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Abstract

We present a novel experimental study on solid CH2DOH pure and in as-
trophysical relevant mixtures. Solid samples were accreted under ultra high
vacuum conditions at 17 K and were analyzed by mid-infrared transmission
spectroscopy. Refractive index, density, and mid-IR band strength values
were measured for pure solid CH2DOH. The refractive index was also mea-
sured for CH2DOH:H2O, CH2DOH:CO, and CH2DOH:CH3OH mixtures. For
all samples the thermal evolution of the main band profile was studied. We
used the interference laser technique (He-Ne laser, λ= 543.5 nm) to mea-
sure the samples thickness and a numerical method to measure the refractive
index starting from the amplitude of the interference curve. We obtained
the ice density through the Lorentz-Lorenz relation. To calculate the band
strength values we used the linear fit of the integrated band intensities with
respect to the column densities. Samples deposited at 17 K were warmed up
to their sublimation temperature. Spectra were taken at selected tempera-
tures to study their thermal evolution. The results are discussed in view of
their relevance for the interpretation of astronomical IR spectra.
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1. Introduction

The star formation process takes place in dense molecular clouds. As-
tronomical observations toward these objects at radio wavelengths clearly
show the presence of emission lines assigned to gas phase molecules. To
date about two hundreds molecular species have been identified in interstel-
lar and circumstellar regions1. In addition infrared observations clearly show
the presence of absorption features superimposed to the continuum radia-
tion emitted by young stellar objects still embedded in their parental cloud.
It is largely accepted that these features are due to solid phase molecules
which, because of the low temperature (as low as 10 K), freeze out and form
a coating (often referred to as ice mantle) on dust grains also present in
molecular clouds. About 10 molecular species have been identified in ice
mantles. Among them the most abundant are H2O, CO, CO2, and CH3OH.
However it is largely believed that other species are also present in the solid
phase, not yet detected due to the limits of presently available astronomical
instrumentation (e.g. Boogert et al., 2015).

The identification and assignment of the observed absorption bands is
based on the comparison between astronomical and laboratory spectra of
relevant species and their mixtures in the solid phase. Furthermore, when
infrared transmittance astronomical spectra are converted to optical depth
scale the column density (molecules cm−2) of the species responsible of a
given absorption band can be obtained if the band strength value (in units of
cm molecule−1) is known. Since the first detections of solid phase molecules
in dense molecular clouds (e.g. Gillett et al., 1973; Tielens et al., 1991; Alla-
mandola et al., 1992) several experimental works have focused on the mea-
surement of band strength values of astronomical relevant molecules (e.g.
Hudgins et al., 1993; Schutte et al., 1993; Gerakines et al., 1995; Mulas et
al., 1998; Palumbo et al., 1999; Kerkhof et al., 1999; berg et al., 2015; Fulvio
et al., 2009; Modica & Palumbo, 2010; Luna et al., 2018).

Isotopologues have also been detected in star-forming regions. In partic-
ular 13CO and 13CO2 have been identified in icy grain mantles (e.g. Boogert
et al., 2000, 2002; Gibb et al., 2004). In addition, other isotopologues, such
as C18O and C17O, HD, HDO, D2O, HDCO, CH2DOH, and CH3OD, have

1http://www.astrochymist.org/astrochymist ism.html
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been detected in the gas phase (e.g. Ceccarelli et al., 2002; Fontani et al.,
2014, 2015; Bianchi et al., 2017).

According to current models, in dense molecular clouds, deuterated species
(such as HDO and CH2DOH) form in the solid phase and are released to the
gas phase with the desorption of ice mantles. As a matter of fact the ab-
sorption feature due to solid HDO has been extensively searched for and
its identification is still highly debated (Teixeira et al., 1999; Dartois et al.,
2003; Parise et al., 2003; Aikawa et al., 2012; Urso et al., 2018). Gas-phase
isotopologues have been also identified in the Solar System (Hartogh et al.,
2011; Altwegg et al., 2015; Furi and Marthy, 2015), while they have never
been detected in the solid-phase on the surface of solar system bodies. It has
been suggested that the study of astrophysical relevant deuterated species
could be a key aspect in order to better understand the Solar System for-
mation (e.g. Ceccarelli et al., 2014) and the link between the composition of
interstellar material and primitive bodies (e.g. Greenberg , 1982; Caselli and
Ceccarelli, 2012; berg et al., 2015; Altwegg et al., 2017; Drozdovskaya et al.,
2018).

