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ABSTRACT

We develop a method for deriving approximate analytical formulae to integrate photon geodesics in a Schwarzschild spacetime. Based
on this, we derive the approximate equations for light bending and propagation delay that have been introduced empirically. We then
derive for the first time an approximate analytical equation for the solid angle. We discuss the accuracy and range of applicability of
the new equations and present a few simple applications of them to known astrophysical problems.

Key words. gravitation – stars: black holes – stars: neutron – X-rays: binaries – accretion, accretion disks

1. Introduction

Early studies (Luminet 1979; Pechenick et al. 1983) began a
great interest in photons emitted by matter in a strong gravita-
tional field, especially in relation to high-energy astrophysics.
The relevant computations are carried out with ray-tracing tech-
niques that are based on the photon geodesics in general rela-
tivistic spacetimes. Effects to be considered are (i) light bending;
(ii) travel time delay; and (iii) gravitational lensing (Misner et al.
1973). The basic equations for the Schwarzschild metric are
expressed through elliptic integrals that can be solved numeri-
cally. A powerful analytical approximation was introduced by
Beloborodov (2002), who derived an approximate linear equa-
tion to describe the gravitational light bending of photons emit-
ted at radius r > rs (rs = 2GM/c2). In the same vein,
Poutanen & Beloborodov (2006) derived an approximate poly-
nomial equation for photon travel time delays. These two ana-
lytical approximations were obtained by introducing an ad hoc
parametrization of the photon emission angle (see Beloborodov
2002; Poutanen & Beloborodov 2006, for more details). Nev-
ertheless, the equation for gravitational lensing, also known
as solid angle equation, was still solved numerically by these
authors.

In this paper we present a mathematical method through
which the approximate polynomial equations for light bending
and travel time delay in a Schwarzschild spacetime are derived
without any ad hoc assumption. We then apply the same method
to derive for the first time an approximate polynomial equation
for gravitational lensing. High-accuracy approximate equations
for photon geodesics translate into high-speed ray-tracing codes
for different astrophysical applications in the strong gravitational
field of Schwarzschild black holes (BHs). As examples we ap-
ply our approximate equations to calculate the light curve from
a hot spot on the surface of a rotating neutron star (NS) and a
clump in a circular orbit around BH. Moreover, we calculate the

fluorescent iron Kα line profile from an accretion disk around a
BH (e.g., Fabian et al. 1989).

2. Photons in the Schwarzschild spacetime

In this section we introduce the elliptical integrals of photon
trajectories, travel time delay, and gravitational lensing in the
Schwarzschild metric.

2.1. Schwarzschild metric

For static and spherically symmetric BHs of mass, M, the
Schwarzschild metric in spherical coordinates (t, r, ϕ, ψ) is

ds2 =

(
1 −

rs

r

)
dt2 −

(
1 −

rs

r

)−1
dr2 − r2

(
dϕ2 + sin2 ϕ dψ2

)
, (1)

where G = c = 1, and rs = 2M is the Schwarzschild radius. In
this standard system, the coordinate variables are time t, radius r,
polar angle ϕ, and azimuthal angle ψ.

2.2. Gravitational light bending

Because of spherical symmetry, it is customary to use the equato-
rial plane at ϕ = π/2 to calculate geodesics in the Schwarzschild
metric that are representative of all photon trajectories. A pho-
ton geodesic starting at radius R is described by the following
elliptical integral (Chandrasekhar 1992; Misner et al. 1973):

ψ =

∫ ∞

R

dr
r2

[
1
b2 −

1
r2

(
1 −

rs

r

)]− 1
2

, (2)

parametrized by the ratio of the angular momentum, L, and en-
ergy, E, of the photon, b = L/E. The impact parameter b repre-
sents the distance between the observer and the photon trajectory
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Fig. 1. Two photon trajectories emitted at different radii, r1 and r2, and
emission angles, α1 and α2, with their corresponding impact parame-
ters, b1 and b2. Trajectory 1 is for a direct photon, while trajectory 2
has a turning point, i.e., passes through periastron p, the minimum dis-
tance between the trajectory and the BH. The observer is at infinity, and
photons geodesics lie in a single invariant plane.

at infinity and is related to the photon emission angle, α by

b =
R sinα
√

1 − rs/R
· (3)

Equation (2) is strictly valid up to α = π/2, since the sine func-
tion is symmetric with respect to α = π/2. The photon deflection
angle, ψ, can be directly determined in terms of the emission
angle α through Eq. (3).

