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ABSTRACT
We examine a model for the observed temporal variability of powerful blazars in the γ -ray band in which the dynamics is
described in terms of a stochastic differential equation, including the contribution of a deterministic drift and a stochastic term.
The form of the equation is motivated by the current astrophysical framework, accepting that jets are powered through the
extraction of the rotational energy of the central supermassive black hole mediated by magnetic fields supported by a so-called
magnetically arrested accretion disc. We apply the model to the γ -ray light curves of several bright blazars and we infer the
parameters suitable to describe them. In particular, we examine the differential distribution of fluxes (dN/dFγ ) and we show
that the predicted probability density function for the assumed stochastic equation naturally reproduces the observed power-law
shape at large fluxes dN/dFγ ∝ F−α

γ with α > 2.

Key words: radiation mechanisms: non-thermal – galaxies: jets – gamma-rays: galaxies.

1 IN T RO D U C T I O N

Blazars are the most luminous persistent sources in the Universe (e.g.
Romero et al. 2017). In their core a supermassive black hole accretes
matter from the surrounding host galaxy and part of the released
gravitational energy is conveyed to a collimated relativistic (typical
Lorentz factor ≈10) outflow of plasma whose axis points close to the
Earth (Blandford & Rees 1978). In this geometry, relativistic effects
greatly enhance the observed luminosity of the non-thermal radiation
produced by ultra-relativistic particles energized in the flow, so that
this component often outshines the thermal contribution from the
nucleus. The observed emission is characterized by a spectral energy
distribution (SED) with two well-defined bumps (e.g. Ghisellini et al.
2017). The low-energy component is associated with synchrotron
radiation from relativistic electrons, while the high-energy hump
is likely produced through inverse Compton emission by the same
electrons (e.g. Maraschi et al. 1992), although contribution from
hadronic processes cannot be excluded (e.g. Böettcher et al. 2013;
Cerruti et al. 2015).

Violent variability, both in amplitude and time-scale, is one of
the defining properties of blazars. Variability is observed to be more
extreme in the γ -ray band, where flux variations by several orders of
magnitude (e.g. Bonnoli et al. 2011, Ghirlanda et al. 2011) and flares
lasting few minutes (e.g. Aharonian et al. 2007, Aleksić et al. 2011,
2014) are often recorded. The observed flux variability can be used
as an extremely powerful tool to test emission models, to constrain
in size and locate the emission region(s) and to investigate particle
acceleration processes (e.g. Blandford et al. 2019). However, despite
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extensive investigation, it is far from clear if variability is mainly
connected to the physical processes occurring close to the central
engine (i.e. a time-dependent power injection) or, instead, the main
driver is the variable rate of jet energy dissipation. Current relativistic
magnetohydrodynamical (RMHD) simulations (e.g. Tchekhovskoy
et al. 2011, White et al. 2019) agree that jets are most efficiently
fed when the accretion flow reaches the so-called magnetically
arrested disc (MAD) condition and the rate of energy extraction
(occurring mainly via the Blandford & Znajek 1977 process) is
naturally modulated, tracking the fluctuations of the magnetic flux
in the innermost regions of the disc.

Operational since August 2008, the Large Area Telescope (LAT)
on board the Fermi satellite (Atwood et al. 2009) has accumulated an
unprecedented wealth of blazar data. In particular, due to its operative
mode, LAT provides intensive monitoring of sources in every region
of the sky, making it possible to obtain densely sampled high-energy
light curves of unprecedented detail, extension and duty-cycle (e.g.
Abdo et al. 2010; Tavecchio et al. 2010; Nalewajko 2013). Recently,
Meyer, Scargle and Blandford (2019, hereafter MSB19) reported a
detailed analysis of variability of bright γ -ray flat spectrum radio
quasars (FSRQ) based on LAT light curves. In particular, they were
able to derive statistically rich flux distributions, dN/dFγ , providing
information on the relative frequency of states with different fluxes.
These distributions were studied already at the beginning of the
Fermi mission (e.g. Tavecchio et al. 2010), but the longer time
span allows MSB19 to have a much clearer description on the
underlying shape. In particular, all the six blazars considered share
remarkably similar distributions, well described by a broken power
law (but also consistent with a log-parabolic shape). Although at
low fluxes the statistic does not allow to draw a firm conclusion,
at large fluxes the distributions are quite well described by a steep
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power law, dN/dFγ ∝ F−α
γ with α > 2 . Such a well-defined flux

