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Abstract: An iterative technique to adjust ripple in a Bandpass filter has been developed by curve fitting numerical data.  
It gives an approximate relation of ripple against filter coupling coefficients and resonator resonant frequencies instead 
of finding a Jacobian Matrix for each individual filter, in exchange for making more iterations. Numerical examples 
show reasonable convergence for Chebyshev filters up to 16th order, coupled quadruplets, coupled triplets, and folded 
cross-coupled filters.  A band-pass filter for a radio telescope in Yebes, Spain is designed and measured, a 10th order 
superconducting spiral filter with 7 percent bandwidth, 2295 MHz centre frequency, less than 0.1dB ripple and overall 
substrate size 30 mm x 8 mm..  The 11 iterative simulations totalled 8.5 hours of CPU time.   
 

1. Introduction 

Microwave filter design is well established [1], [2], 
but the filters often need a final iterative fine-tuning stage, in 
which ripple errors in simulation results or measured data 
are used to find corrections in the resonator centre 
frequencies and coupling coefficients. This is particularly 
important in planar structures such as microstrips where the 
resonators are not isolated in separate compartments, so 
there is coupling between non-adjacent resonators, not 
considered in the original design.  

One method in its simplest form involves finding a 
Jacobian matrix which gives the gradients of resonator 
resonant frequencies and coupling coefficients with respect 
to ripple depths; the necessary adjustments for each iteration 
follow directly. Similar optimisation algorithms are [3], [4], 
[5] [6] and [7]. In another approach [8], [9] particularly 
suitable for tuning a filter after fabrication, all resonators are 
deliberately detuned, and then adjusted one by one to have 
the correct response. In [9], when tuning any one resonator, 
all those already adjusted have a known response, while 
those not yet tuned are either purely inductive or capacitive 
and therefore at least have a known phase and group delay 
response. Finally, time domain tuning, where resonators can 
also be tuned one by one, independent of each other, has 
been introduced [10].  

In this paper, approximate Jacobian matrix 
coefficients are introduced as a standard set of equations, 
greatly reducing the number of simulations, even if more 
iterations are required. They apply to symmetrical layouts of 
resonators and coupling coefficients, but the frequency 
responses need not be symmetrical. They are found by 

observation of numerical data, which is similar to curve-
fitting, so a derivation is not available, but a speculative 
explanation is suggested. Numerical results based on 
scattering matrix calculations [1] on Chebyshev filters are 
given for filter orders between 3rd and 20th order.  The 
equations are also shown to be workable for cross-coupled 
filters, at a reduced rate of convergence.  However, there is 
no provision yet for adjusting the cross-coupling coefficients, 
which may have to be determined by trial and error. 

Powerful software such as [11] and [12] can be costly; 
with the very simple equations here, the adjustments can 
with patience be estimated for filters up to 6th order using a 
pocket calculator, although an e.m. simulator would still be 
required to verify the results. Preferably written as a page of 
software, they should be suitable for designing moderate 
numbers of filters up to 16th order.  

The equations are also demonstrated for a 10th order 
superconducting spiral bandpass filter for the Yebes radio 
telescope in Spain. Radio telescopes require cryogenic front-
ends to reduce receiver noise, so the superconducting filters 
do not introduce new cooling needs. At 0.01 – 10 GHz, they 
are very compact without being significantly lossy. The 
spiral resonators have large empty spaces at their centres 
which give a wide stop band [13]. This also reduces non-
adjacent coupling, since the distances between non-adjacent 
resonators can be large compared with adjacent resonators; 
nevertheless it is significant and influences the design.  
Apart from the adjacent coupling, there are two capacitive 
bridges, making two coupled quadruplets (CQ) [14], [15], 
[16]. Other capacitive bridges mitigate non-adjacent 
coupling. Two further resonators provide external coupling.   
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Fig. 1.  Pass band ripple of a 10th order Chebyshev filter, 
originally 0.1 dB ripple but with two coupling coefficients 
k12, and  k10,9 ; or k23,and k98; … 2% too large. 

