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ABSTRACT

Context. The study of young Sun-like stars is fundamental to understanding the magnetic activity and rotational evolution of the Sun.
Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars.
Aims. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17
accompanied by a transiting hot Jupiter.
Methods. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of
the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate
our reconstruction and derive information on the latitudes of the starspots.
Results. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ∼1400 days
although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster
than the poles. We estimate a minimum relative amplitude ∆Ω/Ω between ∼0.08 ± 0.05 and 0.14 ± 0.05, our determination being
affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence
of a short-term intermittent activity cycle of ∼48 days and an indication of a longer cycle of 400−600 days characterized by an
equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected
by the tides raised by its massive close-by planet.
Conclusion. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the
activity and differential rotation of this young Sun-like planetary host.

Key words. stars: activity – stars: rotation – stars: late-type – starspots – planetary systems – techniques: photometric

1. Introduction

The interaction of convection and rotation produces differential
rotation and magnetic fields in the Sun. On timescales of bil-
lions of years, magnetic fields affect the rotation of our star by
the angular momentum loss associated with its magnetized stel-
lar wind. A better understanding of these complex processes and
their interconnections can be obtained by comparing the Sun
with other late-type stars, in particular with younger Sun-like
stars that show a higher level of magnetic activity (e.g. Brun
et al. 2015; Brun & Browning 2017). Space-borne telescopes,
such as CoRoT (Auvergne et al. 2009) or Kepler (Koch et al.
2010), allow us to monitor late-type stars photometrically in the
optical passband with a relative accuracy down to 10−5−10−4

with integration times from minutes to hours for time intervals
up to 3–4 years, thus providing unprecedented datasets to study
their magnetic activity.

Magnetic fields produced in the stellar interior by hydromag-
netic dynamos emerge into the photosphere where they mod-

? Final light curves are only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/qcat?J/A+A/626/A38.

ify the transport of energy and momentum giving rise to cooler
and hotter patches called starspots and faculae, respectively (e.g.
Gondoin 2008; Strassmeier 2009), that modulate the optical flux
integrated over the stellar disc owing to their intrinsic evolution
and the rotation of the star. This flux modulation can be mod-
elled to extract information on the locations of the surface bright-
ness inhomogeneities and their evolution. Recent works have
explored the possibility offered by starspots as tracers of stel-
lar rotation and differential rotation (e.g. Mosser et al. 2009;
Walkowicz et al. 2013; Santos et al. 2017), while a general
review of the different approaches to spot modelling can be
found in, for example, Lanza (2016) and a comparison between
spot models and sunspot group observations is provided in Lanza
et al. (2007). Models are better constrained when the inclination
of the stellar spin axis to the line of sight is known, such as in the
case of stars that have a transiting planet (e.g. Winn et al. 2005;
Nutzman et al. 2011).

Among the stars with a transiting hot Jupiter, Kepler-17 is
one of the targets with more extended and precise transit obser-
vations (Müller et al. 2013) allowing for the spots occulted dur-
ing the transits to be mapped (Estrela & Valio 2016; Valio et al.
2017) and for the inclination of the stellar spin axis to be con-
strained (Désert et al. 2011). Moreover, it is a young star of G2V
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spectral type making it an ideal candidate for solar–stellar con-
nection studies. It has an estimated age of .1.8 Gyr, a mean rota-
tion period of ∼12 days, and is accompanied by a planet with a
mass of 2.47±0.10 Jupiter masses, a radius of 1.33±0.04 Jupiter
radii, and an orbital period Porb = 1.48571 days (Bonomo et al.
2012).

Bonomo & Lanza (2012) analysed ∼500 days of public
Kepler data available at that time; now the availability of the
latest Kepler data release with a high-precision photometric
time series extending for ∼1500 days calls for a new modelling
of this star to study its activity and rotation using starspots
as tracers. Moreover, we compare the longitudes of the spots
mapped from the out-of-transit photometry with those of the
spots occulted during transits, providing independent confirma-
tion of our results and giving constraints on the spot latitudes
that cannot be obtained with alternative methods in the case of
Kepler-17. In such a way, we investigate the differential rotation
of our target, the phenomenology of its active longitudes, and its
activity cycles.

