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Astrometry in the 21st Century. From Hipparchus to Einstein

M. Crosta(∗)
INAF, Astrophysical Observatory of Turin-Italy

Summary. — Astrometry is that fundamental part of astronomy which allows to
determine the geometric, kinematical, and dynamical properties of celestial objects,
including our own Galaxy, which is assembled and shaped by gravity. The knowledge
of star positions was already important at the times of Hipparchus (190 -120 BC)
and his predecessors, Timocharis and Aristillos. Their cataloging (approximately
150 years earlier) of star positions enabled Hipparchus to update the observations
with a precision of nearly half a degree and thus to discover the phenomenon of
equinox precession.
Nowadays a big jump is mandatory: positions, motions, and distances exist in the
realm of the Einstein Theory and null geodesics represent our unique physical links
to the stars through a curved space-time, namely a varying background geometry.
Astrometry must be equipped with all of the proper tools of General Relativity
to define the observables and the measurements needed for compiling astronomical
catalogs at the microarcosecond accuracy and beyonds.
The Astrometry of 21st century, endowed with a fully relativistic framework, is fully
fledged for new potential applications in astrophysics, can lead the way to forefront
discoveries in fundamental physics, and is becoming the pillar of Local Cosmology. In
this respect, is more appropriate, in the 21st century, to refer to it as "Gravitational
Astrometry".

1. – Notation and conventions

Through the text c is the speed of light in vacuum and G is the Newtonian gravita-
tional constant. When it is not made explicit, geometrized units are used (c = G = 1).
Four-tangent vectors are denoted in bold as u or uα with α = {0, 1, 2, 3}. Given a co-
ordinate system (t, xi) with i = 1, 2, 3, the metric of space-time is denoted by gαβ(t, xi)
and the signature adopted for is (−+ ++). Then, anywhere g00 < 0.

Einstein convention on repeated indices is used and the quantity || stands for the
modulo with respect to the chosen metric; whereas, the quantity (|) stand for scalar
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product, namely gαβu
αuβ . For any function f(xα), f,α and ∂αf denote the partial

derivative of f with respect to xα and ∇α the covariant derivative: ∇αuβ = ∂αu
β +

Γβµαu
µ, where Γβµα are the affine connection coefficient compatible with the chosen metric.

Milliarsecond or microarcsecond is shortened as mas and µas respectively.

2. – Introduction

Earth, planets, stars and galaxies are all in relative motion. Once collected all of
the emitted light signals from the same source, one can recover the objects relative sky
coordinates by comparing their recorded positions. Classical astrometric observations
are prerequisites to studying such motions, which, however, can be registered only with
respect to some absolute reference, in principle a Newtonian Space and Time framework.
For these reasons, fundamental catalogues have been established with the intention that
the catalogue objects represent as closely as possible fiducial points that do not show
linear and rotational accelerations [1].

As a matter of fact the application of astrometry spreads over several fields of astro-
physics: (i) stellar astrophysics, where the measurement of parallax and proper motions,
of orbital motions in binary and multiple systems, of apparent stellar diameter, allows
to derive physical constraints on stellar models, including their internal structure and
evolution; (ii) kinematics and dynamics of stellar groups, where proper motions and ra-
dial velocities are indispensable for the study of the motion of stellar clusters, to isolate
stellar associations, and to analyze stellar motions in the Galactic gravitational poten-
tial; (iii) establishment and maintenance of reference frames by determining the positions
and motions of reference stars; (iv) geodesy, where precise measurements of the orbital
positions of artificial satellites from the ground allow a very detailed determination of the
gravitational field of the Earth (for example tectonic plate motions), and of the param-
eters describing its rotation, which are monitored simultaneously by observing artificial
satellite, the Moon and quasars.

On the other hand, the relationship between kinematic and astrophysical properties
of stars lead to understand the formation and the evolution of the Milky Way. More-
over, stellar proper motions and radial velocities are the basic observational data for
determining the Galactic gravitational field and its evolution [2, 1]

Basically, two approaches of observing stars are used: a) surveying a large number
of stars by continuously scanning the sky with a wide field of view or b) pointing at
selected star fields. In the first case a large number of stars can be detected and a global
fundamental catalog obtained, after processing a very large amount of data. The second
case allows longer integration times with the goal of achieving high accuracy for fainter
objects.

Besides these basic observation principles, in order to achieve high astrometric accu-
racy in space a new approach to modeling is required, which must be compliant with
General Theory of Relativity, because of influence on the space-time curvature due to
the Sun and all of the Solar System masses, which in turn affect the observations and
the observer.

In fact, the gravitational field due to the relative motion of the solar system bodies
and their tidal interactions, generate several light deflection effects which modify light
propagation, thus compromising the correct determination of parallaxes and proper mo-
tions from our local gravitational fields, namely from our local point-of-view. Even more
in case one has to trace back the direction of light to the position of the star from within
such ever-present and ever-changing gravitational fields. Consequently, also the retarded
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time contributions should be taken into account, namely the moment when the gravita-
tional field of the source actually began to propagate along the incoming light cone. In
the static case, the major effects are the deflections of light due to the monopole mass of
the planets: already at the first post-Newtonian approximation they produce overlapping
contributions up to the order of several µas; the contribution amounts to just 1 µas, for
example, at 180 degrees from the limb of the Sun and at 90 degrees from that of Jupiter
(table I).

Table I. – Post-Newtonian (pN) effects on the light deflection due to the mass monopole and
quadrupole at the order of 1 µas. The values in parentheses are the maximum angular dis-
tances between the perturbing body and photon at which the effect still attains 1 µarcsec. Values
computed in [3].

Perturbing body monopole (µas) quadrupole (µas)

Sun 1.75" (180◦) ∼ 1
Mercury 83 (9′) -
Venus 493 (4.5◦) -
Earth 574 (124◦) 0.6
Moon 26 (5◦) -
Mars 116 (25′) 0.2
Jupiter 16300 (90◦) 240 (3′)
Saturn 5800 (18◦) 95 (51′′)
Uranus 2100 (72′) 25 (6′′)
Neptune 2600 (51′) 10 (3′′)

Io 30 (11′′/32′′) -
Europa 19 (11′′/32′′) -

Ganymede 35 (11′′/32′′) -
Callisto 28 (11′′/32′′) -
Titan 32 (11′′/32′′) -
Triton 20 (11′′/32′′) -
Pluto 7 (11′′/32′′) -
Charon 4 (11′′/32′′) -
Iapetus 1-3 (11′′/32′′) -
Ceres 1-3 (11′′/32′′) -

Therefore, if aiming at the µas level, one is obliged to consider gravity properly when
compiling stellar catalogues, as it will be shown in the sections below. This necessarily
implies the dismission of Newtonian straight lines and the adoption of the measurement
toolkit provided by General Relativity (GR), in particular to solve the null geodesics
linking stars to observers. Moreover, as the electromagnetic signals deliver physical in-
formation about a lot of phenomena interacting with the propagating light, relativistic
astrometry promotes new gravitational tests on GR/alternative theories of gravity and
current cosmological models. This opens a novel perspective for astrometry, which is
presented in the last sections: from having been the old branch of astronomy to be-
ing "Gravitational Astrometry", i.e. part of fundamental physics as well as an all-sky
relativistic tool to peer the surrounding Universe.

Part of what is reported here has already been discussed in the literature. The present
review, on the other hand, aims (i) to collect the fundamentals of Relativistic Astrometry
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in few basic steps (ii) to pinpoint the potential of the new astrometry mostly dominated
by null geodesics solutions (iii) to broad the application of the actual weak gravitational
astronomy domain to other different regimes (iii) to highlight the role of null geodesics
and GR measurement protocol for astronomy in the prospect of advanced future space
missions.

3. – Astrometric measurements through ages

We can say that astrometry was invented when humankind started to glance re-
peatedly at the changing sky, and based the fundamental measurement of time on the
comparison of the periodic appearance of the Sun, the Moon and the stars.

Astrometric observations through ages have provided the material for fundamental
catalogues to record the motions of celestial bodies. The first star catalog was produced
by Hipparchus, comprising about 1000 stars together with the first classification based
on the definition of magnitude.

As well known, Hipparchus could measure the precession of the equinox by comparing
the different star longitudes at the autumnal equinox observed long before by the Baby-
lonians and the Chaldeans. His measurements, nearly 36 arcsecond per year, were not
so far from the value ∼ 50 arcsecond per year provided by current observations. Angles
in the sky were the key to understand such tiny movements related to relative motion of
the Earth with respect to the Moon, the planets and the Sun, where the word "relative"
is referred to the gravitational pull that those bodies exert on our planet.

As a matter of fact, by continuously observing star positions, Hipparcos somehow
recognized the role of gravity moving the objects toward a center as quoted by Plutarco:
"Indeed, motion according to nature guides every body, if it is not deviated by something
else " in De facie quae in orbe lunae apparet [4]. And somehow this has been inherited
by the new astrometry, which requires GR, the standard theory of gravity, to fully ac-
complish its application to astronomy. According to this theory, in fact, geometry is
a manifestation of gravity and the geometry dictates how stars move and galaxies are
assembled.

Not differently from the past, any positions and their variations on the sky are still
measured via angles as the celestial objects are projected on an ideal sphere with the
observer at its center. Angle measurements are essentially based on rules of spherical
trigonometry, and the triangulation method (trigonometric parallax) allows to measure
directly the (inverse) distance of sources outside the Solar System.

3.1. From Earth to Space, measurements of smaller and smaller angles. – The ap-
plication of astrometry can be divided into two main groups: (i) small field astrometry
and (ii) global astrometry. In small field astrometry the position of the celestial body
is referred to neighboring stars within the field of view θ of the telescope. It comprises
very narrow (θ < 10′′), narrow (θ < 0.5◦), and wide field astrometry (θ < 5◦). The first
one deals with single or multiple stars and analyzes their relative motions. Narrow field
astrometry is used for the determination of relative parallaxes and for the detection of
invisible companions. Among the goals of wide field astrometry there are the study of
internal motion of stellar clusters and the computation of quasi-inertial coordinates of a
given target with respect to the fundamental stars visible in the field of view. The main
techniques are direct detection by charge coupled device (CCD), speckle interferometry,
Michelson interferometry, and radio interferometry [7]. Semi-global astrometry, instead,
makes possible to construct fundamental catalogs by measuring positions separated by



ASTROMETRY IN THE 21ST CENTURY. FROM HIPPARCHUS TO EINSTEIN 5

Table II. – List of the main achievements in Astrometry through ages [5, 6].

Assyria, Babylonia (1000 BC): systematic observations, discovery of periodic phenomena
(visibility of Venus, lunar eclipses);
Pythagoras (580 - 500 BC): Earth, Sun, planets as a sphere, Venus as a planet
(Phosphorus and Hesperus);
Plato (427 - 347 BC): motion of the Sun, Moon and planets visible to the naked eye,
movements in astronomy associated to "geometry";
Eudoxus, Euclid (400 - 300 BC): basis of spherical astronomy and celestial globes;
Aristarchus of Samos (310 - 230 BC): first measurement of the distance and diameter of
the Sun and Moon via trigonometric method, heliocentric universe;
Callippus (330 BC): measurement of the length (in days) of the season and equinoxes,
indicating an apparent variable velocity of the Sun;
Eratosthenes (200 BC): system of longitudes and latitudes, earth’s circumference
(40,500 Km), catalog of 675 stars;
Hipparchus (150 BC): compilation of a catalogue containing the positions of 1025 stars,
reported later by Ptolemy in the Almagest (100-170 AD), distance of the Moon from Earth
of about 62-72 Earth radii (correct value from 55 to 63);
Ulugh Beg’s astronomers (1420 -1437):Zij-i Sultani catalogue of about 1000 stars
without using Ptolemy’s Almagest;
Regiomontanus (1462): Epitome of the Almagest, new planetary observations and correction
of Alfonsine Tables;
Copernicus (1500 AD): affirmation of the heliocentric theory;
Tycho Brahe (1600): improvement of the instrumentation, accurate observations about
20" (Kepler’s laws);
Kepler, Galileo, Newton (1500-1700): modern era for astronomical sciences;
Nautical Almanac: from 1767 ephemeris annual publication of the main celestial bodies;
Halley (1718): discovery of proper stellar motions (Aldebaran, Arturo and Sirio);
Bradley (1725): discovery of the effect of stellar aberration due to terrestrial motion;
J. Lalande (1751): determination of the parallax of the Moon and Mars;
Herschel (1783): discovery of more than 800 double stars;
Bessel (1838): first trigonometric parallax of 61 Cygni (0.3");
Carte du Ciel (1887-1931): limit magnitude 11.5, not complete on the whole sky (20236 stars);
Astrographic Catalog (1895-1950): 3 exposures per plate, first photographic map of the sky,
20 observatories all over the globe, more than 22,000 photographic plates (∼ 4.5 × 106 stars),
visual measurements, limit magnitude 14, accuracy 0.5";
Schlesinger (1924): General Catalog of Stellar Parallaxes (from photographic plates);
VLBI technics (1965-1967): Matveenko-Kardashev-Sholomitsk and Clark-Kellermann-Cohen
Fricke et al. (1988): FK5 Fundamental Catalog (1535 stars, accuracy of some tens of mas);
Hipparcos satellite, ESA (1989): First astrometric space mission, 5 astrometry parameters
accurate to the mas for 105 stars;
Thyco-2 catalog (2000): 2.5 million bright stars from Hipparcos (http:www.cosmos.esa.int/
web/hipparcos/tycho-2);
van Altena et al. (1995): Yale Trigonometric Parallax Catalog (8112 stars, 10 mas);
Gaia satellite, ESA (2013): Second astrometry space mission, improvement of 2 orders of
magnitude compared to Hipparcos, 109 Galactic and extragalactic objects.
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Fig. 1. – Progress in astrometric accuracy through ages. Image Credits: ESA
(http://sci.esa.int/gaia/33840-progress-in-astrometric-accuracy/)

large angles. Observations depend on geographic latitude. Therefore, several instruments
adequately distributed over the surface of the Earth are needed to survey the whole sky
and to provide an overlap of the declinations zones. Interferometry at radio wavelengths
is used both for small field and semi-global astrometry.

The accuracy of an astrometric measurement depends on the resolving power of the
instrument and on the space-time properties of the incoming wave front, as well as on
the accuracy of the model that links the astrometric parameters to the observations.

Astrometry from the ground has a certain number of limitations: (i) the atmospheric
turbulence modifies the apparent direction of the source (the technique of adaptive optics
works only within a few seconds of arc); (ii) the atmospheric refraction displaces the
apparent direction; (iii) the Earth rotation must be considered; (iv) the instrumental
(systematic) errors cannot be fully eliminated in a final combination of heterogeneous
catalogs.

Global astrometry from space is the only way to obtain fully absolute parallax (dis-
tances). Ground based astrometry can only provide relative parallaxes and their trans-
formation to absolute distance is a non-trivial problem.

The refinements of astrometric techniques improved the precision of star positioning
from about 1500 arcsec at the time of Hipparchus to 0.2 arcsec or better by around
1980 [1].

With Hipparcos (High Precision PARallax COllecting Satellite), the first global as-
trometric satellite launched by ESA in 1989, the accuracy improved from 50 to 1 mas
[8].

A scanning law was devised that permits the scanning of the whole sky, while max-
imizing the number of observations per star. Such a law is a combination of three
independent motions of the satellite: the orbital motion, the rotation around its spin
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Fig. 2. – Principle of measurements of relative (left) and absolute parallaxes (right). Small
angles A and B are related by π1 − π2 = (A − B)/2, whereas large angles allow to determine
absolute parallax π1 = (A−B)/2 not depending on the distance of the reference star [9].

axis, and the precession of this axis around the Sun-satellite direction. As the telescope
rotated about its axis perpendicular to the plane formed by the directions to the centers
of the two stellar field, it swept a circle in the sky.

Fig. 3. – Sky grid obtained by repeatedly observing arcs via global astrometry.

In this way Hipparcos could measure large arcs and, therefore, absolute parallax.
These angles were expressed as a function of the stellar unknowns. The large amount
of observations performed during the mission lifetime, created a grid that covered the
whole sky forming an over-determined system of equations, whose solution was found by
means of a least-square method.
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More details about the astrometric mission Hipparcos can be found in its dedicated
web site [8].

With the advances in technology, namely CCDs, computers, and interferometry, global
astrometry increases its accuracy to reach the µas level. Then, following Hipparcos, Gaia
(European Space Agency, ESA) is the first astrometric mission of the twenty-first century
dedicated to the study of the Milky It was successfully launched on 19th December 2013
from the European base of Kourou in French Guyana.

Exploiting the same scanning strategy as Hipparcos (figure 4), Gaia is surveying at
the L2 point of the Earth-Sun gravitational system the entire sky down to the visual
magnitude G=20, performing with the microarcsecond-level accuracy the deepest and
most complete census of our Galaxy.

Gaia extends the astrometric accuracies by 2-3 orders of magnitudes over Hipparcos
(table III), to better than 10 µas at 15 mag [2]. The limiting magnitude in the obser-
vations will be extended from 12 to 20 mag, and the completeness limit from ∼ 7 − 9
mag down to a faint limit of 20 mag. On-board object detection will ensure that vari-
able stars, supernovae, burst sources, micro-lensed events, and minor planets will all be
detected and cataloged to this faint limit.

Table III. – Overview of the Gaia performances in comparison to those of Hipparcos [2].

Hipparcos Gaia

Magnitude limit 12 20

Completeness 7.3- 9.0 mag ∼ 20 mag

Bright limit ∼ 0 ∼ 3

Number of objects 120, 000 47 million to G=15 mag
360 million to G=18 mag
1192 million to G=20 mag

Effective distance limit 1 kpc 50 kpc

Quasars 1 (3C 273) 500,000

Galaxies None 1.000,000

Accuracy 1 milliarcsec 7 µarcsec at G=10 mag
26 µarcsec at G=15 mag
600 µarcsec at G=20 mag

Photometry 2-color B and V Low-res. spectra to G=20 mag

Radial velocity None 15 km s−1 to GRSV=16 mag

Observing program Pre-selected Complete and unbiased

The eclipse-free orbit around the L2 point of the Sun-Earth system offers a very stable
thermal and low-radiation environment. An operational lifetime of 5 years was planned
and an extension of two years has been decided.

The scan rate is 60 arcsec/s, equivalent to a 6-hour rotation period. The tilt of the
spin axis with respect to the sun direction is 45◦ and represents a good compromise
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Fig. 4. – Gaia measurement principle. Credit: ESA

between astrometric performance and system aspects. Precession at such fixed angle to
the Sun with an average period of 63.12 days ensures sky coverage.

The payload module has a toroidal structure made of Silicon Carbide which minimizes
the thermal expansions and mechanical flexures. A set of instruments are mounted on
the toroidal frame. The astrometric instrument consisting of two identical telescopes
mounted on the same optical bench and combining at the same time two different stellar
directions in one focal plane (FP), observing all objects that pass away in its two fields
of view (FOV) separated by a controlled basic angle of 106.5 degrees and perpendicular
to the spin axis (indispensable for absolute parallaxes).