We must distinguish between direct photons, which have tra-
jectories with an emission angle between 0 ≤ α ≤ π/2, and pho-
tons with a turning point, whose trajectories have an emission
angle ranging between π/2 ≤ α ≤ αmax (see Fig. 1). Photon tra-
jectories with a turning point can reach infinity only if their b is
greater than the critical impact parameter bc = 3

√
3M (see, e.g.,

Luminet 1979). Since we are interested only in photons that are
not captured by the BH, the maximum possible emission angle
is obtained by substituting bc into Eq. (3)

αmax = π − arcsin
3
2

√
3
(
1 −

rs

R

) rs

R

 · (4)

Photons emitted between π/2 ≤ α ≤ αmax follow trajectories
with a turning point; therefore a periastron distance, p, is defined
at an angle αp = π/2, which determines the minimum distance
between the compact object and the photon trajectory. The emis-
sion point of a photon at ψE that passes through the turning point
is symmetric with respect to the periastron angle, ψp, to the point
ψS, (with an emission angle α ≤ π/2) along the same trajectory,
as they have the same impact parameter at infinity. Based on this
symmetry, we determine ψS = 2ψp − ψE, where αS = π − αE.

2.3. Travel time delay

A photon following its geodesic from an emission point, E, to
an observer at infinity has an infinite travel time, ∆τ, value. To
have a finite quantity, we calculate the relative travel time de-
lay between a photon emitted at a distance, R, following its
geodesic and the photon emitted radially with b = 0, that is,
∆t(b) = ∆τ(b) − ∆τ(b = 0) (Pechenick et al. 1983). In the
Schwarzschild metric we have

∆t =

∫ ∞

R

dr
1 − rs

r


[
1 −

b2

r2

(
1 −

rs

r

)]− 1
2

− 1

 . (5)
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Fig. 2. Calculation of travel time delay for trajectories with turning
points. The photon is emitted at E with radius R and deflection angle ψE.
The photon trajectory passes through point, S , which is symmetric to E
with respect to periastron p, having the same impact parameter, b, and
a deflection angle ψS = 2ψp − ψE.

To calculate the time delay for photons with a turning point, we
need to calculate the periastron distance, p. For a given b we
therefore consider the largest real solution of the following equa-
tion p3 − b2 p + b2rs = 0. The polynomial in p has three real
solutions (because b ≥ bc): one is negative, one is lower than
3M, and we consider only the solution satisfying p ≥ rc, where
rc = 3M is the critical radius associated to bc (see, e.g., Luminet
1979). The time delay is composed of the time delay ∆tS from
point αS, as determined by the Eq. (5), plus the time delay be-
tween [αS, αp], ∆tp−S, and [αp, αE], ∆tE−p. Since the integrand
is symmetric with respect to αp, the latter two time delays are
equal (∆tE−p = ∆tp−S), the equation can be written (see Fig. 2)

∆t = ∆tS + 2∆tp−S

= ∆tS + 2
∫ p

R

dr
1 − rs

r


[
1 −

b2

r2

(
1 −

rs

r

)]− 1
2
 · (6)

2.4. Solid angle

We consider the emission reference frame of coordinates (x, y, z)
and the observer reference frame of coordinates (x′, y′, z′), where
the two systems are rotated with an angle, i, around y = y′.
The solid angle, dΩ, in the observer reference frame reads as
dΩ = sinψ dψ dϕ. This equation can be expressed in terms of
the impact parameter, b, by its first-order approximation for in-
finitesimally small ψ as b ≈ D · ψ, where D is the distance from
the emission point to the observer,

dΩ =
b db dϕ′

D2 · (7)