The presence of a close-by giant planet affects the properties
of Kepler-17, notably its rotation that is used to estimate its age
by applying the gyrochronology technique (Barnes 2007, 2010).
We look for features associated with star-planet interaction in
the photometric time series and investigate the tidal evolution of
the system to clarify the difference in the evolution of the stel-
lar rotation with respect to a single star such as our Sun. More-
over, the peculiar evolution of the rotation of Kepler-17 affects
the flux of the stellar high-energy radiation experienced by the
planet during its lifetime.

2. Observations

The Kepler 95 cm telescope was designed to continuously look at
a fixed field in the Cygnus constellation to detect planetary tran-
sits. Every three months, the spacecraft is rolled by 90◦ about its
line of sight to keep its solar panels pointing towards the Sun.
Each of these periods is called a quarter in Kepler nomencla-
ture. Because of the rotation of the focal plane, each target falls
on a different CCD during different quarters, so the observations
must be reduced quarter-by-quarter. The usual cadence of Kepler
observations is 1765.5 s (long cadence), although for a subset of
interesting targets, such as those showing transits, the cadence is
reduced to 58.5 s (short cadence). We shall analyse photometry
acquired in long cadence because we are interested in the activ-
ity and rotation of Kepler-17 both of which have timescales of
the order of several days, while short cadence has been used to
observe planetary transits and detect spots occulted during tran-
sits (Estrela & Valio 2016; Valio et al. 2017).

In the mission archive1 there are the time series of the elec-
tron counts in the individual CCD pixels within a pre-defined
area around the image of each target in the focal plane and two
light curves. The first is obtained by summing the flux falling
within a subset of the pixels included in the target pixel files; a
correction for the background flux is also applied. This is called
the simple aperture photometry (SAP) light curve. The second
time series is obtained by additional processing to remove instru-
mental and systematic effects and is called the pre-search data
conditioning (PDC) light curve (Stumpe et al. 2012, 2014).

We downloaded from the mission archive all the long-
cadence SAP time series of the latest data release (Data Release
25) of Kepler-17 covering 14 quarters out of a total of 18. This
time series is affected by outliers and systematic instrumental

1 https://archive.stsci.edu/kepler/

effects that have been corrected in the PDC time series. However,
the PDC time series shows a significant reduction of the ampli-
tude of intrinsic stellar variability and sometimes a distortion of
the modulations on time scales longer than a few days because
it has been designed to detect planetary transits, not to preserve
the intrinsic stellar variability (see Gilliland et al. 2015). These
effects are particularly relevant for Kepler-17 because it shows a
large light curve amplitude of the order of 0.05 mag with typical
modulation timescales ≥10 days. For these reasons, we decided
not to use the PDC time series in the present analysis and derived
two light curves starting from the SAP time series.

The first was derived by means of a procedure called ARC2
introduced by Aigrain et al. (2017) that warrants a better preser-
vation of the intrinsic stellar variability while removing dis-
continuities, outliers, and instrumental effects by making use
of the co-trending basis vectors (CBVs) computed by the PDC
pipeline. Co-trending basis vectors describe instrumental effects
for each target and are based on the systematic trends observed
in targets that are close on the CCD to the given target and are
similar in flux. They also take into account instrumental effects
by making use of the spacecraft telemetry information. There-
fore, they provide the best available description of the system-
atic trends affecting the time series of a given target. Up to
eight CBVs are used by the PDC pipeline to perform its correc-
tion often leading to an overcorrection of the instrinsic stellar
variability on timescales much longer than those characteris-
tics of planetary transits, and to an injection of additional noise
on those timescales. On the other hand, the ARC2 pipeline of
Aigrain et al. (2017) was designed to preserve the intrinsic tar-
get variability and reduce the injected noise in the correction pro-
cess as much as possible and is particularly valuable in the case
of bright and remarkably variable stars such as Kepler-17 whose
light curves are modified by the PDC pipeline.