2. The ripple-reduction iterative algorithm 

The coupling coefficients km,m+1 (m=1,… N-1) of a 
10th order Chebyshev bandpass filter with 0.1dB ripple, zero 
centre frequency and bandwidth of 2 normalised units is 
given in table 1, together with the external coupling 
coefficient ke, more commonly written as 1/Qe, the reciprocal 
of external quality factor, calculated from data given in [17].  
Using coupling matrices [1], the ripple is recalculated 5 
times; in each case one of values of km,m+1 and the 
symmetrically placed k10-m,11-m, are in error by a factor of 
1.02.  The results are shown in Fig. 1.  For clarity, the 
normalised frequency Ω is warped by the inverse sine 
function, giving the ripples nearly equal width, and depths 
Rn dB (n=1…N-1, from left to right on the frequency axis), 
taken to be positive even though they are measured 
downwards from 0 dB. (For an actual filter, Ω=2(f-f0)/B, 
where f0 is the centre frequency and B the bandwidth.)  The 
envelope enclosing the dips has an approximate cosine 
variation, with progressively more cycles as the error occurs 
nearer the centre of the filter. However, ripple resulting from 
an error in ke does not follow this pattern in that it does not 
give a constant ripple error, (i.e. a cosine of constant zero 
angle); it is considered separately. A similar set of graphs 
for errors of resonator centre frequencies of 0.02 
(normalised units) gives an approximate sinusoidal variation.  
This suggests a Fourier relationship, with the ripple 
envelope forming one domain and the filter coupling 
coefficients and resonance frequencies the other. One 
significant difference is that coupling errors near the centre 
of the filter cause the cosinesenvelopes with the fastest 
variations. Conversely, a sinusoidal variation in the coupling 
coefficients and resonant frequencies is expected to give an 
error in one particular ripple. The values of constants can be 
found from fitting numerical data.   

 
Table I: Normalised coupling coefficients for a 

10th order bandpass filter with 0.1 dB ripple  
Additional coefficients are determined from 

symmetry 
1/Qe  or  ke 
k12 

k23 

0.8334 
0.7586 
0.5675 

 k34 

k45 

k56 

0.5355 
0.5256 
0.5232 

 
An Nth order simulated design (or possibly a 

measured one) is first deliberately detuned by reducing ke 
and k12 until all N-1 ripples are visible. Some of the ripples 
can consequently become large, especially for high order 
filters.  A ripple adjustment function is 

 
 𝐴௡ = (ඥ𝑅଴ − ඥ𝑅௡ )

ఈ

ଶே
   (1) 

 
where R0 dB is the target final ripple (and not the initial 
value as suggested by subscript 0), written here as a constant, 
but it can have a different value for each ripple. The value α 
is a constant, usually 1 or less, to improve convergence.  For 
a symmetrical filter, only the resonators on the left side have 
to be considered; they are labelled from left to right, 

𝑚 = 1 …
ேାଵ

ଶ
      (2) 
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ଶ
      (3) 

    
for N odd and N even respectively;  the corrections to the 
resonance frequencies are 
 
  

∆𝑓௠ =
−(𝐹ଶ + 𝐹ଵ)

2
+ ෍  𝐴௡ cos ൤

2𝜋

𝑁
൬𝑚 −

1

2
൰ 𝑛൨  

ேିଵ

௡ୀଵ

 

 
 
                 (4)

  
where F1 is the lower band edge (whose target value is -1) 
and F2 the upper band edge (with target 1).  The first term is 
an obvious correction for the centre frequency while the 
second corrects the ripple. The cosine (instead of sine) 
function arises from defining n as above, instead of 
symmetrically as -(N-1)/2 … (N-1)/2 which may involve 
half-integer values.   

The coupling coefficients are each corrected by two 
ratios, the first of which are 

𝑟௘           𝑟௘ =
ଶ

ிమିிభ
    

 (5) 
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where 

𝑚 = 1 …
ேିଵ

ଶ
      (7) 

    

𝑚 = 1 …
ே

ଶ
      (8) 



 

3 
 

for N odd and even respectively.  The first term scales all 
coefficients to correct for a bandwidth error. 
 
 
 

 
Fig. 2.  Result of one iteration on an already optimum filter 
with all ripple Rn=0.1 dB, resetting the target ripple R0 for 
n=5 to a new value. 
 

 
Fig. 3. Result of one iteration on an already optimum filter 
with all ripple Rn=0.1 dB, resetting the target for one of the 
ripples R0n,  n= 6 …9 toඥ𝑅଴௡ = 1.5√0.1. The cases n=4 
…1 are determined from the symmetry.  
 

The equations can be tested with the already 
optimum 10th order filter by resetting one the target ripples, 
for example R0 for n=5, leaving the other target ripples as 

0.1 dB.  This should result in the fifth ripple taking the new 
value, preferably with the other ripples unchanged.  As 
shown in Fig. 2 and 3, this is approximately correct. Similar 
curves were produced for filter orders 5, 6, 10, 15 and 20 for 
ripple levels 0.01, 0.1, and 1 dB. While adjusting one ripple, 
the other ripples are slightly changed in the opposite 
direction, so that the main effect is to equalise the ripples 
instead of setting them to the target value. In particular, 
when ripple 8 is adjusted, ripple 9 is also changed 
significantly, but can be corrected in the next iteration. 
Similarly, when adjusting ripple 7, both 8 and 9 are affected.  
The other error is that while adjusting ripples 8 or 9, there is 
a significant overshoot.  This is characteristic of the higher 
order filters, and may be the basis of a future upgrade of the 
procedure.   