In the emission reference frame, Eq. (7) becomes

dΩ =
b

D2

∂ϕ′

∂ϕ

∂b
∂r

drdϕ, (8)

where we considered the following dependencies ϕ = ϕ(ϕ′)
and b = b(r, ψ). The Jacobian of the transformation is always
∂ϕ′

∂ϕ
∂b
∂r independent of the value of ∂b

∂ψ
, since the photon moves in

an invariant plane. Therefore, Eq. (8) is valid for any emission
point. To calculate the Jacobian, we use the following coordi-
nates transformation cosψ = sin i cosϕ that relates the angles in
the observer and emission reference frames. ∂b

∂r = − ∂b
∂ψ

∂ψ
∂r is cal-

culated using the light bending Eq. (2). The solid angle equation
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in the Schwarzschild metric is thus (see, e.g., Bao et al. 1994)1

dΩ =

cos i
D2 R2 sin2 ψ

b2

cosα∫ ∞
R

dr
r2

[
1 − b2

r2

(
1 − rs

r

)]− 3
2

dr dϕ. (9)

This equation contains an integral with the same functional form
as those of light bending Eq. (2) and time delay Eq. (5), except
for the −3/2 exponent and factors depending on the impact pa-
rameter b (or emission angle α).

3. Analytical approximations

In this section we present the general mathematical method used
to approximate the elliptical equations in polynomials of light
bending Eq. (2), time delay Eq. (5), and solid angle Eq. (9).

3.1. Mathematical method

Let f be an integrable function of radius, r, mass, M, and sine
of the emission angle, sinα, that is, f = f (r,M, sinα) and I the
following elliptic integral

I =

∫ r f

ri

1√
f (r,M, sinα)

dr. (10)

We are interested in deriving a polynomial approximation of the
elliptic integral I. We first define sinα = g(z), where g(z) is a
generic function of z(α). To expand Eq. (10) in Taylor series we
assume that α is very small2 and aim at obtaining an integrable
polynomial function

I =

∫ r f

ri

1√
f (r,M, g(z))

dr ≈ P(r f , ri,M, g(z)). (11)

P contains even powers of g(z), since f (r,M, g(z)) ∝ g(z)2. This
condition is given by substituting b = (r sinα)/(

√
1 − rs/r) in the

equations of the light bending Eq. (2), time delay Eq. (5), and
solid angle Eq. (9). For an exact polynomial approximation, we
therefore define g(z) =

√
Az2 + Bz, where A and B are general

parameters. One of the two parameters (A, B) is determined by
comparing Eq. (11) with the original integral I for special values
of M = M∗, r f = r f ∗ and ri = ri∗ that permits solving the
integral I easily and obtain

I(r f ∗, ri∗,M∗, sinα) = P(r f ∗, ri∗,M∗,
√

Az2 + Bz). (12)
The other parameter can be determined through the initial con-
dition sinα =

√
Az2 + Bz. We note that the polynomial approxi-

mation is valid for any emission angle α (not only for low values)
since the parameters A, B are gauged on the whole range of I.

3.2. Light bending

For the light bending we Taylor-expand Eq. (2) up to the third
order and defining u = 2M/R and sinα = g(z) we obtain

ψ ≈
b
R

[
1 +

g2(z)
6(1 − u)

−
g2(z)u

8(1 − u)
+

3g4(z)
40(1 − u)2

+
3g4(z)u2

56(1 − u)2 −
g4(z)

8(1 − u)2 u +
5g6(z)

112(1 − u)3

−
g6(z)u3

32(1 − u)3 −
15g6(z)

128(1 − u)3 u +
5g6(z)

48(1 − u)3 u2
]
· (13)