In our application, we started from the SAP time series
considering only the datapoints with a SAP_QUALITY flag
equal to zero, that is without any detected problem during their
acquisition (Jenkins et al. 2016). The ARC2 pipeline includes
a Bayesian method to find the best weights to calculate the lin-
ear combination of the CBVs to correct each quarter time series
(see Sect. 3.1 in Aigrain et al. 2017) as well as a criterion to
select the optimal number of CBVs to be used. The latter is based
on balancing the reduction of the normalized light curve ampli-
tude, that comes from removing systematics by adding succes-
sive CBVs, against the increase of the short-term noise resulting
from the same operation (see Sect. 3.2 of Aigrain et al. 2017, for
a quantitative description of the criterion).

We removed the planetary transits from the light curve pro-
vided by ARC2 using the ephemeris of Müller et al. (2013),
discarding the datapoints before 0.05 and after 0.05 in phase of
the first and the fourth contacts, respectively. Each quarter was
then normalized to its median value and residual outliers were
removed by applying a 3σ clipping to the residuals obtained by
subtracting a smoothed version of the light curve obtained with
a boxcar filter with a width of 294 min, that is, ten consecutive
datapoints. A total of 340 datapoints were flagged as outliers and
discarded. The final light curve consists of 40 653 datapoints and
ranges from BJDTDB

2 2454964.512 to 2456423.980 covering a
total of 1459.469 days with four main gaps (see Fig. 1, top panel

2 We measure the time as barycentric Julian date (BJD) in the barycen-
tric dynamical time (TDB) at the mid-point of each photometric expo-
sure (see Eastman et al. 2010). The difference with respect to other
definitions of BJD is always smaller than 1 min, and is negligible for
our purposes.
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red plot). The median of the error of the data points is 2.54×10−4

in relative flux units.
To allow a straightforward comparison with the results pre-

viously obtained by Bonomo & Lanza (2012), a second light
curve was derived from the SAP time series following their
approach. In this case, we choose to consider all the datapoints
with a finite flux value, not limiting ourselves to those with a
SAP_QUALITY flag equal to zero, because a different flag does
not indicate in general that the datapoint is unusable as described
in the Kepler Archive Manual Sect. 2.3.1.1. In brief, the pro-
cedure used to obtain the analysed light curve was as follows.
Data were corrected quarter-by-quarter by discarding the steep
variations after the safe modes or data download links; we then
removed the points in transits as in the case of the ARC2 light
curve. Subsequently, long-term trends of clear instrumental ori-
gin were removed by fitting a parabola. Finally, each quarter
was normalized to its median value and the 3σ clipping pro-
cedure used for the ARC2 light curve was applied to flag and
remove outliers. In such a way, a total of 1219 datapoints were
discarded. The final light curve consists of 47 376 datapoints
ranging from BJDTDB 2454964.512 to 2456424.001 for a total of
1459.489 days with three main gaps. The number of datapoints
is greater than in the ARC2 light curve because there are points
covering the first gap in the ARC2 light curve and some oth-
ers covering some small gaps in other intervals of the light curve
(see Fig. 1, top panel green plot) thanks to our less strict selection
criterion including datapoints with non-zero SAP_QUALITY
flag. The median of the error of the data points is 2.22 × 10−4

in relative flux units.
The difference between the two light curves is plotted in

