proceed with its shutdown.

In order for a system object to be able to either parse commands or send its status to any connected client, writing a
System class that inherits from BaseSystem is not enough. The System class of a simulator in fact has to inherit from
one (or both) of the two classes described below. It the System class inherits from both the classes, it will have to
implement all the required methods and define the required attributes.

The ListeningSystem class and the parse method

In order for any System class to be able to parse any command received by the server, a parse method has to be defined.
This method takes one byte (string of one character, in Python 2.7) as argument and returns:

• False when the byte is not recognized as a message header and the system is still waiting for the correct header
character

• True when the system has already received the header and it is waiting to receive the rest of the message

• a response to the client, a non empty string, built according to the protocol definition. The syntax of the response
thus is different between different simulators.

If the system has nothing to send to the client, as in the case of broadcast requests, System.parse() must return True.
When the simulator is brought to behave unexpectedly, a ValueError has to be raised, it will be captured and logged
by the parent server process.

class simulators.common.ListeningSystem
Implements a server that waits for its client(s) to send a command, it can then answer back when required.

2.2. Simulation layer 7

DISCOS Simulators Documentation, Release 1.0

parse(byte)
Receives and parses the command to be sent to the System. Additional information here: https://github.
com/discos/simulators/issues/1

Parameters byte (byte) – the received message byte.

Returns False when the given byte is not the header, but the header is expected. True when the
given byte is the header or a following expected byte. The response (the string to be sent
back to the client) when the message is completed.

Return type boolean, string

Raises ValueError – when the declared length of the message exceeds the maximum ex-
pected length, when the sent message carries a wrong checksum or when the client asks to
execute an unknown command.

The SendingSystem class and the subscribe and unsubscribe methods

If the System class inherits from common.SendingSystem, it has to define and implement the System.subscribe() and
System.unsubscribe() methods, along with the sampling_time attribute.

Both the System.subscribe() and System.unsubscribe() methods interfaces are described in issue #175 on GitHub.

The subscribe method takes a queue object as argument and adds it to the list of the connected clients. For each client
in this list the system will then be able to send the required message by putting it into each of the clients queues.

The unsubscribe method receives once again the same queue object received by the subscribe method, letting the
system know that that queue object, relative to a disconnecting client, has to be removed from the clients queues.

The sampling_time attribute defines the time period (in milliseconds) that elapses between two consecutive messages
that the system have to send to its clients. It is internally defined in the SendingSystem base class, and its default value
is equal to 10ms. If a different sampling time is needed, it is sufficient to override this variable in the inheriting System
class.

class simulators.common.SendingSystem
Implements a server that periodically sends some information data regarding the status of the system to every
connected client. The time period is the one defined as sampling_time variable, which defaults to 10ms and
can be overridden. The class also accepts simulator-related custom commands, but no regular commands are
accepted (they are ignored and immediately discarded).

sampling_time = 0.01

subscribe(q)
Passes a queue object to the System instance in order for it to add it to its clients list. The System will
therefore put any new status message into this queue, along with the queue of other clients, as soon as the
status message is updated. Additional information here: https://github.com/discos/simulators/issues/175

Parameters q (Queue) – the queue object in which the System will put the last status message
to be sent to the client.

unsubscribe(q)
Passes a queue object to the System instance in order for it to be removed from the clients list. The System
will therefore release the handle to the queue object in order for the garbage collector to destroy it when the
client has finally disconnected. Additional information here: https://github.com/discos/simulators/issues/
175

Parameters q (Queue) – the queue object that contains the last status message to send to the
connected client.

8 Chapter 2. The Framework

https://github.com/discos/simulators/issues/1
https://github.com/discos/simulators/issues/1
https://github.com/discos/simulators/issues/175
https://github.com/discos/simulators/issues/175
https://github.com/discos/simulators/issues/175
https://github.com/discos/simulators/issues/175

DISCOS Simulators Documentation, Release 1.0

Fig. 2.2: System class inheritance.