distribution for all considered sources clearly calls for an explanation.
A possibility, mentioned by MSB19, is self-organized criticality
(SOC) that naturally predicts power-law frequency distributions,
as observed in solar flares (see e.g. Aschwanden et al. 2016).
Remarkably, this behaviour is at odds with the lognormality observed
in other bands in some blazars (e.g. Giebels & Degrange 2009) and
that points to different interpretations, namely independence of the
physical parameters controlling the observed emission.

In this paper, we explore a possible description of blazar variability
in terms of a stochastic process following an underlying stochastic
differential equation (SDE). In brief, we postulate that variations are
driven by the interplay between a deterministic process trying to
maintain an equilibrium state and a stochastic ‘noise’ continuously
pushing the system out of stability. We identify the innermost region
of the accretion disc (where the jet is launched) as the most natural
location for such a process and the magnetic field as the main actor.
While in the past some papers describing quasar and AGN variability
in terms of stochastic processes described by SDE already appeared
(e.g. Vio et al. 1992, 1993, Kelly et al. 2009; Kozłowski et al. 2010),
this topic has received limited attention for blazars so far. Recently,
Sobolewska et al. (2014) considered SDE to model γ -ray light curves
of blazars, but they considered a stochastic term (describing the
classical Ornstein–Uhlenbeck process) that, as we discuss hereafter,
we consider unsuitable to reproduce blazar dynamics. Moreover, they
focused the analysis on the power spectrum of blazar light curves.
Our approach is instead to consider an SDE tailored on the specific
processes that we believe regulate the central engine.

The paper is structured as follows. In Section 2, we describe the
underlying astrophysical scenario and the SDE based on it. In Section
3, we apply the model to the observational data, in particular to
reproduce the flux distribution of the blazars. Eventually, in Section
4 we discuss our results.

2 A PHYSICALLY INSPIRED STOCHASTIC
M O D E L FO R VA R I A B I L I T Y

Systems whose dynamics is the result of both deterministic and
random contributions, are best modelled in terms of SDE. In the
general form (for simplicity we assume a one-dimensional system),
an SDE can be written as

dX = f (X, t)dt + �(X, t)dWt, (1)

where X(t) is the (stochastic) variable whose time evolution we intend
to describe, f(X, t) is a function, usually called drift, modelling the
deterministic ‘force’ acting on the system and �(X, t) is the function
specifying the random term, driven by the standard stochastic Wiener
process Wt (often called Brownian motion, since it is strictly related
to its modelling). For a complete view we refer the reader to the
numerous textbooks dedicated to the subject (e.g. Allen 2007).

Assuming the measured γ -ray flux as the time-dependent variable,
X(t) ≡ Fγ (t), our aim is to determine the functions f and � taking
inspiration from the current knowledge of the disc–jet system in
blazars.

2.1 The astrophysical scenario

The scenario that we would like to explore assumes that the modu-
lation of the γ -ray flux is mainly (although perhaps not completely)
driven by variations of the power injected at the base of the jet.

State-of-the-art numerical simulations (e.g. Tchekhovskoy et al.
2011; McKinney et al. 2012) support the view that powerful jets

develop in systems in which the accretion flow occurs in the
MAD regime (e.g. Narayan et al. 2003, McKinney et al. 2012,
Tchekhovskoy 2015). Put simply, in this conditions the system
reaches a self-regulated state where the magnetic field carried by the
accreting plasma accumulates close to the disc inner edge and reaches
a maximum value dictated by the condition that its pressure equals
the pressure of the falling matter. If the magnetic pressure exceeds
this limit, the accretion of gas is halted and, without the supply
of fresh field, the magnetic pressure decreases, until the plasma is
allowed to restart accretion. This feedback mechanism is therefore
able to maintain the maximum possible magnetic field pressure (or,
equivalently, energy density) close to the black hole horizon.

