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Highlights 

 

 

• We evaluate an auditory brain-computer interface (BCI) protocol that allows users to 

mentally choose among 6 options 

• We contrast two ways of using the BCI: passively counting the presented target 

auditory stimuli or simply mentally repeating them when they occur 

• The mental repetition task generated an ERP response similar to the traditional 

counting task 

• The mental repetition task generated a mental workload smaller than the traditional 

counting task 

 



 

 

 

Abstract 

Objective: The current study evaluates an auditory brain-computer interface (BCI) protocol 

that allows users to mentally choose among 6 options.  

Methods: The protocol is based on an oddball P300 paradigm.  To reduce mental workload, 

we introduce a change in the typical oddball paradigm task: instead of passively counting the 

presented target auditory stimuli, we ask participants to simply mentally repeat them when 

they occur. 

In the study, ten healthy participants carried out two calibration sessions respectively with 

traditional mental count and with the proposed mental repetition and then three free item 

selection sessions using mental repetition. A comparison has been conducted between off-line 

count and mental repetition classification accuracies achieved by each participant during the 

calibration sessions. The mental workload difference between  the count and repeat 

calibration sessions of each participant was evaluated  by computing alpha (at Po8) and theta 

(at Fz) spectral power density (SPD) curves. 

Results: With the proposed protocol we got an average on-line item-selection information 

transfer rate (ITR) over 2 epochs of  2.35 bits/min, and an average on-line accuracy over 10 

epochs of  81.7%. Nine out of ten participants showed a higher mental workload with the 

traditional mental count. The repeat activity was preferred by 8 out of 10 participants. The 

comparison conducted between off-line count and mental repetition classification accuracies 

shows a slightly worse average behavior for the repeat protocol in the first 8 averaged epochs. 

Conclusions: Although off-line classification based on mental count data got better results, 

the proposed auditory BCI protocol with mental repetition achieved an on-line performance 

similar to the traditional counting oddball paradigm task but with a lower mental workload.  

Significance: The results obtained with healthy subjects suggest that the proposed protocol 

can be a simpler alternative to the mental count, with comparable performance and lower 

mental load.  

  



Introduction 

A brain-computer interface (BCI) can be defined  as  “a communication system that does not 

depend on the brain’s normal output pathways of peripheral nerves and muscles”[1]. 

Several electrophysiological characteristics can be extracted from the human EEG to control a 

BCI system. A frequent choice is to exploit P300, i.e. an Event-Related Potential (ERP) 

component that appears as a positive deflection over central and parietal scalp areas with a 

latency of 200 to 700 ms after the presentation of a rare or salient stimulus [2]. The stimulus 

can be visual, auditory, or somatosensory. The typical ERP-BCI setup uses an oddball-

paradigm [3],[4] which consists of a sequence of standard irrelevant stimuli with interspersed 

rare deviant but relevant stimuli (the oddballs). When the attended stimuli appear, the user has 

to perform some activity such as increment a mental counter in order to elicit (enhance) a 

P300 response. 

Several visual BCIs based upon the P300 oddball-paradigm have been proposed in the last 

decades, e.g.[5],[6], [7],[8],[9]. Unfortunately, the efficacy of such solutions can become 

unacceptable in patients with serious oculomotor impairments [10],[11],[12]. This motivates 

research on paradigms that are not based on sense of sight [13],[14],[15],[16],[17],[18]. 

While the traditional oddball approach in auditory BCIs is based on having the user passively 

count the number of occurrences of the target auditory stimulus, in this paper we aim at 

reducing  mental workload  by having the user simply mentally repeating the target stimulus 

when it occurs. We also aim at using a small number of electrodes to acquire the EEG signals. 

The paper is organized as follows. First, we introduce related work on P300 paradigms and 

EEG-based workload measurement. Second, we illustrate in detail the proposed auditory BCI 

and the user study we carried to evaluate its performance, and to compare the traditional 

mental count approach with the proposed  mental repetition. Third, we present and discuss the 

results of the study.  

P300  paradigms for BCIs 

The P300 speller, first described by Farwell and Donchin [5], uses visual P300 responses to 

choose letters from a 6x6 matrix presented on a computer screen. P300 speller with its 

variants as well as other visual BCIs have been described and tested both with healthy 

participants [7] and disabled subjects [8],[9],[6], [7] demonstrating that individuals with 

severe paralysis can use a visual P300-based BCI, provided  that they are able to control their 

eyes to gaze and focus the target. 

Unfortunately, patients with locked-in syndrome (LIS) are in a state of almost complete 

paralysis with residual voluntary gaze direction control or eye blink control which may hinder 

their ability to use a visual P300 speller in the later stages of the disease. Treder and 

colleagues [11] state that extreme cases of oculomotor impairment may pose problems even 

for gaze-independent BCIs, underlining that some patients suffer from involuntary gaze drift 

which could damage BCI performance. Although eye movements are not necessarily required 

to operate a visual P300 BCI, involuntary eye movements may make it difficult to orient 

visual attention to a specific location[10].The study by Kaufmann et al. [12] seems also to 

question  the effectiveness of current gaze-independent approaches to BCI, while indicating a 

tactile approach as the most accurate. 