2.2.2 The MultiTypeSystem class

Some simulators might have multiple different implementations, having therefore multiple System classes that be-
have differently from one another. For example, among the already developed simulators, there are two different
implementations of the IF Distributor simulator. In order to keep multiple different System classes under the same
simulator name, another class called MultiTypeSystem was written, it acts as a class factory. This means that it works
by receiving the name of the configuration of the system we want to launch as system_type keyword argument.

class simulators.common.MultiTypeSystem
This class acts as a ‘class factory’, it means that given the attributes system_type and systems (that must be
defined in child classes), creating an instance of MultiTypeSystem (or some other class that inherits from this
one) will actually create an object of system_type type if it’s defined in the systems list. This class is meant to be
used in systems that have multiple simulator types or configuration in order for the user to be able to choose the
desired type when launching the simulator.

static __new__(cls, **kwargs)
Checks if the desired configuration is available and returns its correspondent class type.

Returns the System class correspoding to the one selected via command line interface, or the
default one.

The main System class, just like a regular System class, should be defined in the __init__.py file, inside the module
main directory. It must inherit from the MultiTypeSystem class and override the __new__ method as shown below:

systems = get_multitype_systems(__file__)

class System(MultiTypeSystem):

(continues on next page)

2.2. Simulation layer 9

DISCOS Simulators Documentation, Release 1.0

(continued from previous page)

def __new__(cls, **kwargs):
cls.systems = systems
cls.system_type = kwargs.pop('system_type')
return MultiTypeSystem.__new__(cls, **kwargs)

As you can see from the code above, before defining the class, it is necessary to retrieve the list of the available
configurations for the given simulator. This can be done by calling the get_multitype_systems function, defined in
the The simulators.utils library library. The said function will recursively search for any System class in the given
path. Generally speaking, the passed __file__ value will ensure that only the System classes defined in the module’s
directory and sub-directories will end up inside the systems list. For more information, take a look at the function in
the The simulators.utils library section. The default system configuration can be defined as system_type inside the
kwargs dictionary.

To know how to launch a simulator of this kind, please, take a look at this paragraph.

10 Chapter 2. The Framework

CHAPTER

THREE

USER GUIDE

3.1 Package setup

The package installation, along with its requirements, requires no longer than a few minutes. First of all, after down-
loading the package, it is necessary to run the following command to install its Python dependencies:

$ pip install -r requirements.txt

This command will automatically install all the required dependencies. Currently, the only required Python packages
are Numpy and Scipy.

After the requirements have been installed, it is time to install the package itself. In order to do so, execute the
following command inside the repository main directory:

$ python setup.py install

This command will install all the simulator libraries and scripts into the current Python environment, and they will be
immediately available for execution.

3.2 Run the simulators

All the simulators can be run at once, by simply executing the following command:

$ discos-simulator start

To stop all the simulators at once:

$ discos-simulator stop

By adding the --system or --s flag to the command, it is possible to run a single simulator:

$ discos-simulator start --system active_surface
$ discos-simulator start -s acu

To stop the desired simulator:

$ discos-simulator stop -s active_surface

To run a specific configuration for a simulators, add the --type flag, followed by the desired configuration:

$ discos-simulator --system if_distributor --type IFD start

11

http://www.numpy.org/
https://www.scipy.org/

DISCOS Simulators Documentation, Release 1.0

Not all simulators have multiple configurations. Providing an unknown configuration will prevent the system from
starting and the command will fail.

To know the currently available simulators, execute the command using the the list action:

$ discos-simulator list
Available simulators: 'active_surface', 'acu', 'backend', 'calmux', 'if_distributor',
→˓'lo', 'mscu', 'weather_station'.

12 Chapter 3. User guide

CHAPTER

FOUR

DEVELOPERS DOCUMENTATION

4.1 How to implement a simulator

To implement a simulator, it is necessary to create a module that defines both a servers list and a System class.