To the best of our knowledge the detection in space of solid deuterated
methanol has never been reported. However in the near future the James
Webb Space Telescope will be operative. Thanks to its high sensitivity it will
be used to search for less abundant species and in particular for deuterated
species. With this is mind we have performed a novel experimental investiga-
tion to measure the band strength values of the main infrared bands of solid
methanol-1-d (CH2DOH) and to study the profile of the bands of pure solid
CH2DOH and its mixtures with H2O, CO, and CH3OH at low temperature
and during warm-up to its sublimation temperature. In particular, we focus
on the C-D stretching mode bands in the 2300-2100 cm−1 spectral region,
because these features are not present in the spectrum of CH3OH and will
be used to search for CH2DOH in astronomical spectra.

2. Experimental methods and setup

Six different sets of experiments were performed in the Laboratory for Ex-
perimental Astrophysics at INAF-Osservatorio Astrofisico di Catania (Italy),
in order to obtain information on the thermal evolution of pure CH3OH,
CD3OD and CH2DOH and mixtures containing CH2DOH:CO=1:4, CH2DOH:
H2O=1:5 and CH2DOH:CH3OH=1:2 deposited at 17 K. Refractive index
and, in the case of pure species, also the density of the deposited frozen films
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have been evaluated. To perform the deposition, we used vapors of CD3OD
from liquid ampoule by Aldrich Chemical (99.95 atom % D), of CH3OH
from liquid ampoule by Merck and of CH2DOH (Methanol-1-d) from liquid
ampoule by Sigma Aldrich with nominal isotopic purity of 98 atom % D.
The CH2DOH:CO=1:4 mixture was prepared by using a CO gas cylinder
(Aldrich Chemical, 99%) end for the CH2DOH:H2O=1:5 mixture we used
vapors produced from liquid H2O (Chromasolv Plus by Sigma Aldrich). The
experimental set-up is composed by an ultra high vacuum (UHV) stainless
steel chamber (pressure P < 10−9 mbar) interfaced with a FTIR spectropho-
tometer through IR-transparent windows (KBr). The gas mixture is prepared
in a separate mixing chamber, previously evacuated at a pressure lower than
10−6 mbar, and is admitted through a flow regulating valve in the UHV main
chamber. A gas inlet allows to introduce the gas mixture into the chamber
where it freezes on a substrate (in this work KBr) placed in thermal contact
with the final tail of a closed-cycle helium cryostat which reaches the tem-
perature of 17 K. The temperature of the substrate can be therefore varied
in the range 17-300 K by using a resistor coupled with a diode temperature
sensor based controller. The samples were deposited at 17 K and subjected
to several steps of warm up until their complete sublimation. All the steps
were analyzed acquiring infrared transmission spectra (8000-400 cm−1) by
a Fourier transform infrared (FTIR) spectrophotometer (Bruker Vertex 70)
with a resolution of 1 cm−1. Each datapoint (sampling) is given every
0.25 cm−1 that corresponds to 1/4 of the resolution. Thanks to a
rotatable polarizer placed along the path of the IR beam, spectra were taken
both in P and S polarizations, where the electric vector is parallel (P) or
perpendicular (S) to the plane of incidence. The substrate surface is inclined
by an angle of 45◦ with respect to the infrared beam. A transparent window
in the UHV chamber allows the thickness measurement during the deposition
by using an external He-Ne laser (λ = 543.5 nm) reflected at near normal
incidence (2.35◦ vertical tilt) by the ice film deposited on the substrate. The
gas inlet, placed at the bottom of the vacuum chamber, is not di-
rected toward the substrate in order to obtain a background deposition and
hence a uniform thickness of the ice film. For each sample the deposi-
tion rate was kept constant. It values about 0.7 µm/h in the case
of the CH2DOH:H2O mixture and ranges from 2.5 to 3.4 µm/h
in the case of the other samples. The ice deposition on the backside
of the substrate is avoided by using a copper tube which is 2 cm long and
has a diameter of 0.45 cm. The tube is attached to the sample holder (on
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the opposite side of the substrate) along the IR beam direction. As a con-
sequence, only a negligible fraction of the molecules that deposit
on the front surface of the substrate can stick on the back surface
of it. That is, only the molecules entering the tube and passing
through it without sticking on its inner walls. A cold copper thermal
radiation shield is attached to the first stage of the cryostat along the cold
finger vertical axis. In Fig. 1 a schematic drawing of the UHV chamber is
reported, the cold shield is omitted for better clarity.