Patients with complete locked-in syndrome (CLIS) lose volitional control over all their 

muscles and are not able to use a visual ERP paradigm, motivating research on alternative 

ones (auditory or tactile). Moreover, some researchers [19],[20],[21] are trying to apply 

auditory BCI protocols in cases of Minimally Conscious State (MCS) patients,  a condition  of  

severely  altered  consciousness  where  there is  minimal evidence of  any  form  of  

awareness.  In such cases, a BCI might bear the potential to employ a ‘‘yes–no’’ spelling 

device to confirm an MCS diagnosis and offer the hope of functional interactive 

communication. 

Since visual BCI paradigms are not eligible for LIS patients affected by (severe) oculomotor 

impairment [11] and CLIS patients, alternative paradigms based on auditory stimuli were 

investigated to allow both healthy and disabled users to make binary decisions [14],[15], [13] 

or to operate auditory P300 spellers [16], [18], [17] [22] [23] [24]. Käthner’s study further 

aimed also at quantifying the differences in subjective workload between the auditory and the 

visual P300 spelling application. 

The auditory BCI paradigms we surveyed above confirm the possibility of using auditory 

stimuli in a BCI system; nevertheless, auditory-only BCIs suffer from issues in achievable 

accuracy, ITR and ease of use which are lower than in the visual BCI protocols for healthy 

subjects and  patients as well. Some of the above mentioned studies include visual stimuli in 

their protocols, which are unfortunately unusable by visually impaired and CLIS patients. 

Other auditory-only studies are very limited in subjects' possibility of decision which is only 

binary. Approaches that rely on spatially distributed sound sources are limited by the human 

ability to discriminate sound directions and by the mental workload such an  activity presents. 

Mental workload 

The ability to directly detect mental over- and under-load in humans is an essential feature in 

human  interfaces evaluation and in complex monitoring and control processes [25]–[27]. 

Workload measurements can be categorized into three classes [28]:  

Subjective:  subjective  measurement  of  levels  of  workload based  on  the  rankings  or  

scales  to measure the amount of workload a person is feeling; it can consists of just one 

question (e.g., “Please rate the amount of mental effort invested in the task”), and the 

responses range from “very low mental effort” to “very high mental effort” as in the widely 

used mental effort scale by Paas [29]. 

Performance  Based  :  performance  measurement  of  workload relies on examining the  

capacity  of  an individual by means of a primary or secondary task. By measuring how well a 

person performs the task with increasing workload, an estimate of mental workload can be 

determined [30].  

Physiological:  physiological measurement relies on evidence that increased mental demands 

lead to increased physical response from the  body.  This type of measures relates the 

continuous physical reactions of the body to the amount of mental workload a person is 

experiencing. Unlike subjective measures, it  does  not require a direct response from the 

individual, [31]. 

Research focuses on five main physiological areas to measure mental workload: cardiac 

activity, respiratory activity, eye activity, speech and brain activity [30]. 



To  measure brain activity, EEG  is the most frequent choice [32].  Other physiological 

techniques that are used in neuroscience such as functional magnetic resonance imaging 

(fMRI), positron emission tomography (PET) can be employed, but they are able to capture 

exclusively metabolic changes in determined brain areas; unlike fMRI and PET, EEG can 

noninvasively measure brain activity in authentic, real-world settings with high temporal 

resolution, enabling it to measure changes in mental activity on the millisecond scale. 

Therefore, EEG measurements are continuously reflective of a participant's cognitive states 

[33]. 

Spectral features derived from  the EEG are used for measuring  the workload [34] [34]. 

Alpha is, with the exception of irregular activity in the delta range and below, the dominant 

frequency in the human scalp EEG of adults. Alpha and theta respond in different and 

opposite ways to mental workload: theta synchronizes with increasing task demands, whereas 

alpha desynchronizes. If  EEG power in a resting condition is compared  with a test condition, 

alpha power decreases (desynchronizes) and  theta power increases (synchronizes), as shown 

by a variety of studies [35]–[40]. 

Study Goal 

The central goal of our research is twofold. First, we wanted to explore the feasibility of an 

auditory P300-based BCI protocol, which could be of interest in cases where the user is 

unable to take advantage of visual BCIs. In particular, we created a proof-of-concept auditory 

BCI protocol that requires only 8 EEG electrodes, and supports 6 possible choices, 

represented by auditory stimuli consisting of the spoken digits from 1 to 6. This focus on 6 

digits (6-target stimuli detection) aims at enabling a range of selections which in principle 

could drive a “hex-o-spell”-like [41] interface. 

Unlike other protocols which use more demanding mental tasks, such as spatial distributed 

sound direction or other target property mental discrimination, to elicit stronger ERP 

responses [22], [42], [43], our approach  tries to reduce mental workload  by introducing a 

change in the typical oddball paradigm counting task commonly employed in the literature 

[3], [44]–[46]: instead of passively counting how often the target auditory stimulus is 

presented, we ask users simply to mentally repeat it when it occurs. 

The second goal was to evaluate the effects of the proposed auditory P300 task by comparing 

user’s mental workload and performance with mental repetition and with the traditional 

mental counting (see details in Data Analysis section). 