The focal plane is a mosaic of CCDs divided into the astrometric sky mapper (A-SM),
the astro field (AF), and the photometry field (continuous spectra in the band 330-1050
nm for astrophysics and chromaticity calibration of the astrometry). The ASM detects
the objects passing through the FOV, filtering off for example cosmic rays, while the AF
makes the astrometric measurements. The CCDs operate in time delay integration mode
(TDI).

A Radial Velocity Spectrometer (RVS) is also sharing the same FP. RVS provides
radial velocity and high resolution spectral data in the narrow band 847-874 nm.

Nearly one-two billion astronomical objects will be observed on about 80 times, lead-
ing to around 630 CCD transits, so a total of more than 150 billion measurements at the
end of the mission.

Limiting the object selection to those with an astrometric parallax error of less than
10%, which is considered a safe threshold in the majority of astrophysical applications,
implies that with microarcosecond-level accuracy we reach the Galactic scale. Then,
Gaia’s survey provides the detailed 3D distributions and space motion of some 1 billion
individual stars in our Galaxy and beyond, extended to G=20.7 (i.e., ∼V=21), but not
complete at this magnitude limit.

The primary topic for Gaia is to clarify the origin and history of our Galaxy, by
providing tests of the various formation theories, and of star formation and evolution.
All parts of the Hertzsprung-Russell diagram will be comprehensively calibrated, includ-
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ing all phases of stellar evolution, from pre-main sequence stars to white dwarfs and
all existing transient phases, all possible masses, from brown dwarfs to the most mas-
sive O stars, all types of variable stars, all possible types of binary systems down to
brown dwarf and planetary systems, all standard distance indicators (pulsating stars,
cluster sequences, supergiants, central stars of planetary nebulae, etc.). A 1% parallax
determination of Cepheides and RR Lyrae would turn in a significant improvement of
the Period-Luminosity-Color relationship useful for the accurate determination of the
distance scale.

Nevertheless, the improvement of the accuracy in the astrometric measurements con-
ducted via space satellite requires rigorous relativistic models for the propagation of light
in the framework of GR since several relativistic effects disturb light propagation already
at level of the first post-Newtonian order (see table I and [10, 11, 12, 13] as precursor
works). For this reason, relativistic astrometry has recently grown as a mature research
field, providing, already at the microarcsecond level, a fully general-relativistic analysis
of the inverse ray-tracing problem, from the observational data (e.g., stellar images on a
digital detector) back to the position of the light-emitting star.

Gaia space mission constitutes a typical example where a fully GR theoretical frame-
work is the necessary tool for the correct processing of the astrometric observations and
their subsequent interpretation. Since null geodesics in the Einstein theory carry elec-
tromagnetic information, these tools extend their use to astronomical observations in all
wavelengths.

3.2. The relative positions and motions in records. Fundamental catalogs. – All the
worldwide efforts to observe star positions through ages converged in several catalogs,
complied with the purpose of being a data base available to the users for astronomical
studies and future observations.

A prerequisite to define classical celestial dynamics is the availability and maintenance
of an ideal inertial reference system, indeed a conventional definition of a reference system,
a conventional realization of the reference frame which materializes the system (by a
number of points, objects or coordinates to be used for referencing any other point, object
or coordinate), accompanied by constant improvements of the models for the observables,
and determination of Earth’s orientation on a regular basis. The term "system" includes
the description of the physical environment as well as the theories used in the definition
of the coordinates. On the other hand, the term conventional suggests that the choice to
characterize both the system and the frame is not unique; usually it is based on a set of
conventionally chosen parameters depending on the model used to define the relationship
between the configuration of the basic structure and its coordinates.

In principle, to avoid rotation, only extragalactic objects, which are not influenced by
the rotation of the Galaxy, can provide convenient fiducial "inertial" points. However, the
implementation of an inertial reference frame may contain moving objects with known
law of motion. The residual rotation of such a system in comparison with other reference
frames will improve the description of the source models.

The construction of a modern catalogue is essentially based on observations obtained
from: Earth-based radio astrometry and Space astrometry at optical wavelengths [1].

By mid eighties, the improvement in stellar positions and motions culminated in
the fifth fundamental catalog (FK5), a series which began with the FC (Fundamental
Catalog, Astronomische Gesellschaft) realized by A. Auwers in 1879.

The discovery of quasars in the early 1960s allowed the construction of catalogues of
extragalactic radio sources with a theoretical position accuracy better than 1 mas, i.e.
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about one hundred times smaller than uncertainties of the corresponding ground-based
measurements in the visible domain. Since the late 1960s the technique of Very Long
Baseline Interferometry (VLBI) is employed for position measurements of extragalactic
radio sources and it became possible, by upgrading VLBI techniques up to the mas level,
to establish a reference frame based on distant extragalactic objects. Initially, some 600
objects were selected as potential candidates [14]. They were recommended for regular
observation by VLBI networks. A monolithic analysis of the original VLBI observables
(time delay and fringe rate) from 979 through 1995 led to a fundamental catalogue of
608 extragalactic radio sources.

Thus, according to the International Astronomical Union resolution (IAU, 1992), the
FK5, which constituted the IAU-recommended coordinate system until 1998, have been
replaced (IAU 1999) by the fundamental catalogue of VLBI positions, the International
Celestial Reference System (ICRS), the idealized barycentric coordinate system to which
celestial positions are referred, kinematically non-rotating with respect to the ensemble of
distant extragalactic objects (1) and the corresponding frame, the International Celestial
Reference Frame (ICRF), aligned with the International Earth Rotation Service (IERS).
The first ICRF resulted from 1 600 000 VLBI observations performed from 1979 to
1995, while the second version ICRF2 [15] resulted from 6 000 000 VLBI observations
performed from 1979 to 2009 with a final accuracy about 40 µas. The set of extragalactic
objects whose adopted positions and uncertainties realize the ICRS axes and give the
uncertainties of the axes. The axis stability of ICRF2 is 10 µas, which is nearly twice as
stable as ICRF1. It preserves, by construction, the same directions of the reference axes
and contains 3414 radio sources, in which 295 are defining sources. The third revision
on ICRF, ICRF3, was adopted by the IAU at the XXX IAU General Assembly on 30
August 2018 and become effective since January 1, 2019. It contains positions for 4536
extragalactic sources, with 303 identified as defining sources and incorporates the effect
of the galactocentric acceleration of the solar system (correction of 5.8 µas/yr [16]).

In this context, since 1991 IAU General Assembly (GA) adopted GR as the fundamen-
tal theory, specifying the continuity with existing stellar and dynamic implementations
[17]. Later, the IAU 2000 resolutions [18], adopted by the XXIVth IAU General Assem-
bly (August 2000) and endorsed by the XXIIIrd International Union of Geodesy and
Geophysics (IUGG, General Assembly, July 2003), have made important recommenda-
tions on space and time reference systems, the concepts, the parameters, and the models
for Earth’s rotation that should be consistent with General Relativity. In particular
IAU 2006 Resolution B2 [19] recommends the Barycentric Celestial Reference System
(BCRS) is assumed to be oriented according to the International Celestial Reference
System (ICRS) axes.

Such a development would not have been possible if the Hipparcos catalog as coun-
terpart of the ICRF would not have existed. The Hipparcos catalog of over 105 star
coordinates defines the ICRS frame, materializing the ICRS in the visible [20]. Two ma-
jor astrometric catalogs have been produced by the astrometric Hipparcos mission: the
Hipparcos catalog comprising 118218 stars, and the Tycho Catalog containing 1058332
stars including 6301 stars of the previous one. These catalogs provide positions, annual
proper motions and absolute trigonometric parallaxes free from regional distortions and

(1) It has no intrinsic orientation but was aligned close to the mean equator and dynamical
equinox of J2000.0 for continuity with previous fundamental reference systems. Its orientation
is independent of epoch, ecliptic or equator.
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with errors as good as 1 mas. The positional precision of the Hipparcos catalog was close
to that of the extragalactic objects in the ICRF.

This has provided the means to extent the quasi-inertial radio frame, which does not
rotate as the inertial one, but its origin may have acceleration, to the optical domain.
As a result, the advantage is an optical reference frame that profits from the properties
of the radio reference frame, but it is accessible to optical astrometry and sufficiently
dense (2 to 3 stars per square degree on the average). Hipparcos frame was labeled the
Hipparcos Celestial Reference Frame (HCRF), and used as a quasi-ideal reference system
for measuring the angular motion of celestial bodies.

Nowadays, the first two releases of Gaia [21, 22] have replaced the Hipparcos catalogue.
The first general all-Gaia data delivery (DR1) has been released on 14th September

2016 (corresponding to 1000 days into science operations in Nominal Scanning Law).
DR1 contains the five-parameter astrometric solution - positions, parallaxes, and proper
motions - for stars in common between the Tycho-2 Catalogue and Gaia (TGAS), namely
for 2 million stars complete to V=11.5 (solar neighborhood, open clusters and associ-
ations, moving groups) with sub-milliarcsec accuracy (10% at 300 pc). On April 25th
2018, the second release of the Gaia catalogue (DR2) became available to the scientific
community worldwide. This time it contains the five-parameter astrometric solution for
more than 1.3 billion sources, within the Gaia magnitude range 3 < G < 20.7, and
median radial velocities for more than 7.2 million stars. At the end-of-mission the astro-
metric accuracies are expected better than 5-10µas for the brighter stars and 130-600µas
for faint targets and the final Gaia Reference Frame will contain 500,000 quasars. This
optical alignment has the advantage to exclude astrophysical contaminations due the
extremely variable environment in the active galactic nucleus at the center of the quasar.

With Gaia DR2, Gaia-CRF2 consitutes the first optical realization of a reference
frame at sub-milliarcsecond precision, with a mean density of more than ten quasars per
square degree. It represents a more than 100-fold increase in the number of objects from
the current realization at radio wavelengths [23].

Despite these achievements in accuracy, refined definitions regarding the celestial
reference systems are constantly adopted by IAU as well as new paradigms and high
accuracy models to be used in the transformation from terrestrial to celestial systems.
The accuracy of measurements provided by modern astronomy in space, the need of
the realization of celestial reference frames at the µas level of accuracy implies also a
self consistent set of units and numerical standards compliant with GR, as for example
the use of the astronomical unit as constant, since its historical definition is not longer
appropriate for being used with modern solar system ephemerides [17].

4. – General Relativistic Metrology for Astronomy

General Relativity (GR) is the theory in which geometry and physics are joined in
order to explain how gravity works and the trajectory of a photon is traced by solving
the null geodesic in a curved space-time.

The GR space-time structure has three main characteristics: (i) differential, which
means that space-time is continuous and tell us how many dimensions we are dealing
with; (ii) topological, that tells us how different parts of space-time are connected, which
points are around others, i.e. "a rubber sheet" topology (2); and, from(ii), also (iii)

(2) Property of space that does not vary due to arbitrary continuous space deformations.
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geometric, which tells us how to construct parallel lines and defines the distance between
space-time points ([24], section 2.1). Moreover, a Riemannian differential variety has
a geometric structure distinguished into affine and metric geometry, corresponding to
two different ways in which we can detect the curvature of space. The first implies how
parallel lines are connected or correlated in different places; the second establishes how
we measure lengths and areas.

Measurements performed from within a geometrical environment generated by a n-
body distribution as it is that of our Solar System, are affected mainly by the mass
monopole of the Sun and planets, which act as varying sources of its gravitational field
and modify the incoming electromagnetic signals as well as the observer’s motion.

Consequently, before modeling the astronomical observations, one has to write the
field equations for the Solar System and find appropriate solutions with n-body sources,
also in the case the former is gravitationally isolated from the rest of the Universe.

Since gravity according to the Einstein theory is the manifestation of a varied back-
ground geometry, solving the well known Einstein equation:

Rαβ −
1

2
gαβR =

8πG

c4
Tαβ ,(1)

requires basically to find a suitable metric, namely gαβ . Equation (1) practically trans-
lates into a system of ten coupled, nonlinear, hyperbolic-elliptic partial differential equa-
tions with no straightforward solution because of the intrinsic non-linear coupling between
the Ricci tensor Rαβ (R is the Ricci scalar), depending on the first and second partial
derivatives of the metric gαβ , and the sources of the gravitational field Tαβ .

In point of fact, a variations of the background geometry may be induced by a choice
of the coordinates or by the presence of matter and energy distribution. The first one
originates inertial forces acting similarly but not equivalently to gravity. The second one,
instead, generates gravity, whose effects can not be easily disentangled from the inertial
force.

Denoting the coordinates generically as xα = (t, xi), as the Solar System generates a
weak gravitational field, the metric can be linearized with respect to a small perturbation
hαβ in the form

gαβ = ηαβ +
∑
a

h
(a)
αβ ,(2)

where ηαβ = diag[−1, 1, 1, 1] is the Minkowskian metric and a stands for the ath-source.
The choice of the coordinates is actually a gauge one. Einstein equation determines 10
components of the metric, but the four Bianchi identities implies four degrees of freedom
that are fixed by imposing a coordinate choice, basically the two conditions available in
literature: harmonic (or de Donder) and ADM (Arnowitt-Deser-Misner, [25]).

Once chosen a form for the h terms, the background geometry constitutes the basic
ingredient to model a 4-dimension relativistic sky and also the observer’s motion from
within the surrounding gravitational fields.

This implies, given a varying curvature, that in GR any observer carries on a proper
clock and a proper meter. The act of measuring is, then, observer-dependent. Nev-
ertheless a measurement should be invariant (namely a scalar quantity) regardless the
coordinates system adopted. In technical language, all of the involved tensorial expres-
sions in a measurement process should be expressed through covariant equations, with
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Fig. 5. – Photon emitted by a star crossing the Solar System world tube, perturbed by its
n-sources.

respect to a chosen "global" coordinate system and with respect to a given observer’s
frame. Indeed, the act of measurement between different space-time events means to
define the observer who performs the measurements and a proper procedure to compare
her/his measurements with respect to another observer.

Any observer is termed time-like if uαuα = −c2 (or uαuα = −1 in geometrized units).
An observer’s laboratory is usually represented as a world tube; in case of weak field
and for not an extended body, the world tube can be restricted to a world line tracing
the history of the observer’s barycenter in the given geometry. A laboratory can be
mathematically defined as a family of future-pointing time-like non-intersecting curves
with tangent 4-vector u, namely a congruence Cu, each one representing the history of
a point in the laboratory and parametrized by their proper time, thus determining the
local time direction at each point of spacetime. The orthogonal complement of this local
time direction (in the tangent space) is the local rest space of the observer at the same
event.

All of the above can be realized by considering an infinitesimal normal neighborhood
of u and a metric gαβ . At any point along the worldline of u it is possible to define a
local splitting of the space-time into 1-dimensional subspace plus a 3-dimensional one,
each endowed with its own metric. Respectively, via the temporal operator:

T (u)αβ = −uαuβ ,(3)
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which projects parallel to u, and via the spatial projection operator

P (u)αβ = gαβ + uαuβ ,(4)

which generates a local rest space spanned by vectors orthogonal to u, so that

gαβ = Pαβ + Tαβ .(5)

The family u constitutes a set of fiducial observes filling the space-time. A section
orthogonal to the congruence describe the space-time evolution of the system as the time
varies along the curves.

The covariant derivative generates the kinematics of such a congruence [26]. In par-
ticular,

∇βuα = −aα(u)uβ − kαβ (u),(6)

where the "four-acceleration" is defined as

aα(u) = P (u)αβu
γ∇γuβ = P (u)αβ u̇

β ,(7)

and the "kinematical tensor"

kαβ (u) = ωαβ (u)− θαβ (u),(8)

which depends on the "vorticity" ωαβ = P (u)µαP (u)νβ∇[µuν] and the "expansion" θα(u) =
P (u)µαP (u)νβ∇(µuν), where square brackets mean anti-symmetrization and circular ones
symmetrization. The expansion virtually measures the average expansion of the infinites-
imally nearby surrounding geodesics and the vorticity measures how a world-line of an
observer rotates around a neighboring one.

In general the splitting of the tangent space does not extend to the whole space-time
manifold. From the Frobenius theorem, if an open set of space-time manifold admits a
vorticity-free congruence of lines, then it can be foliated [26]. Only in this special case
one has a family of orthogonal spacelike hypersurfaces which slice the spacetime.

This means that, given a general coordinate spacetime representation (xi, t)i=1,2,3, the
metric being gαβ(x, t), there exists a family of three-dimensional hypersurfaces described
by the equation τ(x, t) = constant, where τ(x, t) is a real, smooth and differentiable
function of the coordinates. Let us denote each slice as S(τ). A spacelike foliation implies
that a unitary one-form uα exists which is everywhere proportional to the gradient of τ ,
namely:

uα = −(∂ατ)eψ,(9)

where

eψ
′

= [−gαβ(∂ατ)(∂βτ)]−1/2(10)

is the normalization factor. Then the curves tangent to the vector field uα = gαβuβ , form
a congruence of timelike lines Cu, everywhere orthogonal to the slices S(τ). In order to
understand the geometrical meaning of the one-form uα, let us adapt the coordinate
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system to the spatial hypersurfaces S(τ) such that x0 = τ(t, xi) and xi = xi(t, xi). The
new normals result:

uα(x0, xi) = −δ0
αeψ

uα(x0, xi) = −g0αeψ =
dxα

dσ
(11)

where σ is the parameter on the normals u, ψ = ψ(x0, xi) is a function that makes
uαuα = −1. From the unitary condition then, it results

eψ = dσ/dτ = (−g00)−1/2,(12)

which means that the parameter σ runs uniformly with the coordinate time x0 and
depends on the metric term g00.

But the congruence Cu, however, does not preserve the spatial coordinates xi. For
example, denoting N = 1/u0 and N i = ui/u0 respectively the lapse and the shift func-
tions (or factors, for similar definitions see [25, 27]), the line element can be cast into the
form:

ds2 = −(Ndx0)2 + gij(dx
i +N idx0)(dxj +N jdx0).(13)

Thus, choosing at time τ1, say, an arbitrary event P, labeled by the coordinates (τ1, x
i
1),

the unique normal through that point will intersect the slice S(τ1 + ∆τ) at a point P ′
with spatial coordinates that are shifted from the initial ones by the amount:

∆xi =

∫ ∆τ

0

N i(τ ′)dτ ′.(14)

The lapse factor N measures the rate of flow of proper time, with respect to the coordinate
time as one moves normally to S, whereas the shift factor N i measures the amount of
"shift" tangential to S contained in the time flow vector field [28].