4.1.1 The servers list

The servers list defines all the instances that should be running when the given simulator starts. Each element of the
servers list is a tuple, composed of the following items:

• the server listening address, l_address

• the server sending address, s_address

• the type of threading server from the SocketServer package to use to run the simulator

• a dictionary of optional keyword arguments, kwargs, eventually used by System.__init__()

The l_address item is the address on which the server will listen for incoming commands to pass down to the Sys-
tem.parse() method. The s_address item is the address from which the server will periodically send its data to its
connected clients. The type of threading server from the SocketServer argument can either be ThreadingTCPServer
or ThreadingUDPServer, depending on the type of socket the server has to use. These Python object types have to be
imported as follows:

from SocketServer import ThreadingTCPServer

or:

from SocketServer import ThreadingUDPServer

Some examples

Suppose the reader wants to simulate a system that has 2 listening TCP servers and no sending servers, the first one with
address ('192.168.100.10', 5000) and the second one with address ('192.168.100.10', 5001). In
this case we have to define the servers list as follows:

servers = [
(('192.168.100.10', 5000), (), ThreadingTCPServer, {}),
(('192.168.100.10', 5001), (), ThreadingTCPServer, {}),

]

If the System class accepts some extra arguments, two integers, for instance, it is possible to pass them via the kwargs
dictionary:

13

DISCOS Simulators Documentation, Release 1.0

servers = [
(('192.168.100.10', 5000), (), ThreadingTCPServer, {'arg1': 10, 'arg2': 20}),
(('192.168.100.10', 5001), (), ThreadingTCPServer, {'arg1': 4, 'arg2': 5}),

]

If the System to simulate has instead a single listening UDP server, the servers list will be defined as follows:

servers = [
(('192.168.100.10', 5000), (), ThreadingUDPServer, {}),

]

A System with 3 sending TCP servers and no listening servers will have the servers list defined in the following way:

servers = [
((), ('192.168.100.10', 5002), ThreadingTCPServer, {}),
((), ('192.168.100.10', 5003), ThreadingTCPServer, {}),
((), ('192.168.100.11', 5000), ThreadingTCPServer, {}),

]

Finally, a system instance can act as both listening and sending server. In this case, each server list entry must be
defined as follows:

servers = [
(('192.168.100.10', 5003), ('192.168.100.10', 5004), ThreadingTCPServer, {}),
(('192.168.100.10', 6000), ('192.168.100.10', 6001), ThreadingTCPServer, {}),

]

Be aware that multiple lines in the servers list will cause the simulator to spawn a System object per line. Every one of
the spawned System objects is independent from the others and they will all act as different simulators.

4.1.2 Custom commands

Custom commands are useful for several use cases. For instance, suppose we want the simulator to reproduce some
error conditions by changing the System state. We just need to define a method that starts with system_ inside the
System class. I.e:

class System(ListeningSystem):

def system_generate_error_x(self):
Change the state of the System
...

After implementing this method, the clients are able to call it by sending the custom command $sys-
tem_generate_error_x%. It is also possible to define a method that accepts some parameters. In this case the custom
command will have the form $system_commandname:par1,par2,par3%. Since every Server object is not limited to
only a single connection, custom commands can be also sent by a different client that the main one. This allow the
reproduction of error scenarios even when the DISCOS control software is already connected to some simulator.

In order to avoid name clashing for custom methods, it is sufficient to not use the system_ prefix for any other System
method, so make sure to only use this convention for custom commands.

4.1.3 Useful functions

In order to make it faster to write and implement new simulator’s methods, which sometimes require converting data
from a format to another, a library of useful functions called simulators.utils has been written and comes within the

14 Chapter 4. Developers documentation

DISCOS Simulators Documentation, Release 1.0

simulators package. Its API is described in the The simulators.utils library section.

4.2 Testing environment

In the continuous integration workflow, the tests are executed more than once. During the development process, tests
will be executed locally, and after pushing the code to Github, they will be executed on Travis-CI.

4.2.1 Dependencies

To Run the unit tests there is no need to install any additional depencency. That is possible thanks to the unittest
framework, included in the Python standard library. But we do not want to only run the unit tests: we want to set
up an environment that allows us to check for suspicious code, test the code and the documentation, evaluate the
testing coverage, and replicate the Travis-CI build locally. To accomplish this goal we need to install some additional
dependencies:

$ pip install coverage # testing coverage tool
$ pip install codecov # testing coverage tool
$ pip install coveralls # testing coverage tool
$ pip install prospector # Python linter
$ pip install sphinx # documentation generator
$ pip install sphinx_rtd_theme # HTML doc theme
$ pip install tox # testing tool
$ sudo apt install ruby # apt, yum, ...
$ sudo gem install wwtd # run travis-ci locally

4.2.2 Run all tests at once

All tests can be run at once by executing this single command:

$ wwtd

The wwtd program (What Would Travis Do) reads the .travis.yml file and executes the tests accordingly. The tests can
also be run manually, one by one, as described in the following sections.