In particular, we assess performance with the two mental activities in terms of real-time 

accuracy and Information Transfer Rate (ITR)(see ITR computation section). 

 

Methods 

Participants 

Ten healthy subjects (6 female, 4 male, M=35.1 years, SD=7.95 years, range 26-54) 

participated in the study. Participants enrolled in the study on a voluntary basis, receiving no 

compensation, and were informed in detail about the nature of the study to obtain their 

informed consent. 



Data Acquisition 

The EEG was recorded with Ag/AgCl electrodes over 8 channels (Fz, Cz, Pz, Oz, P3, P4, 

PO7, PO8) based on the modified 10–20 system of the American Electroencephalographic 

Society [47]. Each channel was referenced to the right and grounded to the left mastoid. The 

signals from the electrodes were amplified using a Micromed 32-channel amplifier SAM 

32FO FC1, sampled at 128 Hz. Impedances were kept below 5 kΩ.Stimulus presentation, data 

acquisition, processing, storage, and on-line display of the participants’ EEG were handled 

with BCI2000 on a HP G62 Notebook PC. 

Design and Procedure 

In our auditory protocol, the participant was presented with audio stimuli (digital recordings 

of single spoken digits) delivered in random order with rare intersparsed attended stimuli to 

generate target-related oddball events.  

Farwell and Donchin  [5] examined the effects of ISI on signal to noise ratio and users’ 

performance and found that a longer ISI provided a higher rate of communication for three of 

the four participants in their study. Considering Farwell and Donchin's results and the fact  

that auditory stimuli presentations require a larger amount of time than visual stimuli, in this 

study we increased stimulus presentation  time and ISI respectively to 375 ms and 1250 ms. 

The duration of each audio stimulus was 300 ms on average, allocated in the 375 ms stimulus 

interval. 

The experimental procedure was organized in two parts: a calibration session, also to acquire 

user data to be later used to train the classifier, and an experimental item-selection task. The 

calibration session lasted about 10 minutes and was organized into 6 subsequent temporal 

intervals (called subsessions in the following). At the beginning of each subsession, the 

participant was verbally given by the system a different target number chosen from the set 

{1,2,3,4,5,6}. During each subsession, all 6  numbers {1,2,3,4,5,6} were auditorily presented 

for 10 times (called epochs in the following), for a total  amount  of  60  number  

vocalizations per subsession. In each epoch, the 6 numbers were presented in random order. 

The participant’s task was to listen to the presented numbers and mentally repeat the target 

number whenever it occurred. Therefore, the whole calibration session consisted of 360 

vocalizations, of which 60 attended and 300 not attended. 

An analogue calibration session with mental count was also performed to check whether 

participants found  it easier than repetition, so that each participant performed one calibration 

session in the “repeat” mode and one calibration session in the “count” mode, and the order 

was counterbalanced. Then, the experimental task was carried out only in the “repeat mode” 

to prove  the feasibility of a BCI based upon the new protocol.   

The task was organized into three independent item-selection sessions of respectively 2, 5 and 

10 epochs. During each epoch, the six spoken digits, organized in a six-stimulus oddball 

paradigm, were presented to the participant who had to attend to a predetermined sequence of 

designated targets, by simply mentally repeating them whenever they occurred, while 

ignoring all the other digits. The predetermined sequence of designated targets was organized 

as six quadruples of digits (1111, 2222, 3333, 4444, 5555, 6666) and was the same for the 

three item-selection sessions.  



The study of different item-selection sessions consisting of different numbers of epochs was 

exploratory  in nature to determine the smallest number of averaged P300 trials as the best 

compromise between efficiency and accuracy [5], [15]. 

Participants sat on a comfortable chair, wearing a pair of headphones connected to the PC 

audio output. Volume control was adjusted at the level that the participant judged 

comfortable, while (s)he heard the same auditory stimuli later used in the experiment. Then, 

we briefly explained the procedure (one system  training and three item-selection sessions) 

and what the participant was expected to do during the sessions. We recommended 

participants not to move during the sessions in order to minimize artifacts, not to yawn or 

blink, and possibly avoiding eye motion or face/head muscle contraction. To confirm that 

participants had fully understood the procedure, we conducted  preliminary tests during which 

they were allowed to see their own EEG signals on a display to let them visually appreciate 

effects of artifacts. 

The two calibration sessions in count mode and repeat mode were then performed. The repeat 

mode calibration data (recorded in BCI2000 *.dat format) [48], [49] were then processed 

using the BCI2000 tool P300Classifier [48] to determine a set of optimal features to be later 

used in the analysis and in the on-line classifier during the experimental item-selection task. 

On the basis of the features and weights obtained by the analysis of the “repeat mode” 

calibration data, three item-selection sessions (respectively on 2, 5 and 10 epochs) were 

performed, in which each participant was asked to "write" (choose) six preset 4-symbol 

sequences which were to be on-line classified by the BCI system (specifically: 1111, 2222, 

3333, 4444, 5555, 6666). After each symbol selection the system gave auditorily feedback to 

the user on the performed classification, so that s(he) could immediately realize if s(he) had 

made the correct choice.  