2.1. Thickness measurements

As described in Fulvio et al. (2009), Modica & Palumbo (2010), and Urso
et al. (2016) during the deposition it is possible to measure the ice film thick-
ness by using the laser interference technique. A laser beam directed towards
a two layers system composed by a thin ice film deposited on a substrate
(Fig. 2), produces reflections at the interfaces vacuum-ice and ice-substrate.
The reflected beams give the characteristic interference pattern that pro-
vides ice thickness information. In our experimental setup, a He-Ne laser (λ
= 543.5 nm) is reflected on the sample at near normal incidence (θi=2.35◦).
The reflected beam is detected by an external silicon-diode detector and its
intensity is recorded by a computer routine. The substrate used in this work
is a KBr disk. In general the amplitude of the interference curve depends
on the refractive index of the film, so we can derive this quantity by using
a FORTRAN routine (Baratta and Palumbo, 1998) and then measure the
thickness by comparing the experimental interference curve (an example for
CH2DOH is shown in Fig. 3 (a)) with the theoretical curve provided by the
routine (Fig. 3 (b)). The comparison procedure is described in Urso et al.
(2016). The FORTRAN routine can be run on line through a free web user
interface available at the link: http://www.oact.inaf.it/thickness/. By enter-
ing in the web user interface some information such as the ratio between the
minimum and the maximum of the experimental interference curve, the laser
wavelength, the angle of incidence, the substrate and the polarization (P or
S) of the laser beam, the routine will provide the theoretical interference
curve finding the refractive index of the film by varying the nf value (where
nf is the refractive index of the film) until the theoretical interference curve
has the same amplitude of the experimental one.

In Fig. 3(a) vertical lines indicate the time when the deposition
was stopped and infrared spectra were taken. The acquisition of
each spectrum (which is the addition of 120 spectra) takes about
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Figure 1: (a) Three-dimensional drawing of the UHV chamber system. (b) Top view
section of the chamber. (c) Detail of the copper tube used to avoid gas deposition
on the backside of the substrate (not to scale).
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Figure 2: Multiple reflections are produced by a laser beam (with wavelength λ0 and
polarization P ) directed towards a two layer system where nf is the refractive index of
the film, ns is the refractive index of the substrate, θi is the incidence angle and θr is the
angle of refraction.

6 minutes. In principle we could reduce the number of total added
spectra in order to reduce the acquisition time to allow the laser in-
tensity measurement and IR spectroscopy at the same time without
stopping the deposition. However this would decrease the signal
to noise ratio of the final spectra and each spectrum would cor-
respond to an average value of the thickness range. Both effects
would worsen the final results.

From the Snells law we can derive the effective thickness seen by the IR
beam coming at oblique incidence (45◦) into the ice-film (see Fig. 4). In
particular if we indicate with deff the effective thickness we find:

deff =
d

cosθr

=
d√

1 − sin2θin2
0 /n2

f

(1)

where n0 is the refractive index of the vacuum, nf is the refractive index
of the ice-film obtained from the amplitude of the interference curve, θi is
the incidence angle of the IR beam (θi=45◦) and θr is the refractive angle.
In the previous relation we neglect any variation of the refractive index with
wavelength (dispersion) from the laser to the mid infrared wavelengths.

3. Results

3.1. Refractive index and density

Once the refractive index is derived, as described above, it is possible to
estimate the film density using the Lorentz-Lorenz relation (eq. 2) where L is
the Lorentz-Lorenz coefficient and ρ is the density. In particular for a given
material, the Lorentz-Lorenz coefficient is nearly constant independently of
the material phase and temperature (Wood and Roux, 1982).
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Table 1: Reference values of refractive index (λ= 589.3 nm) and density for pure species.