In order to vanish the shift factor a new spatial coordinate transformation has to be
applied, i.e. x̂i = xi + N i∆x0 and x̂0 = x0 = τ . Then, the vector field tangent to the
congruence Cû, which transports the spatial coordinate, results:

ûα(x̂0, x̂i) =
dx̂α

dσ
= eφδα0

ûα(x̂0, x̂i) = eφg0α = −eψ
∂τ

∂x̂α
.(15)

and, in this form, is termed static (at rest with respect to the coordinate grid).
The intrinsic behavior of a general tensor field along a congruence u is specified with

different space-time derivatives, namely absolute, Fermi-Walker, Lie ones or simply by
parallel transport [25].

When the congruence is associated to an "isometry", i.e. the metric has null Lie-
derivative, each of the spacelike hypersurfaces of the foliation has the same geometry.
For instance, the worldlines of timelike "inertial" observers at rest with respect to the
coordinates, implies that any observer moving along any of these worldlines will see an
unchanging spacetime geometry in his vicinity.
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Summarizing, the notions of time and space are complementary since a “time-like”
means measuring the elapsing time at fixed point in space, while "constant time hypersur-
faces" implies a synchronization of times at different points of space. For the former local
time direction is fundamental, for the latter space is fundamental (non local correlation
of local time, i.e. space at some moment of time) [27].

Despite of General Relativity unifies space and time into a unique scenario, a weakly
gravitational field has the advantage to allow a spacetime foliation and accordingly one
can define the observer’s proper time and rest space, i.e. to reconstruct a sort of local
"simultaneous observations" in the presence of a curved spacetime and to reproduce
a scenario familiar to the Newtonian one in dealing with astronomical observations,
but endowed with a fully intrinsic GR characterization. In many practical applications,
spacetime is endowed at least locally with either a preferred congruence of integral curves
of a timelike vector field or a preferred slicing by a family of spacelike hypersurfaces
or both. In literature a future-pointing unit timelike tangent vector field is termed
the threading congruence, while in the slicing point of view one has the timelike unit
normal vector field (future-pointing). The two observers coincide in the special case of
an orthogonal nonlinear reference frame, namely the frame imposed on spacetime by the
given geometry and the one for which both the causality conditions hold and the slicing
and threading are everywhere orthogonal [27].

Once equipped with these basic notions of classical GR, the fundamental steps to
formulate an astronomical "measurements" in a weakly curved space-time consist in:
(i) the definition of a suitable background geometry provided a suitable solution of the
Einstein field equation in case of bound weak gravitational fields and (ii) a suitable
global coordinate systems to define tensorial quantities (covariant expressions); (iii) a
suitable definition of the observer’s reference frame and (iv) an appropriate definition of
the observable from the solution of null geodesic.

4.1. The geometry from within the Solar System. – Consider the background spacetime
due to N gravitationally interacting bodies, each associated with its own world tube (or
world line), with multipolar fields defined along it. One can define a global coordinate
system xα = (ct, xi) with the origin at the center of mass and N local coordinate systems
each attached to a single body. The general motion can be split into the external part for
the motion of the centers of mass of the N bodies, and the internal one for the motion
of each body around its center of mass [29].

In the global coordinate system, the center-of-mass of N world lines L(a) (a = 1 . . . N)
is described by the curves zα(a) = zα(a)(τ(a)), where τ(a) is the proper time parametrization
along each line. Local coordinate systems, instead, can be represented by the attached
set of coordinates, say, Xα

(a) = (cT(a), X
a
(a)) along the lines L(a). Then, a relationship

between the global and local set of coordinates are given by the following mapping [29]

xµ(cT(a), X
i
(a)) = zµ(a)(cT(a)) + eµi (cT(a))X

i
(a) +O[(Xi

(a))
2] ,(16)

where eµi (cT(a)) denotes a triad of spacelike vectors (i = 1, 2, 3) undergoing some geomet-
ric transport along the line L(a) (e.g., Fermi-Walker, which defines locally non-rotating
axes along the worldline). The last part O(Xi

(a))
2 stands for terms which are at least

quadratic in the local space coordinate Xi
(a) (3).

(3) In virtue of the equivalence principle, the local reference systems for each source interfacing



18 M. CROSTA

In the gravitational weak regime where the local space-time domains do not overlap,
the metric (2) can be expressed either in the global coordinates xµ or in any of the N
local coordinates Xµ

(a). The full four-dimensional coordinate transformation is just an
extension of the usual Lorentz transformation.

Then, a priori equation (16) can be written in two equivalent forms, as xµ(cT(a), X
i
(a))

orXµ(ct, xi). The first transformation was developed in the Damour-Soffel-Xu formalism
[29], the second one was described in the Brumberg-Kopeikin formalism [30].

For many applications it is advantageous to present the local gravitational potentials
of a body-source as multipole series that usually converge outside the body. The metric
outside shows two infinite sets of configuration parameters which are called the internal
and external multipoles. The multipoles are purely spatial, 3-dimensional, symmetric
trace-free (STF) Cartesian tensors residing on the hypersurface of constant coordinate
time passing through the origin of the local coordinate chart. The internal multipoles
characterize the gravitational field and the internal structure of the source itself. They
consist of two types: the mass multipoles and the spin multipoles [31]. On the other
hand, there are also two types of external multipoles: the gravitoelectric multipoles and
the gravitomagnetic multipoles. Gravitoelectric dipole describes local acceleration of the
origin of the local coordinates adapted to the source, whereas gravitomagnetic dipole are
related to the angular velocity of rotation of the spatial axes of the local coordinates.
Usually the external multipoles with rank ≥ 2 characterize tidal gravitational fields in
the neighborhood of the source produced by other (external) bodies.

Given these premises about the sources, usually one adopts approximate schemes to
get a useful solution of Einstein equation (1) in accordance with assumption (2) that
linearizes the metric via perturbations. The purpose of the approximation schemes is
indeed to expand the h term in power of small numerical parameters that allow to
linearize equation (1). As far the Solar System is concerned, the so called post-Newtonian
and the post-Minkowskian approximations are adopted (for a detailed description refer
to [32]).

The post-Newtonian approximation method tries to model the solution of the Ein-
stein equation as a Newtonian one plus small corrections to the prediction of the New-
tonian theory, which represent the relativistic contributions. The correction term to gαβ
is assumed to be everywhere small and admits an asymptotic expansion in power of
v2/c2 < GM/c2R < GM/c2L � 1, where R is the distance from the barycenter, L the
linear dimension, and v the internal or/and external velocity of the source. Thus the grav-
itational field is weak and of slow motion. In geometrized units where G = M = L = 1,
one can say that the pN metric is a formal expansions in powers of ε ≡ 1/c. This notation
is kept for convention even when G,M,L 6=1 [33]. In this sense all the correction terms,
their time and space derivatives, and all the internal or/and external velocities become
of the order of unity (or less) and the metric is built, with respect to a coordinate system
(t, xi) as:

gαβ(t, xi) = g(0)αβ(t, xi) + c−1g(1)αβ(t, xi) + c−2g(2)αβ(t, xi) +O(c−3).(17)

To the lowest pN order, with a linearized gravity and weak field slow motion assumption,

the external matter, should be given by tidal potentials whose expansions in powers of local
spatial coordinates in the vicinity of the origin of the corresponding reference system start with
the second order.
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the corresponding spatial gravitational fields defined via threading or slicing are very
closely related, although do not agree to full post-Newtonian order. However, the pN
approximation provides crucial solutions to the problems of motion and gravitational
radiation of systems of compact objects, in particular those for the motion of N point-
like objects describing at the first pN approximation level the solar system dynamics.

If one needs to take into account the emission of gravitational waves (GWs), globally
the equations of motion of a self-gravitating N-body system could be written in pN form,
up to the 4th order, using one’s favorite coordinate system in GR, as

d2xa
dt2

= ANa + ε2A1PN
a + ε4A2PN

a + ε5A2.5PN
a + ε6A3PN

a + ε7A3.5PN
a + ε8A4PN

a(18)

The first term is the usual Newtonian acceleration of the a-source planet, beyond the
Newtonian term is the historical Lorentz-Droste-Einstein-Infeld-Hoffmann (1pN correc-
tion). Up to the 2pN level the system is conservative, i.e., admits ten invariants associated
with the symmetries of the Poincaré group. The first dissipative effect appears at the
2.5pN order representing the gravitational radiation-reaction force, tested by the obser-
vation of the secular acceleration of the orbital motion of the Hulse–Taylor binary pulsar
PSR 1913+16. The 3pN expansion arises from the development of the LIGO-Virgo de-
tectors and the need of accurate GW templates for inspiraling compact binaries. The
dissipative 3.5pN term complete the 3pN one and so on [34]. Close to the merger event,
the post-Newtonian expansion needs numerical-relativity computations.

As consequence of the above remarks, the metric tensor at 1pN order for the Solar
System implicitly assumes that the perturbations from the gravitational-wave part of the
metric are small and may be neglected in most cases. In such a case the construction
above is valid only in the near zone, defined as a distance comparable to the wavelength of
the gravitational radiation emitted by the system of sources generating a non stationary
gravitational field (4). The use of the near-zone expanded retarded potentials may cause
the appearance of divergent integrals, related to the fact that the expression of the metric
represents only the first terms in the near zone expansion and says nothing about the
behavior on the far-zone [33]. One may say that the pN approximation does not consider
the hyperbolic property of the Einstein equations and does not provide any advanced
and retarded solution of the field equations [35].

In order to match the requirements on the accuracy of the measurements and that
of the chosen physical model in case of expansion (17), a minimal constraint is given by
the virial theorem. As a matter of fact, all forms of energy density within the bound
n-body system must not exceed the maximum amount of the gravitational potential
in it, say, w. Then the energy balance requires that |hαβ | ≤ w/c2 ∼ v2/c2, where v
is the characteristic relative velocity within the system (5). Since the latter is weakly
relativistic (6), the hαβ ′s are at least of the order of (v/c)2 and the level of accuracy, to
which it is expected to extend the calculations, is fixed by the order of the small quantity
ε ∼ (v/c). In practice, the perturbation tensor hαβ contributes with even terms in ε to
g00 and gij (lowest order ε2) and with odd terms in ε to g0i (lowest order ε3, [25, 26]);

(4) The near zone of the Solar System, including only the Sun and Jupiter, is about 0.3 pc. All
the visible objects are beyond these distance.
(5) For a typical velocity ∼ 30 km/s, (v/c)2 ∼ 1 milli-arcsec
(6) This means that the length scale of the curvature is everywhere small compared to the
typical size of the system; this implies also that v2/c2 � 1
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its spatial variations are of the order of |hαβ |, while its time variation is of the order of
ε|hαβ |. Thus, the minimal requests in case of 1pN expansion are

h00 = O(c−2) , h0i = O(c−3) , h00 = O(c−2) ,(19)

consistently in each of the local/global coordinate systems.
The pN equations (1) with gauge harmonic condition

gµνΓαµν = 0 ,(20)

takes the form (
−1

c

∂2

∂2
t

+∇2

)
w = −4πGσ +O(c−4)(21)

∇2wi = −4πGσi +O(c−2)(22)

where w and wi are the gravitational mass and mass current density, respectively. Mathe-
matically they are related to the energy-momentum tensor Tµν by the following integrals

σ =
1

c2
(
T 00 + T ii

)
, σi =

1

c
T 0i.(23)

The standard solution reads

w(t, xi) = G

∫
σ(t, x′)

|x− x′|
d3x′ +

1

2c2
G
∂2

∂2
t

∫
σ(t, x′)|x− x′|d3x′(24)

wi(t, xi) = G

∫
σi(t, x′)

|x− x′|
d3x′.(25)

In case of retarded time, we should solve the above integrals substituing t with tret =
t − |x − x′|/c. However, within the first post-Newtonian approximation, these terms
vanish as a consequence of the Newtonian mass conservation law.

Finally, the most suited 1pN form adopted for the metric in harmonic coordinates is

g00 = −1 + 2ε2w − 2ε4w2 +O(ε6) = −e−2w +O(ε6)

g0i = −4ε3wi +O(ε5)

gij = δij(1 + 2ε2w) +O(ε4) ,(26)

The exponential parametrization of the metric tensor has the effect of linearizing the
field equations, as well as the transformation laws under a change of reference system.
This linearity plays a crucial role in Damour-Soffel-Xu formalism, since in each frame
there is a canonical and unique way to split locally the metric into (i) a part due to the
gravitational action of a source itself (in the vicinity of the source), and (ii) an externally
generated part, due to the action of the other bodies in the system (and that of the
inertial forces in the accelerated local system).
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Moreover, while standard gauges impose differential conditions to the metric, ac-
cording to Damour-Soffel-Xu formalism, one can also require conformally Cartesian or
isotropic spatial coordinates in all coordinate systems

hij = h00δij ,(27)

which imposes restrictions to the various elements zµ, eµa , ξµ entering the map between
the global coordinates and any of the local one. These conditions are purely algebraic
and a convenient gauge flexibility is left open in the time coordinate. In this way one can
easily deal either with harmonic space-time coordinates or “standard” post-Newtonian
coordinates in all frames. The ADM gauge, instead, allows to eliminate the retarded-time
dependence from h00 and h0i, whereas it remains in hij .

The gauge condition at 1 pN implies now

∂tw + ∂iw
i = 0(ε4).(28)

The "potentials" w and wi are specified according to the context of applications. If
we limit our considerations to bodies with only mass (M), spin (S) and time-dependent
quadrupole moment Iij(t−r), at rest with respect to chosen coordinate grid, the canonical
metric tensor simplifies as ([29])

w =
∑
A

GMA

rA
+

3

2

∑
A

GIAij
r3
A

(
niAn

j
A −

1

3
δij
)

+ . . .

wi =
∑
A

GMA

rA
viA −

1

2

∑
A

G[SA × nA]i

r2
A

+ . . .(29)

where we have defined ni = xi/r and vi = dxi/dt, with (niAn
j
A −

1
3δij) being the STF

part of the tensor product nA ⊗ nA, and

IAij =

∫
vol(A)

ρA(xi − xiA)(xj − xjA)d3x(30)

is the quadrupole moment of the object A of mass density ρA occupying a certain volume
vol(A). The retarded time contributions appear in the quadrupole term.

Let us assume for the principal axes

I1 = I2 , I1 − I3 = J2MR2 ,(31)

where R can be identified with the equatorial radius of the body. We have then

G

r3

(
I1(n2

1 + n2
2) + I3n

2
3 −

1

3
(2I1 + I3)

)
=
GJ2MR2

r3

(
1

3
− n2

3

)
=
GJ2MR2

r3

1

3

(
1− 3 cos2 θ

)
(32)
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implying

w ≈ GM

r
− GJ2MR2

r3
P2(cos θ).

(33)

In the unit system where c = M = L = 1 the numerical value of Newton’s constant
is G �1, so one can also look for solutions of equation (1) by expanding gαβ in pow-
ers of G, which leads to a formal hierarchy of inhomogeneous wave equations for the
correction terms hαβ . This approach is called the post-Minkowskian (pM) formalism,
which assumes only the weakness of the gravitational field and the metric is expanded in
function of the parameter rs/r = GM/c2r � 1 (rs stands for the Schwarzschild radius
of the source), namely a non-linearity expansion around the Minkowski background with
no restriction on the parameter ε. For this reason is sometimes called the weak-field
fast-moving approximation. So far the equations of motion of systems of particles have
been obtained up to 2pM order (quadratic in G) [34].

In this sense the pM scheme preserves the hyperbolic character of (1) and the positions
of the bodies are functions of retarded time. The first step in the hierarchy represents
the well known linearized approximation to General Relativity introduced by Einstein in
1916 and represents a solution linearized with respect to G, but that includes all powers
of (v/c).

Quoting Damour ([33], pag.156), let us summarize the difference between the pN and
pM formulations as follows:

• the pN approximation methods are based on the idea of staying as close as possi-
ble to the conceptual framework of Newtonian theory separating (absolute) time
and (absolute) space, endowed with an (auxiliary) Euclidean metric, and using
instantaneous potential;

• the pM approximation methods tries to stay as close as possible to the conceptual
framework of the Minkowskian interpretation of special relativity, using an absolute
spacetime endowed with an (auxiliary) Minkowskian metric and retarded potential.

The pM expansion is uniformly valid, if the source is weakly self-gravitating, over all
space-time. PM formalism could in principle permit a smooth and unique global solution
of the light propagation equation from a source at an arbitrary distance to an observer
located within the Solar System and get a unique prediction of the moment of time at
which coordinates and positions of gravitating bodies should be fixed. In this respect
it is more powerful than the post-Newtonian one, because each coefficient of the post-
Minkowskian series can in turn be re-expanded in a post-Newtonian fashion. Therefore,
a way to take into account the boundary conditions at infinity in the post-Newtonian
series is to control first the post-Minkowskian expansion.

In conclusion, it worth remarking that although the pN technique is the standard
approach to define a metric source inside the Solar System according to IAU resolutions,
if aiming at sub-µas astronomy, it would be more effective to use the pM formalism in
order to trace back the photon trajectory. This might limit many approximations, that
could generate cumbersome matching terms in the definition of astronomical observables.

4.2. Global Reference Systems for Astronomy . – Metric (26) is in accordance with
IAU resolution B1.3 [18] for the definition of the Barycentric Celestial Reference System
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Fig. 6. – The metric terms at a general point P on the light trajectory depend on the a-th source
of gravity when the latter was located at point Q of its trajectory at a retarded time t′ = t−r(a),
being r(a) the spatial distance between P and Q̂ (event simultaneous to P).

(BCRS), which is the current reference system used by astronomers in order to refers the
motion of the Sun with respect to the rest of the Universe, the ephemerides of planetary
motions, ecliptic orbits and interplanetary spacecraft navigation.

As specified by the same resolution, BCRS should be used, with Barycentric Coor-
dinate Time (TCB), as a global coordinate system. Instead, the Geocentric Celestial
Reference System (GCRS) should be used, with Geocentric Coordinate Time (TCG), as
a local coordinate system for the Earth, e.g. for the Earth’s rotation and precession-
nutation of the equator. Formally, the metric tensor of the BCRS does not fix the
coordinates completely, leaving the final orientation of the spatial axes undefined. How-
ever, according to IAU 2006 Resolution B2, for all practical applications, the BCRS is
assumed to be oriented according to ICRS axes, then kinematically non-rotating with
respect to quasars. As remarked in the previous section, the BCRS-to-GCRS transfor-
mation was specified as an extension of the Lorentz transformation for the space and
time coordinates that also contain acceleration terms and gravitational potentials [36].
A particular time-dependence of the alignment (namely a rotation) of the local spatial
coordinate lines with respect to the global leads to an effacement of relativistic Coriolis
effects in the local frame ( a “dynamically non-rotating frame"). This effacement condi-
tion can simply be expressed as the vanishing of the central, external “gravitomagnetic
field", or by the Fermi-transport condition of the vectorial basis with respect to the ex-
ternal metric. This means, for example, that the equations of motion of a satellite, with
respect to the GCRS, will contain relativistic Coriolis forces that originates mainly from
geodesic precession.