The value of the magnetic field is a critical parameter dictating
the power that the system is able to inject into the jet. Simulations
support the view that the power is extracted from the system through
the Blandford–Znajek (1977) mechanism, in which the power goes
with the square of the magnetic flux φB close to the BH horizon
which, in turn, is proportional to the magnetic field in the same
region B, φB ∝ B. We therefore assume that the power of the jet
is proportional to the energy density of the magnetic field UB =
B2/8π . In FSRQ under study here the total radiated luminosity is
dominated by the gamma-ray component from the external Compton
process (e.g. Ghisellini et al. 2010). If we assume a constant radiative
efficiency for the jet (i.e. a constant ratio between the jet luminosity
and its power), the postulated linear dependence between the energy
density of the magnetic fields in the disc and the jet power naturally
translates into a linear dependence between UB and the observed
luminosity or flux, i.e. Fγ ∝ B2 (see also Ghisellini et al. 2010).

While the mechanism described above allows the system to
maintain a stable equilibrium characterized by a given magnetic
field B close to the horizon, several processes and instabilities likely
intervene and perturbate it. For instance, reconnection of field lines
is likely to occur locally in the flow, leading to stochastic dissipation
of magnetic energy (e.g. Lazarian et al. 2016). On the other hand, in
the conditions characterizing the BH vicinity, the plasma is likely to
support turbulent motion that can locally amplify the field through
dynamo processes (e.g. Arlt & Rüdiger 1999). All these phenomena
(dissipation through reconnection, amplification through dynamo)
can be thought as a random ‘noise’ continuously perturbing the
equilibrium state. Although a complete treatment should consider
the spatial distribution of the perturbations, in our heuristic approach
we treat them as a spatially averaged stochastic term.

2.2 The stochastic equation

The accretion–ejection system is of course rather complex and
characterized by several concurrent processes acting at different
spatial and temporal scales. We do not pretend to fully catch this
complexity reducing the number of degrees of freedom to few
variables. Instead our aim is to try to grasp the gross features of
the dynamics exploiting a very simplified view of the real situation.

Within this approach, the dynamics can be thought as a combina-
tion of a deterministic process trying to keep the equilibrium value
of the magnetic energy density against random noise continuously
disturbing it. Of course we have some freedom to select the specific
expressions for the drift and the stochastic terms. The chain of
arguments discussed above motivates us to associate the observed
flux to the magnetic energy density close to the BH, B2. We therefore
consider an SDE for the magnetic energy density and we identify it
with the stochastic variable X. In virtue of the direct dependence, the
dynamics of the magnetic energy density can be directly translated
to that of the recorded flux.
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The simplest expression for f(X) (see equation 1) which models
the tendency to reach an equilibrium state is a linear combination
of the form f(X) ∝ (μ − X), where μ represent the equilibrium
value of X, for which Ẋ = 0. This specific form for the drift term is
justified considering the simple description of the system as evolving
under the competition between the magnetic and gravitational forces
given by Tchekhovskoy (2015). For the stochastic term, a possibility
(more below) is that its amplitude is proportional to the level of
X, �(X) ∝ X. Therefore, the astrophysical scenario motivates us to
propose the following SDE:

dX = θ (μ − X)dt + σXdWt, (2)

specified by the parameters θ (the inverse of the time-scale of the drift
term), μ (equilibrium value for X) and σ (coefficient of the stochastic
term). Therefore, f(X) = θ (μ − X) and �(X) = σX. Equation (2)
describes a quite simple underlying dynamics: the drift term pushes
the system towards an equilibrium value μ, while the evolution is
disturbed by a random noise whose amplitude is proportional to the
actual value of X. Hence, high states, characterized by large X will
also display the largest fluctuations.