In an extreme case where ඥ𝑅଴ ≪ ඥ𝑅௡  and if only 
one ripple is affected, the level of adjustment (rm,m+1-1) or 
Δfm  varies as ඥ𝑅௡  

ఈ

ଶே
  so higher order filters require smaller 

adjustments.  Conversely, the ripple caused by a given error 
rises as N2, which makes the starting ripple for higher order 
filters very large. 

Fourier analysis can be introduced, subject to the 
very approximate nature of the equations. For example, 
Parseval’s theorem (or Rayleigh’s theorem) [18] in this 
context is (taking F1=-1, F2=1 and 𝛼=1)  
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      (9) 
Strictly speaking, there should be a term in (re-1) included 
with the (𝑟௠,௠ାଵ − 1)  terms. The equation shows that for a 
given r.m.s. level of errors, r.m.s. ripple still increases with 
N, but not as rapidly as in the extreme case above.  

To correct the mean ripple level, a further adjustment 
is performed. Since the filter parameters are, as found 
numerically, related to the square roots of the ripples, a 
mean level is given as 

𝑅௔௩ = ൭
1

𝑁
෍ ඥ𝑅௡

ேିଵ

௡ୀଵ

൱

ଶ

 

         (10) 
The variation of normalised coupling coefficient for a 

10th order Chebyshev filter is given in Fig. 4, based on data 
from [17]. Since RnR0 is in dB and the scale is logarithmic, 
the horizontal variable varies as lg(-20lg|S21(fn)|), where is fn 
is at a ripple dip.  Between 0.01 and 1 dB,  

 
𝑘௘ ≈ 0.46(1 − 0.83 lg(𝑅଴))   (11) 
 
So, to change the ripple level from Rav to R0, ke 

should be multiplied by a factor 
 

𝑝௘଴ =
ଵି଴.଼ଷ ୪୥ (ோబ)

ଵି଴.଼ଷ ୪୥ (ோೌೡ)
    (12) 

 
but since Rav is only an average value, this is only 
approximate and likelihood of overshoot is reduced by using 
a partial compensation  
 

𝑝௘ =
ଵି଴.଼ଷ ୪୥ (ோబ)

ଵି଴.଼ଷ [ఉ ୪୥(ோೌೡ)ା(ଵିఉ)୪୥(ோబ)]
  (13) 
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where β is typically α or less. Similarly k12 and k23 are 
corrected by factors  
 

𝑝ଵଶ =
ଵି଴.ଶଵ ୪୥ (ோబ)

ଵି଴.ଶଵ [ఉ ୪୥(ோೌೡ)ା(ଵିఉ)୪୥(ோబ)]
  (14) 

 
 

 
Fig. 4.  Variation of normalised coupling coefficient 
(B/f0=1) for a 10th order filter.  (The x axis is a log scale in 
addition to dB units being already logarithmic). 
 

𝑝ଶଷ =
ଵି଴.଴଼ ୪୥ (ோబ)

ଵି଴.଴଼ [ఉ ୪୥(ோೌೡ)ା(ଵିఉ)୪୥(ோబ)]
  (15) 

 
which differ only by the coefficients 0.21 and 0.08. For p34 
and p45, they are small, 0.04 and 0.03 respectively, so p34, 
p45 … are ignored, that is taken as 1.0. Thus in any single 
iteration, the initial values of resonant frequencies are 
shifted by Δfm (m=1…N) while ke, k12, ….  are replaced by 
kerepe, k12r12p12, k23r23p23, k34r34, k45r45 … using (1-8) and 
(13-15). These correction factors hold approximately for 
filters of other orders, and very crudely for ripple exceeding 
1 dB. 
 The square root and logarithmic dB units in (1) are 
not completely arbitrary. The response of a filter is 

 |𝑆ଶଵ|ଶ =
ଵ

ଵାఌమ ஼మ(௙)
   (16) 

where C(f) is the Chebyshev (or some other) polynomial. 
Using ln(1+x) ≈ x,  2.3lg(1+x) ≈ x for small x, and taking f at 
the centres of the ripple dips,  
 ඥ𝑅௡  ≈  2.08 |𝜀𝐶(𝑓௡)|   (17) 
Meanwhile, using |S11|2+ |S21|2 = 1,  

  ቚ
ௌభభ

ௌమభ
ቚ

௡
=  |𝜀𝐶(𝑓௡)| ≈

ඥோ೙ 

ଶ.଴଼
    (18) 

Thus (1) could have been written  
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ቚ
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ఈ
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− ቚ
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ௌమభ
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௡
൰

ఈ

ே
  (19) 

with a small change in  𝛼 , but √Rn is retained because 
responses in dB are readily available in commercial e.m. 

simulators.  However, ቚ
ௌభభ

ௌమభ
ቚ has the advantage of being less 

obscured when there are large resistive losses.  