Thus, the actual astronomical reference systems are based on the approximate so-
lutions of Einstein field equations for the Solar System. The BCRS metric allows to
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Fig. 7. – The local observer world line with respect to BCRS coordinates. The spatial axes of
the BCRS point toward distant sources. The dashed lines are the world lines of observers at
rest with respect to the barycenter. The rest space (green area) of û is locally superimposed to
the space-like hypersurfaces with equation t(x, y, z) = constant .

configure the astrometric model and fix a reference frame with respect to which one
describes the light trajectory, the “proper motion ” of the stars and that of the observer.

As the Solar System can be considered an isolated weakly gravitational bound region
of space, the BCRS can be identified requiring that a smooth family of space-like hy-
persurfaces exists with equation t (x, y, z) = constant (see [37]). The function t can be
taken as a time coordinate. On each of these t (x, y, z) = constant hypersurfaces one can
choose a set of Cartesian-like coordinates centered at the barycenter of the system and
running smoothly as parameters along space-like curves which point to distant cosmic
sources. The parameters x, y, z, together with the time coordinate t, provides a basic
coordinate representation of the space-time according to IAU resolutions. Any tensorial
quantity will be expressed in terms of coordinate components relative to coordinate bases
induced by the BCRS.

The accuracy of the BCRS depends on the level of approximation of the metric used
for its definition. This implies that for the future space missions aiming at the sub-µas
or nano-arcsecond level of accuracy, a refinement of the pN approximations is needed
accordingly.

4.3. The observer’s reference frames. – Any observer performs her/his measurements
by using a proper rest frame and a proper clock.

Consider a field of observers u, a frame {eβ} is termed adapted to u if uα = eα
0̂
and

{ea} (a = 1, 2, 3) is orthogonal to u, namely is the observer’s rest frame. In literature one
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usually finds a Fermi-Walker frame, a generalization of the inertial Cartesian coordinates
operationally fixed by a set of 3 mutually orthogonal gyroscopes. Comparing local rest
frames requires non trivial mapping among them. The advantage to define Cartesian
axes that match an instantaneous inertial frame, relies on the properties of the general
Lorentz group connecting the transformation between them.

In general, a suitable proper reference frame of a given observer is a tetrad adapted
to that observer. The tetrad is a set of four unitary mutually orthogonal four-vectors
{λα̂}, which form a system of local Cartesian axes, and equips the observer with an
instantaneous inertial frame; in fact (in virtue of the equivalence principle), it is defined
in a point of the space-time as:

gµνλ
µ
α̂λ

ν
β̂

= ηα̂β̂ .(34)

The physical measurements made by the observer are obtained by projecting the
appropriate tensorial quantities on the tetrad axes. The solution of a tetrad, however, is
not trivial since it depends on the metric at each space-time point along the world line
of the observer.

Concerning observes in the BCRS metric, at any space-time point, one can define
a congruence of curves of unitary four-vector û which is tangent to the world line of a
physical observer at rest with respect to the spatial grid of the BCRS defined as:

ûαB = (−g00)
−1/2

δα0 =

(
1 +

h00

2

)
δα0 +O

(
h2
)
.(35)

This can be termed as the barycentric static observer, and its congruence defines a
family of fiducial observers, namely those at rest with respect to the coordinates. The
totality of these four-vectors over the space-time forms a vector field which is proportional
to a time-like and asymptotically Killing vector field ([37]) (i.e. the metric asymptotically
does not vary with time). To the order of accuracy required for Gaia-like measurements,
for example, the rest space of u can be locally identified by a spatial triad of unitary and
orthogonal vectors lying on a surface which differs from the t = constant one, but chosen
in such a way that their spatial components point to the local coordinate directions as
chosen by the BCRS. This frame will be called local BCRS, represented by a tetrad whose
spatial axes (the triad) coincide with the local coordinate axes, but whose origin is the
barycenter of the satellite ( [38]):

λαâ = h0aδ
α
0 +

(
1− h00

2

)
δαa +O

(
h2
)

(36)

for a = 1, 2, 3. Then, any physical measurement refers to the local BCRS.
The world line of the center of mass of the Solar System belongs to this congruence

while the world lines of the bodies of the Solar System would differ from the curves of
the congruence by an amount which depends on the local spatial velocity relative to the
center of mass.

Equivalently one can consider also the projection operators, especially when a tetrad
solution is not an easy task. In this case the metric P (u)αβ projects on the rest-space of
the observer u and allows to measure proper length, instead the metric T (u)αβ projects
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along the observer’s world line and allows to measure proper time. Then the line element
between two events in the space time can be reformulated as:

ds2 = P (u)αβdx
αdxβ + T (u)αβdx

αdxβ ≡ dL2
u − c2dT 2

u ,(37)

from which we can extract the measurement performed by u of the infinitesimal spatial
distance:

dLu =
√
P (u)αβdxαdxβ ,(38)

and of the time interval

dTu = −uαdxα.(39)

Note that the above operators allow to define the observer’s rest space and time
dimension in neighborhood regions sufficiently small around a point of the observer’s
world-line, namely where the measurement domain does not involve explicitly space-time
curvature. For example, the satellite instantaneous velocity with four-tangent vector us
can be defined as

|ν(us, u)| ≡ lim
δx→0

dL

dT
= − (P (u)αβdx

αdxβ)1/2

uαdxα
,(40)

and the instantaneous velocity 4-vector can be written as:

να(us, u) = |ν(us, u)|ν̄α(us, u)(41)

where να = P (u)αβu
β
s and ν̄(us, u)α is the unitary vector.

Then, the satellite four-velocity us can be expressed both in function of the projected
spatial four-velocity as

uαs = γ(us, u)[uα + να(us, u)](42)

or in its coordinate form as

uαs = Γ[∂α0 + vas∂
α
a ] ,(43)

where vas = dxa/dt, Γ is the normalization factor such as us · us = −1 and γ is the
Lorentz factor given by

γ(us, u) = (1− |ν(us, u)|2)−1/2 ,(44)

so that the relative spatial four velocity of us with respect to an observer u results

ν(u, us)
α =

1

γ(us, u)
uα − uαs .(45)

At 1pN order the Γ factor of the satellite/observer 4-velocity (42) is

Γ = 1 +

(
1

2
v2
s + h00

)
+O(ε4) ,(46)
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whereas, the frame components ν(us, u)â and the associated Lorentz factor γ(us, u) result

ν(us, u)â = (1 + 2h00)vas ,

γ(us, u) = 1 +
v2
s

2
ε2 +O(ε4) .(47)

An adapted tetrad frame to us is obtained by imposing

λα
0̂

= uαs ,(48)

and boosting the static tetard along us, i.e. [38]

λαbâ = P (us)
α
β

[
λβâ −

γ(us, u)

γ(us, u) + 1
ν(u, us)

β (ν(u, us)
ρλâρ)

]
.(49)

The spatial triad (49) adapted to us at 1pN approximation is given, for example, by
[39]

λαâ = λαâ + εvas

[
1 + ε2

(
v2
s

2
+ 3h

)]
∂α0 +

1

2
ε2vasv

b
s∂
α
b +O(ε4) .

(50)

As far as the time transformations is concerned, any observes in Solar System will
carry out observations from a position in continuous motion around a point (e.g. L2),
which is in turn in motion with respect to the Barycentric Celestial Reference System
(BCRS).

Because of this motion and a non-zero gravitational potential at the observer location,
his clock will deliver a time signal different from the BCRS coordinate time TCB that
will be used as the time parameter in any data processing. As a consequence, one needs
to determine the relationship between the two timescales (7).

Therefore, TCB = t is the time used nominally in the observation modeling. On the
other hand the interval of time spanned between two events in the space-time, separated
by the infinitesimal coordinate interval dxα, along the worldline of the observer is defined
via formula (39).

Then the relationship between the observer’s proper time (Tu) and the BCRS coor-
dinate time (t) is:

dTu = −u0

[(
g00 + g0iv

i
s

)
dt+ g0idx

i + gijv
i
sdx

j
]

(51)

(7) IAU/IUGG 2000 Resolution B1.3 has recommended as time coordinates TCB and TCG with
origin in terms of International Atomic Time (TAI) in unit SI second. IAU 2006 Resolution B3
has clarified the definitions of Barycentric Dynamical Time (TDB) as a linear transformation of
TCB, with constant coefficients, namely TCB - TDB = LB × (JD - 2443144.5003725)× 86400
s+ TDB0 with LB = 1.550519768×10−8 and TDB0 = 6.55 ×10−5 s . TCB is in use also for
solar system ephemerides and pulsar timing.
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Fig. 8. – Worldline of an observer in L2 with respect to BCRS (Lissajous orbit).

where from the normalization condition (uαuα = −1)

u0 =

(
− 1

g00 + 2g0ivis + gijvisv
j
s

)1/2

(52)

The specific form of this equation depends on the choice of the metric and the poten-
tials defined in the metric terms. At 1pN approximation, with the IAU metric, equation
(107) in subsection 5.3 gives an explicit example of a such time transformation.

4.4. The null geodesics. – According to GR the light emitted by a star propagates via
null geodesics, say, Υk with tangent null vector kα.

The null geodesic with tangent vector field kα = dxα/dλ satisfies the following equa-
tions:

kαkα = 0(53)
dkα

dλ
+ Γαρσk

ρkσ = 0.

Here λ is a real parameter on Υk and Γαρσ are the affine connection coefficients of the
given metric.



ASTROMETRY IN THE 21ST CENTURY. FROM HIPPARCHUS TO EINSTEIN 29

GAIA

(σ ( λ ))

u

u

k 

-

u

photon

S(  )τ

τ 
oS(  )

Y

observation

l 

Y

Y

l 

Fig. 9. – Space-like mapped geodesic on the slice at the time of observation.

A photon traveling from a distant star to the observer who lives in weakly bound
gravitational fields, would see the spacetime as a time development of the S(τ(xi, t))
slices. Because of the unitary condition, the parameter σ, running along the normals
uα ≡ dxα/dσ, is not constant on the slices S(τ) but it varies differentially with the
position as σ = σ(xi, τ); if one assumes that the spatial coordinates xi are Lie-transported
along the unique normal going through the point with those coordinates, the parameter
along it will be function of τ only for each set xi, i.e. σ = σ(xi)(τ). Assume that the
trajectory starts at a point p∗ on a slice S(τ∗) (say) and with spatial coordinates xi∗.
The light trajectory will end at the observer on a slice S(τo) and at a point with spatial
coordinates xi(o).

Although the slicing allows us to define a coordinate system which is centered at the
barycenter of the bound system, each slice is not the local rest-space of a barycentric
observer u (8). Any of these observers which are at rest with respect to the BCRS
coordinates xi, once intersected by the null ray will see the light signal along a spatial
direction ` in her or his rest space given by

`α =
∂xα(σ(τ0))

∂xβ(σ(τ))
kβ(τ) = Pαβ (ûB)kβ(τ)(54)

where P is the operator which projects orthogonally to the ûB’s. We can parameterize
the curve Υ with the parameter σ which makes unitary the locally projected vector field
` which we term as ¯̀, so ¯̀

α
¯̀α = 1.

Then, relationship (54) acts as a map on a 4-dimensional manifold with image in a

(8) We drop any symbol related to the barycentric observer for convenience.
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3-dimensional one hence the coordinates of the target points (Υ ∩ S(τ)) and those of
the image points on S(τ0) are, respectively, `α = Pαβ k

β . The spatial projection of the
null geodesic on the slice S(τo) at the time of observation is a curve denoted as Ῡ` and
is naturally parameterized by λ. From uαuα = −1, it follows that:

`α = kα + uα(uβk
β) .(55)

Hence, being

dσ = −(uαk
α)dλ ,(56)

one defines the new tangent vector field:

¯̀α ≡ − `α(
uβkβ

) .(57)

In the same way one denotes

k̄α ≡ − kα

(uβkβ)
(58)

so that k̄α = ¯̀α + uα, which implies ¯̀α ¯̀
α = 1.

The projection of k turns out into writing the null geodesic in function of the four-
spatial unknown ¯̀α. From (56) and (58), the second of equations (53) writes:

d¯̀α

dσ
+
duα

dσ
− (¯̀α + uα)(¯̀β u̇β + ¯̀β ¯̀τ∇τuβ)

+ Γαβγ(¯̀β + uβ)(¯̀γ + uγ) = 0 .(59)

In this equation the quantity ¯̀β ¯̀τ∇τuβ can be written explicitly in terms of the
expansion Θρσ of the congruence Cu [26], as:

d¯̀α

dσ
+
duα

dσ
− (¯̀α + uα)(¯̀β u̇β + Θρσ

¯̀ρ ¯̀σ)

+ Γαβγ(¯̀β + uβ)(¯̀γ + uγ) = 0(60)

where Θρσ = γαρ γ
β
σ∇(αuβ), with

Γαβγ =
1

2
gαρ (gρβ,α + gρα,β − gαβ,ρ) .(61)

Note that this procedure is non local insofar as the measurement domain is finite
and one can neglect the curvature contributions far from the local domain (as the case
of an isolated Solar System). Some tensorial components may differ if written in terms
of a vector ¯̀ parallel propagated along a space-like geodesic (i.e. from the projected
coordinate of the stars to the observer) and not along a null ray (see [26], section 9.7,
for example). For instance, assuming a variation duα/dσ = (∂uα/∂xβ)(dxβ/dσ), with
respect to the (spatial) local line-of-sight ¯̀β , namely only along the space-like geodesic
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connecting to the observer the projected star position onto the hypersurface S(τo) of
simultaneity at the time of observation, one gets

d¯̀0

dσ
= ¯̀i ¯̀jh0j,i +

1

2
h00,0(62)

d¯̀k

dσ
=

1

2
¯̀k ¯̀i ¯̀jhij,0 − ¯̀i ¯̀j

(
hkj,i −

1

2
hij,k

)
− 1

2
¯̀k ¯̀ih00,i − ¯̀i (hk0,i + hki,0 − h0i,k)

+
1

2
h00,k + ¯̀k ¯̀ih0i,0.(63)

Alternatively, it is possibile define the projected null geodesic in term of its energy
and four-momentum via the kinematics of the congruence (1+ 3 splitting, timelike con-
gruence).

The decomposition of the photon 4-momentum is given by the same formula (55)

kα = −(u · k)uα + `α(u) ≡ E(k, u)uα + `α(u) ,(64)

with `(u)α = P (u)αβk
β orthogonal to uα as previously defined. The trajectory is

parametrized by σ such that

k̄α =
kα

E(k, u)
=

dxα

dσ
,(65)

and

¯̀(u)α =
`(u)α

E(k, u)
= k̄α − uα ,(66)

which is related to the affine parameter λ by dσ = E(k, u)dλ, implying that

k̄α∇αk̄β = −d lnE(k, u)

dσ
k̄β .(67)

Then

d lnE(k, u)

dσ
= ¯̀(u)α ¯̀(u)βk(u)αβ − ¯̀(u)αa(u)α

= −¯̀(u)α ¯̀(u)βθ(u)αβ − ¯̀(u)αa(u)α ,(68)

where the kinematical tensor k(u)αβ = ω(u)αβ − θ(u)αβ and the acceleration vector
a(u)α are two spatial fields coming from the splitting of the covariant derivative of uα,
as presented in the previous section.

Null geodesic thus transforms into

dk̄α

dσ
+ Γαµν k̄

µk̄ν −
[
¯̀(u)µ ¯̀(u)νθ(u)µν + ¯̀(u)µa(u)µ

]
k̄α = 0 ,(69)
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The fact that k̄α = ¯̀(u)α + uα implies again

d¯̀(u)α

dσ
+ Γαµν ¯̀(u)µ(¯̀(u)ν + uν) + a(u)α − k(u)ασ ¯̀(u)σ

−
[
¯̀(u)µ ¯̀(u)νθ(u)µν + ¯̀(u)µa(u)µ

]
(¯̀(u)α + uα) = 0 .(70)

For the static observers with 4-velocity (35) the kinematical fields results

a(û)i = ∂0h0i −
1

2
∂ih00 , θ(û)ij =

1

2
∂0hij , ω(û)ij = ∂[ih|0|j](71)

so that equation (70) becomes

d¯̀(û)0

dσ
= ¯̀(û)i ¯̀(û)jh0i,j + ¯̀(û)ih0i,0 ,

d¯̀(û)k

dσ
= −¯̀(û)i ¯̀(û)j

(
hki,j −

1

2
hij,k

)
− ¯̀(û)i(hk0,i + hki,0 − h0i,k)− hk0,0 +

1

2
h00,k

+¯̀(û)k
[

1

2
¯̀(û)i ¯̀(û)jhij,0 + ¯̀(û)i

(
h0i,0 −

1

2
h00,i

)]
.(72)

For zero angular momentum observers (called ZAMOs, 3+1 splitting) with 4-velocity
[40]

zα =

(
1 +

1

2
h00

)
∂α0 − h0i∂

α
i(73)

the kinematical fields is

a(z)i = −1

2
h00,i , θ(z)ij =

1

2
hij,0 − h0(i,j) , ω(z)ij = 0 ,(74)

so that Eq. 70 becomes

d¯̀(z)0

dσ
= 0 ,

d¯̀(z)k

dσ
= −¯̀(z)i ¯̀(zj)

(
hki,j −

1

2
hij,k

)
− ¯̀(z)i(hki,0 − h0i,k) +

1

2
h00,k

+¯̀(z)k
[

¯̀(z)i ¯̀(z)j
(

1

2
hij,0 − h0i,j

)
− 1

2
¯̀(z)ih00,i

]
.(75)

The projection parallel and perpendicular to u (static or ZAMO) at a fixed point
along the photon world line of the above formula allows to define a relative gravitational
force as follows [40]

F (rGf)(k, u)α = E(k, u) [−a(u) + V (u)ρν`
ρ(k, u)ων(u)− θ(u)ρν`(k, u)ν ]

α
,(76)

where V (u)αρν is the spatial four volume related to u. From the 1+3 form of the equations
of motion one gets the work theorem and the Newton second law
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If, instead, u is the four-velocity field supporting the world line of a single observer,
the “relative gravitational force" cannot be defined in terms of acceleration, vorticity and
expansion because u does not belong to a congruence. One may use, for example, a
Frenet-Serret like procedure as indicated in [40].