The particular dependence of the stochastic term assumed above
can be supported by the consideration that the MHD differential
equation for the magnetic field including the resistivity term (e.g.
Kulsrud 2005) has a form dB/dt ∝ vB + CB/L2, where v is the
velocity flow, C a constant and L a characteristic scale length. The key
point is that both field amplification by dynamo processes (described
by the first term on the right) and diffusion/reconnection effects
(depending on the second term) depend linearly on the field intensity.
The stochastic term in our SDE, which in our scenario is linked to
field amplification/dissipation processes, is therefore expected to be
described by a linear term on X. As we will see later, this specific
form of the stochastic term is also suitable to describe the observed
shape of the flux distribution.

The parameter 1/θ , which has units of time, quantifies the time-
scale associated with the drift term. Although one expects that this
parameter is associated with the typical time on which the magnetic
field accumulates in the innermost region of the accretion flow, it
is difficult to provide an analytical estimate based on the physics
of the accretion flow. An indication of its value, however, can be
derived from the results of the MHD simulations. In particular, the
simulations reported in Tchekhovskoy et al. (2011) show that the
magnetic flux close to the BH erratically varies around an equilibrium
values with approximate time-scale of the order of 103rg/c, where
rg = GM/c2 is the gravitational radius of the BH of mass M.
Considering that for FSRQ typical BH masses are of the order of
few times 108 M� (e.g. Ghisellini & Tavecchio 2015), the expected
variations are expected to occur on a time-scale of the order of 20–
30 d (i.e. θ ∼ 0.05).

The estimate of σ is more difficult. In principle, this parameter
measures the strength of the stochastic perturbation to the system
and should be related to the dynamics of the amplification/dissipation
processes. In practice it is hard to provide an estimate of this quantity.
The comparison with the observations can thus be used to constrain
this parameter and, in principle, the dynamics of the processes.

SDE can be numerically solved with standard methods using
discretization techniques closely similar to those adopted for ordinary
differential equations. Some (discrete) realizations of equation (2)
obtained by using the standard Milstein scheme (e.g. Iacus 2008) are
shown in Fig. 1. In all cases we fix the equilibrium drift value μ =
1 and the random noise parameter σ = 0.5 and vary the intensity of
the drift term with θ = 0.01, 0.1, 0.5, and 3 (green, red, blue, and
magenta). The most evident feature of the synthetic light curves is

Figure 1. Light curves simulated by numerically solving equation (2). In all
cases, we fix μ = 1 and σ = 0.5. The different curves are calculated for θ =
0.01, 0.1, 0.5, and 3 (green, red, blue, and magenta). The initial condition is
X0 = 1.

Figure 2. Probability density functions corresponding to light curves in
Fig. 1. In all cases, we fix μ = 1 and σ = 0.5. Curves assume θ = 0.01, 0.1,
0.5, and 3 (green, red, blue, and magenta), corresponding to λ = 0.08, 0.8,
4.0, and 24.

that the system never settles into a steady state but X(t) describes
a fluctuating evolution with episodic flares whose amplitude is the
largest for θ = 0.1. The largest ‘outbursts’ are separated by long
period of relatively quiescent level in which X fluctuates around μ.
We remark that the light curves presented here are just few possible
realizations, since the stochasticity of the process does not allow one
to derive a unique solution of the SDE.

2.3 Probability density function

A SDE can be associated with a probability density function (PDF)
p(X, t) which provides the relative frequency of the values of the
stochastic variable X(t) (see details in e.g. Allen 2007). The time-
dependent PDF can be derived from the corresponding Fokker–
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Table 1. Parameter of the stochastic model derived for the six blazars discussed in the text. Uncertainties are reported
at 95% C.L. The parameter μ is normalized to 10−7 cm−2 s−1.