the bottom panel of Fig. 1. The flux values of the light curve
obtained with the approach of Bonomo & Lanza (2012) were
linearly interpolated at the epochs of the ARC2 time series to
compute the flux difference. Such an interpolation was in order
because there were 492 datapoints of the ARC2 light curve
that did not have a corresponding datapoint at the same time
in the other light curve owing to the different criteria adopted
to reject points affected by systematics close to data gaps or
steep variations (automated removal in the case of ARC2, man-
ual removal in the other case). The correction computed by the
ARC2 pipeline makes use of only the first CBV for eight quarters
and of the first two CBVs for the remaining six quarters, provid-
ing a better preservation of the intrinsic stellar variability than
the PDC light curve. This is confirmed by the small difference
with the light curve computed with the approach of Bonomo &
Lanza (2012) for which the long-term trends inside each quar-
ter were corrected by a simple parabolic fit and the steep varia-
tions detected by eye simply eliminated. This produces a flatter
light curve, that is, showing less modulation of its mean level on
timescales comparable with a quarter or longer. The parabolic
shape of the difference between the two light curves in some
quarters (see Fig. 1, lower panel) corresponds to quarters where
only the first CBV was used for the correction of the ARC2 light
curve.

3. Methods
The spot modelling approach applied in the present study is the
same already introduced in Sect. 3 of Bonomo & Lanza (2012)
to which we refer the reader for details. In brief, the surface
of the star is subdivided into 200 surface elements that con-
tain unperturbed photosphere, dark spots, and solar-like facu-
lae. The specific intensity of the unperturbed photosphere in the
Kepler passband is assumed to vary according to a quadratic

limb-darkening law:

I(µ) = I0(ap + bpµ + cpµ
2), (1)

where I0 is the specific intensity at the centre of the disc, µ =
cos θ with θ being the angle between the local surface normal
and the line of sight, and ap, bp, and cp are the limb-darkening
coefficients in the Kepler passband.

The dark spots are assumed to have a fixed contrast cs ≡

Ispot(µ)/I(µ) in the Kepler passband, where Ispot is the specific
intensity in the spotted photosphere. The fraction of a surface
element covered by dark spots is given by its filling factor f .
The faculae are assumed to have a fixed contrast cf = 1.115
at the limb that varies linearly with µ becoming unity (no flux
perturbation) at the centre of the disc. In this way, they mimic
the contrast behaviour of solar photospheric faculae, at least in
a rough and average sense. The ratio Q of their area to that of
the dark spots is fixed, so that their filling factor is Q f . In our
model, Q always appears in combination with cf in the product
cf Q. Therefore, it is sufficient to vary Q in order to change the
contribution of the faculae in our model (cf. Lanza et al. 2007;
Lanza 2016).

This model is fitted to a segment of the light curve of duration
∆tf (see Sect. 4) by varying the filling factors of the individual
surface elements that can be represented as a 200-element vector
f . Therefore, the model has 200 free parameters and suffers from
non-uniqueness and instability due to the effect of photometric
noise. To select a unique and stable solution, we apply a maxi-
mum entropy (ME) regularization by minimizing a functional Z
that is a linear combination of the χ2 and of a suitable entropy
function S :

Z = χ2( f ) − λS ( f ), (2)

where λ > 0 is a Lagrangian multiplier that controls the
relative weights given to the χ2 minimization and the configu-
ration entropy of the surface map S in the solution. The expres-
sion of S is given in Eq. (5) of Bonomo & Lanza (2012); it is
maximal when the star is unspotted, that is, when all the ele-
ments of the vector f are zero. In other words, the ME criterion
selects the solution with the minimum spotted area compatible
with a given χ2 value of the best fit to the light curve. When
the Lagrangian multiplier λ = 0, we obtain the solution corre-
sponding to the minimum χ2 that is unstable. By increasing λ,
we obtain a unique and stable solution at the price of increasing
the value of the χ2. An additional effect is that of making the
residuals between the model and the light curve biased towards
negative values because we reduce the spot filling factors by
introducing the entropy term (see Lanza et al. 1998; Lanza 2016,
for details).

The information on the latitude of the spots is lacking in
our maximum-entropy maps because the inclination of the stel-
lar spin axis is very close to 90◦ (cf. Sect. 4), which makes the
transit time of each feature independent of its latitude. There-
fore, we limit ourselves to mapping the distribution of the filling
factor versus the longitude.