4.2.3 Run the linter

To run the linter move to the project’s root directory and execute the following command:

$ prospector

4.2.4 Run the unit tests

Move to the project’s root directory and execute the following command:

$ python -m unittest discover -b tests

4.2. Testing environment 15

https://travis-ci.org/github/discos/simulators
https://en.wikipedia.org/wiki/Lint_(software)

DISCOS Simulators Documentation, Release 1.0

4.2.5 Check the testing coverage

To check the percentage of code covered by test, run the unit tests using Coverage.py:

$ coverage run -m unittest discover -b tests

Now generate an HTML report:

$ coverage combine && coverage report && coverage html

To see the HTML report open the generated htmlcov/index.html file with your browser.

4.2.6 Test the documentation

Several things have to be tested:

• the docstring examples

• the documentation (doc directory) examples

• the links inside the documentation must point correctly to the target

• the HTML must be generated properly

To test the docstring examples, we use the Python standard library doctest module. Simply move to the root directory
of the project and execute the following command:

$ python -m doctest simulators/*.py

To test the examples in the doc directory:

$ cd doc
$ make doctest

To check if there are broken URLs in the documentation:

$ make linkcheck # From the doc directory

To generate the HTML:

$ make html # From the doc directory

16 Chapter 4. Developers documentation

https://coverage.readthedocs.io/

CHAPTER

FIVE

THE SIMULATORS.UTILS LIBRARY

This part of the documentation describes all useful functions that were implemented in the utils library in order to
speed up the development of new simulator modules.

5.1 The Utils library

simulators.utils.checksum(msg)
Computes the checksum of a string message.

Parameters msg (str) – the message of which the checksum will be calculated and returned

Returns the checksum of the given string message

Return type chr

>>> checksum('fooo')
'L'

simulators.utils.binary_complement(bin_string, mask=”)
Returns the binary complement of bin_string, with bits masked by mask.

Parameters

• bin_string (str) – the binary_string of which the binary complement will be calculated

• mask (str) – a binary string that will act as mask allowing to complement only bin_string’s
digits corresponding to mask’s ones, leaving the bin_string’s digits corresponding to mask’s
zeros as they are

Returns the binary complement of the given bin_string

Return type str

>>> binary_complement('11010110')
'00101001'

>>> binary_complement('10110', '10111')
'00001'

simulators.utils.twos_to_int(binary_string)
Returns the two’s complement of binary_string.

Parameters binary_string (str) – the string containing only zeros and ones. It is mandatory
to pad this value to the desired bits length before passing it to the method in order to avoid
representation errors.

17

DISCOS Simulators Documentation, Release 1.0

Returns the two’s complement of the given binary_string, as an integer

Return type int

>>> twos_to_int('11111011')
-5

>>> binary_string = '111'
>>> twos_to_int(binary_string)
-1
>>> binary_string = binary_string.zfill(8)
>>> binary_string
'00000111'
>>> twos_to_int(binary_string)
7

simulators.utils.int_to_twos(val, n_bytes=4)
Returns the two’s complement of the given integer as a string of zeroes and ones with len = 8*n_bytes.

Parameters

• val (int) – the signed integer to be returned as binary string in two’s complement

• n_bytes (int) – the number of total bytes to use for the given signed integer conversion
to two’s complement

Returns the two’s complement of val, as a binary string

Return type str

>>> int_to_twos(5)
'00000000000000000000000000000101'

>>> int_to_twos(5, 2)
'0000000000000101'

>>> int_to_twos(-1625)
'11111111111111111111100110100111'

>>> int_to_twos(-1625, 2)
'1111100110100111'

>>> int_to_twos(4294967295)
Traceback (most recent call last):

...
ValueError: 4294967295 out of range (-2147483648, 2147483647).

simulators.utils.binary_to_bytes(binary_string, little_endian=True)
Converts a binary string in a string of bytes.