Species Phase T Refractive Density References
(◦C) index (g/cm3)

CH3OH liquid 25 1.33 0.79 ddbst.com
CD3OD liquid 20 1.33 0.89 sigmaaldrich.com
CH2DOH liquid 20 1.33 0.82 sigmaaldrich.com

Lρ =
n2
f − 1

n2
f + 2

(2)

By using the reference values of refractive index and density reported in
Table 1, and the refractive index measured for the ice films deposited at 17 K,
we have computed the density of the pure solid species through the Lorentz-
Lorenz relation. The resulting refractive index and density of the pure species
in the solid phase CH3OH, CD3OD and CH2DOH are reported in Table 2.
It is interesting to note that the density increases proportionally
with the molecular weight of the isotopologue. This suggests that
the arrangement of the molecules in the three different samples is
the same and the density only depends on the mass of the species.

Recently the density and the refractive index of pure CH3OH
have been measured by Luna et al. (2018). For the measurement
at 20 K they found 0.64 g/cm3 and 1.26 for the density and re-
fractive index values, respectively. These values are quite different
from those reported in Table 2. As discussed by Loeffler et al.
(2016) and Baratta and Palumbo (2017) the density and in turn
the refractive index of solid phase molecules strongly depends on
the experimental conditions such as substrate temperature, depo-
sition rate, and growth angle. As a consequence, the comparison
between experimental values obtained in different laboratories is
not straightforward and this may explain the discrepancies here
outlined.

Since Eq. 2 cannot be directly applied for ice mixtures, in these cases
only the refractive index values were determined (by the interference curve
method) and they are reported in Table 3.

Our method of measurement of refractive index is affected by an error
lower than 1%.
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Table 2: Refractive index (λ= 543.5 nm) and density values measured in this work for
pure solid species.

Species Phase T Refractive Density
(K) index (g/cm3)

CH3OH solid 17 1.36 0.85
CD3OD solid 17 1.35 0.96
CH2DOH solid 17 1.35 0.87

Table 3: Refractive index values (λ= 543.5 nm) for mixtures studied in this work.

Species Ratio Phase T (K) Refractive index
CH2DOH:CO 1:4 solid 17 1.31
CH2DOH:H2O 1:5 solid 17 1.32
CH2DOH:CH3OH 1:2 solid 17 1.36

3.2. Band strength values

If we indicate with M the molar mass (g mole−1) of a given pure species
and with NA the Avogadro constant, the column density N (molecules cm−2)
is given by the relation:

N =
ρdeffNA

M
(3)

where deff is the effective thickness (cm) and ρ is the density (g cm−3) of
the ice film. All the transmittance spectra reported in this article are given
in optical depth scale. The optical depth (τ) was calculated by using the
Beer-Lambert law: I=I0e

−τ where I0 is the normalization continuum. The
band strength A(cm molecule−1) of a given band is obtained by the relation
(e.g. Modica & Palumbo, 2010):

A =

∫
τ(ν)dν

N
(4)

where
∫
τ(ν)dν is the band area (cm−1). In order to obtain the band

strength values from a linear best fit procedure, during the deposition, spectra
were acquired at different film thickness. As an example, the IR spectra
acquired during the deposition of CH2DOH are reported in Fig. 5.

For a given band, we have plotted the band area versus the column den-
sity computed by using eq. 3 at each intermediate deposition step and related
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deff . The band strength (A) of each considered feature was therefore deter-
mined as the slope of the linear best fit to the data.

3.2.1. CH2DOH

In Fig. 5 all the CH2DOH bands have been assigned. Table 4 reports their
positions and reference values obtained by matrix isolation spectroscopy stud-
ies (Serrallach et al., 1974; Shimoaka and Katsumoto, 2010). As discussed
by Shimoaka and Katsumoto (2010), three bands are evident in the spec-
tral region (2150-2290 cm−1) for CH2DOH. These bands are not observed
in CH3OH ice (Fig. 6) and are due to CD stretching modes. In the present
work they are observed at 2244, 2179 and 2144 cm−1. Following Shimoaka
and Katsumoto (2010) the 2144 cm−1 is assigned to νCD(C1) mode
due to the gauche conformer in which the dihedral angle D-C-O-H
is close to ±60◦, the 2244 cm−1 band is assigned to νCD(Cs) mode
which arises from the trans conformer with D-C-O-H equal to 180◦,
the 2179 cm−1 band results from the νCD(C1) band of a methanol
complex. The weak band peaked at about 2240 cm−1 present in the spec-
trum of pure CH3OH is assigned to the overtone of the ν11 and ν7 modes
(Bennett et al., 2007).