Data Analysis 

Mental workload evaluation 

In order to evaluate the mental workload differences between the two count and repeat 

activities experimented by each participant in the two counting and repeat calibration 

sessions, we have computed alpha (band 8-13 Hz at Po8) and theta (band 4-7 Hz at Fz) 

spectral power density (SPD) curves in the two cases over the entire sessions. The area 

included between the two curves has then been determined as their integrals' difference 

(count-repeat). 

Classification 

Stepwise linear discriminant analysis (SWLDA), an extension of Fisher’s linear discriminant 

analysis, implemented in BCI2000 P300Classifier, was used to classify the calibration and 

item-selection data. 

ITR computation 

Accuracy was defined as the percentage of correctly classified numbers. We compared the 

results obtained over homogeneous data (sequences) in the three item-selection sessions. 

Different methods of ITR calculation [1], [50] are used in the literature: as Käthner and 

colleagues [51] as well as Höhne [24] acknowledge, this makes it difficult and tedious to 

compare ITR among different studies. As reported by Kronegg [52] and Schlögl [50], the 



most popular definition of ITR is the one by Wolpaw [1], which is reasonably simple and has 

often been used. A more generic definition is the one by Nykopp [50]. The different 

approaches and their implications are discussed by Kronegg [52], who shows that, depending 

on the number of classes and on the SNR, Wolpaw's bit-rate can be higher, lower or equal to 

Nykopp's bit-rate. Two BCIs with bit-rates computed using different definitions should 

therefore not be directly compared. Since the great majority of the studies use the formula 

suggested by Wolpaw [1] from Pierce [53], it was used here to compute the number of bits 

transmitted per trial (bit rate): 

  � = ����� + 	 ⋅ ����	 + �1 − 	� ⋅ ���� �������� 

where N is the number of possible targets and P is the probability of the target. The data from 

the two different calibration sessions (count and repeat) were analyzed and compared to 

highlight possible performance differences.  

EEG analysis 

EEG analysis was carried out with MatLab [54] and EEGLab toolbox [55]. 

As already described, each calibration session consists of 6 subsessions (one for each 

considered symbol) during which the 6 numbers are auditorily presented  to the participant in 

a random  manner over 10 epochs, for a total number of 60 presentations for each symbol to 

be recognized. Therefore, the whole calibration session consists of 360 presentations. 

Sixty single trial classification results, related to the 60 attended stimuli (10 for each symbol), 

were extracted from each calibration session by running the classifier with the previously 

calculated  participant's features and were used to build the corresponding confusion matrices, 

showing the classification results compared with the actual classes. Each column of the matrix 

represents the instances in a predicted class, while each row represents the instances in an 

actual class. 

Confusion matrix elements nij indicate how many class i samples have been classified as 

belonging to class j. The total number of correct classifications is given by the sum of the 

elements of the main diagonal nii, while nij elements, with i different from j, represent the 

wrong classified samples. As a result, 6x6 confusion matrices were produced, as in Fig. 1, 

where the i-th row is related to the i-th symbol, while the j-th column refers to the j-th 

calibration subsession results including 10  j-th symbol single trial presentations. It follows 

that the sum of the elements of each column is 10. 
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 Calibration subsessions 

1 2 3 4 5 6 

1 7 0 0 1 0 0 

2 1 7 1 0 0 0 

3 0 0 8 0 0 0 

4 1 1 1 8 0 0 

5 0 1 0 1 10 1 

6 1 1 0 0 0 9 

 

Fig. 1 Single trials classification confusion matrix 



Considering the sum of the elements of the main diagonal as a characteristic parameter of 

each confusion matrix computed for every participant and for each performed mental activity: 

 

it is possible to compare each participant's single trial performance in the 2 cases ‘repeat’ and 

‘count’.  

A comparison has been conducted between off-line count and mental repetition classification 

accuracies achieved by each subject during the calibration sessions as a function of the 

number of averaged epochs to highlight possible performance differences between the two 

protocols. 

Statistical Analysis 

We performed a Friedman test to determine if there was a significant difference in the average 

accuracies achieved in the 10, 5 and 2 epochs item-selection sessions. 

Chi-square tests were used to investigate multiclass errors in single trial analysis. Wilcoxon 

signed rank test was applied on target-disaggregated single trial hits in the Count and Repeat 

tasks. R
2 

values were computed to quantify the differences between attended and unattended 

symbol responses. Wilcoxon signed rank test was applied on participants’ SPD curve mean 

values in the Count and Repeat tasks. Cross-correlation coefficients were estimated  to 

compare attended symbol responses in the count and repetition tasks. Statistical analysis was 

performed with R [56] and GNU PSPP [57]. 

 

 

Results 

On-line classification accuracy and bit rate 

Table 1 reports on-line accuracies and information transfer rates (expressed in bits/min) 

achieved with the proposed on-line protocol by each single participant on respectively 2, 5 

and 10 epochs. As expected, the quality of the detection increases with the number of trials. 