1 Equation (9) is equivalent to the formula (A3) in Beloborodov
(2002).
2 Therefore, g(z) is small as well.

Setting g(z) =
√

Az2 + Bz and neglecting all the terms up to the
second order in z, Eq. (13) becomes

ψ ≈

√
Az2 + Bz

1 − u

[
1 +

(
B

6(1 − u)
−

Bu
8(1 − u)

)
z
]
· (14)

To approximate this equation with a polynomial, we introduce
an even trigonometric function of ψ to remove the square root.
The simplest choice is a cosine function expanded to the fourth
order in ψ

1 − cosψ ≈
ψ2

2
−
ψ4

24

≈
Bz

2(1 − u)
+

[
B2

6(1 − u)2 −
B2u

8(1 − u)2

+
A

2(1 − u)
−

B2

24(1 − u)2

]
z2, (15)

where we consider the terms to the second order in z. If we
choose A = −(B/2)2 , we obtain a simple linear approximation,
1 − cosψ ≈ Bz/(2(1 − u)), in which z2 coefficients vanish.

We now solve Eq. (2) for the special values u = 0, R = 1 and
obtain

ψ = b
∫ ∞

1

dr
r2

[
1 −

sin2 α

r2

]− 1
2

= α. (16)

Using the same values (u = 0, R = 1) for the approximated
polynomial equation, 1 − cosψ ≈ Bz/(2(1 − u)), we obtain

1 − cosα =
Bz
2
· (17)

In this case, by defining B = 2 (implying A = −1), we find
z = 1−cosα, which, when replaced in Eq. (15), gives the approx-
imate light bending equation originally found by Beloborodov
(2002)

1 − cosψ =
(1 − cosα)

(1 − u)
· (18)

In Fig. (3) we show a comparison between the exact light bend-
ing curves for different emission radii, and curves obtained from
the approximate equation. The accuracy of the latter between
0 ≤ α ≤ αmax is better than 3% for R = 3rs, while for R = 5rs
the error does not exceed 1%. We note that R = 3rs corresponds
to the innermost stable circular orbit (ISCO) for matter orbiting
a Schwarzschild BH and is also close represent to a typical NS
radius size of ∼12 km for mass of 1.4 M�. For values below
R = 2rs the equation is not anymore applicable after α = π/2. In
Fig. 3 we also show the exact light bending curve for R = 1.55rs;
after a given minimum the photons are highly bent by strong-
field effects. The largest error is at α = π/2 and then it tends
to decrease until at αmax because of the symmetrization process
around α = π/2 configuring as the maximum reachable angle
(see Sect. 2.2). For more details about the accuracy between
0 ≤ α ≤ π/2 we refer to Beloborodov (2002).

3.3. Time delay

We now apply our method for deriving the approximate equation
for the time delay. By expanding the integrand in Eq. (5) up to
the third order

∆t = R
{

g2(z)
2(1 − u)

+
g4(z)

8(1 − u)2 −
3g4(z)

32(1 − u)2 u

+
g6(z)

16(1 − u)3 −
5g6(z)

48(1 − u)3 u +
5g6(z)

112(1 − u)3 u2
}
, (19)
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Fig. 3. Light bending curves from the exact Eq. (2) (solid lines), com-
pared to those from the approximate Eq. (18) (dashed red lines) for
R = 2rs, R = 3rs, and R = 5rs. The dotted blue line represents the
threshold from trajectories without a turning point (0 ≤ α ≤ π/2) to tra-
jectories with a turning point (π/2 ≤ α ≤ αmax). The exact light bending
curve for R = 1.55rs is also plotted (dotted-dashed orange line) to show
strong-field effects. The lower panels show the difference between the
curves from the original and approximate equations.

we set again g(z) =
√

Az2 + Bz and neglect all terms up to the
third order in z, so that

∆t
R
≈

{
Az2 + Bz
2(1 − u)

+
B2z2 + 2ABz3

8(1 − u)2 −
3u(B2z2 + 2ABz3)