Source σ μ θ λ

PKS 1222+216 0.35 ± 0.05 2.1 (1.8–2.6) 0.04 (0.03–0.05) 0.15 ± 0.1
CTA 102 0.39 ± 0.05 – – 0.2 ± 0.15
3C 273 0.44 ± 0.05 3.6 (2.9–5.5) 0.025 (0.015–0.03) 0.6 ± 0.16
3C 454.3 0.23 ± 0.05 – – 0.1 (fixed)
PKS 1510−089 0.46 ± 0.04 6.3 (5.3–7.9) 0.04 (0.03–0.05) 0.1 (fixed)
3C 279 0.44 ± 0.04 5.5 (4.0–9.0) 0.03 (0.015–0.04) 0.7 ± 0.1

Planck equation (also known as Kolmogorov equation):

∂p(X, t)

∂t
+ ∂

∂X
[f (X, t)p(X, t)] = ∂2

∂X2

[
�(X, t)2

2
p(X, t)

]
. (3)

One can easily recognize that the stochastic section plays the role of
diffusion term with an effective diffusion coefficient D(X, t) = �(X,
t)2/2.

Considering a system for a time longer than its relaxation time-
scale, it can be described in terms of a stationary state, and the
corresponding time-independent PDF is derived by setting ∂p/∂t =
0 in the Fokker–Planck equation. Specializing equation (3) to our
case, the steady-state PDF, p(X), satisfies the equation:

d

dX
[θ (μ − X)p(X)] − d2

dX2

[
σ 2X2

2
p(X)

]
= 0, (4)

whose solution is (see Appendix A)

p(X) = k
e−λμ/X

Xλ+2
, (5)

where we have defined λ ≡ 2θ /σ 2 and k is determined by the
normalization condition:

∫ ∞

0
dX p(X) = 1 (6)

(see also Appendix A).
The PDF calculated for the set of parameters used to simulate the

light curves in Fig. 1 are reported in Fig. 2. The PDF displays a quite
simple structure, i.e. it describes a power law with slope −(λ + 2)
above the peak (located at Xmax = λμ/[λ + 2]) and an exponential
roll-off for X < Xmax.

The shape of p(X) depends on the value of λ, i.e. on the
relative weight of the drift and stochastic (diffusion) terms. Large
λ, characterizing cases in which the drift overcomes the random
noise, are described by narrow PDF centred on X = μ (magenta
line). Decreasing λ, the importance of stochastic term increases,
determining the broadening of the distribution, the hardening of the
power law and the shift of the peak to lower X (blue and red curves).
The limit λ → 0 (describing a system dominated by the stochastic
term) is described by a pure power-law distribution p(X) → kX−2

(green line).
We are now in the position to fully appreciate the relevance of

the X dependence of the stochastic term of equation (2). Indeed,
without this term the system would describe the standard Ornstein–
Uhlenbeck process (describing, for instance, the velocity of a massive
particle undergoing Brownian motion under the effect of friction),
which is characterized by a stationary Gaussian PDF, clearly not
suitable to reproduce the observed dN/dFγ .

3 C O M PA R I S O N W I T H B L A Z A R L I G H T
C U RV E S

We apply the model developed in the preceding section to the
well-sampled light curves of six bright FSRQ derived by MSB19.1

Specifically, we use the weekly binned light curves and we restrict
the analysis to bins where excess from the source is statistically
significant at the level of TS > 9, where the test statistics TS (see
e.g. Mattox et al. 1996) is based on the standard likelihood ratio
test between a model considering only backgrounds and known field
sources and the one including also a point source for the FSRQ.

Assuming that the dynamics of a system is described by an SDE,
standard inference methods allow one to extract the value of the
underlying parameters from the observed time series. Methods are
based on the generation of a pseudo-likelihood function in which,
since an explicit expression for the transition probability cannot be
obtained, one inserts a discrete approximation for it using similar
schemes developed to solve SDE (see e.g. Allen 2007).