The obtained mean on-line accuracy (81.7% achieved in 10 epochs item-selection sessions, 

72.9% in 5 epochs and 57.1% in 2 epochs) is comparable with the accuracy of previously 

proposed protocols (see Table 10). 

As shown in Table 1, the on-line information transfer rate (ITR) obtained with the proposed 

protocol ranged from an average of 1.06 (10 epochs) to 2.35 bits/minute (2 epochs). One 

participant (S04) achieved an on-line ITR of 6.09 over 2 epochs. 

 

 

 

 

∑
i= 1

6

ni i



Participant On-line classification accuracy (%) and Bit Rate (bits/min) 

 2 epochs 

% 

 

bits/min 

5 epochs 

% 

 

bits/min 

10 epochs 

% 

 

bits/min 

S01 59.0 1.96 71.0 1.27 100.0 1.59 

S02* 54.0 1.62 71.0 1.27 83.0 0.96 

S03 25.0 0.1 67.0 1.11 88.0 1.08 

S04 91.7 6.09 91.7 2.44 100.0 1.59 

S05* 62.5 2.34 54.2 0.65 54.2 0.32 

S06* 29.2 0.22 58.3 0.78 54.2 0.32 

S07* 37.5 0.55 41.7 0.31 41.7 0.16 

S08 45.8 1.02 91.7 2.44 100.0 1.59 

S09 87.5 5.39 100.0 3.18 100.0 1.59 

S10 79.2 4.19 83.0 1.91 95.8 1.38 

Mean 57.1 2.35 72.9 1.53 81.7 1.06 

St.Dev. 23.5  18.7  22.8  

Table 1 On-line accuracies and information transfer rates achieved by each participant with the proposed 

protocol. Asterisks indicate male participants. 

 

Features and waveforms analysis 

Every electrode, both in the counting and in the repeat tasks, with the only exception of Fz, 

shows a clear difference between attended/unattended symbol plots (see Fig. 2). Pz, Oz, P3 

and PO7 show the largest signal amplitudes in the attended epochs. 

Count Repeat 

Fig. 2 Attended/Unattended Pz grand average plots comparison in the ‘count’ and ‘repeat’ all subjects conditions 

Such differences can  be quantified considering R
2 

values between attended and unattended 

symbol responses in the ‘count’ and ‘repeat’ all subjects conditions (see Fig. 3). 

 



Count Repeat 

Fig. 3 R
2 
values between attended and unattended symbol responses in the ‘count’ and ‘repeat’ all subjects 

conditions for channels Pz, Oz, P3, P4 

Latency and amplitude differences may be noticed between the same electrodes attended 

symbols plots, following the count and repeat protocols (see Table 2). The count protocol 

shows a larger N2 latency on all electrodes and a smaller N2 negative amplitude on Cz, Pz, 

Oz and P3. Count protocol P300 latency is smaller on Pz, Oz and P3, while its P300 

amplitude is larger on Cz, Pz, P3, P4, PO7, PO8. 

 

Electrode N2 Latency (ms) N2 Amplitude (µV) P300 Latency (ms) P300 Amplitude (µV) 

 repeat count repeat count repeat count repeat count 

Fz - - - - - - - - 

Cz 193.56 228.21 -1.0158 -0.6170 603.30 678.62 0.4674 0.8663 

Pz 195.07 222.19 -1.1592 -0.8850 702.72 651.50 1.4396 1.6079 

Oz 195.07 220.68 -0.7167 -0.6855 702.72 674.10 1.6203 1.3087 

P3 195.07 320.10 -1.0470 -0.9660 702.72 653.01 1.3212 1.6577 

P4 193.56 219.17 -1.0657 -0.8787 704.23 656.02 1.1031 1.3586 

PO7 196.58 320.10 -0.6357 -0.7292 622.88 672.59 1.4957 1.7699 

PO8 232.73 297.51 -0.5796 -0.8039 646.99 656.02 1.1654 1.3337 

Table 2 All subjects grand average N2 and P300 Amplitudes and Latencies 

 



Attended symbols plots, relative to the same electrodes, in the count and repeat trials may be 

directly compared in order to highlight waveform differences and similarities (see Fig. 4). 

Data and figures about amplitude and  latency show that the two evaluated methods (repeat 

and count) produce almost superimposable results, but count P300 amplitudes are larger on 7 

electrodes out of 8. 

Fig. 4 Count/repeat Pz, Oz all subjects grand average attended symbols plots comparison 

We computed the cross-correlation coefficient to compare the two curves of each plot (see 

Table 3). Cz repeat vs. Cz count obtained a poor resemblance (0.2511) while Oz repeat vs. Oz 

count was characterized by high similarity (0.9562). 

 

Electrode Correlation coefficient 

Fz 0.0000 

Cz 0.2511 

Pz 0.8974 

Oz 0.9562 

P3 0.8894 

P4 0.8892 

PO7 0.9221 

PO8 0.9295 

Table 3 Cross-correlation coefficients computed on the signals recorded on all electrodes in the two ‘count’ and 

‘repeat’ conditions 

 

Single trials analysis 

Considering the sum of the elements of the main diagonal of each confusion matrix computed 

for every participant and for each performed mental activity: 



 

it is possible to compare each participant's performance in the 2 conditions. Results are 

reported in Table 4, together with each participant's expressed preference.  