32(1 − u)2

+
B3z3

16(1 − u)3 −
5uB3z3

48(1 − u)3 +
5u2B3z3

112(1 − u)3

}
· (20)

To determine (A, B) we compare the original Eq. (5) with
Eq. (20) both evaluated for u = 0 and R = 1; we find3

1 − cosα =
B
2

z +
1
2

(
A +

B2

4

)
z2 +

B
4

(
A +

B2

4

)
z3, (21)

where on the left and right hand sides are the results of Eqs. (5)
and (20), respectively. By imposing A+B2/4 = 0 the coefficients
of the second and third order in z vanish. Like in the light bend-
ing case, Eq. (21) reduces to 1 − cosα = Bz/2; defining again
B = 2 (implying A = −1) substituting in Eq. (20), we derive the
approximate travel time delay equation (see for further details
Poutanen & Beloborodov 2006)

∆t
R

= y

[
1 +

uy
8

+
uy2

24
−

u2y2

112

]
, (22)

where y = (1 − cosψ).
In Fig. 4 we compare for different emission radii the ex-

act travel time delay curves with the polynomial approximated
equations. We here also extend the validity of the approxima-
tion to αmax-values accounting for turning points. The accuracy
settles ∼35% for R = 2rs, while after R = 3rs it is lower than
20%, according to the same symmetry argument explained in the
Sect. 3.2. However, we refer to Poutanen & Beloborodov (2006)
for the error estimation between 0 ≤ α ≤ π/2.

3 For Eq. (5) we used the following limit: limx→+∞(x2 − a)
1
2 − x = 0.

0
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Fig. 4. Continuous black curves are obtained from the original time
delay Eq. (5), while the dashed red curves are from the polynomial
approximate Eq. (22). Different panels show R = 2rs, R = 3rs and
R = 5rs. The dotted blue line helps distinguishing trajectories without a
turning point (i.e., 0 ≤ cosα ≤ 1) from those with a turning point (i.e.,
π/2 ≤ α ≤ αmax). The lower panels show the difference between the
curves from the original and approximate equations.

3.4. Solid angle

We now apply the same method to derive for the first time a
polynomial approximation to the solid angle Eq. (9). We note, at
variance of light bending and time delay equations, that the solid
angle equation has the integral in the denominator, and more-
over, the emission angle, α, is also outside the integral. We first
rewrite Eq. (9) as

dΩ =
P1 P2

I
dr dϕ, (23)

where

P1 =
cos i

D2 sin2 ψ (1 − u)
, P2 =

sin2 α

cosα
,

I =

∫ ∞

R

dr
r2

[
1 −

R2 sin2 α

r2(1 − u)

(
1 −

uR
r

)]− 3
2

. (24)

P1 is a constant because ψ is a function of the azimuthal angle, ϕ,
the inclination angle, i, and the polar coordinate, θ, (for further
details see Sect. 4). As a first step, we expand the integrand of I
in a Taylor series up to the third order in z. We derive

I ≈
1 + Cz + Dz2

R
, (25)

with

C =
B

2(1 − u)
−

3Bu
8(1 − u)

, (26)

D =
A

2(1 − u)
−

3Au
8(1 − u)

+
3B2

8(1 − u)2 (27)

+
15B2u2

16(1 − u)2 −
5B2u

8(1 − u)2 ·

The function P2/I is not yet a polynomial function since it con-
tains a ratio of polynomials and square root functions in P2. For
these reasons we expand P2/I in a Taylor series around z = 0
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and neglect all the terms up to third order in z

P2

I
≈

Az2 + Bz
√

1 − Az2 − Bz

R
1 + Cz + Dz2

≈ R
[
Bz +

(
B2

2
+ A −CB

)
z2

+

(
AB +

3B2

8
−

CB2

2
−CA + BC2 − BD

)
z3

]
. (28)

To determine (A, B) we compare the original solid angle Eq. (24)
with the above approximate equation, evaluating both equations
for u = 0 and R = 1; we find

sin2 α = Bz + Az2. (29)