Let us now summarize the above expressions for the pN form (26) of the metric and
focus on formula useful for the actual astronomy. We consider as fiducial observers those
at rest with respect to the BCRS coordinates:

ûαB =
1√
−g00

∂α0 ≈
(
1 + ε2w

)
∂α0 .(77)

They form a congruence which one can characterize in terms of their acceleration, vor-
ticity and expansion:

a(ûB)i = −ε2∂iw + 2ε4[w∂iw − 2∂tw
i] +O(5)

a(ûB)i = −ε2∂iw − 4ε4∂tw
i +O(5)

ω(ûB)i = 2ε3[curl w]i +O(5) = 2ε3εijk∂[jwk] +O(5)

θ(ûB)ij = ε3δij∂tw +O(5) = θ(m)ij ,

TrΘ(m) = 3ε3∂tw +O(5)(78)

where ∂0 = ε∂t. The projector orthogonal to ûB results in

P (ûB)ij = (1− 2ε2w + 4ε4w2)δij , P (ûB)0i = P (uB)i0 = −4ε3wi .(79)

The tracefree part of θ(ûB), usually denoted by σ(ûB)ij , vanishes identically

σ(ûB)0i = σ(ûB)i0 = O(5)

σ(ûB)ij = θ(ûB)ij − 1

3
TrΘ(ûB)P (uB)ij = O(5)

(80)

Furthermore, one often uses a “gravitomagnetic language," i.e. introduces of a gravito-
electric vector field

Gα(ûB) = aα(ûB) ,(81)

and a gravitomagnetic vector field

Mα(ûB) = 2ωα(ûB) ,(82)

which are associated with the uB family of observers and play a role similar to the
electromagnetic corresponding quantities when a gravitational force is reintroduced in
analogy with the Lorentz force.

An observer-adapted orthonormal spatial frame results in the following three vectors

λ(ûB)αa =

(
1− ε2w +

3

2
ε4w2

)
∂αa − 4ε3wa∂

α
0(83)



34 M. CROSTA

with ûB · λ(ûB)a = 0 and λ(ûB)a · λ(ûB)b = δab.
If one refers to the family of ZAMOs, which is vorticity free, the associated 4-velocity

is

zα ≈
(

1 + ε2w + ε4
1

2
w2

)
∂α0 + 4ε3wa∂αa .(84)

The acceleration and expansion tensor are given by

a(z)i = −ε2(1− 2ε2w)∂αi w +O(5)

a(z)i = −ε2∂αi w +O(5)

θ(z)ij = ε3[δij∂
α
t w + 4∂α(iwj)] +O(5) = θ(Z)ij ,

TrΘ(Z) = ε3[3∂tw + 4∂αaw
a] +O(5) ,(85)

whereas the vorticity tensor vanishes identically. The gravitoelectric and gravitomagnetic
vector fields are given by

G(z)αa = ε2∂αaw +O(6) ,(86)

and

M(z)αa = −4ε3εabc∂αb wc +O(5) ,(87)

respectively.
The adapted spatial triad in such a case is given by

λα(Z)â =
1
√
gaa

∂αa ≈
(

1− ε2w + ε4
3

2
w2

)
∂αa .(88)

4.5. The GR measurements protocol.. – A measurement process can be considered
“local " when its space-time domain does not explicitly involve curvature.

Quoting de Felice and Bini ([40, 41]), a measurements protocol can be defined follow-
ing these steps: i) specify the phenomenon under investigation; ii) identify the covariant
equations which describe the phenomenon; iii) identify the observer making the measure-
ments; iv) chose a frame adapted to that observer allowing space-time splitting into the
observer’s space and time; v) understand the locality properties of the measurement un-
der consideration (namely, whether it is local or non-local with respect to the background
curvature); vi) identify the frame components of the quantities that are the observational
targets; vii) find a physical interpretation of the above components following a suitable
criterion; viii) verify the degree of the residual ambiguity, if any, in the interpretation
of the measurements and decide the strategy to evaluate it (for example, comparing to
what already is known in special relativity or in non-relativistic theories).

Requirements v-viii lead us to investigate the different techniques to solve null geodesic
and how to implement its unknown, i.e. the four tangent null vector, in astronomical
observations for different observes immersing in the local varying gravitational fields.
Next section will focus only on the astrometric observable.
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5. – Relativistic Astrometry

Heron of Alexandria had the first idea, later taken up by Fermat for the refractivity,
of measuring the time that light takes to go from one point to another and to be reflected
by a flat surface. He deduced that light travels at a constant speed and uses the path
that requires minimal time [6].

The first measurement from Earth of the time-of-flight of light was made by Ole
Römer, while working in Paris: he estimated the finiteness of the light velocity by ob-
serving the eclipses of Jupiter’s moons.

General Relativity today establishes that light passing close to a spherical mass M, is
deviated in space-time by an angle:

δφ =
4GM

c2b
= 1.75′′

(
M

M�

)
,(89)

where b is the distance of closest approach.
The number that factorizes the deviation is due to the perturbative term h00 of the

Sun; such a deviation influences the finite light velocity and increases with mass, acting
like a lens and decreases farther away from the lens. Alternatively equation (89) can be
written as:

δφ =
2(1 + γ)GM

c2b
(90)

where the parameter γ is equal to one for GR and it indicates how much the curvature
deviates a unit rest mass.

Newton himself wrote in his 1704 opus Opticks: “Do not Bodies act upon Light at a
distance, and by their action bend its Rays" but there is no prove that he estimated the
magnitude of the effect [42]. The first calculation was published by German mathemati-
cian Johann Georg von Soldner in 1804, who predicted the value qualitatively just using
Newton’s theory of gravity.

Initially Einstein derived the above quantity with a factor 2 in order to be consistent
with Newtonian theory. Thus Einstein asked to Hale if a deviation of less than an
arcsecond, i.e. ∼ 0.86”, could be detected close to the Sun. The answer was affirmative
in case of an eclipse to avoid Sun’s starlight. Fortunately the first attempt to measure the
effect amounting to ∼ 0.86” failed. Freudelinch, the astronomer in charge to measure it,
did the expedition in Crimean Penisula on August 1914. He was imprisoned and released
after the ecplise. Then, just by chance Einstein’s mistake did not become a proof against
his theory. After the publication in 1915 of the GR theory, Einstein corrected the wrong
factor into 4 and Dyson proposed to test the effect with the total solar eclipse in 1919.
The eclipse’s path of totality passed from northern Brazil across the Atlantic to West
Africa. At totality, many stars would have been visible near the eclipsed disk at different
angles by the Sun.

In May 29, 1919, Dyson and Eddington tested the deflection due to the solar mass on
Hyades cluster in the island of Principe off the coast of West Africa. Another team was
in Sobral, in Brazil, lead by Andrew Crommelin (Royal Greenwich Observatory, London)
to provide an alternative experiment in case of bad weather. The more stars measured,
the better corrections for systematic errors and reduction of random ones obtained.

The chronicle tells that there was poor weather in Principe and Eddington managed
to make fewer measurements than expected. Since he could not stay in Principe long
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enough to measure the star positions on his plates on site, he did the analysis after in
England and obtained δφ = 1, 16±0, 40 arcsecond. Crommelin, instead, had much better
conditions in Brazil. Despite of technical issues with instrumentation that left many
plates blurred, the actual measurements were δφ = 1, 98 ± 0, 16 arcsecond, noticeably
closer to the Einstein prediction than to the Newtonian one [24]. All of the 1919 eclipse
measurements are tabulated in [43].

Therefore the year 2019 marks a century since the famous experiment that confirmed
worldwide the Einstein theory. Light deflection measurements due to the Sun has beard
a great scientific impact for astrophysics even if it was performed with a 20% relative
error because of the weakness of the gravitational field of the Sun and few timing events
available (i.e. few stars close to the Sun during the solar eclipse). It has been repeated
only six times, the last one in 1973. Photographs plates were used and the accuracy of
star position was never greater than 10%. So far, VLBI light deflection measurements
have reached the 0,01%, while in space Hipparcos reached 0.1% followed by the best
measurement performed by the Cassini spacecraft, which provided a value in agreement
with GR to 0,001% [44].

Conversely, it took almost sixty years (in 1979) to get a first direct evidence of a
lensing event, i.e. a pair of quasars separated by ∼ 6" [45], as the effect was too small to
be detected via the available instrumentation. Curiously gravitational lensing was not
devised by Einstein, but by an amateur engineer, Rudi W. Mandl, as Einstein himself
reported [46].

Lensing determination requires to implement the positions of the source and the lens
in order to evidence the deviation effects. Such deviations are essentially in modern
astrometry since they become relevant locally in angle measurements accurate up to µas
(see table I).

Therefore, rigorous models of Gaia-like observables consistent with the precepts of
GR and the theory of measurements (like, e.g., the implementation of a local relativistic
observer), and relativistic consistency of the whole data processing chain become all indis-
pensable prerequisites for a physically correct determination of directions (coordinates),
distances (parallaxes), and radial and proper motions.

The relativistic consistency is needed for any mission which aims to achieve high accu-
rate measurements, making Gaia a benchmark case in the field of relativistic astrometry.

5.1. The astrometric observable. – As emphasized many times through the text, thanks
to the launch of the Gaia mission, GR is now at very core of Astrometry. The challenging
astrometric goal of the mission is the census of about 2 billion individual stars comprising
the Milky Way (MW) to be materialized in the form of a catalog listing, from a prescribed
set of observables, the the five fundamental astrometric parameters: coordinates (α, δ),
parallax $ , and the proper motions (µα , µδ).

Once solved the system, in order to transform the BCRS coordinates to those of the
astrometric catalogue (α, δ) at a given epoch t0, it is enough to apply the well-known
transformations

x∗ =
1

$
(cosα cos δ, sinα cos δ, sin δ),(91)

and the proper motion can be deduced by a Taylor expansion of the first order

α(t) = α(t0) + µα(t− t0) +O(∆t2), δ(t) = δ(t0) + µδ(t− t0) +O(∆t2).(92)
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While in classical astrometry these quantities are well defined, in GR they must be
interpreted in order to be completely compliant with the relativistic framework.

As described in the previous sections, the first step of the relativistic modeling is to
identify the gravitational sources and then fix the background geometry compatible with
the basic physical assumptions, consequently choose a suitable coordinate system to label
spacetime points. These steps allow us to identify a reference frame to which one refers
light trajectory, stellar motion, and motion of the observer.

The localization of a star is determined through the collection of the light emitted
by the star in different observation times. In the previous section we discuss how to
handle light propagation through the Solar System, writing the differential equations
which would enable us to reconstruct the light trajectory from a distant star to the
observer. A mathematical boundary condition, which links the observation data to the
above star parameters, is the prerequisite to solve uniquely such differential equations
where the measured local line of sight, ¯̀α, is the unknown. For this step we need both
the satellite frame to define the observations and the barycentric one to express all the
coordinate tensorial components.

The required formula which relates the observables and the data to the astrometric
parameters, namely the observables eâ, at time t0, is the angles between the directions
of the incoming photon, when it hits the telescope, and the three spatial directions of a
satellite adapted frame.

Let us be the vector field tangent to the satellite’s world line and {λâ} (where â =
1, 2, 3) a spacelike triad carried by the observer. The angles ψ(λâ,k̄) that the incoming
light ray forms with each of the triad direction, is given by the following direction cosine
[26]:

cosψ(λâ,k̄) ≡ eâ =
P (us)αβ k̄

αλβâ
(P (us)αβ k̄αk̄β)1/2(P (us)αβλαâλ

β
â)1/2

(93)

where no sum is meant over â and it generalizes the "newtonian" angle between two
straight direction by introducing the tensorial quantities and the scalar product with
respect to the metric. The above equation can be written more conveniently as

eâ =
¯̀α
(o)λαâ + uαλαâ

usα ¯̀α
(o) + uαuαs

(94)

where ¯̀
(o) ≡ ¯̀(τo) and considering that P (us)αβλ

α
âλ

β
â = 1; expression (94) is a matrix

equation where the unknowns are the spatial directions ¯̀k
(o) of the photon at the time of

observation; they can be singled out as

¯̀i
(o)[usieâ − λiâ] = uαλâα − eâ(uαs uα).(95)

The direction of the light ray, as it is observed from within the satellite, depends on
the motion of the latter relative to the center of mass which we take as origin of the
spatial coordinates on each slice. This dependence causes the stellar aberration. Did the
satellite not move with respect to the spatial coordinate grid, namely if uαs = ûαB , then
(95) would become ¯̀i

(0)λiâ = eâ as expected.
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Fig. 10. – Projected light-of-sight with respect to local barycentric observer and the attitude
frame of an observer.

The spatial axes of the tetrad, λαâ , are used to model the observer’s rest frame. The
Gaia’s attitude frame is specified by the following spatial rotation of the adapted triad

Eαâ = R(αi)â
b̂λα
b̂
,(96)

then, in term of such a set of three orthonormal spacelike vectors, comoving with the
satellite, the cosine is given as follows:

cosψ(â,k̄) =
P (us)αβ k̄

αEβâ
[P (us)αβ k̄αk̄β ]1/2

(97)

Actually, each astrometric observation can be translated into the measured abscissa
along the scanning direction on the x-y focal plane which can be modeled as a function
f(x∗, xC , xI , xG) of the stellar coordinates xi∗, as well as of those of the satellite attitude
xiC , instrumental xiI , and of another kind called global xiG which include the PPN pa-
rameter γ [47]. Moreover, the attitude reconstruction requires the inclusion of a certain
number of across-scan measurements, namely those of the coordinate orthogonal to the
same plane.
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Then, in the IAU framework, the actual observables of Gaia in power of ε (i.e. as-
suming a pN metric) are along and across the scanning direction rispectively:

cosφ =
cosψ(1̂,k)√

1− cos2 ψ(3̂,k)

= cosψ(0) + ε cosψ(1) + ε2 cosψ(2) + ε3 cosφ(3)(98)

sin ζ = cosψ(3̂,k) = cosψ
(0)

(3̂,k)
+ ε cosψ

(1)

(3̂,k)
+ ε2 cosψ

(2)

(3̂,k)
+ ε3 cosψ

(3)

(3̂,k)
.(99)

For their explicit expressions refer to [39]. Merging repeated observations of the same
objects from different satellite orientations and on different times allows to estimate
their angular positions, parallaxes, and proper motions, i.e. the actual materialization of
an absolute Reference Frame. This process is conventionally called Astrometric Sphere
Reconstruction.

Nevertherless, since Gaia collects a large number of observations, a large overdeter-
mined system is produced that can be linearized around a given starting point xio and
solved with the least square method. Then, in order to determine the unknowns, we have
to consider the solution of a linear system of equations such as

b = Aδx(100)

where b = {− sinφjδφ
j}T (j = 1, ..., nobs), δx = xun−xo is the unknowns vector, and A

is the nun × nobs design matrix of the system whose coefficients are aji = ∂f/∂xi. The
variation of (97) with respect to any parameters pi is

δ
(
cosψ(â,k)

∣∣
σ=0

)
=
∑
j

∂fâ(pi)

∂pj
δpj ,(101)

which has been computed in the case of IAU metric in [39]. Direct solution, no block-
adjustment, of such a system via an iterative method provides estimates of variances
[48, 49, 50].

The direction cosines being physical quantities not depending on the coordinates, are
a powerful tool to compare the astrometric relativistic models.

It is worth stressing that the direction cosines (i.e. the astrometric measurements
strictly dependent on the mathematical characterization of the attitude) taken as a func-
tion of the physical local line-of-sight (i.e. the quantity defined in the rest space of the
observer), at the time of observation, allow to fix the boundary conditions needed to
solve the null geodesic and to determine uniquely the star coordinates.

5.2. Relativistic astrometric models at work . – Having a control on the error budget
at the level of µas for Gaia is even more critical if one considers that the solar system
generates several varying perturbations of the order of the measurement accuracy in
different observation times and for different satellite positions.

Since high astrometric accuracy necessarily translates into the need of using GR, a
fully self consistent astrometric relativistic models suitable to describe correctly such
observations should be available possibly according the GR measurement protocol.

Thanks to Gaia, nowadays there exist several models conceived for the above task
and formulated in different and independent ways ([37, 39, 51, 52, 53, 54, 55, 56, 57],
and references therein). Their multiple and simultaneous availability is needed in order
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to rule out possible spurious contributions (especially systematic errors due to, e.g., in-
sufficient instrumental modeling) and helps to consolidate the results via an independent
mutual cross-checking. From the experimental point of view, in fact, global relativistic
astrometry opens a largely uncharted domain and cross-checked theoretical models are
of capital importance to interpret the same data.

As a Parameterized Post Newtonian (PPN) extension of a seminal study conducted
in the framework of post-Newtonian (pN) approximation of GR [53], Klioner produced a
PPN model for relativistic astrometry, accurate to 1 µas, in which the finite distance and
the angular momentum of the gravitational deflector are included, linked to the motion
of the observer and the source in order to consider the effects of parallax, aberration,
and proper motion [58]. This model reproduces in a relativistic framework the classical
approach of astrometry, where the quantities which ultimately enter the catalogue are
referred to a global inertial reference system, taking into account, one by one and in-
dependently from each other the astrometric parameters. This approach uses harmonic
coordinates and assumes at 1pN order all the necessary specifications of background
spacetime, photon and satellite orbit which pertain to the Gaia mission. This model,
GREM, is considered the baseline for the Gaia data reduction.

On the other hand, since the pM formalism has the ability to make calculations at
any desired order of approximations in (v/c) and the same IAU resolutions B1.3 [17] can
be adopted, Kopeikin&Schafer [59] solved the metric tensor in function of the retarded
Lienard-Weichert potentials and later Kopeikin&Mashhoon [55] included all relativistic
effects related to the gravitomagnetic field, produced by the translational velocity/spin-
dependent metric terms. Both studies rewrite the null geodesic as a function of two inde-
pendent parameters and solve the light trajectory as a straight line (Euclidean geometry)
plus corrections in the form of integrals, containing the perturbations encountered, from
a source at an arbitrary distance to an observer located within the Solar System.

Another model is based on the Time Transfer Functions (TTF), which conceptually
stands as an application of Synge World Function Ω [60], an integral approach based on
the principle of minimal action (see [61] and references therein). While the World Func-
tion is an implicit equation of the trajectory of the photon through the metric, related
to the spatial length between two simultaneous spacetime events, the TTF formalism,
based on a solution of an eikonal equation adapetd to a perturbative expansion, focus on
the light propagation between two points at finite distance, the so-called coordinate time
of flight Te/r of an electromagntic signal between the event of emission xA = (ctA, xA)
(A) and the event of reception xB = (ctB , xB) (B). In doing so the TTF method does
not provide the full trajectory of light, however the evaluation of Te/r is important in
various fields of astronomy and space science, such as the positioning of space probes or
the lunar laser ranging. The main useful formula is the ratio of the spatial and tempo-
ral covariant components of the tangent vector to the null-geodesic at its emission and
reception point, i.e.

(
k̂i

)
B
≡
(
ki
k0

)
B

= −c ∂Te
∂xiB

= −c ∂Tr
∂xiB

[
1− ∂Tr

∂tB

]−1

,
kB0
kA0

= 1− ∂Tr
∂tB

,(102)

where
(
k̂i

)
B

is termed the light direction triple at reception event. Similarly, one can

define the light direction triple
(
k̂i

)
A
at emission event. Given Te and Tr as two distinct
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(coordinate) Time Transfer Function, the time of-flight is defined as

tB − tA = Te(tA, xA, xB) = Tr(tB , xA, xB) .(103)

The TTF have been formulated as a general pM series of ascending powers of G [61].
Nevertheless, this formalism has been only recently applied to light propagation in a time
dependent space-time, in particular in comparison with the RAMOD approach, which
relies on the GR formalism presented in the previous sections.