 

Participant Repeat Count Preference (R|C) 

S01 37 47 R 

S02 25 22 R 

S03 35 36 R 

S04 51 49 R 

S05 25 40 R 

S06 25 19 R 

S07 31 40 C 

S08 39 47 C 

S09 50 46 R 

S10 43 48 R 

Mean 36.1 39.4 8R, 2C 

Table 4 Participants’ single trial hits and Repeat/Count preference 

The majority of participants (8 out of 10) reported to prefer the repeat mental activity as it 

was less demanding for them, while the remaining two participants clearly favored mental 

counting, commenting that it helped them to better concentrate. To further test and compare 

their mental counting behavior, participants S07 and S08, the only ones preferring mental 

counting, have also performed another item-selection test on 2 epochs with mental counting, 

both achieving an accuracy of 75% instead of respectively 37.5% and 45.8% obtained in their 

preceding repeat mental activity tests. 

The above reported difference in participants’ preferences was analyzed with a Chi-square 

test which revealed that it is close to significance (χ2=3.60, p=0.058). Performance in single 

trials Repeat and Count classification results was analyzed with Wilcoxon test, which 

revealed no statistically significant differences (Z=-1.27, p=0.203). 

Single trials classification results were further analyzed to detect any sound bias and to check 

that there were no significant differences in the effects of the six different sounds. 

 

 

 

 

 

∑
i= 1

6

ni i



Target/selected 1 2 3 4 5 6 hits errors 

1 68 7 6 6 4 9 68 32 

2 10 70 11 8 10 5 70 44 

3 6 7 66 9 10 4 66 36 

4 5 7 4 65 10 7 65 33 

5 6 5 5 5 62 12 62 33 

6 5 4 8 7 4 63 63 28 

Table 5 Count. Participants’ cumulative hits and errors 

Target/selected 1 2 3 4 5 6 hits errors 

1 63 11 5 11 9 11 63 47 

2 9 66 8 5 5 10 66 37 

3 5 4 61 8 8 4 61 29 

4 8 9 7 60 12 12 60 48 

5 8 7 9 9 56 8 56 41 

6 7 3 10 7 10 55 55 37 

Table 6 Repeat. Participants’ cumulative hits and errors 

 

A Chi-square goodness of fit test performed on participants’ cumulative errors in the Count 

and Repeat protocols (Table 5 and Table 6) confirmed the null hypothesis of equal expected 

errors frequencies in the two cases  (χ2= 4.233, df = 5, p-value = 0.516 and χ2 = 6.3473, df = 

5, p-value = 0.274).  

A Chi-square goodness of fit test on participants’ cumulative hits in the Count and Repeat 

protocols (Table 5 and Table 6) confirmed the null hypothesis of equal expected hits 

frequencies in the two cases (χ2= 0.6904, df = 5, p-value = 0.983 and χ2= 1.4432, df = 5, p-

value = 0.919).It follows that there is no significant bias in hits or errors towards any of the 

six sounds in the two different protocols.  

A Wilcoxon signed rank test applied on all participants’ target-disaggregated cumulative hits 

in the Count and Repeat protocols (Table 5 and Table 6), highlighted a significant difference 

(V = 21, p-value = 0.034) between the two. 

A Wilcoxon signed rank test applied on each participants’ target-disaggregated hits in the 

Count and Repeat protocols (see Table 7), produced the results reported in Table 8, revealing 

a significant difference  only for  S06(*). 

 

Target S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

 C R C R C R C R C R C R C R C R C R C R 

1 9 8 6 4 7 8 7 7 6 7 4 5 4 5 10 5 7 7 8 7 

2 10 5 2 4 6 4 7 10 6 4 5 6 9 5 7 9 8 10 10 9 

3 6 7 3 4 5 7 8 10 9 5 2 4 8 6 8 5 9 8 8 5 

4 7 6 4 5 6 4 8 8 7 2 3 4 8 6 8 8 5 8 9 9 

5 6 5 5 4 7 8 10 8 6 3 3 3 5 5 7 5 8 8 5 7 

6 9 6 2 4 5 4 9 8 6 4 2 3 6 4 7 7 9 9 8 6 

 47 37 22 25 36 35 49 51 40 25 19 25 40 31 47 39 46 50 48 43 

Table 7 Participants’ target-disaggregated hits in the Count and Repeat protocols 

 



Participant Wilcoxon V Wilcoxon p-value 

S01 18.5 0.106 

S02 7 0.520 

S03 12 0.830 

S04 3.5 0.713 

S05 20 0.058 

S06* 0 0.048 

S07 14 0.099 

S08 8.5 0.269 

S09 1 0.423 

S10 11.5 0.341 

Table 8 Wilcoxon signed rank test results on each participants’ target-disaggregated hits in the Count and 

Repeat protocols 

 

 

 

 

Off-line count and mental repetition classification accuracies comparison 

Considering the individual results, 6 subjects out of 10 (S01, S03, S05, S07, S08, S10) 

showed a better ‘count’ performance in the first averaged epochs, while 4 of them (S02, S04, 

S06, S09) achieved better results with ‘repeat’ protocol. 