3. Numerical examples  

To observe the convergence of the iterative 
procedure, hypothetical examples were computed using the 
coupling matrix [1].  As a starting point, Chebyshev filters 

of various orders had their coefficients varied by arbitrary 
amounts, so that the ripple increased to either 18 dB or 5 dB, 
within the constraint that ke and k12 should be reduced so 
that all the ripples were visible. Repeated iterations then 
brought the ripple down to 0.01±20% dB or 0.1±20% dB 
respectively. The dashed line in Fig. 2(a) shows a response 
with ripple 5 absent.  This could be represented as a 
negative value for √R5, but Fig. 2 was not available at first 
so such ripples were recorded as zero. The results are given 
in table 2. Up to 16th order, convergence rates are 1.9 or 
better. They are somewhat dependent on operator skill in 
choosing α and β. 

 
 
 
 
Table 2: Chebyshev filter: convergence of the iterative 
adjustments  
 (a) Convergence factor:  geometric mean value of  
 [Initial Ripple error (dB)/Final Ripple error (dB)] for 1 
iteration 
 
 

No. of iterations  Convergence    
Factor (a) 

Max. Start Ripple 
(dB) 

18 5  18 5 

End Ripple (dB) 0.01 
±0.002  

0.1 
±0.02 

 0.01 
±0.002 

0.1 
±0.02 

Filter order 
  3 
  4 
  5 
  6 
7 
 

10 
15 
16 
20 

  
  3 
  6 
  8 
  7 
8 
 

  8 
14 
14 
24 
 

   
2 
3 
3 
3 
4 
 

  4 
  8 
  8 
10 
 

  
21 
  4.6 
  3.1 
  3.7 
3.1 
 

  3.1 
  1.9 
  1.9 
  1.5 

 
16 
  6.3 
  6.3 
  6.3 
4.0 
 

  4.0 
  2.0 
  2.0 
  1.7 

 
Overall, computation is faster  for lower filter orders 

for several reasons. 
1. The initial ripple error is much smaller, with the lower  

sensitivity to errors in parameters. 
2.1. With a few exceptions, the table shows a trend for 

faster convergence.  
3.1. Computation times of e.m. simulators decrease with 

the lower circuit complexity, perhaps by the square or 
the cube of the number of resonators. 
 

Results for cascaded quadruplets (CQs) are given in 
table 3. In some cases the frequency corrections involving 
F1 and F2 in (4) and (6) had not yet been 

 
 
 
 
 
 
  

Table 3: Cascaded quadruplets 
Maximum starting ripple:  18 dB,  
except for e.m. simulation, 17 dB. 

(a) Two quadruplets and 2 other resonators; unknown 
additional cross coupling.  Full e.m. simulation.  
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(b)  All filters are symmetrical, so only cross-couplings on 
the left-hand side have to be specified. 

(c) Typical coupling coefficient in the main path is 0.5 – 
0.7. 

(d) The ratio of transition region width of the cascaded 
quadruplet filter to the transition region width of a 
Chebyshev filter with the same order; measured at @ 
the attenuation level given in dB.  

(e) Convergence factor:  geometric average value of  
 [Initial Ripple error (dB)/Final Ripple error (dB)] for 1 

iteration 
Order  Cross- 

Coup 
Coeffts 
(b),(c) 

Skirt 
Width 
Ratio (d) 

End 
Ripple 
(dB) 

No. of 
itera- 
tions 

Conver
-gence  
Factor 
 (e) 

4 
 
8 
 

k14 = -0.126 
 
k14 = -0.100 
 

0.55@39 
 
0.65 @60 
0.50@83 

 
0.01 
±0.002 

   6 
 
 14 
 

4.6 
 
1.9 
 

4 
 
 
8 
 
12 
 

k14 = -0.242 
 
 
k14 = -0.200 
 
k14 = -0.187, 
k58 = -0.155 

0.49@27 
 
 
0.38@52 
 
0.45@60 
0.37@76 

 
 
0.01 
±0.002 

  8 
 
 
19 
 
21 

3.1 
 
 
1.6 
 
1.5 

  8  
 

16 

k14 = -0.357 
 
k14 =- 0.250, 
k58 = -0.200 

0.24@35 
 
0.34@60 
0.24@104 

 
0.1 
±0.02 

16 
   
28 

1.5 
 
1.3 

10 (a) 
e.m. 
sim 

  0.015 – 
0.064 

11 1.7 

 
 

Table 4: Folded cross-coupled 
Maximum starting ripple:  18 dB. 
See notes in table 3. 
Order  Cross- 

Coup 
Coeffts 
(c) 

Skirt 
Width 
Ratio (d) 

End 
Ripple 
(dB) 

No. of 
itera- 
tions 

Conver-
gence  
Factor 
 (e) 