Parameters

• binary_string (str) – the original binary string that has to be converted to a byte
string

• little_endian (bool) – boolean indicating whether the returned string should be for-
matted with little endian or big endian notation

Returns the bytestring representation of binary_string

18 Chapter 5. The simulators.utils library

DISCOS Simulators Documentation, Release 1.0

Return type str

>>> binary_to_bytes('0110100001100101011011000110110001101111', False)
'hello'

simulators.utils.bytes_to_int(byte_string, little_endian=True)
Converts a string of bytes to an integer (like C atoi function).

Parameters

• byte_string (str) – the signed integer represented as bytes

• little_endian (bool) – boolean indicating whether the byte_string param was re-
ceived with little endian or big endian notation

Returns the value of byte_string, converted to signed integer

Return type int

>>> bytes_to_int(b'hello', False)
448378203247

simulators.utils.bytes_to_binary(byte_string, little_endian=True)
Converts a string of bytes to a binary string.

Parameters

• byte_string (str) – the byte string to be converted to binary

• little_endian (bool) – boolean indicating whether the byte_string param was re-
ceived with little endian or big endian notation

Returns the binary representation of byte_string

Return type str

>>> bytes_to_binary(b'hi', little_endian=False)
'0110100001101001'

simulators.utils.bytes_to_uint(byte_string, little_endian=True)
Converts a string of bytes to an unsigned integer.

Parameters

• byte_string (str) – the unsigned integer represented as bytes

• little_endian – boolean indicating whether the byte_string param was received with
little endian or big endian notation

Little_endian bool

Returns the value of byte_string, converted to unsigned integer

Return type int

>>> bytes_to_uint(b'hi', little_endian=False)
26729

simulators.utils.real_to_binary(num, precision=1)
Returns the binary representation of a floating-point number (IEEE 754 standard). A single-precision format
description can be found here: https://en.wikipedia.org/wiki/Single-precision_floating-point_format A double-
precision format description can be found here: https://en.wikipedia.org/wiki/Double-precision_floating-point_
format.

5.1. The Utils library 19

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

DISCOS Simulators Documentation, Release 1.0

Parameters

• num (float) – the floating-point number to be converted

• precision (int) – integer indicating whether the floating-point precision to be adopted
should be single (1) or double (2)

Returns the binary string of the given floating-point value

Return type str

>>> real_to_binary(619.34000405413)
'01000100000110101101010111000011'

>>> real_to_binary(619.34000405413, 2)
'0100000010000011010110101011100001010100000010111010011111110111'

>>> real_to_binary(0.56734, 1)
'00111111000100010011110100110010'

simulators.utils.real_to_bytes(num, precision=1, little_endian=True)
Returns the bytestring representation of a floating-point number (IEEE 754 standard).

Parameters

• num (float) – the floating-point number to be converted

• precision (int) – integer indicating whether the floating-point precision to be adopted
should be single (1) or double (2)

• little_endian (bool) – boolean indicating whether the byte string should be returned
with little endian or big endian notation

Returns the bytes string of the given floating-point value

Return type str

>>> [hex(ord(x)) for x in real_to_bytes(436.56, 1, False)]
['0x43', '0xda', '0x47', '0xae']

>>> [hex(ord(x)) for x in real_to_bytes(436.56, 2, False)]
['0x40', '0x7b', '0x48', '0xf5', '0xc2', '0x8f', '0x5c', '0x29']

simulators.utils.bytes_to_real(bytes_real, precision=1, little_endian=True)
Returns the floating-point representation (IEEE 754 standard) of bytestring number.

Parameters

• bytes_real (str) – the floating-point number represented as bytes

• precision (int) – integer indicating whether the floating-point precision to be adopted
should be single (1) or double (2)

• little_endian (bool) – boolean indicating whether the bytes_real param was received
with little endian or big endian notation

Returns the floating-point value of the given bytes string

Return type float

>>> round(bytes_to_real('Dw,1', 1, False), 2)
988.69

20 Chapter 5. The simulators.utils library

DISCOS Simulators Documentation, Release 1.0

>>> round(bytes_to_real('@z%}.hQ]', 2, False), 2)
418.34

simulators.utils.int_to_bytes(val, n_bytes=4, little_endian=True)
Returns the bytestring representation of a given signed integer.