For these bands we have estimated the single peak A-value. To calculate
the area of each component we performed a 3-component fit. We made the
same estimation for the features observed at 1327 and 1265 cm−1 (assigned
to CH2 wagging and twisting modes respectively).

For some features, we observed a significantly different profile in P and
S polarization, in this case we used the S polarized spectra to compute the
band strength values. As an example the profiles of the CO stretching mode
in CH2DOH in the spectra taken in P and S polarization are shown in Fig. 7.
Indeed when the profile of a given feature is different in P and S polarization,
only the S profile is equivalent to the spectrum acquired at normal incidence
for which the band strength values are usually given in literature (see Baratta
and Palumbo, 1998; Palumbo et al., 2006). When the P and S profiles were
nearly the same for a given feature, we used the P polarized spectra to
compute the band strength values, this because the P polarized spectra are
less affected by the interference pattern seen in the continuum with respect to
the S polarized spectra (see Fig. 8, 9, 10, and 11). The band strength values
measured for CH2DOH and the corresponding peak position are reported in
Table 5.

Following the same procedure we have also measured the band strength
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Table 4: Bands assignment for pure CH2DOH at 17 K and comparison with the literature
data available for CH2DOH in matrix isolation spectroscopy studies.

Band position Mode Literature values Literature values
(cm−1)a (cm−1)b (cm−1)c

3272 OH stretching 3668
2936 CH2 stretching 2996, 2948
2881 CH2 stretching 2890
2244 CD stretching 2192, 2165 2235
2179 CD stretching 2192, 2165 2193
2144 CD stretching 2192, 2165 2165
1465 CH2 deformation 1468, 1462
1327 CH2 wagging 1378, 1368
1265 CH2 twisting 1345, 1301
1035 CO stretching 1052, 1025
920 OCD bending 920, 892
712 torsion
a This work (17 K),
b Ar-matrix (15 K), Serrallach et al. (1974),
c Ar-matrix (12 K), Shimoaka and Katsumoto (2010).

Table 5: Band strength values of CH2DOH at 17 K.

Peak position (cm−1) A (cm molecule−1)
2244 1.15 x 10−18

2179 2.09 x 10−18

2144 1.22 x 10−18

1327 1.74 x 10−18

1265 9.04 x 10−19

1035 1.49 x 10−17

920 1.99 x 10−18
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Table 6: CO stretching mode band position and A value for CH3OH, CH2DOH and
CD3OD.

Species Peak position (cm−1) A (cm molecule−1)
This work Literature

CH3OH 1031 1027[a] 1.61 x 10−17[a]
CH2DOH 1035 1052, 1025[b] 1.49 x 10−17[d]
CD3OD 975 989[c] 8.60 x 10−18[d]
a Pure ice (20 K), Luna et al. (2018),
b Ar-matrix (15 K), Serrallach et al. (1974),
c Ar-matrix (15 K), Falk and Whalley (1961),
d Pure ice (17 K), this work.

1070 1060 1050 1040 1030 1020 1010 1000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

op
tic

al
 d

ep
th

wavenumber (cm-1)

 P polarization
 S polarization

CH2DOH - CO stretching band

Figure 7: Comparison between P and S polarization CO stretching mode band for
CH2DOH (1035 cm−1) in a sample 1.026 µm thick.

value for the CO stretching mode in CD3OD. The best fit result is reported
in Fig. 10. In Table 6 are reported the peak position and the band strength
values of the CO stretching mode band for CH3OH, CH2DOH and CD3OD
according to our results and to literature values. Luna et al. (2018) have
measured the band strength values of CH3OH deposited on a Si
substrate. In the present work a KBr substrate is used. As shown
by Modica & Palumbo (2010) and Fulvio et al. (2009) the band
strength values could strongly depend on the substrate. Therefore
a comparison between the experimental values obtained in different
laboratories using different substrates is not straightforward.
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data.