6  
 

k25 = -0.106 
 

0.51@46 
 

0.01 
±0.002 

11 
 

2.3 
 

6 k25 = -0.2,  
k16 =  0.03  

0.39@47 0.01 
±0.002 

13 2.0 

6 k25 = -0.33,  
k16 =   0.085 

0.32@34 0.01 
±0.002 

16 1.8 

12 k58 = -0. 2795 
k49 =  0.0443 
k3,10 
   = -0.00244 

0.56@60 
0.38@101 

0.003 to 
 +0.022 
  

24 1.4 

 

Table 5: Cascaded triplets 
Maximum starting ripple:  18 dB,  
*Conjoined triplets 
Or-
der  

Cross- 
Coup 
Coeffts 
(c) 

Skirt 
Width Ratio (d) 
Left, Right @ 
          atten (dB) 

End 
Ripple 
(dB) 

No.  
of 
itera- 
tions 

Conver-
gence  
Factor 
 (e) 

6 k13=-0.25 1.52, 0.50 @ 60 
1.71, 0.36 @ 85 

0.01 
±0.002 

11 2.3 

7* k13=-0.45 
k35=-0.35 

2.51, 0.14 @ 53 
 

0.1±0.02 23 1.3 

9 k13=-0.4 
k46=-0.15 

1.38, 0.29 @ 60 
1.69, 0.22 @ 92 

0 to 0.18  8 1.8 

  
 

 
Fig. 5.  Initial and final ripple of an 8th order cascaded 
quadruplet filter and a 16th order Chebyshev filter.  Top 
graph shows the final pass band, expanded.  
 
 

 
Fig. 6.  Starting and final ripple of a 9th order filter with 
uneven ripple. 
 
 

Overall, computation is faster for lower filter orders 
for several reasons. 

1. The initial ripple error is much smaller, with the lower  
sensitivity to errors in parameters. 

2. With a few exceptions, the table shows a trend for 
faster convergence.  

3. Computation times of e.m. simulators decrease with 
the lower circuit complexity, perhaps by the square or 
the cube of the number of resonators. 
 

Results for cascaded quadruplets (CQs) are given in 
table 3. In some cases the frequency corrections involving 
F1 and F2 in (4) and (6) had not yet been incorporated, and 
making an overall scaling at the end of the iterative process, 
the final values of the cross-coupling coefficients are not the 
initial values. Convergence is workable with moderate cross 
coupling coefficients sufficient to reduce significantly the 
transition region compared Chebyshev filters of the same 
order. For higher orders and strong cross coupling, the ripple 
either did not converge or converged very slowly at 0.01 dB, 
so a less ambitious target of 0.1 dB is recorded. 

Finally, results for the folded, cross-coupled 
configuration and for cascaded triplets (including one filter 
with conjoined triplets) are given in tables 4 and 5, with 
similar conclusions.  

The initial and final responses of two of the filters, a 
16th order Chebyshev and an 8th order CQ filter, are given in 
fig. 5. Both have reached their target ripple.  The frequency 
and bandwidth corrections in (4) and (6) were incorporated 
in the case of the Chebyshev filter, and the accurate final 
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bandwidth of the former case is evident, in contrast to the 
latterCQ filter. The CQ coefficients are recorded in table 6. 
The resonant frequencies are within 0.00007 normalised 
units of each other.  For the 16th order filter, the coefficients 
are within 0.001 dimensionless unit of the theoretical values, 
despite a remaining ±20% error in the ripple level.  This 
illustrates the error sensitivity of higher order filters. 

A filter with non-uniform ripple (three 1 dB and six 
0.05 dB ripples) is shown in fig. 6, showing the adaptability 
of the procedure. The coefficients are given in table 6. A 
more realistic situation is where ripples near the band edges 
either need to be smaller to reduce error sensitivity [19], or 
have a relaxed requirement when the signal spectral content 
is smaller at the band edges. In another application, a 
measured filter may have a certain ripple pattern.  Setting 
the target ripple to these values, the algorithm can be used 
together with coupling matrices to find the actual filter 
coupling coefficients and resonant frequencies, for 
comparison with the intended values. 

 
Table 6: Coupling coefficients of an 8th order CQ 

filter, and a 9th order filter with non-uniform ripple 
 

 CQ Non-
uniform 
ripple 

  CQ Non-
uniform 
ripple 

f1 0.03755  0.1147  ke  0.7726 0.7614 
f2 0.03750 -0.0189  k12   0.6163 0.7100 
f3 0.03747 -0.0480  k23  0.7414 0.5866 
f4 0.03748 -0.0165  k34  0.3907 0.5338 
f5 NA -0.0625  k45  0.4784 0.5380 
    k14 -0.33 NA 

 
 
 
 

 
(a) 

 
(b) 

 
(c) 
Fig. 7 (a). Architecture of the superconducting spiral filter, 
showing all the intended coupling.  (b)  Enlargement of one 

spiral, showing definition of the lengths and gaps. (c) 
Layout of the left-hand half of the (symmetrical) filter. 