The left- and right-hand sides are the result of original Eq. (24)
and the polynomial Eq. (28), respectively. We can freely define
the value of A and B because there are no particular constraints
to impose. We set, as in the previous cases, A = −1 and B = 2,
deriving again z = 1 − cosα. The final approximate equation for
the solid angle is

dΩ ≈
cos i

D2 sin2 ψ (1 − u)
R

[
2z + (1 − 2C) z2

+
(
1 −C + 2C2 − 2D

)
z3

]
dr dϕ, (30)

where

C =
4 − 3u

4(1 − u)
, D =

39u2 − 91u + 56
56(1 − u)2 · (31)

As for the previous two cases, in Fig. 5 we compare the exact
solid angle curves with the polynomial approximated curves for
different radii and inclination angles i. The comparison extends
to αmax-values and thus accounts for trajectories with turning
points in this case as well. For R = 3rs the error is ∼ 5% and after
R = 5rs it is lower than 1%. We note that for i = 30◦ the curves
are fairly flat because the relativistic effects are small. Instead,
passing from i = 60◦ to i = 80◦ , the curves become gradually
steeper as general relativistic effects increase. Unlike the previ-
ous cases, we do not show here the case R = 2rs because the
approximate formula Eq. (30) does not give adequately accurate
results.

We note that Eq. (A3) in Beloborodov (2002) is obtained by
approximating the derivative dcosψ

dcosα with the linear Eq. (18), while
our Eq. (30) is a third-order polynomial that approximates the
integral I and all the terms depending on the emission angle α.
For example, our approximation is more accurate by a factor of
∼3 to 10 for R = 3rs and 0 ≤ cosα ≤ 0.3.

4. Examples of astrophysical applications

In this section we present three simple examples of astrophysi-
cal applications of the approximate equations. We consider the
emission point at coordinates (r, ϕ, θ). The observer is located at
infinity along the z′-axis with a viewing angle, i, with respect
to the z-axis; the observer polar coordinates are (r′, ϕ′, θ′). Pho-
tons emitted from a point are deflected by an angle, ψ, and reach
the observer with impact parameter, b. The plane containing the
photon trajectory rotates around the line of sight as the emis-
sion point moves around the compact object. Two unit vectors
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Fig. 5. Continuous black curves are obtained from the original solid
angle Eq. (9), while the dashed red curves are from the polynomial ap-
proximation in Eq. (30). Different panels are for R = 3rs and R = 5rs
and three different inclination angles, i = 30◦, i = 60◦, and i = 80◦.
The dotted blue line helps distinguishing trajectories without a turn-
ing point (i.e., 0 ≤ cosα ≤ 1) from those with a turning point (i.e.,
π/2 ≤ α ≤ αmax). The lower panels show the difference between the
curves from the original and approximate equations. The dotted-dashed
lines represent the difference between the curves from the original and
Beloborodov (2002) equations.

are attached to the photon emission point, E: u is tangential to
the photon trajectory, and n points in the same direction as the
radius, R. The photon deflection angle, ψ, varies as

cosψ = sin i sin θ cosϕ + cos i cos θ, (32)

with θ = π/2, ϕ = ωkt and t = 0 when the emission point is clos-
est to the observer. The photon arrival time, Tobs, is the sum of
the emission time, Torb = ϕ/ωk, plus the photon propagation de-
lay, ∆T (b), from the emission point to the observer (see Eq. (5)).