3.3. CH2DOH:CO=1:4, CH2DOH:H2O=1:5 and CH2DOH:CH3OH=1:2 mix-
tures

In order to prepare the mixtures, the gas (CO) or vapors (H2O, CH2DOH
and CH3OH) were sequentially admitted in the mixing chamber. We used a
vacuum piezo detector to determine the partial pressure of gas and vapors
and hence the mixing ratio of the binary mixtures in the gas phase. In Fig. 12
the bands at 2144, 2179 and 2244 cm−1 are clearly distinguishable in all the
spectra except for the CH2DOH:CO=1:4 mixture, in which only the 2179
and 2244 cm−1 features are visible since the 2144 cm−1 band is masked by
the very intense 2140 cm−1 CO band (e.g. Urso et al., 2016).

3.4. Temperature effects

All the mixtures were deposited at 17 K on a KBr substrate and they
were warmed up at several intermediate temperature steps until their com-
plete sublimation. The CH2DOH was deposited at 17 K on KBr substrate
and then it was warmed up at 40, 60, 80, 100, 110, 120, 130, 140 and 150 K.
For each temperature step, spectra were acquired in P and S polarization.
In Fig. 13(a), the CH2DOH spectra acquired at 17 and 120 K are reported;
a zoom on the CD stretching region is also reported in Fig. 13(b). From
Fig. 13(a) it is evident that the bands width decreases and the bands inten-
sity increases when the temperature increases. Furthermore, a splitting in
the OH stretching region is observed at 120 K. From Fig. 13(b) it is also
evident that the intensity of the bands at 2144 and 2179 cm−1 increases as
the temperature is rised, whereas the intensity of the band at 2244 cm−1
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Figure 12: Profiles of the bands at 2144, 2179 and 2244 cm−1 for the spectra CH2DOH:CO,
CH2DOH:H2O, CH2DOH:CH3OH and CH2DOH all taken in P polarization at 17 K. The
spectra refer to samples of about the same thickness (∼ 1 µm) except for the CH2DOH:H2O
mixture which is ∼ 0.6 µm thick.

decreases (see Suzuki and Inaba, 2017). These modifications are ascribed to
the amorphous to crystalline transition which occurs at about 110 K. In our
experimental conditions pure CH2DOH sublimates at about 150 K.

In Fig. 14, a comparison between the spectra of CH2DOH:CO, CH2DOH:H2O
and CH2DOH:CH3OH at 17 and 120 K is reported.

4. Final remarks

Presently the knowledge on the chemical and physical properties of ice
grain mantles in star forming regions as well as of the surface of airless bodies
in the Solar System is mainly based on the comparison between astronomical
and laboratory spectra. In particular, the main vibrational modes of H-, C-,
N-, and O- bearing species can be identified in the mid-infrared range, and
when band strength values are known it is possible to estimate the column
density of a given species (Tielens and Allamandola, 1987). Here we have
presented a novel experimental study on solid CH2DOH pure and in astro-
physical relevant mixtures. In particular we have measured the band strength
values of its main features and studied the profile of the C-D stretching mode
bands in astrophysical relevant mixtures. Even if solid CH2DOH has not yet
been detected in space, it is largely believed that it is present in solid form
in star forming regions and it is expected to be detected by new generation
IR telescopes. Our experimental results will contribute to its identification
and to obtain an estimation of its column density.
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Figure 13: (a) CH2DOH spectra at 17 K and 120 K. (b) Detail of the CD stretching modes
vibration region (2300-2100 cm−1). The sample is about 1 µm thick.
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Figure 14: Comparison between spectra at 17 K and 120 K for the mixtures: (a1)
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21



5. Acknowledgements

This work has been supported by the project PRIN-INAF 2016 The Cra-
dle of Life - GENESIS-SKA (General Conditions in Early Planetary Systems
for the rise of life with SKA) and by the Italian Ministero dellIstruzione, del-
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