4. Full filter design example: superconducting 
spiral filter 

A spiral microstrip superconducting filter was 
designed for the radio telescope in Yebes, Spain, with 2295 
MHz centre frequency and 7% bandwidth; further details 
will be given with the results. The substrate is 0.5 mm thick 
Magnesium Oxide, coated on both sides with 600 nm of 
Yttrium Barium Copper Oxide (YBCO) and further coated 
with 200 nm of Gold, from which the small terminals for 
contact with the external circuit are fabricated; the gold was 
removed everywhere else as it is lossy. The eventual circuit 
has dimensions 30 mm x 8 mm including some empty space 
between the spirals and the box walls.  Other details are 
similar to [20].   

The specified frequency response is asymmetrical, 
but satisfied by an 8th order CQ symmetrical response; 10th 
order was chosen for a larger error margin.  The extra 
substrate area including the increased empty space is small, 
about 5 x 8 mm2, similar to the hexagonal footprint of an 
SMA connector.  The design procedure is well established 
[21], [1] based on the coupling matrix, with thetarget 
coupling coefficients including cross coupling were found in 
this case by trial and error, starting with Chebyshev 
coupling coefficients and evaluating S21 and S11 with the 
coupling matrix [21], [1], because the foregoing 
designiterative procedure was not yet completed.  The 
architecture showing all the intentional coupling coefficients 
is given in Fig. 7(a). The chosen resonators are 2½ turn 
spirals with dimensions 2 x 2 mm2, with track width 0.05 
mm (Fig. 7(b,c)). Resonant frequencies and coupling 
coefficients found from full wave SONNET [22] 
simulations were used for the initial design.  Simulations of 
the whole filter showed a significant asymmetry in the 
frequency response, as anticipated, due to cross coupling 
between non-adjacent resonators. Winding direction 
(moving inwards towards the centre of the spiral) is 
clockwise for resonator 1, anticlockwise for resonators 2 and 
3, and clockwise for resonators 4 and 5, with the remainder 
of the layout symmetrical. This causes the magnetic and 
electric coupling between resonators m and m+2 to have 
opposite signs [23], so that the unwanted cross coupling 
could be at least partially cancelled by introducing 
additional cross coupling k13 and k24 as shown in Fig. 7(a). 
The cross-coupling k25 for the CQ section is also negative, as 
required.  Since the design procedure does not provide 
calculations for cross coupling, they are not optimised, but 
only determined by trial and error to produce suitably low 
side-lobes, with an error margin to allow variations as the 
pass band was iteratively adjusted, but in this case, the side-
lobe level was further decreased. Since the specification 
itself is asymmetrical, a simpler strategy may have been to 
make full use of the naturally occurring coupling km,m+2 and 
omit thenot have CQ sections. However, the architecture 
used does suggest that a range of architectures are available 
for other filter specifications. 

Finally, theAfter the sidelobes were set, ke and k12 
were decreased to ensure that all 9 ripples were visible. The 
design procedure was invoked to reduce the ripple from 17 
dB to the 0.05 dB target, again giving an error margin.  
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Equations (4), (5), (6), (13), (14) and (15) give the estimated 
correction for resonator centre frequency and coupling 
coefficient. The changes in resonator dimensions (Fig. 7(b)) 
are then 

 

∆𝑙௠ =  
଼଴

ିଵଶ଴ 
∆𝑓௠ mm  (20) 

 
where the filter half-bandwidth is 80 MHz and the rate of 
change of resonant frequency is -120 MHz/mm, as found 
from simulations. The gap and coupling coefficient are 
related approximately logarithmically so an interpolation 
equation for gaps ge, g12, g23, g34, g45 and g56 mm  is  

 
∆௚

଴.ଵ
=

୪୭୥ (௥)

୪୭୥ (௥ᇲ)
   (21) 

where r is one of the values repe,  r12p12, r23p23, r34, r45 and 
r56, as given earlier, and r’ is the corresponding value for a 
0.1 mm increase in the gap, given in table 7. Except for re’ 
and r34’, each gap remained in one of the ranges given in the 
table. The number of iterations and the final resonator 
dimensions and spacings are given in tables 8 and 9. The 
huge initial ripple is no great drawback: the additional 
iterations are done with the coarse, fast setting.  The cell size 
was progressively decreased not only for improved accuracy 
but also finer control over gaps and resonator lengths 
without resorting to the fine tuning described in [24]. The 
approximate assumption that each dimension (gap or length 
in fig. 7(b) affects only one parameter (coupling coefficient 
or resonance frequency)  may slow the convergence in lower 
order filters where the expectation for convergence is higher.  
Furthermore, a large adjustment in F1 or F2 may introduce 
further ripple which has to be adjusted in the next iteration. 