The observed flux is F =
∫
νobs

∫
Ω

Iνobs dΩ dνobs, where Iνobs

is the specific intensity at the photon frequency νobs. We use
the Lorentz invariant ratio Iνobs/ν

3
obs = Iνem/ν

3
em (see, e.g.,

Misner et al. 1973), where Iνem (ξ) =
ε0ξ

q

4π δ(νem − νobs) is the spe-
cific intensity at the emission point E given by the product of
the surface emissivity, varying as a power law of ξ = R/M with
index q, and the delta function peaked at νem. Therefore, inte-
grating over all the frequencies, we obtain the observed flux at
frequency νem, Fνem =

∫
Ω

ε0ξ
q

4π (1 + z)−4 dΩ. The redshift is de-
fined as the ratio between the observed and the emitted energy,
(1 + z)−1 = νobs/νem (Misner et al. 1973) and for matter orbit-
ing in circular orbits around a compact object or for a spot on a
NS surface reads as

(1 + z)−1 =

(
1 −

rs

R
− ω2R2 sin2 θ

)1/2
(
1 + bω

sin i sinϕ sin θ
sinψ

)−1

·

(33)

A38, page 5 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629075&pdf_id=5


A&A 595, A38 (2016)

x'

y=y'

i

z'

x

b
z

u

E

γ − trajectory

R

ψ

observer

α
ϕ

n

y

b

z'

z

i E

ψ
u

observer

ϕ

x

α

R

γ − trajectory

θ

ωs

Fig. 6. Geometries adopted in the examples. Left: emission from a disk or clump orbiting a Schwarzschild BH. Right: emission from two hot
opposite spots on an NS surface.

For ω = ωk we consider matter orbiting with Keplerian velocity
around a BH, and for ω = ωspin we consider spots rotating with
the NS spin frequency. The relevant geometry is shown in Fig. 6.

4.1. Light curve from an emitting clump orbiting a black hole

We first consider a clump defined as a small sphere radiating
isotropically in its own rest frame, orbiting a Schwarzschild BH
in a circular orbit with angular velocity ωk = (M/R3)1/2. The
geometry is shown in Fig. 6. For simplicity we assume ε0ξ

q

4π = 1.
Figure 7 shows the modulation of the Doppler factor (1 + z)−4,
solid angle dΩ, and flux from the orbiting clump as a function of
phase, ϕ(t), including light travel time delays. When the clump
is behind the BH, gravitational lensing magnifies the solid angle
from which the clump is seen by observer; the Doppler factor
is greatest when the projected velocity along the photon trajec-
tory reaching the observer is highest. The gravitational effects
are stronger for larger inclination angles, and the observed peak
flux is not at ϕ = π, but is significantly shifted especially for
large inclination angles due to the travel time delays. The errors
between the approximated and the original flux depend only on
the emission radius, since the inclination angle figures as a con-
stant. However, it is evident that the main errors derive from the
approximated time delay equation (as shown in the Sect. 3.3).

4.2. Emission line profile from an accretion disk
around a black hole

In Fig. 8 we calculate the steady relativistically broadened emis-
sion line profile from an accretion disk around a Schwarzschild
BH (e.g., Fabian et al. 1989; Beckwith & Done 2004, and ref-
erences therein). Fe Kα lines at ∼6−7 keV from a number of
accreting stellar mass BHs and NSs in X-ray binaries, as well as
supermassive BHs in the nuclei of active galaxies are interpreted
based on this model (e.g., Tomsick et al. 2014). We integrate
over the disk surface from an inner to an outer disk radius and
ignore light propagation delays, as we consider a steady disk.
The approximate equations reproduce very accurately the pro-
files obtained with the exact equations. A high accuracy is also
retained for large inclination angles, even if larger inclination
angles enhance the relativistic effects (see Sect. 4.1).
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Fig. 7. Modulated flux (normalized to the maximum), Doppler factor
(1 + z)−4 and solid angle (arbitrary units) in the rest coordinate frame
of an emitting clump in a circular orbit around a Schwarzschild BH
for different radii and inclinations angles. The continuous black lines
are calculated with the exact equations, while the dashed red lines are
calculated with the approximate equations. All quantities are plotted as
a function of the arrival phase at the observer. In the left panels a self-
eclipse of the spot is apparent.