RAMOD stands originally for Relativistic Astrometric MODel, conceived to solve the
inverse ray-tracing problem through a family of models of increasing intrinsic accuracy in
a general relativistic framework ([62, 63, 37, 51, 39]), not constrained by a priori approx-
imation and not necessarily applicable only to astrometry. In fact, RAMOD approach to
modeling tries to be as close as possible to the concept of curved geometry of GR and to
foliate the spacetime in order to define the satellite’s proper time and a rest space, i.e. to
reconstruct all the simultaneous observations in a curved spacetime as exposed in section
4. The model works according to the measurement protocol in GR and with any metric
solution in the form of (1), the only constraint is that it must represent a weakly rela-
tivistic gravitational field. Indeed RAMOD does not specify neither the coordinates nor
the perturbed metric and mainly develops the so called observer’s point of view (having
in mind that whatever measurement is performed it involves a given observer). Hence
the results provided by RAMOD are general enough to be easily adapted to special as-
trophysical situations (light deflection by a single or more bodies, satellite orbit geodesic
or not, doppler observable, global and differential astrometric observations and so on).
In RAMOD any physical measurement could refer to the local BCRS or ZAMOs.

Note that the World function is defined as the measurement of length of space-like
geodesic, between an event P and the observer A , which strikes the observer’s worldline
orthogonally at the point of observation A. Then it connects simultaneous events and it
is easy to check [26] that the projection operator P (u) and T (u) can be recovered from
the Synge function definition. In this respect TTF application is very close conceptually
to RAMOD framework, based on projected (or mapped) tensorial quantities in order to
define a measurement.

The classification based on increasing levels of accuracy introduced in RAMOD turns
out to be extremely useful for the implementation of the relativistic models inside the
same framework and the testing of them through consistent internal checks at different
levels of accuracy, allowing also a very simple procedure to identify where the possible
discrepancies could arise.

In RAMOD the major difficulty is to integrate the set of non linear coupled differential
equations (70), which are obtained once one projects the four-momentum of the photon
on the rest space of the observer implying a new four dimensional spatial tangent vector
as unknown, to trace back the star positions and which include, a priori by definition,
any varying background property of a curved space-time.

One can proceed to solve such a set numerically if the form of the metric is an implicit
function of the retarded time and no suitable expansion of the metric can be applied,
or analytically adopting the same perturbative and iterative solutions of the alternative
approaches indicated above. Indeed, whether analytical or numerical, the solution of
those equations aims to contain “globally” all relativistic perturbations affecting a photon
moving along its trajectory.

Therefore different models of the family can be adopted according to the needs of
a specific problem or measurement in the Solar System. For example, in principle
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RAMOD3a [52], a static model at the ε2 level, should be sufficient for the sphere recon-
struction at the Gaia accuracy, and RAMOD3b/4a (O(ε3)) will be used if the retarded
distances need to be included appropriately, because it is able to consider them in a
rigorous way. As far as the light deflection is concerned, one expects indeed that the
velocity contributions become relevant in affecting light propagation in the case of close
approach when general relativistic effects become of the order of Gaia’s expected accuracy
together with the multipolar structure of the source. Dynamical models like RAMOD4 (
O(ε4)) could be suitable, for example, for taking into account gravitomagnetic relativis-
tic effects. IAU model solutions suitable for Gaia are reported in [39], developed for the
data validation and comparison with GREM approach. Recent developments to include
retarded distance effects in a pM scenario, due to the moving bodies of solar system, are
in progress and in comparison with the Time Transfer approach.

Then, the advantage of RAMOD is that the solutions interface numerical and ana-
lytical relativity at different levels of accuracies. This turns out quite necessary, since in
the Gaia context the practical realization of the celestial sphere is an extremely challeng-
ing problem as the high quality of the observations and the large number of unknowns
involved. The huge number of unknowns and observations puts this task at the forefront
of High-Performance Computing problems [49].

For this reason inside the Consortium constituted for the Gaia data reduction (Gaia
CU3, Core Processing, DPAC), two procedure have been developed: i) the GREM one
baselined for the Astrometric Global Iterative Solution for Gaia (AGIS, [64]), and ii)
RAMOD implemented in the Global Sphere Reconstruction (GSR) of the Astrometric
Verification Unit (AVU) at the Italian data center (DPCT). GSR acts as an independent
verification unit for AGIS and is now part of the European excellence in the field of mod-
eling photon paths in low gravity and of the Gaia effort of building, with two independent
methodologies, the first fully relativistic reconstruction, both differential and absolute,
of the celestial sphere. Specifically for this purpose, and thanks to the continued support
of INAF and the Italian Space Agency, the Italian DPCT, as part of the European-wide
effort for the reduction of the Gaia data was established through a specific ASI contract
via a partnership between OATo (for INAF) and ALTEC S.p.A. in Turin. This is the
only Data Processing Center, within the network of 6 DPCs dedicated to Gaia, which
specializes in the treatment of the satellite astrometric data [2]. The DPCT will also
provide the necessary training and support for everything related to Gaia data access
and processing, including access to the MARCONI supercomputer at CINECA (through
a specific INAF/CINECA MOU in effect since 2013) for the most demanding astromet-
ric tasks, like, e.g., the all-sky sphere reconstructions. The modular structure of GSR,
moreover, allows one to implement different astrometric models, thus transforming this
pipeline in a sort of machinery for the numerical testing of different relativistic models.

Both GREM and RAMOD models are internally consistent at the µas level required
by Gaia. However, due to their different conception, a good reciprocal understanding
is a complex task; for example, they differ in the definition and use of the unknown,
the local-line-of-sight, already at the level of the aberration contribution [65]. Evidence
of the importance of comparing relativistic models for the appropriate definition of the
astrometric observable and the interpretation of proper light direction measurements is
given also in [66, 67].

Since both models are used for the Gaia data reduction, any inconsistency in the rela-
tivistic model(s) would invalidate the quality and reliability of the scientific outputs. The
comparison of reciprocal results is mandatory in order to validate the final astrometric
catalog.
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The next subsections show how GREM and RAMOD model the local-line-of sight (up
to the mass monopole deflections term) and how important is to take into account the
local masses for a correct estimate of the parallaxes.

5.3. The algorithms for coordinate and proper local-sight-of-light deflection. – In GREM
the observed direction to the source (si) with respect to the local inertial frame (Xα) of
the observer (SRS) is defined as

si = − dX i

dX 0
.(104)

GREM observed direction converts into a coordinate one via several steps which divide
the effects of the aberration, the gravitational deflection, the parallax, and proper motion.
In order to be directly compared with the global expression derived in the RAMOD-like
models it should be expressed as a sum of a set of relativistic astrometric parameters
for the Gaia-like catalogue. The astrometric parameters should simultaneously link all
possible “astrometric” relativistic effects related to the light propagation.

The GREM coordinate direction to the light source at the satellite location xis is
defined by the four-vector pα = (1, pi), where pi = c−1dxi/dt, xi and t being the BCRS
coordinates. In order to account for stellar aberration in the algorithm for the reduction of
the astrometric observation, one has to transform the Satellite Reference System observed
direction to the source (si) into the BCRS coordinate unit direction of the light ray (ni)
at the point of observation.

Then, considering the metric tensor which defines the BCRS and from the property
of the null light ray ( gαβpαpβ = 0), the normalization factor results

p ≡ (δijp
ipj)1/2 =

(
1− 4w(t, x)

c2
− 8wi(t, x)pi

c3
+O(c−4)

)1/2

.(105)

The infinitesimal transformation Xα(xβ) between SRS and BCRS is given by the
formula the Lorentz matrix between the coordinate bases on the spacetime coordinates
of the point of observation, i.e Xα = Λαβdx

β , namely

si =
Λijp

j − Λi0
Λ0

0 − Λ0
jp
j
.(106)

Adopting the IAU resolutions, the transformations between the proper and the coordinate
time or the spatial coordinates read:

X 0 = t− c−2[A(t) + δijv
i
sR

j
s](107)

+c−4[B + δijB
iRjs + δimδjkB

ijRms R
k
s + C(t, xi)] +O(c−5)

X i =

[
δij + c−2

(
1

2
visvsj + qF ij (t) +Di

j(t)

)]
Rjs + c−2Di

jk(t)RjsR
k
s +O(c−4),(108)

where: Ris = xi−xis are the coordinate displacements with respect to the center of mass
of the satellite (CoMs) in the BCRS, vs = dxis/dt and ais = dvis/dt are the velocity and
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acceleration of the CoMs of the satellite in the BCRS. Moreover:

dA

dt
=

1

2
v2
s + w(xs),(109)

is the contribution of the Doppler effect of the second order plus the gravitational red
shift;

dB

dt
= −v

4
s

8
− 3w(xs)

2
v2
s + 4wi(xs)vis +

1

2
w2(xs),(110)

where B is a function of t and represents the post-Newtonian correction to the function
A;

Bi = −1

2
visv

2
s + 4wi(xs)− 3visw(xs),(111)

Bij = −visδajQa + 2wi,j(xs)− visw,j(xs) +
1

2
δijẇ(xs),(112)

and C(t,x) = −(1/10)R2
s(δij ȧ

i
sR

j
s) are the post-Newtonian corrections to eq. (107) due

to the displacement of the observer from the SRS origin. In particular, Qa characterizes
the deviation of the actual world line of the origin of the SRS from the geodesic motion
in the external gravitational field;

dF ij

dt
=

3

2
visw

,j(xs)− vjsw,i(xs)] +
1

2
[visQ

j − vjsQi]− 2[wi,j(xs)− wj,i(xs)](113)

expresses the geodesic, Thomas, and Lense-Thirring precession (originating from the
velocity of the SRS origin orbiting around the BCRS origin) respectively. The numerical
parameter q allows to distinguish between dynamically (q = 1) and kinematically (q = 0)
non rotating reference systems [53].

Finally, Dij = δijw(xs) is the relativistic contraction (or dilation) of the spatial
coordinates of SRS relative to the BCRS due to the gravitational potential of the Solar
System and Dijk = (1/2)(δijaks +δikajs−δjkais) represents the post-Newtonian correction
to the spatial transformation of the SRS coordinates with respect to the BCRS due to
the barycentric acceleration of the SRS.

By means of these formulas, we obtain the elements of matrix of the above Lorentz
transformation (106). Terms like (δija

iRjs) can be estimated as (v2
s/c

2) · (Rs/r) ≈ ε4 ·
10−3(9), therefore they can be neglected.

If one keeps all of the terms up to the order 0.1µas and neglect terms of the order
O(ε3 · 10−1) ∼ 0.01µas equation (106) turns out:

si = ni + c−1[n× (vs × n)]i(114)

+c−2

{
1

2
(n · vs)[n× (n× vs)]i −

1

2
ni(n× vs)2 + qF ijnj

}

(9) r represents the BCRS distance of the satellite from the origin of BCRS, r = 151.5 AU and
Rs ≈ 5 m in the case of Gaia.
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+c−3

{
1

2
(n · vs)2[n× (vs × n)]i +

1

2
ni(n× vs)2(n · vs)

+2w(xs)[n× (vs × n)]i + qF ij [n× (vs × n)]j
}

+O(ε3 · 10−1),

where δijvisnj ≡ vs · n to ease the notation. Note the aberrational contributions up to
the µas order, which depends also on the local gravitational fields. The unit vector ni
is defined at the point of observation and still includes relativistic light deflection due to
the Solar System gravitational field. The explicit deflection is obtained mapping ni into
the asymptotic flat spacetime using the solution of the equations of light propagation.
This procedure transforms ni into the vector ki lying in the flat spacetime and attached
to the point of observation.

All of the perturbations, say Ξi(t, xi), in pN or pM approximation can be included in
the trajectory of a photon as [35]:

xi(t) = xiN (t) + Ξi(t, xi)− Ξi(to, x
i)(115)

where xiN (t) = xi0 + cki represents the unperturbed trajectories of the light ray in the
Minkowskian flat spacetime, i.e. a straight line and ki is the velocity at past-null infinity.
The term Ξi(t, xi) is obtained through an analytical procedure for the integration of the
equations of the geodesic, since the retarded time has been made explicit in the metric
and the geodesic is linearly parametrized.

The component of vector ni becomes:

ni ≡ − ẋ
i(to)

|~̇x(to)|
= − ẋiN (to) + Ξ̇i(to, x

i)

|~̇xN (to) + Ξ̇i(to, xi)|
,(116)

and its expansion will be in function of the relativistic correction Ξ̇i(to, x
i). The latter

can be evaluated by considering that the maximum contribution to the light deflections
is due to the Sun, which amounts, for grazing ray, to ≈ 2 arcsec ∼ 10−1 · ε.

To achieve a unique expression for si, let us define the following dimensionless vector:

Ψi ≡ c−1[k × (k × Ξ̇)]i(117)

as the total angle of deflection of the light ray at the point of the observer and calculated
with respect to vector ki at past null infinity. Finally,

si = −ki + ψi +
1

2
kiΨ2 + c−1

{
[k × (k × vs)]i + ki(ψ · vs) + Ψi(k × vs)

+Ψi(k · Ξ̇)
}

+ c−2

{
−1

2
(k · vs)[k × (k × vs)]i +

1

2
(k × vs)2ki − qF ijkj

}
+c−3

{
1

2
(k · vs)2[k × (vs × k)]i +

1

2
ki(k × vs)2(k · vs)

+2w(xs)[k × (vs × k)]i + qF ij [k × (vs × k)]j
}

+O(ε3 · 10−1),(118)

which takes into account the aberration and deflection contributions.
The RAMOD formulation, on the other hand, in principle naturally entangles every

GR “effect” in the observables, i.e. the three direction cosines which identify the local
line-of-sight to the observed object, relative to a spatial triad associated to the satellite.



46 M. CROSTA

Therefore, to retrieve a similar expression of equation (118) in RAMOD, one needs
to specialize eq. (93) to the case of a tetrad adapted to the CoMRs of the satellite. If
one assumes no attitude parameters, the observation equation gives a relation between
the “aberrated” direction represented by the cosines as measured by the satellite and the
“aberration-free” direction. The latter is given by the quantity ¯̀α = Pαβ (uB)kβ referred
to the local BCRS frame {λâ}.

Considering the IAU metric, one obtains

ẽâ ≈ ¯̀a +
1

c

[
−vas +

(
vs · ¯̀

)
¯̀a
]

+
1

c2

{
w(xs)¯̀a − 1

2

(
vs · ¯̀

)
vas +

[(
vs · ¯̀

)2 − 1

2
v2
s

]
¯̀a
}

+
1

c3

{
−2w(xs)v

a
s −

1

2

(
vs · ¯̀

)2
vas + ¯̀a

[
3w(xs)

(
vs · ¯̀

)
(119)

+
(
vs ¯̀
)3 − 1

2
v2
s

(
vs · ¯̀

)
+ w(xs)

(
vs · ¯̀

)]}
+O

(
v4
s/c

4
)

where ẽâ are the cosines related to the tetrad without the attitude parameters.
At first glance, differences show up at the level of ε2 (in particular the term w ¯̀a) and

ε3 order which cannot allow to compare straightforwardly, as expected, to the GREM
formula, where the aberration is expressed in terms of a vector ni. From the physical
point of view ni and ¯̀α have the same meaning, as the observed “aberration free” direction
to the star. However, expanding (u|k) with the IAU metric, the projection of ¯̀α with
respect to ûB is

`i = ni
(

1− h00

2

)
+O

(
v4

c4

)
,(120)

which clearly puts in evidence how ¯̀α contains the "gravitational" aberration. Combining
eq. (119) with (121), one obtains

ẽâ = na +
1

c
[−va + (vs · n)na] +

1

c2

{
−1

2
(vs · n) vas +

[
(vs · n)

2 − 1

2
v2
s

]
na
}

+
1

c3

{
−2w(xs)v

a
s −

1

2
(vs · n)

2
vas + (vs · ns)na

[
2w + (vs · n)

2 − 1

2
v2
s

]}
+ O

(
v4
s

c4

)
.(121)

In this way the right-hand side of the aberration expression in RAMOD is rewritten
with the GREM quantities at the (v/c)

3 order. The final step is to find a relation
between ẽâ and si. Using the definition of the projection operator and the tetrad property
(λµ̂αλµ̂β = gαβ), it results:

ẽâ ≡
P (u)αβk

αλ̃βâ

(P (u)αβkαkβ)
1/2

=
kαλ̃âα
(u|k)

= − kαλ̃âα

gαβλ̃α0̂ k
β

=
kαλ̃âα

kβλ̃0̂
β

=
dx̃â

dx̃0̂
.(122)

This justifies the conversion of the physical stellar proper direction of RAMOD into
its analogous Euclidean coordinate counterpart, which ultimately leads to the derivation
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Fig. 11. – Comparison of the RAMOD approach (left) and the pN/pM (right) in the inverse
ray-tracing problem.

of a GREM-style aberration formula (115). Note, also, that the observables of RAMOD
can be matched with components of the observed si of GREM only if the origins of the
boosted local BCRS tetrad in RAMOD and of the CoMRS in GREM coincide (and only
locally, since the tetrad are not in general holonomic).

The last step for the comparison is the inclusion of the deflection. The RAMOD
solution for the deflection contributions comparable with the GREM approach, namely
in the IAU framework and for uniform moving body(10), is available in [39]. Denoting
xi − xi(a) ≡ ri(a), x

i
obs − xi(a) ≡ riobs, n

i = ri/r, ¯̀6 0 the unperturbed local direction, and
dropping the summation symbol and the subscript (a), the local-deflections due to n-mass
monopoles with constant velocities ṽi to be implemented in the astrometric problem in
the RAMOD/IAU framework are:

¯̀0 = −4GMε3
¯̀6 0 · ṽ
r

,(123)

(10) A relaxing hypothesis that matches the IAU adopted accuracy.
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¯̀a − ¯̀a
obs = −GMε2

{(
1

r
− 1

robs

)[
¯̀a
6 0 − 2ε

(
2dav −

da

d2
(ṽ · robs)

)]
+2

da

d2
[1− 2ε(ṽ · ¯̀60)]

(
n · ¯̀60 − nobs · ¯̀60

)}
(124)

+2GMε3
robs

d2r

[
dav − 2

da

d2
(ṽ · d)

] [
r − robs − (nobs · ¯̀6 0)σ

]
where

σ = (r · ¯̀6 0)− (robs · ¯̀6 0) +O(ε2) = (x− xobs) · ¯̀6 0 +O(ε2),(125)

and

da = [¯̀6 0 × (robs × ¯̀6 0)]a = raobs − ¯̀a
6 0(robs · ¯̀6 0) ≡ P (¯̀6 0)abr

b
obs ,(126)

d2 = r2
obs − (robs · ¯̀6 0)2 ,(127)

represents the impact parameter with respect to the (a)-source (being P (¯̀6 0)ab the pro-
jector orthogonal to ¯̀6 0), whereas

dav = [¯̀6 0 × (ṽ × ¯̀6 0)]a = P (¯̀6 0)abṽ
b ,(128)

is the projected source velocity with respect to ¯̀6 0. Setting ṽ(a) = 0 the static solution is
easily obtained.