As an example Fig. 5 shows off-line count and mental repetition classification accuracies 

achieved by subjects S07 and S02 during the calibration sessions as a function of the number 

of averaged trials. 

 

  

Fig. 5 S07 and S02 participant’s classification accuracies as a function of the number of averaged trials 

Fig. 6 shows the average off-line count and mental repetition classification accuracies 

achieved by all subjects during the calibration sessions as a function of the number of 

averaged trials. 
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Fig. 6 All participants’ grand average classification accuracies as a function of the number of averaged trials 

It outlines a worse average behavior for the repeat protocol from 1 to 8 averaged epochs 

(ranging from -8.38 to -3.45%). Results on 9 and 10 averaged epochs appear equivalent. 

 

Mental workload 

Alpha (at Po8) and theta (at Fz) spectral power density (SPD) curves (see fig. 7 and fig. 8) 

have been computed in the two cases over the entire count and repeat calibration sessions. 

The area included between the two curves has then been determined as their integrals' 

difference (count-repeat). 
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Fig. 7 Po8 Spectral Power Density (SPD) curves including Alpha band (8-13 Hz) 

 

Fig. 8 Fz Spectral Power Density (SPD) curves including Theta band (4-7 Hz) 



Table 9 reports the integrals' difference between the two curves (count-repeat) computed for 

each participant in the alpha (8-13 Hz) and theta (4-7 Hz) bands. 

 

Participant Alpha (8-13 Hz) count-repeat Theta (4-7 Hz) count-repeat 

S01 -1.9148 0.1601 

S02 -2.0779 1.3351 

S03 -2.7738 0.6658 

S04 -2.3377 0.3683 

S05 -2.5053 2.0577 

S06 -3.0367 0.2691 

S07 -0.4489 0.4606 

S08 +2.1499 -2.8202 

S09 -4.8038 1.2712 

S10 -15.4641 19.0807 

Table 9 Difference between the two curves (count-repeat) computed for each participant in the alpha (8-13 Hz) 

and theta (4-7 Hz) 

 

Nine out of ten participants show a count alpha level lower than the corresponding repeat 

alpha level; the same nine participants show a count theta level higher than the corresponding 

repeat theta level. On the contrary, participant S08 shows a higher count alpha level and a 

lower alpha level; incidentally S08, together with S07, reported to prefer mental counting. It 

can also be noticed that S07 shows the smallest negative count-repeat alpha level among all 

participants.  

Wilcoxon signed rank test applied on SPD curve mean values in the Count and Repeat 

protocols, highlighted: (i) a significant difference (V = 21, p-value = 0.01) in the 8-12 Hz 

band (ii) a not significant difference (V = 21, p-value = 0.059) 4-7 Hz band.  

 

 

Discussion 

Classification accuracy and bit rate 

The on-line information transfer rate (ITR) obtained with the proposed protocol ranging from 

an average of 1.06 (10 epochs) to 2.35 bits/minute (2 epochs) with one participant (S04) who 

achieved an on-line ITR of 6.09 over 2 epochs (see Table 1), positions itself on the average of 

the previously proposed protocols (see Table 10). 

Average on-line accuracy (81.7% achieved in 10-epochs item-selection sessions, 72.9% in 5-

epochs and 57.1% in 2-epochs) is to be compared with the accuracy of the previously 



proposed protocols (see Table 10, indicating also -when available- the ITR computation 

method used). 

Task ITR (bits/min) ITR Comp.Method Accuracy( 

%) 

On/Off-line 

3-Stimuli (2-25 sequences) 

[13] 

2.46-0.39 Wolpaw 78.54-93.33 Off 

Auditory speller 1 [16] 1.54 Wolpaw 65 Off 

Auditory speller 2 [17] 1.9 Wolpaw 59.38 On 

4-Choice [15] 0.43-1.80 Wolpaw 65.4 Off 

Audiostream [14] 1.4 N/A  

(possibly Wolpaw) 

72.6 Off 

Audiostream (with ICA) 

[14] 

3.03 N/A  

(possibly Wolpaw) 

82.4 Off 

Spatial multiclass BCI [22] 17.39 Wolpaw 68.7 Off 

Spatial multiclass BCI [58] 2.84 N/A  

(possibly Nykopp) 

77.4 On 

PASS2D [24] 3.4 Wolpaw 89.37 On 

Spatial multiclass BCI [51] 2.76 Wolpaw 65 On 

Table 10 Average bit rates and accuracies achieved in previous studies 

 

In order to verify if the use of quadruples of the same digit (1111, 2222, 3333, 4444, 5555, 

6666) in the item-selection task might improve accuracy in each quadruple due to the 

repetition of the same number, we employed Friedman test to determine if there was a 

significant difference among the accuracies achieved on the first, second, third and fourth 

digits. The null hypothesis was that the distribution of the ranks of each type of score (i.e. 

first, second, third and fourth digits) was the same. Differences among the four accuracies 

were not statistically significant (2 epochs: χ2=1.1512, df = 3, p = 0.765; 5 epochs: χ2 = 

0.6094, df = 3, p = 0.894; 10 epochs: : χ2 = 2.1346, df = 3, p = 0.545). 