For our SDE the free parameters are σ , θ and μ. The coefficient
of the stochastic term is the easiest to estimate. Indeed, if the number
n + 1 of measurements {Xi} (with i = 0. . . n) is large enough,
the maximization of the pseudo-likelihood provides the following
expression:

σ 2 
 1

n

n∑
i=1

(Xi − Xi−1)2

X2
i−1(ti − ti−1)

(7)

that can be directly used.
The maximization of the likelihood with respect the two other pa-

rameters provides two expressions that can be numerically solved to
find estimates of θ and μ. We report in Table 1 the value of the param-
eters estimated with the likelihood approach with the corresponding
95 per cent confidence level uncertainty. For four cases we obtain
similar values, namely σ around 0.4, θ in the range 0.04–0.03 (cor-
responding to drift time-scales of the order of 4 weeks) and μ between
2 and 6. From these values (σ 2 > θ ) we conclude that the influence of
the stochastic term is important in shaping the observed variability,
as also testified by the relatively small values of λ derived below.

For two sources, 3C 454.3 and CTA 102 in the absence of
convergence we were not able to derive a value for θ and μ. The
inspection of the likelihood profiles (Fig. 3) reveals that the maximum
of the pseudo-likelihood traces an extended hyperbolic-like region
in the μ − θ parameter space, indicating that the two parameters are
highly degenerate.

The comparison between the flux distributions and the expected
PDF provides supplementary information. In Fig. 4, we report the
flux distributions of the six blazars derived by MSB19. In all cases,
the overall shape of the distribution, a power-law tail at large fluxes,

1Light curves and flux distributions can be downloaded from https://zenodo
.org/record/2598791#.XnYJdW57nE4
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1298 F. Tavecchio, G. Bonnoli and G. Galanti

Figure 3. Likelihood profile obtained for the parameters θ and μ using the
light curve of 3C 454.3. The shallow maximum (red) extends on a hyperbolic
region, showing that the parameters are highly degenerate and no unique
solution can be derived.

accompanied by a hardening/plateau at low fluxes, is very similar.
As we already mentioned, MSB19 fit these distributions by using
a broken power law. However, while the presence of a power law
at large fluxes appears a robust feature, the detailed form of the
distribution at low fluxes is less clear (the case of 3C 454.3 is perhaps
the more convincing).

We fit the flux distributions with the PDF obtained in equation (5).
The resulting fits are shown by the red lines in Fig. 4. In all cases,
the curves satisfactorily reproduce the data. However, for 3C 454.3
and PKS 1510−089 the fit does not converge and we are not able to
derive the best value for λ. The curves shown for these two sources
have been obtained fixing λ = 0.1. We checked that lower values
do not substantially improve the agreement with the data, while for
larger values it worsens.

In the majority of cases the value of λ is small (λ� 0.2), confirming
the prevalence of the stochastic term over the deterministic drift.
3C 279 and 3C 273, instead, show a softer power law requiring
a slightly larger λ = 0.6−0.7. The peak of the PDF lies for all
sources in the range 0.3−3 × 10−7 ph cm−2 s−1. In any case, the
limited statistics does not allow any strong conclusion about possible
differences among the sources.

4 D ISCUSSION

We have proposed a simple model for the variability of blazars
exploiting a SDE including a deterministic term – which tends to
maintain the system in a stable equilibrium – and a random noise
disturbing it and triggering the variations. The adopted SDE is
thought as a rather simplified description of the dynamics of an
accretion–jet system in an MAD regime, where the equilibrium is
determined by the balance between the repelling magnetic force and
the gravitational pull on the accreting material.

We have assumed that the main parameter controlling the bolo-
metric output of blazar jets is the energy flux (or power), directly

Figure 4. Flux distributions for the six blazars considered in our analysis (from MSB19). The red solid curves show the result of the best fit with the PDF
associated with our stochastic equation. See the text for details.
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linked to magnetic flux threading the black hole horizon. We used
this scheme to model well-sampled γ -ray light curves of six bright
FSRQ. For these sources the radiative output is dominated by the γ -
ray component mainly contributing to the LAT band and therefore the
γ -ray light curves can be considered good tracers of the bolometric
emission and its underlying dynamics.