4.3. Light curve from a hot spot on the surface of a rotating
neutron star

We calculate here the pulse profile generated by a point-like hot
spot located on the surface of a NS, which emits like an isotropic
blackbody. Calculations of this type have been carried out exten-
sively to model the periodic signals of accreting millisecond pul-
sars (see, e.g., Pechenick et al. 1983; Poutanen & Beloborodov
2006; Leahy et al. 2011; Bauböck et al. 2015) as well as
the so-called burst oscillations during Type I thermonuclear
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Fig. 8. Line profile for isotropic radiation from Rin = 3 rs to Rout = 50 rs
assuming surface emissivity q = −3. The continuous black lines repre-
sent the original equations and the dashed red lines are the polynomial
approximate equations.

bursts in NS low-mass X-ray binaries (e.g., Nath et al. 2002;
Miller & Lamb 2015); some of these calculations also include
the angular size of the hot spot, the star oblateness, and the
spacetime modifications induced by fast rotation. We use here
a canonical NS mass of 1.4 M� and radius RNS = 12 km, to-
gether different inclination angles, i, and colatitudes, θ of the
spot. The NS spin frequency is chosen to be νs = 600 Hz. In
Fig. 9 we report the corresponding pulse profiles; as expected,
the case with higher values of i and θ displays larger departures
from a sinusoidal shape. In this type of applications the value of
α is always limited to ≤π/2, as no turning points are involved.
Therefore our approximate equations retain very high accuracy
as long as the NS radius is ≥2.5rs, a range that encompasses a
number of NS models for different equations of state, excluding
only the upper end of the mass-radius branches. We conclude
that our approximate equations can be usefully employed in cal-
culations of the pulse profile of fast spinning NSs over a range
of (but not all) models to be tested against the observation that
the Neutron Star Interior Composition ExploreR (NICER), and
other large-area X-ray missions of the future, such as Athena or
LOFT, will obtain (see Watts et al. 2016, and references therein).

4.4. Applicability regions

In Fig. 10 we plot ψmax as a function of the emission radius to
investigate the applicability regions of the approximate equa-
tions. If we consider trajectories with turning points for radii
R < 3rs, that is, smaller than the ISCO, then ψmax ≥ 180◦ and
a polynomial treatment is no longer accurate because of strong
field effects (see also Fig. 3). We note that for R −→ 1.5rs,
ψmax our solution approaches asymptotically 270◦. Instead, for
R ≥ 3rs, when the observer is located edge on (i.e., i = 90◦),
ψmax = 180◦ is attained; otherwise, for slightly smaller but still
extreme inclination angles, for example, 87◦, photon trajectories
always remain below the critical bending angle, which guaran-
tees a high accuracy of our polynomial approximations. This
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Fig. 9. Modulation from a hot spot on an NS as a function of rotational
phase for different inclination angles and hot spot colatitude. Light
travel time delays are included. The continuous black lines represent
the results from a numerical integration of the original equations; the
dashed red lines are obtained from the polynomial approximate equa-
tions. The dashed-dotted orange line does not include light travel time
delays.
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Fig. 10. Largest bending angle ψmax, vs. the emission radius (continuous
black line). For inclination angles below i = 87◦ (dashed red line) the
approximate equations provide a high accuracy, since they are below the
ψmax-value. R = 3rs (dotted blue line) separates the applicability region
from the strong-field regime (R < 3rs).

argument is valid for all the emission radii R ≥ 3rs, since for
R −→ ∞, ψmax approaches 180◦.

5. Conclusions

We developed an analytical method to approximate the elliptic
integrals that describe gravitational light bending and light travel
time delays of photon geodesics in the Schwarzschild metric.
Based on this, we derived for the first time an approximate poly-
nomial equation also for the solid angle. We discussed the ac-
curacy and range of applicability of the approximate Eqs. (18),
(22), and (30); adopting them can considerably speed up calcu-
lations related to a variety astrophysical problems, which nor-
mally require time-consuming numerical integrations. We also
presented a few simple applications as examples. We will extend
our treatment to the parallel transport of polarization vectors in
a future work.
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