The superconducting filter used an earlier, more 
cumbersome version of the algorithm, but when re-designed 
using the foregoing equations, the dimensions were within  
0.0025mm, the final simulation cell size, so it is a valid 
demonstration. Performance at 20 Kelvin is compared with  

 

 
(a) 
 

 
(b) 
 

 
(c)  

Fig. 8 (a). Simulated and measured pass band 
characteristics of the filter, together with the specification. 
(b) Stop band response (c) enlargement of the spurious 
responses. All share the same legend. 

 
simulations and specifications in Fig. 8.  The main error is a 
frequency shift. Previous experience suggested a small 
discrepancy between simulations and measurements; also 
attempting to allow for different simulation cell size, 
temperature and frequency band, the filter was designed 
anticipating that the measured response would be 7 MHz 
higher than the simulations. However, the discrepancy is 
much less. The error margin is 5 MHz, so there is a 2 MHz 
encroachment on the upper passband edge by one of the 
filters, and 0.3 MHz by the other, out of the 160 MHz pass 
band.  The stop band limit at 2180 MHz is not violated.  A 7 
MHz adjustment requires the lengths ln to be shortened by 
0.06 mm, together with one further iterative adjustment.  
With the filters already fabricated, a 2 MHz adjustment can 
be produced by placing the lid 2 mm above the substrate, or 
perhaps by tuning screws.A 7  

In all other respects, the filter matches specifications 
well. The ripple is about 0.1 dB, compared with the 0.05 dB 
target and the 0.14 dB specification.  The asymmetry in the 
transition regions is commensurate with the specification, 
and the side lobes are lower than the measurement noise 
floor.   
 
 
Table 7.   The variation of coupling coefficient 
(expressed as a ratio) for a 0.1mm increase in gap 
Gap (mm) 
range 
ga  to   gb 

External 
coupling  
    r’e 

Internal coupling, tails 
inwards 

Internal coup. 
tails outwards 

0.1 to 0.2 
0.2 to 0.3 
0.3 to 0.4 
0.4 to 0.5 

r’e : 0.621 
 --  0.671 
 --  0.709 
 0.735 

         ---   r’34:       
0.769 
r’12,  r’34,  r’56 :  0.775 
         ---             0.781 

 r’23: 0.685 
 r’45: 0.719 
  --    0.735 

𝑟௘
ᇱ =

௞೐(௚೐ୀ௚್)

௞೐(௚೐ୀ௚ೌ)
 ;      𝑟ଵଶ

ᇱ =
௞భమ(௚భమୀ௚್)

௞భమ(௚భమୀ௚ೌ)
  ;  … 
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Table 8: No. of iterations for spiral filter simulated by 
SONNET: 
Total CPU time: 8 ½ hrs 
Segmentation Cell size 

(µm) 
No. of 
iterations 

Time per 
iteration 

Approx. final 
ripple (dB) 

Edge mesh  10  6 5 min 0.3 
Edge mesh  5  3 18 min 0.1 
Fine mesh   2.5 2 3.5 hours 0.06 

 
Table 9. Final dimensions of the filter  
Resonator 
No, n 

ln 

(mm) 
Length of 
tail (mm) 

 Gap no. Gap 
(mm) 

1 1.3825 2.20  External 0.1400 
2 0.5175 3.70  12 0.2100 
3 0.6975 2.25  23 0.1450 
4 1.320 2.20  34 0.2275 
5 1.290 2.20  45 0.2350 
    56 0.2925 

 
MHz adjustment requires the lengths ln to be shortened by 
0.06 mm.  With the filters already fabricated, a 2 MHz 
adjustment can be produced by placing the lid 2 mm above 
the substrate, or perhaps by tuning screws.  

In all other respects, the filter matches specifications 
well. The ripple is about 0.1 dB, compared with the 0.05 dB 
target and the 0.14 dB specification.  The asymmetry in the 
transition regions is commensurate with the specification, 
and the side lobes are lower than the measurement noise 
floor.   

Resonator resistive losses result in a gentle variation 
of |S21| in addition to the ripple, so that the ripple peaks at 
the band edges are about 0.025 dB lower than at the centre.  
By matching this in the simulation, the estimated 
superconductor surface resistance is 10 µΩ per square 
(assuming negligible dielectric loss) and the quality factor of 
the resonators is approximately 70,000, consistent with 
previous work [21], [23].  The remainder of the loss, about 
0.2 dB, is believed to be in the external conductors, 
including non-metallic epoxy conducting glue and a male-
to-male adaptor, and to calibration: a re-measurement (using 
equipment at the laboratory of one of the other authors) 
yielded a value of 0.1 dB. 