5.4. Parallaxes from deflection due to a variable number of aligned bodies. – In order
to understand how planet masses alterate parallax computation, consider formula (124)
in the simplest case of two observers at opposite positions on the Earth orbit around the
Sun (i.e. r1 = r2 = r⊕, θ1 = θ2 = π/2 and φ2 = φ1 + π) and the stars also lying on the
orbital plane (θ∗ = π/2). Then the two observers are simmetrically placed with respect
to the Sun (φ∗ = (φ1 +φ2)/2). Assume that their distances r∗ goes from 1 pc to 10 kpc.

With this configuration, it is easy to calculate the parallax of a star as p∗ = 1/r∗ rad
(the distances being in AU), and so it is equally easy to determine the numerical accu-
racy of the position in terms of angles by simply subtracting the parallax p∗e of the exact
model (h00 contributions from Schwarzschild-like sources) and the approximate one re-
constructed from the numerical integrations p∗a. The geometrical configuration consider
the planets not moving and aligned behind the Sun with respect to the observer; the
light ray always grazes the solar limb. The expectation is that the parallax enlarges
when adding more planets, since they increase the total amount of deflection.

The the total deflections due to the Sun plus a variable number of planets are reported
in Table IV and in figure 12.

For each set of 4 rows, the first one is the derived distance d in AU (i.e. that obtained
by the intersection of the two geodesics), the second is the corresponding parallax p =
206265/d arcsec; each column gives the results for a given number of planets (i.e. the
single Sun in first column, the Sun plus Jupiter in the second, and so on), we will refer
to the quantities in the first row as d�, dX, . . . and p�, pX, . . . for those in the second
row.

The third row contains the difference between p� and the parallax of the correspond-
ing column. For instance, in the case of Jupiter, the value is p� − pX ≡ ∆pX.
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Table IV. – Results for the n-body tests of the stellar distances

� �+X �+X+Y �+X+Y+Z �+X+Y+Z+[

distance ∼ 1 pc

d (AU) 206261.338 206259.698 206259.216 206259.142 206259.054
pi (′′) 1.00001775 1.00002571 1.00002804 1.00002840 1.00002883
p� − pi (µarcsec) -7.95 -10.29 -10.65 -11.07
∆ψi (µarcsec) -8.00 -10.30 -10.60 -11.10

distance ∼ 10 pc

d (AU) 2062283.55 2062120.14 2062072.27 2062064.94 2062056.3
pi (′′) 0.10001777 0.10002569 0.10002802 0.10002837 0.10002879
p� − pi (µarcsec) -7.93 -10.25 -10.60 -11.02
∆ψi (µarcsec) -8.00 -10.30 -10.60 -11.00

distance ∼ 100pc

d (AU) 20589921.6 20573645.4 20568881.5 20568152.5 20567292.3
pi (′′) 0.01001777 0.01002569 0.01002801 0.01002837 0.01002879
p� − pi (µarcsec) -7.93 -10.25 -10.60 -11.02
∆ψi (µarcsec) -7.99 -10.30 -10.60 -11.00

distance ∼ 1000 pc

d (AU) 202664764 201098829 200644596 200575248 200493473
pi (′′) 0.00101776 0.00102569 0.00102801 0.00102837 0.00102879
p� − pi (µarcsec) -7.93 -10.25 -10.60 -11.02
∆ψi (µarcsec) -7.99 -10.30 -10.60 -11.00

distance ∼ 10000 pc

d (AU) 1751489760 1641052370 1611285280 1609051510 1603803810
pi (′′) 0.00011777 0.00012569 0.00012801 0.00012819 0.00012861
p� − pi (µarcsec) -7.93 -10.25 -10.42 -10.84
∆ψi (µarcsec) -7.99 -10.30 -10.60 -11.00

Finally, the fourth row gives the contribution ∆ψi, (i = X,Y, Z,[) of the planets to
the total deflection.

The results show that the distances get lower when adding more planets, confirm-
ing our qualitative expectations. Moreover the numerical residuals are ∆pi − ∆ψi ∼
10−1µarcsec (i = X,Y, Z,[), and this is compatible with a Gaia-like accuracy.

If one translates these numbers into a distance estimation via the distance modulus
(m −M = 5 log rpc − 5), only considering the Sun contribution for d=10 kpc, gives a
relative error in magnitude of the order

σm−M ≈ 2
σd
d
≈ 0.2mag(129)

meaning that if we do not include the relativistic perturbations properly this translates
a 20% error in the distance module (i.e. for a distance of 10 kpc) with obvious implica-
tions for the distance scale. Indeed, since the main Solar System curvature perturbation
amounts approximately to 100 µas at L2, this will cause the individual parallaxes to
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Light path with only the Sun

Light path with one planet

Light path with two planets

Observer Observer

Fig. 12. – Distance versus light deflection produced by n-bodies

fast degrade beyond 1 kpc, while completely invalidating the most accurate calibration
of, e.g., the primary distance calibrators. This alone is sufficient reason for allowing the
existence and making a theoretical comparison of different approaches a necessity. It is of
the utmost importance to use different accurate formulas to test with independent pro-
cedures the reliability of the data, as formula (121) for the local gravitational aberrated
direction already proves.

6. – The Universe from within the local gravitational fields. Relativistic As-
trometry in action.

The weak gravitational regime can play a pivotal role and provide a complemen-
tary perspective in understanding gravity especially in light of the recent discovery of
gravitational waves and the subsequent beginning of the Gravitational Astronomy era.
Most of the physical information about the astrophysical sources is carried on by light
signal. Astrometric observations collect photons, which have interacted with different
time-dependent gravitational fields and record perturbations along their propagation.
This could imply a new detection window of many subtle relativistic effects naturally
enfolded in the light while it propagates through the geometry of space-time from the
source up to the local observer. In this respect, relativistic astrometry fills the gaps by
properly matching the gravitational fields at the source to those where the measurements
are performed and potentially proving properties of gravity to solve basic questions in
fundamental physics.

As a matter of fact, by providing an homogenous all-sky survey of high precision
parallaxes, space motions (proper motions and radial velocities) and astrophysical char-
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acterization for more than one billion stars throughout the volume of the Galaxy, Gaia
will have a huge impact across many fields, including many branches of stellar astro-
physics, exoplanets, solar system objects, the cosmic distance ladder and fundamental
physics tests, for example, on dilaton run-away scenario, i.e., on the level of validity of
GR as the theory of gravitation. Gaia will not only greatly enhance our knowledge of
the Milky Way (MW) astrophysics, but it will also provide precise information allowing
astronomers to frame a much more detailed picture of its kinematics than what presently
available. New “accurate" distances and motions of the stars within our Galaxy will
provide access to the cosmological signatures left in the disk and halo offering indepen-
dent, direct and detailed comparisons the predictions of the most advanced cosmological
simulations.

Nonetheless, it is worth stressing again and again that all of the above goals will not
be achieved without the correct characterization and exploitation of the “relativistic",
i.e. highly accurate, astrometric data. The independent astrometric solution under-
way at the Italian data processing center in Turin (DPCT), for verification purposes, is
based on a general relativistic treatment of the data that implements, in a sophisticated
high-performance computing infrastructure, theoretical models for the observables and
the observer. Thus the five-parameter global astrometric solution, made available with
each release of the Gaia catalog, must be understood as providing relativistic kinematics
demanding in turn, at least for consistency, a relativistic representation of the Galaxy’s
dynamics.

In this regard, the GR tools of gravitational astrometry should also to apply to other
future missions, as Euclid for instance.

This will guarantee, at least, a GR coherent space-phase picture of the Milky Way
against which theories, simulations, predicting dark components or possible deviations
from GR (and not only from Newtonian mechanics) can be tested. The situation is
somewhat similar to what was done to explain the advancement of Mercury’s perihe-
lion: GR cured inconsistencies by accounting for the non-linear overlapping of the weak
gravitational fields in the Solar System which amounts only 43”/century because of the
curvature of the Sun but “strong" enough to justify a modification of Newtonian the-
ory. We should bear in mind that general relativistic weak field regime is not necessarily
equivalent to the Newtonian one.

Therefore taking the probing power of gravitational astrometry to its fullest, one could
possibly gauge breakdowns of GR.

6.1. Absolute reference frame. – The fundamental step toward the realization of the
Gaia catalogue is the global astrometric sphere reconstruction, which determines the ce-
lestial reference frame using the observations of a selected subset of up to 100 million stars
(primary sources) among those observed by Gaia. Afterwards, the catalog is completed
with the reduction of the Gaia measurements of the remaining stellar objects (secondary
stars). Basically, a star is included in the primaries subset when its astrometric model
can be described by the classical 5 parameters. Binary/multiple stars with a relatively
short period, or stars with a sufficiently large variability are examples of objects that
cannot belong to the primary source list.

Given the absolute character of the Gaia catalogs, as mentioned, the Consortium
constituted by ESA for the Gaia data reduction (DPAC) agreed to set up two independent
astrometric sphere solutions: AGIS and GSR. The process described above, including the
definition of the two subsets, the global sphere reconstruction, and the reduction of the
secondary stars, is realized within CU3 (DPAC) by the AGIS pipeline.
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Fig. 13. – The AVU-GSR sphere reconstruction. Demonstration Run with 1 million primary
sources, whole mag range, 5 years, blind simulation. Credits: A. Vecchiato et al. [68].

Focusing on RAMOD-like models, the realization of the Gaia catalogue is performed
by the GSR, which determines the celestial reference frame using the observations of
the selected subset of the primary sources, among those observed by Gaia, in order to
validate the baseline method adopted for Gaia. Recent blind simulations show that GSR
works as expected in the range of accuracy required for Gaia [68].

In figure (13) are plotted parallaxes "residuals", namely the differences between the
true and reconstructed parallaxes. It is the result of the testing (from the most realistic
situation) both wrong trigger points and measurement errors. In the latter case, in fact,
the residual systematic error is not clearly visibile because it is drowned in the Gaussian
residue which is much larger, as it is clear by comparing the color scales.

Beside the determination of the most fundamental PPN parameter (see subsection
below), which enters as unknown the global reduction process, in order to make the com-
parison useful, the Gaia observable relies on completely different relativistic observation
equations and least-squares solution methods. In a nutshell AGIS and GSR present:
independent relativistic astrometric model; independent relativistic attitude model; in-
dependent (iterative) least-squares solution method (all-unknowns solved).
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This guarantees the largest degree of independence between the two solutions and in
itself represents a powerful test of General Relativity thanks to the billions of observation
equations delivered by Gaia. Any discrepancy between the relativistic models, indeed,
if it can not be attributed to errors of different nature, will mean either a limit in the
modeling/interpretation - that a correct application of GR should fix, therefore validating
GR - or provide a new stringent limit on GR validity.

6.2. Testing gravity in the Solar System. – General Relativity governs the Universe
up to 60 orders of magnitude, from its early stage to the present, fixing its dynamics and
constraining the evolution of its physical constituents. The formation of its structures
like cluster of galaxies, the morphology of individual galaxies and the type of stars they
are made of, are all dictated by the initial conditions of the Universe. Moreover, the
primordial density ripples that eventually gave origin to the galaxies (the small variations
in the CMB temperature) are thought to be the result of fluctuations in a scalar field that
couples with gravity and drove inflation in the earliest evolution of the Universe after the
Big Bang. Gravity theories alternative to GR require the existence of this scalar field and
predict it fades with time, so that this residue would manifest itself through very small
deviations from Einstein’s GR. Several alternative theories of Gravity were proposed
during the years, and there are usually confronted by using the PPN formalism, probably
the most powerful tool for modeling gravity tests within the Solar System. In PPN
formalism, each gravity theory is characterized by specific values of ten parameters, and
the remnant of the primordial scalar field would be detected through the measurements
of one of them, γ. This parameter, by measuring the amount of curvature produced by
unit rest mass, is strictly related to the deflection effect, and is equal to one in GR. It
was constrained to the GR value to 1 + (2.1±2.3)×10−5 by the Cassini experiment [70].
Although impressively accurate, this result is not sufficient to test the dilaton-runaway
scenario (for instance [69]), which predicts a present-day variation from the GR value in
the range 10−6 − 10−7 .

Very accurate global astrometry is a very powerful and independent tool to unveil the
presence of the scalar field. The estimation of the PPN parameter γ comes naturally as
a by-product of the sphere reconstruction. A mission like Gaia-like, repeatedly observing
over years a billion light directions uniformly scattered across the sky to a precision of
µas, could be potentially able to determine γ to 10−7 at the 3σ level [47], thus reaching
the sensitivity level of the dilaton-runaway scenario.

Then, nearly a century later the experiment of Eddington and Dyson, astrometry
remains one of the most fundamental and sensitive methods to test the validity of GR
in the weak-field regime. Gaia global astrometry will provide a massive repetition of
the Eddington astrometric test of GR with 21st century technology, and this thanks to
a combination of analytical and numerical relativistic methods [39]. However, as the
systematic errors in DR2 [22] are still relatively large, the expectation is to estimate
a deviation, from the GR predicted value of 1, for the PPN γ, at the level of 10−6

with the final calibrations after DR3, at the end of the mission when the astrometric
accuracies will be better than 5-10 µas for the brighter stars and 130-600µas for fainter
targets. Continuously observation from space, but based on pointing stellar fields, are
more promising and could reach the level of 10−8 (for example [71]).

Observations from global astrometry can be used also to create small stellar reference
frames against which tiny relativistic light deflection effects due to a single source can be
tested, as that due to the quadrupole shape of the sources.

While the global tests will be done at mission’s end only after all the observations are
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Fig. 14. – Principle of differential astrometry applied to GAREQ from global astrometric obser-
vations. Credit M.G. Lattanzi.

taken, differential experiments, exploiting the precision of the elementary measurements,
can be implemented in the form of repeated Eddington-like experiments by comparing
the evolution of angular distances in bright stellar asterisms consecutively observed by
the satellite within a few planet’s radii from the limb of a giant planet like Jupiter (figure
14). Indeed, Jupiter offers an optimal target for second order light deflection experiments,
thanks to its precisely known mass, relatively large deflection, and the ability to observe
a target very close to the limb without the difficulties posed by the Sun. For Jupiter the
magnitude of the monopole deflection for a grazing ray is ∼16 milli-arcsecond (mas), to
which a component from the quadrupole moment is superimposed with an amplitude of
∼ 240µas [72]. The actual GAREQ (for GAia Relativistic Experiment on Quadrupole
[73]) observation was carried out by the satellite on February 22th, 2017. Gaia’s spin
axis orientation was intentionally optimized to catch a star close to the limb of Jupiter
in 2017. The initial spin phase axis orientation was decided in 2014 to maximize the
measurement success on Feb 2017. At the beginning of 2017, and towards the end of
February 2017, Gaia provided measurements for 31 bright reference stars (G <13 mag)
all lying within a field of 0.8×1.3 degree surrounding the target star (G= 12.68 mag).

The target star was seen a total of 26 times over a 2-month period out of which 15
transits over a time interval of a couple of days surrounding the observation at closest
approach were used (figure 15). The observation epochs were executed successfully and
are under reduction.

Uncertainties of the DR2 astrometry are still too high to detect clearly the vary-
ing relativistic effects associated with the received null geodesic from within the multi-
gravitational fields of the Solar System. However, thanks to the multiple observations
over a few consecutive scans and the appropriate statistical analysis of the local coordi-
nates on the two Gaia fields of view (FOVs), differential astrometry is used to adjust all
the frames to a common frame by means of translations, rotations and possible distortion
terms if necessary [74].

Beside the fact that such GAREQ-like experiments could provide an important sci-
ence case for assessing the health of the instruments during the mission, the precise
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Fig. 15. – Observations for the closest transit of the Target star at an angular separation of 6.73”
from Jupiter’s limb seen on 2017-02-23 T02:55:01.694. Left: section of the SM image around
Jupiter for the closest transit. The location of the target star is shown by the red arrow. Right:
A zoom-in to the top image for the closest transit. The target star is visible just outside the
saturated region. Image credit:ESA/Gaia/DPAC/C. Crowley.

Fig. 16. – Simulated light deflections effects around Jupiter via differential procedure [75]. Upper
panels show the simulated AL/AC monopole deflection signal and lower panels the quadrupole
deflection signal. Asterisks denote the target star and plus signs a randomly chosen reference
star.
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estimate of contributions to light deflection due to non-spherical mass in the Solar Sys-
tem will constitute an independent verifications of alternative theory of gravity and a
first quantitative measurement of the gravitational potential due to a non-spherical lens
(for example, [76]).

Moreover, the consolidation of a such a tiny effect will allow to confirm extra weak
field contributions to the light deflection produced by planets which, once rescaled to
other eso-systems, could contribute to refine more parameters in the characterization and
indirect discovery of eso-planets, via gravitational perturbation. Furthermore this extra
term of weak lensing might also contribute to better investigate, for example, Euclid-like
measurements. Indeed, the gravitational pull of the clusters of large masse distributions
is usually deduced from a multipolar patterns of the gravitational lens generated by the
cluster provided that GR works, plausibly, as expected.

6.3. Testing gravity in the Milky Way: Astrometric Cosmology . – Gaia accurate space-
phase structure can fully probe the Milky Way outer halo (i.e. mass content and dis-
tribution) and compare the prediction of ΛCDM models in situ. By considering just
Newtonian models, the line pursued is to search for new kinematic streams in the local
halo and redefine membership of known streams. Cold Dark Matter (CDM) models pre-
dict that structures grow by hierarchical merging, mainly driven by dynamical friction
and tidal disruption, leaving streams and substructures as relicts of this process consid-
ered as tracers of the distribution of dark matter (DM) [77]. Cosmological effects can be
detected also via the secular aberration drift of the ICRF sources [78].

However, in a complementary way, provided that the Galaxy is not a point source but
an extended one, a first attempt should be to apply the relativistic kinematics delivered
by Gaia to trace the observed MW rotation curves - from where the hypothesis of DM
originated - without any a priori assumption on the origin of its observed flatness at large
radii from the galactic center. In this respect DM is actually explained as a deviation
from the Newtonian velocity profile possibly because of the presence of DM in the halo
(however at 200 kpc the MW cannot be considered as an isolated galaxy any longer) or
of a modified gravity law.

The challenge is to establish to what extent a weak curvature due a Galactic metric
could fill the gap in baryons-only galactic rotation curves once a correct relativistic
kinematic/dynamic is provided, thus extending a correct GR Galaxy model also to other
galaxies. In fact, the derivation of the model for the GR-only rotation curve is not well
known in the literature. Besides, the "classical" models with a DM halo are well studied
since many years to the point that, indeed, we can call them "classical".