The model that we have postulated is able to reproduce in a
natural way the shape of the γ -ray flux distributions, in particular
the power-law tail at high fluxes, whose slope in our interpretation
is determined by the relative weight of the deterministic and the
stochastic terms. It is interesting to note here that for other energy
bands for which the emission represent a small contribution to
the total blazar emission (e.g. optical, X-rays), flux distributions
close to lognormals (or double lognormals) have been found (e.g.
Giebels & Degrange 2009, Kushwaha et al. 2016, Kapanadze et al.
2020), suggesting that at these frequencies the variations are driven
by different dynamical processes.

We note that our scenario is qualitatively different from SOC, the
other possibility to obtain power-law flux distributions mentioned by
MSB19 (see e.g. Aschwanden et al. 2016). In fact SOC is based on
the assumption that the system is continuously driven by an external
energy source towards a critical threshold at which a rapid, non-linear
phase is triggered, when the accumulated energy is released in an
explosive fashion. In our framework, instead, the system always tries
to keep an equilibrium state and the dynamics is regulated by small
perturbations continuously occurring in the structure. In this context,
a possible difference that in principle can be used to distinguish
between the two scenarios is the shape of the flares: while for SOC
one expects a fast exponential grow followed by a slower decay (e.g.
Aschwanden et al. 2016), more symmetric flares are expected in
our scenario, because of the tendency of the drift term to keep the
system in equilibrium. A more detailed comparison between the two
scenarios, although interesting, is beyond the aim of this paper.

Finally we would like to remark that, although we motivated our
SDE with a specific astrophysical framework, the same expression
could also be applied to different scenarios. For instance, we can
envisage an alternative scheme in which variability arises from
processes related to the jet dynamics. In this scenario the drift
could describe the tendency of the jet to keep a given radiative
efficiency while the random term could account for the underlying
perturbations.
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Aleksić J. et al., 2014, Science, 346, 1080
Allen E., 2007, Modeling with Ito Stochastic Differential Equations. Springer,

Netherlands
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APPENDI X A : A NA LY TI CAL SOLUTI ON O F
T H E STAT I O NA RY F O K K E R – P L A N C K
EQUATI ON

The stationary case of the Fokker–Planck equation (3) specialized to
our case reads

d

dX
[θ (μ − X)p(X)] − d2

dX2

[
σ 2X2

2
p(X)

]
= 0 , (A1)

which can be rewritten as

d

dX

{
θ (μ − X)p(X) − d

dX

[
σ 2X2

2
p(X)

]}
= 0 , (A2)
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by exploiting the linearity of the derivative operator. Now, we observe
that the quantity in braces must be constant with respect to the
variable X. Thus, from equation (A2) we obtain

θ (μ − X)p(X) − d

dX

[
σ 2X2

2
p(X)

]
= C , (A3)

where C is a generic constant. By using the general method to solve
the ordinary differential equations of the first order, we obtain the
general solution

p(X) = e−λμ/X

Xλ+2

[
k1 + k2�

(
−1 − λ,−λμ

X

)]
, (A4)

where �(., .) is the upper incomplete gamma function and λ ≡
2θ /σ 2, while k1 and k2 are two constants which must be determined
by boundary conditions. For simplicity we have redefined k2 ≡ C(−
λμ)λ + 1 since it represents a generic constant. The two conditions
we impose in order to find k1 and k2 are

lim
X→∞

p(X) = 0 ;
∫ ∞

0
dX p(X) = 1 , (A5)

which express the conditions to have a vanishing probability at
extremely high fluxes and the total probability to be unitary, respec-

tively. However, the first condition is satisfied for all values of k1 and
k2. Nevertheless, it is possible to infer that, for physically consistent
values of the parameters (λ, μ > 0), the � function produces complex
values, so that the only possibility to have a real-valued p(X) is to
take k2 = 0. As a result, equation (A4) simplifies to

p(X) = k1
e−λμ/X

Xλ+2
. (A6)

Now, by imposing the second condition (A5), we obtain

k1 = (λμ)1+λ

�(1 + λ)
, (A7)

where � is now the ordinary gamma function. Thus, the solution of
equation (A1) with physically consistent boundary conditions and
values of the parameters λ and μ reads

p(X) = (λμ)1+λ

�(1 + λ)

e−λμ/X

Xλ+2
. (A8)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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