Parameters

• val (int) – the signed integer to be converted

• n_bytes (int) – the number of bytes to fit the given unsigned integer to

• little_endian (bool) – boolean indicating whether the byte string should be returned
with little endian or big endian notation

Returns the bytes string value of the given signed integer

Return type str

>>> [hex(ord(x)) for x in int_to_bytes(354, little_endian=False)]
['0x0', '0x0', '0x1', '0x62']

simulators.utils.uint_to_bytes(val, n_bytes=4, little_endian=True)
Returns the bytestring representation of a given unsigned integer.

Parameters

• val (int) – the unsigned integer to be converted

• n_bytes (int) – the number of bytes to fit the given unsigned integer to

• little_endian (bool) – boolean indicating whether the byte string should be returned
with little endian or big endian notation

Returns the bytes string value of the given unsigned integer

Return type str

>>> [hex(ord(x)) for x in uint_to_bytes(657, little_endian=False)]
['0x0', '0x0', '0x2', '0x91']

simulators.utils.sign(number)
Returns the sign (-1, 0, 1) of a given number (int or float) as an int.

Parameters number (int) – the number from which the sign will be extracted

Returns the sign multiplier of the given number

Return type int

>>> sign(5632)
1

>>> sign(0)
0

>>> sign(-264)
-1

simulators.utils.mjd(date=None)
Returns the modified julian date (MJD) of a given datetime object. If no datetime object is given, it returns

5.1. The Utils library 21

DISCOS Simulators Documentation, Release 1.0

the current MJD. For more informations about modified julian date check the following link: https://core2.gsfc.
nasa.gov/time/

Parameters date (datetime) – the object to calculate the equivalent modified julian date. If
None, the current time is used.

Returns the modified julian date of the given date value

Return type float

>>> d = datetime(2018, 1, 20, 10, 30, 45, 100000)
>>> mjd(d)
58138.43802199074

simulators.utils.mjd_to_date(original_mjd_date)
Returns the UTC date representation of a modified julian date one.

Parameters original_mjd_date (float) – a floating point number representing the modified
julian date to be converted to a datetime object.

Returns the datetime object of the given modified julian date

Return type datetime

>>> mjd_to_date(58138.43802199074)
datetime.datetime(2018, 1, 20, 10, 30, 45, 100000)

simulators.utils.day_microseconds(date=None)
Returns the microseconds elapsed since last midnight UTC.

Parameters date (datetime) – the object to calculate the total day amount of microseconds. If
None, the current time is used.

Returns the number of microseconds elapsed since last midnight previous to given date

Return type int

simulators.utils.day_milliseconds(date=None)
Returns the milliseconds elapsed since last midnight UTC.

Parameters date (datetime) – the object to calculate the total day amount of milliseconds. If
None, the current time is used.

Returns the number of milliseconds elapsed since last midnight previous to given date

Return type int

simulators.utils.day_percentage(date=None)
Returns the day percentage. 00:00 = 0.0, 23:59:999999 = 1.0

Parameters date (datetime or timedelta) – the datetime or timedelta object of which
will be calculated the equivalent percentage. If None, the current datetime is used.

Returns the percentage of day elapsed since last midnight previous to given date

Return type float

simulators.utils.get_multitype_systems(path)
Returns a list of .py packages containing a System class. The path in which this method looks is the same path
of the module that calls this very method. It is meant to be called by a module containing a MultiTypeSystem
class.

Parameters path (str) – the path in which the function is going to recursively look for System
classes

22 Chapter 5. The simulators.utils library

https://core2.gsfc.nasa.gov/time/
https://core2.gsfc.nasa.gov/time/

DISCOS Simulators Documentation, Release 1.0

Returns a list of packages containing a System class

Return type list

simulators.utils.list_simulators(path=’/home/giuseppe/Documents/OAC/discos/simulators/simulators’)
Returns the list of all available simulators in the package.