The ansatz for the first attempt to trace a GR rotational curve assumes an axially
symmetric, stationary and asymptotically flat Galaxy-scale metric and, in parallel, the
mass inside a large portion of the Galaxy, far away from the central bulk, is simplified
as a pressure-less perfect fluid (i.e. "dust" for GR) avoiding the bulge where resides the
axis of symmetry. A co-rotating dust is defined to be a continuous distribution of matter
with stress-energy tensor Tαβ in the form of (in geometrized units): Tαβ = ρuαuβ , where
the time-like vector field uα represents the 4-velocity of the co-rotating fluid proportional
to the killing vector kα (namely a static observer), which in virtue of the definition of
Tαβ , and in the limit of small density (ρ) results geodetic.

The considerations above constitute the basis of the tailored solution adopted by
Balasin and Grumiller (BG) [79] in order to trace the velocity profiles for galactic curves
in a weakly relativistic scenario. In this context the spatial velocity turns out to be
proportional to the off-diagonal term of the chosen metric, which implies frame dragging
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once one projects the static observer (the asymptotically killing BCRS) with respect to
the rest frame of the ZAMO, actually the observer at rest with respect the axis of rotation
of the Galaxy.

Then, the question before us is: the flat observed curve is due to dark matter or
geometry driven?

To accomplish the study of the rotation curve profile of our Galaxy requires to select
only DR2 source for an highly accurate 6-dimensional reconstruction of the phase-space
location occupied by each individual star as derived by the same observer, namely: (i)
availability of the complete astrometric set, and of its corresponding error (covariance)
matrix; (ii) availability of the Gaia-measured velocity along the line of sight, RV , and
its error; (iii) parallaxes good to 20%, i.e., p/σp ≥ 5; (iv) avalaibility of a cross-matched
entry in the 2MASS catalog for the materialization of the sample [80].

Of course this sample is not complete (see, e.g., the 20% error selection criteria
adopted), nevertheless it closely traces the kinematic of the young disk population and
we are left with mostly late type A stars.

As final step, the BG fit to the MW rotational data has been compared with well-
studied classical models for the MW (MWC), which is comprised of a bulge, a stellar
thin and thick disk and a Navarro-Frenk-White (NFW) DM halo.

To quantitatively asses this, a Monte Carlo Markov Chain (MCMC) analysis was
implemented. For the likelihood analysis the BG and MWC models appear almost iden-
tically consistent with the data as shown in figure 17 (for details [80]). For the MWC
model, the estimated parameters are, within the errors, compatible with the very latest
literature values. This is important in itself, proving that the 11 kpc range in (galacto-
centric) cylindrical radius covered by the selected DR2 sample of disk stars is sufficiently
large already for the task.

Differently from the BG analysis, the estimated local baryonic matter density, via the
00-term of the Einstein field equation, results ρ�(R = R�, z = 0) = 0.090±0.006M�pc

−3

that is perfectly in line with current independent estimates (for example, [81, 82, 83]).
Then, it appears that no extra-mass is required for the GR rotational curve once one takes
into account the off-diagonal term of the metric in the GR weak field approximation.

In conclusion, relativistic astrometry provides a new outstanding observed stellar
rotational curve of the MW from a highly performing space mission, a derived classical
rotational velocity curve with a DM-halo compatible with recent literature data, and a
new GR-only (no DM) rotational velocity model that the Gaia-derived observed velocities
make statistically viable for the very first time.

This is a very promising result that urges to refine and improve GR Galaxy models
in occurrence of the next Gaia data releases.

Details on the presented study are under publication. References and full text are
available in Crosta et al. [80].

6.4. Testing space-time: Gravitational waves. – Passing gravitational waves alterate
the background geometry and can produce an extra deflection on the light ray. This
direction shift has been estimated at the nanoarsecond level [84, 85], therefore beyond
the capabilities of the Gaia astrometry, but possible observable with future, specifically
designed, space-born astrometric instruments

As a matter of fact, such an extra-deflection effect on star direction at a given time
due to a passing gravitational wave cannot be modeled in the same fashion as that of the
astrometric sphere reconstruction, i.e., the determination of the astrometric parameters
of those objects in the sky accessible to a Gaia-like observer throughout its multi-year
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Fig. 17. – The Gaia observed rotation curve of the Milky Way up to 16 kpc, once transformed
properly the Gaia catalog data into galactocentric azimuthal velocities. Both best fits to them,
the GR compliant profile (red line) and the classical one (blue lines), are exactly the same. The
black starred symbols represent the medians of the velocity Vφ derived from Gaia DR2 with the
corresponding error bars that take into account the measurements uncertainties and systematic
errors for each radial bin. The other blue curves represent the kinematical substructures that
contribute to the MWC model: the dotted line is the bulge contribution, the dashed and dot-
dashed lines that of the thin and thick disk, and the solid line is for the NFW halo. The gray
vertical band represents twice the value of internal radius estimated with the BG model. Credit:
Crosta, Giammaria, Lattanzi, and Poggio.

mission lifetime. GWs, at the sub-µas levels, could be most transient phenomena (i.e.,
merging of two black holes), then one needs to extract them from the residuals of an
astrometric observable once reduced via an appropriate modeling, that has taken into
account the instrumental effects (calibrations) as well.

The assumption of adding a corrective direction cosine due only to the passing GW sig-
nals with respect to the satellite attitude is completely impracticable, has it would impose
an impossible requirement on the knowlegde accuracy of the attitude itself. Moreover,
naively assuming that the astrometric observable (96) can be approximated as the sum
of the cosine determined by the metric of the Solar System and that due to the GW
metric, would imply considering twice the flat Minkowskian spacetime. Beside that, the
background metric should contain all terms of the same level of accuracy of the GWs in
order to model properly all of the background effects due to the Solar System bodies.
Conversely, in case of a GW with period larger than the time of observation, one should
completely change approach. For example, adopt spherical harmonics after the global
reduction process [86, 85, 87].

The primordial gravitational wave density can be detected considering the secular
aberration drift of the extragalatic radio source proper motions caused by the rotation
of the Solar System barycenter around the Galactic center [88, 90] or the radio source
velocity field [89].

Nevertheless, the astrometric direction cosine could be simplified if one takes into
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Fig. 18. – Relativistic astrometry links the local gravitational fields at the observers with those
at the source through a varying space-time, which includes also passing gravitational waves.

account the angle between two space-like directions of light ¯̀
1 and ¯̀

2, namely:

cosψ(¯̀
1,¯̀2) = gαβ ¯̀α

1
¯̀β
2(130)

where in principle the metric contains the perturbations due to the gravitational waves
in the linearized form:

gαβ = ηαβ + hIAUαβ + hGWαβ .(131)

In this case we are not obliged to deal with the satellite’s attitude, but consider only the
local barycentric observer (35) with respect to which the four null tangent vector kα is
projected. One should takes care of the appropriate order, considering that according to
equation (124): ¯̀α = ¯̀α

obs + ε2 ¯̀α
(2) + ε3 ¯̀α

(3) +O(ε4), and, on the other hand, gravitational
waves are at least of the order of ε4 (see equation (18)).

Now, let us consider a weak plane, elliptically polarized, gravitational wave propagat-
ing along the x direction with a wave vector ω and two amplitudes, Ayy and Ayy, such
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that

hyy = Ayy sin[ω(t− x)], hyz = Ayz cos[ω(t− x)],(132)

corresponding to two polarization states (linear if Ayy or Ayz equal to 0, whereas circular
if Ayy = ±Ayz). This generates, far away from the Solar System (where ûαB = δα0 ), the
following line element:

ds2 = −dt2 + dx2 + (1− hyy)dy2 + (1 + hyy)dz2 − 2hyzdydz.(133)

In order to give an idea of the potential of formula (130), let us assume for sake of
simplicity that all the perturbations due to the IAU metric sources have been removed
in the reduction process (i.e. one is evaluating residuals in the local proper-line-of-sight),
so that ¯̀

obs = ¯̀60 + ¯̀
GW . With metric (132) the component of the four-vector of the null

geodesic can be expressed as [91]

k0 = (f + E2)/2E, kx = (f − E2)/2E(134)

ky = (α(1 + hyy) + βhyz) /D, kz = (αhyz + β(1− hyy)) /D(135)

where

D = 1− h2
yy − h2

yz, f = α2(1 + hyy) + β2(1− hyy) + 2αβhyz(136)

and α, β,E are the constants of the motion (conserved Killing quantities) for the photon.
In such a case expression (130) results in (11):

cosψ(1,2) = δij(k
i
1/k

0
1)(kj2/k

0
2)− hyy(cos δ1 cos δ2 − cos θ1 cos θ2)

− hyz(cos δ1 cos θ2 + cos δ2 cos θ1)(137)

being E = −(uB |k) = −k0, cosφ = kx/k0, cos δ = ky/k0, and cos θ = kz/k0. The last
expression gives all the relative configurations of the components of the two null directions
with respect to the passing GWs, or, alternatively, how the euclidian angle is modified
by the passing GWs. Thus, it constrains the properties of the GWs (polarization states,
energy and angular momentum) to the observed angle between two collected local-line-
of-sights, which have interacted with the GW.

Let us assume that cos(ψ) = cos(ψ0 + δψGW ), where ψ0 represents the unperturbed
angle between the two light directions. Then,

cos(ψo + δψGW ) = cosψ0 cos(δψGW )− sinψ0 sin(δψGW ),(138)

which for δψGW � 1 implies that equation (137) reduces to

δψGW ≈
hyy(cos δ1 cos δ2 − cos θ1 cos θ2) + hyz(cos δ1 cos θ2 + cos δ2 cos θ1)

sinψ0
.(139)

(11) The formulas anticipated here for the first time are part of a work in submission by Crosta
et al. which includes all the details of the calculations and the observability estimates.
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Then, if one chooses an appropriate separation angle ψ0 (for example about few arc-
seconds, but it could be smaller depending only on the resolution power of the astrometric
telescope!), the term in the denominator can mitigate the smallness of the terms hyy, hyz
in the numerator. Formula (139) provides promising possibilities for the astrometric
detection of δψGW . In fact the signal could range between subµas and tens of nanoar-
coseconds for a plane GWs, with characteristic strain of about 10−18 − 10−21 (assuming
random values for kα compatible with formulas (134), (135) and observed light directions
taken from published or upcoming Gaia catalogue).

In addition, considering the same plane gravitational wave, one can reformulate the
direction cosine in terms of the Synge function. The world function is defined as:

Ω(σ1, σ2,Υ) =
1

2
(σ2 − σ1)2(ζ|ζ)(140)

being ζ = Υ̇ the tangent vector of the unique space-like geodesic Υ joining two points
P1, P2 parametrized by σ. So it is strictly related to the length of the curve: Ω = L2/2.
One of its mathematical proprieties gives:

Ωα1 = −(σ2 − σ1)ζα1 Ωα2 = (σ2 − σ1)ζα2,(141)

and if the space-time admits Killing vectors ξα, the world function connecting points on
geodesics satisfies the relation:

ξα1Ωα1 + ξα2Ωα2 = 0.(142)

Let us assume that the stars are in geodesic motions at rest with respect to the local
barycentric observer. Since

Ω(σ1, σ2,Υ)flat =
1

2
ηαβ(x1 − x2)α(x1 − x2)β ,(143)

provided the solutions above, by integrating equations (134)-(136) in order to get the
trajectory of the photon, it results [40]

Ω(σ1, σ2,Υ) = Ω(σ1, σ2,Υ)flat

+
Ayy
2ω

[
(y2 − y1)2 − (z2 − z1)2

] cosω(t2 − x2)− cosω(t1 − x1)

t2 − x2 − t1 + x1

− Ayz
ω

[(y2 − y1)(z2 − z1)]
sinω(t2 − x2)− sinω(t1 − x1)

t2 − x2 − t1 + x1
,(144)

which means that we can monitor the spatial distance between two star coordinates when
a plane GW is passing. Then,

√
∆Ω/

√
Ωflat = ∆L/Lflat.

In term of direction cosines, suppose that the star is moving on its geodesics and
sending a signal from a point A1 along its trajectory to an observer in a space-time
point P. The same point will receive the signal by the same star from the location on
its trajectory A2 affected by a passing GWs. In this case ζα coincides with `α and the
direction cosine, for example, is given by:

cosψ1,2 =
Ωα1Ωα2

(Ωα1uαB)(Ωα2uαB)
(145)
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that can be computed according to the given definitions and solutions. In particular one
can compute also the variation of the direction cosine in passing from A1 to A2 as [26]:

∆(cosψ) = −2

3
(RαβγδE

α
â ζ

βuγζδ)AL
2
u(A,P ),(146)

where A is the point on the stellar geodesic simultaneous to P along ζ, Rαβγδ is the
Riemann tensor, Eαâ is a Fermi tetrad carried on by the observer u, which can be coupled
with the interval of proper time from A1 and A2 (for detailed calculations see [26], section
9.2):

dTu(A1, A2) = σA2 − σA1 ≈ 2L(A,P )− 1

3
(Rαβγδu

αζβuγζδ)AL
3
u(A,P )(147)

leading to an angle-proper-time relation to the first order in the curvature. World func-
tion allows, therefore, to measure the "true" variation of curvature among configuration
of star positions on the sky in case of a passing gravitational waves, if monitored contin-
uously by a pointing telescope.

The advantage of the above discussed scenarios is to link with extensive statistics the
properties of a GW source to a large number of null geodesics (for example those from
a cluster), so that to realize a sort of gravitational astrometric antenna. Proposals for
such advanced astrometric missions are already in place [92].

In conclusion, the constant development of methods and techniques for relativistic
astrometry to exploit the Gaia potential to its fullest suggests to look into the "future" of
nanoarcsec regimes after Gaia. Insofar, the differential astrometric technique developed
for the GAREQ experiment on Gaia could be extended to consider passing gravitational
waves that affect photon propagation. In particular, the GAREQ method can be utilized
to detect collective astrometric shifts on the four spatial light direction over angularly
narrow but dense stellar fields. The critical aspect in this case is the implementation
of an appropriate retrieval and calibration procedure at DPCT, which is on-going as a
study case.

6.5. Relativistic metrology and spacetime travel . – Astrometry has provided through
ages the means to measure time and its variations. Nowadays, space-time astrometry
recovers this old tradition as the celestial relativistic reference systems establish space-
time coordinate transformations. But the application of the relativistic metrology to
astrometry tells us more.

Imagine that the Gaia catalogue will contain a list of habitable planets and we would
like to reach one, equipped by the Gaia stellar map. First of all we need to compute our
local gravitational fields in order to get a proper "target" direction free from the local
gravitational aberrations, otherwise we will risk to never reach our final destination, since
missing few microarseconds translate in a considerable error on parallaxes.

Now, once arrived at the esoplanet spacetime coordinates, our "astrometric" tool give
us the possibility to compute the new local gravitational fields generated by the esosystem
(hosting, for example, more bodies than our solar system and perhaps a planet of about
3-4 Jupiter mass) and to correct the proper direction in order to return back to home,
i.e. "our" spacetime coordinate. Then, we need also to take into account of equation
(51), namely to compute the esosystem weak gravitational fields in order to reach the
Earth at the right "terrestrial" proper time, trying to avoid in the way back possibly
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naked singularities...In brief, relativistic astrometry will be the necessary tool to navigate
through a varying spacetime and avoiding space-time consuming!

Even though these are speculative ideas about the future use of relativistic astrometry
and the correlated relativistic charting, however inevitably they open new frontiers and
potential application on spacetime navigation. All this involves not only general rela-
tivistic metrology but quantum metrology as well [93], especially in view of a possible
interaction between gravitational waves and photons via astrometry.

7. – Final remarks

Special and General Relativity, both theories developed by Albert Einstein a little
more than a century ago, have involved a change in our conceptions of space and time
of such an impact that they have not yet been fully applied, both in the field of fun-
damental physics and in that of astrophysics. In fact, only relatively recently with the
advent of microarcsecond astrometry is mandatory to shift from the classical approach
of fundamental astronomy to a relativistic one.

The implementation and availability of methods of experimental gravity, both theo-
retical and numerical, are more necessary than ever today, especially in the weak gravity
regime, whose effects influence the electromagnetic propagation on a much wider domain
than the strong one of which it constitutes, nonetheless, an important and complemen-
tary part. This paradigm shift is required both from the point of view of data processing
and from that of their interpretation for the subsequent scientific exploitation. This
"know-how" will be necessarily part of the fundamental baggage to define the high pre-
cision astronomical measurements made from within the gravitational fields of the solar
system (inevitably!), as well as the correct definition of the celestial reference systems
used in astronomy both from Earth and from Space.

The future potential of these kind of measurements relies on the development of useful
tools for the treatment of systematic errors in the data analysis of precise experiment
in space. Fundamental physics in space employs a very wide range of technologies to
achieve the instrumental performance required for each dedicated mission. This it turns
out challenging for scientists and engineers but also very fruitful as test bed for emerging
technologies, which have immense potential in other fields of application.

Gaia-like missions are offering, then, the unique possibility of being a multi labora-
tory for extensively testing weak gravitational fields either at local scale, such as the
Solar System, either at that of the Milky Way. In particular for: (i) the validity of
General Relativity (GR) at all scales, and therefore the nature of dark matter and dark
energy; (ii) multiple detections and analysis of relativistic effects, being mainly light de-
flections/retarded time travel overlapping in any direction and in any time, due to the
varying gravitational local sources measured from within the system, and possibly ex-
trapolated with appropriate rescaling to other systems and other measurements of weak
lensing effects; (ii) tests on cosmological models that predict the cosmological evolution
shaped by gravity as we observe it at Galaxy scale; (iii) the relations among baryonic
structures (and their evolution) and the dark components of the Universe, the formation
of these structures, from primordial galaxies to the Milky Way (MW) and its stellar
populations; (iv) future observations of GWs; finally, (v) developing new technology.

Given the number of celestial objects (a real Galilean method applied on the sky!)
and directions involved (the whole celestial sphere!), the realization of the relativistic
celestial sphere is not only a scientific validation of the absolute parallax and proper
motions obtained with Gaia. Reaching 10-20 µas accuracy on individual parallax and



64 M. CROSTA

annual proper motions for bright stars (V < 16) is also the key possibly to perform the
largest GR experiment ever attempted from space with astrometric methods since May
29, 1919.

And beyond the microarcsecond? Gaia represents only a ground step, increasing the
level of accuracy requires to refine consistently the metric of the solar system, the solu-
tions for the null geodesic, the observables, the attitude, and so on.. As a matter of fact,
once a relativistic model for the data reduction has been implemented, any subsequent
scientific exploitation should be consistent with the precepts of the theory underlying
such a model. From Gaia and Relativistic Astrometry we have learnt that Astronomers
need to be ready to exploit all of the scientific potential of the local measurements en-
tangled to the varying gravitational fields from within the Solar System and to maximize
its impact: "One day, our actual knowledge of the composition of the fixed stars sky, the
apparent motion of the fixed stars, and the position of the spectral lines as a function of
the distance will probably have come far enough for us to be able to decide empirically
the question whether or not Λ vanishes" (Einstein, 1917, letter to de Sitter).
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