The wideband response is shown in fig. 8(b), 
vindicating the choice of spirals for the wide stop band.  The 
close-up of the higher order responses is given in fig. 8(c), 
confirming that the simulator is working well, and opening 
the possibility of suppressing these responses.  The filter 
packaging appears in fig. 9. The silvery conducting glue 
increases the width of the input line, which may have 
contributed to the somewhat large passband S11.  

 
 

 
 

(a)          (b) 
Fig. 9(a) The filter, fully assembled except for the cover, 
and (b) a close-up of the right-hand side.  Contrast has been 
artificially enhanced to show the black spirals above the 
black ground plane. Nevertheless, in (a), it is the shadows of 
the spirals that are visible, rather than the spirals 
themselves. 

 
In the simplest version of the existing optimisation 

algorithm, the Jacobian matrix is computed using full wave 
simulations. The 10th order filter has 11 parameters, ke, 
km,m+1 and ∆𝑓௠  (m=1 … 5), to be adjusted to determine 9 
ripples together with filter centre frequency and bandwidth. 
However, the relationship between mean ∆𝑓௠  and centre 
frequency, and between mean coupling coefficient and band 
width, is obvious, leaving effectively 9 parameters to be 
related to 9 ripples.  This requires 10 simulations, one with 
the starting parameters and then a further nine each with one 
parameter changed.  The matrix may vary as the ripple 
decreases so it may have to be re-evaluated towards the end 
of the iterative process, to minimise the number of time 
consuming iterations using the fine mesh.  The Jacobian 
matrix itself would probably be computed using coarse or 
medium accuracy, as only the gradients are required.  Even 
if only 4 iterations are used, it requires an initial simulation, 
plus one more after each iteration, giving a grand total of 25 
simulations.  

The present method, which is at its best for small 
ripple (admittedly not down to 0.01 dB) to reduce the 
number of high-accuracy simulations, finished in used 11 
iterations.  Adjusting the cross coupling and the initial 
setting of ke and k12 to make the ripples visible has been 
omitted in the comparison.  

5. Speculative Explanation 

The ripple optimisation is based on numerical fitting, 
but a speculative explanation may be the basis of a future 
theory. A microstrip filter of straight half-wave transmission 
line resonators separated by capacitive gaps is shown in Fig. 
10(a). The signal shown, initially propagating to the right, is 
reflected at each gap with only a small part of the energy 
transmitted. It traverses resonator 1 several times and the 
combined transmission at gap 12 forms the propagating wave 
passing to resonator 2, where it also reverberates before 
being fully transferred to resonator 3. Thus the filter has 
greatly enhanced delay (or equivalently, phase slope) 
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compared with a plain transmission line. In the pass band, 
correct choice of the gaps ensures that the reflection S11 is 
small.  Phase slope of S21 increases with N and reciprocal of 
bandwidth, with lag increasing by Nπ radians [25] as 
frequency increases across the pass band and transition 
regions, so not all this phase shift is in the pass band. As a 
delay line, it has drawbacks of limited bandwidth, dispersion, 
and non-constant amplitude. Nevertheless it has been used 
for a delay line (“transversal”) filter [25], [26]. 

If the reflection coefficient at gap 34 at the centre of 
the filter increases slightly, S11 is different by an excess 
amount ΔS11. ΔS11 and S21 have equal phase slope, as they 
traverse equal distances within the filter. Gap 34 is 
effectively the reference plane for reflections when 
considering ΔS11/S21 which has zero phase slope; it shifts 
S11/S21 vertically by a constant amount (the dotted to the 
solid line in Fig. 10(b)), resulting in unequal positive and 
negative ripples.  |S11/S21| (dashed lines) then has alternating 
large and small ripples, which explains Fig. 1(c).  Similarly, 
if the gaps “e” (or gaps 12 and 56) are incorrect (Fig. 10(c)), 
the two excess reflections with their different phase shifts 
interfere constructively or destructively, giving ΔS11/S21 
with a similar number of cycles to the optimum S11/S21.  
|S11/S21| has a constant or slowly varying excess ripple, as 
shown in Fig. 1(a).  The explanation for errors in resonant 
frequency is assumed to be similar. Thus the filter is viewed 
as a delay line, and two symmetrically situated errors lead to 
two echoes in the time domain, whose delay difference 
determines a cosine envelope of the filter ripple in the 
frequency domain. A closer examination of filter dispersion 
may yield a more accurate formulation.   

6. Conclusion 

A procedure for iterative adjustment of filter ripple 
has been proposed, based on empirical formulae. The 
emphasis is on simplicity, but refinements are suggested. It 
has been successfully applied to the design of a 10th order 
superconducting filter with spiral resonators for a specific 
application in a radio telescope.  
  

 
 
Fig. 10. (a) End-coupled half-wavelength filter with signal 
path for S21.  (b) Signal path for excess reflection at gap 34, 

and its effect on S11/S21.  (c) Two signal paths, from excess 
reflection at gaps “e” and their effect on S11/S21. 
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