Parameters path (str) – the path in which the function will recursively look for simulators System
classes

Returns the list of available simulators

Return type list

5.1. The Utils library 23

DISCOS Simulators Documentation, Release 1.0

24 Chapter 5. The simulators.utils library

BIBLIOGRAPHY

[1] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving software quality and re-
ducing risk. Pearson Education, 2007.

[2] A. Orlati, M. Bartolini, S. Righini, A. Fara, C. Migoni, S. Poppi, M. Buttu, and G. Carboni.
The discos project. Technical Report 522, IRA, 2018. URL: https://doi.org/10.20371/inaf/pub/2019_00001,
doi:10.20371/INAF/PUB/2019_00001.

[3] Gianluca Chiozzi, Bogdan Jeram, Heiko Sommer, Alessandro Caproni, Mark Plesko, Matej Sekoranja, Klemen
Zagar, David W Fugate, Paolo Di Marcantonio, and Roberto Cirami. The alma common software: a developer-
friendly corba-based framework. In Advanced Software, Control, and Communication Systems for Astronomy,
volume 5496, 205–218. International Society for Optics and Photonics, 2004.

25

https://doi.org/10.20371/inaf/pub/2019_00001
https://doi.org/10.20371/INAF/PUB/2019_00001

DISCOS Simulators Documentation, Release 1.0

26 Bibliography

INDEX

Symbols
__new__() (simulators.common.MultiTypeSystem

static method), 9
_execute_custom_command() (simula-

tors.server.BaseHandler method), 5

B
BaseHandler (class in simulators.server), 5
BaseSystem (class in simulators.common), 7
binary_complement() (in module simulators.utils),

17
binary_to_bytes() (in module simulators.utils), 18
bytes_to_binary() (in module simulators.utils), 19
bytes_to_int() (in module simulators.utils), 19
bytes_to_real() (in module simulators.utils), 20
bytes_to_uint() (in module simulators.utils), 19

C
checksum() (in module simulators.utils), 17
custom_header (simulators.server.BaseHandler at-

tribute), 5
custom_tail (simulators.server.BaseHandler at-

tribute), 5

D
day_microseconds() (in module simulators.utils),

22
day_milliseconds() (in module simulators.utils),

22
day_percentage() (in module simulators.utils), 22

G
get_multitype_systems() (in module simula-

tors.utils), 22

H
handle() (simulators.server.ListenHandler method), 6
handle() (simulators.server.SendHandler method), 6

I
int_to_bytes() (in module simulators.utils), 21

int_to_twos() (in module simulators.utils), 18

L
list_simulators() (in module simulators.utils), 23
ListenHandler (class in simulators.server), 6
ListeningSystem (class in simulators.common), 7

M
mjd() (in module simulators.utils), 21
mjd_to_date() (in module simulators.utils), 22
MultiTypeSystem (class in simulators.common), 9

P
parse() (simulators.common.ListeningSystem

method), 7

R
real_to_binary() (in module simulators.utils), 19
real_to_bytes() (in module simulators.utils), 20

S
sampling_time (simulators.common.SendingSystem

attribute), 8
SendHandler (class in simulators.server), 6
SendingSystem (class in simulators.common), 8
serve_forever() (simulators.server.Server method),

4
Server (class in simulators.server), 4
setup() (simulators.server.BaseHandler method), 5
sign() (in module simulators.utils), 21
Simulator (class in simulators.server), 4
simulators.common (module), 7
simulators.server (module), 4
simulators.utils (module), 17
start() (simulators.server.Server method), 5
start() (simulators.server.Simulator method), 4
stop() (simulators.server.Server method), 5
stop() (simulators.server.Simulator method), 4
subscribe() (simulators.common.SendingSystem

method), 8
system_greet() (simulators.common.BaseSystem

static method), 7

27

DISCOS Simulators Documentation, Release 1.0

system_stop() (simulators.common.BaseSystem
static method), 7

T
twos_to_int() (in module simulators.utils), 17

U
uint_to_bytes() (in module simulators.utils), 21
unsubscribe() (simulators.common.SendingSystem

method), 8

28 Index