The comparison conducted between off-line count and mental repetition classification 

accuracies achieved during the calibration sessions shows a worse average behavior for the 

repeat protocol from 1 to 8 averaged epochs (ranging from -8.38 to -3.45%). Results on 9 and 

10 averaged epochs appear equivalent. This result is in accordance with previous studies (Xu, 

Zhang, Ouyang, & Hong, 2013) which showed better a classification performance with higher 

difficulty tasks.  

 If we consider the individual results obtained in this study, 6 subjects out of 10 (S01, S03, 

S05, S07, S08, S10) show a better ‘count’ performance in the first averaged epochs, while 4 

of them (S02, S04, S06, S09) seem to behave better with ‘repeat’. In particular S05, S07 and 



S08 show a pronounced worse behaviour in the ‘repeat’ task; incidentally S07, together with 

S08, reported to prefer mental counting. 

Mental workload 

Käthner and colleagues [51] study aimed also at quantifying the differences in subjective 

workload between the auditory and the visual P300 spelling application. A significantly 

higher workload was reported for the auditory speller compared to the visual paradigm. 

Unlike other protocols which use more demanding mental tasks, such as spatial distributed 

sound direction or other target property mental discrimination, to elicit stronger ERP 

responses [22], [42], [43], our approach  tries to reduce mental workload  by introducing a 

change in the typical oddball paradigm task commonly employed in the literature [3], [44]–

[46]: instead of passively counting how often the target auditory stimulus is presented, the 

participant is requested to simply mentally repeat it whenever it appears.  

The new proposed ‘repeat’ protocol has achieved good real-time results and its performance is 

comparable with previously proposed protocols (see Tables 1 and 10). 

Off-line all subjects’ ‘repeat protocol’ shows a worse average behavior than ‘count’ protocol 

from 1 to 8 averaged trials (ranging from -8.38 to -3.45%). On the contrary, results on 9 and 

10 averaged trials appear to be equivalent. Eight participants out of ten said that mental 

counting was heavier than the mental repetition activity. This subjective result is consistent 

with the difference of alpha (at Po8) and theta (at Fz) spectral power density (SPD) curves 

computed  in the ‘count’ and ‘repeat’ cases over the entire sessions (see Table 9).  

Nine out of ten participants show a count alpha level lower than the corresponding repeat 

alpha level; the same nine participants show a count theta level higher than the corresponding 

repeat theta level. On the contrary, participant S08 shows a higher count alpha level and a 

lower theta level; incidentally S08, together with S07, reported to prefer mental counting. It 

can also be noticed that S07 shows the smallest negative count-repeat alpha level among all 

participants (see Table 9).  

Inter stimulus interval (ISI) 

As already remarked, considering Farwell and Donchin's results [5] on ISI duration and rate 

of communication and the fact  that auditory stimuli presentations require a larger amount of 

time than visual stimuli, in this study we increased stimulus presentation  time and ISI 

respectively to 375 ms and 1250 ms.  

For a comparison, in previously cited auditory protocols used stimulus duration ranges from 

40 to 600 ms and ISI from 125 to 1400 ms. 

 

Electrodes configuration 

The previously cited auditory protocols have used a number of electrodes ranging from 16 to 

67, Halder [13], [16], [10]. 

We used the eight channels (Fz, Cz, Pz, Oz, P3, P4, PO7, PO8) of the Krusienski 

configuration [46]. Each channel was referenced to the right mastoid and grounded to the left. 

This solution was able to give effective results while using a reduced number of electrodes. 

 

 



Conclusion 

The proposed auditory protocol has achieved good on-line results with healthy subjects, 

showing a performance comparable, and sometimes higher, than previously proposed 

protocols. Moreover, it uses a small number of electrodes and requires only a 10-minute 

calibration session. The obtained results suggest that the proposed auditory BCI protocol 

might be promising for application with users who are unable to take advantage of visual 

BCIs. 

The main benefit of the new method is the introduction of a change in the typical oddball 

paradigm task to make it simpler for users: instead of incrementally counting the presented 

target stimuli, they simply mentally repeat the stimuli as they are when they occur.  

The repeat activity appeared to be mentally less demanding and preferred by the majority of 

the participants. Nine out of ten participants showed a higher workload in the count sessions. 

However, the individual differences in performance and preference reported in the paper 

suggest that future tests, especially if they involve patients, should take into account user’s 

preferences and characteristics in order to allow him/her to achieve the best results with the 

least demanding task. The specific patient’s communication requirements could also be taken 

into account: the protocol should allow binary communication as well as multiple choices, 

scaling ITR as a function of each participant's capability. Attempts to decrease the number of 

electrodes will be also made to minimize setting times and patient's stress due to preparation 

[59]. 

The auditory protocol presented in the current study could be easily adapted to be employed 

as a ‘‘yes–no’’ spelling device. In this way, in addition of using it as a communication 

channel, it could be interesting to test it as a possible tool to distinguish among different 

clinical states of consciousness for patients with altered states of consciousness.  
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