The optimal value of the Lagrangian multiplier λ is obtained
by imposing that the mean µreg of the residuals between the
regularized model and the light curve verifies the relationship
(Bonomo & Lanza 2012; Lanza 2016):

|µreg| =
σ0
√

N
, (3)

where σ0 is the standard deviation of the residuals of the unreg-
ularized model, that is, that computed with λ = 0, with N being
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Fig. 1. Top panel: light curve of Kepler-17
as obtained by applying the de-trending as in
Bonomo & Lanza (2012) (in green) and the
light curve as provided by the ARC2 pipeline
(in red). Each light curve is normalized to the
median flux within each quarter after remov-
ing the planetary transits. The green datapoints
have been shifted upward by 0.0625 for clarity.
Bottom panel: difference between the two light
curves. The quarters where only the first CBV
has been applied to obtain the ARC2 light curve
are indicated with blue datapoints, while the
quarters where the first two CBVs have been
applied are indicated in pink (see the text).

the number of datapoints in the fitted light curve interval of
duration ∆tf .

The optimal value of ∆tf is not known a priori and must be
determined with an analysis of the light curve itself because it
is related to the lifetimes of the active regions in a given star.
We shall adopt a unique value of ∆tf for the entire light curve
of Kepler-17 because the ratio ∆tf/Prot, where Prot is the stel-
lar rotation period, controls the sensitivity of the spot modelling
to active regions located at different longitudes as discussed by
Lanza et al. (2007).

The optimal value of the facular-to-spotted area ratio Q is
also derived from the light curve best fit. To find the best values
of ∆tf and Q, we use a simple spot model consisting of three
active regions and a varying background level that was intro-
duced in the case of the Sun (cf. Sect. 3 of Lanza et al. 2003)
and previously applied by Bonomo & Lanza (2012) to Kepler-
17. It has a much smaller number of free parameters than the
maximum-entropy model, allowing us a faster exploration of the
∆tf-Q parameter space to look for the combination that mini-
mizes the χ2 of the entire light curve.

In principle, ∆tf and Q are not parameters of the same kind
because the former is the duration of the individually fitted time
intervals, while the latter is a model parameter. However, ∆tf
affects the determination of Q, because Q is constrained by the
different facular contrasts between the centre of the disc and
the limb. In other words, the determination of Q is affected by the
duration of the intervals during which the model active regions
are close to the centre or to the limb, which in turn depend on
∆tf . For example, too short a ∆tf does not allow the model active
regions to move all along their chords across the stellar disc,
meaning that they cannot span the full range between the centre
of the disc and the limb and provide the best constraint on Q. In
this case, the dependence of the χ2 of the entire light curve on
Q is characterized by random oscillations. For this reason, we
optimize Q for several fixed values of ∆tf considering the range
where the total χ2 of the three-spot model depends regularly on
Q and look for the minimum χ2 in the ∆tf-Q space.

4. Stellar parameters

The basic stellar parameters, that is, mass, radius, effective tem-
perature Teff , and surface gravity log g, are taken from Bonomo
et al. (2012) and are the same adopted by Bonomo & Lanza
(2012). They do not directly enter into our geometric spot model,
except for the computation of the relative difference εrot between
the polar and the equatorial axes of the ellipsoid used to rep-

resent the surface of the star. Its value is obtained by a simple
Roche model assuming rigid rotation with a period of Prot =
12.01 days as in Bonomo & Lanza (2012). The gravity darken-
ing effect associated with εrot ∼ 4.7 × 10−5 is of the order of
a few times 10−6 mag, and therefore it can be neglected in our
model.

The best fit to the transits of Kepler-17b can be used to
extract information on the inclination i of the stellar spin axis
to the line of sight and on the quadratic limb-darkening coef-
ficients. Müller et al. (2013) provided a refined analysis of the
first seven quarters of Kepler short-cadence observations adopt-
ing the stellar parameters of Bonomo et al. (2012) and com-
pared the limb-darkening parameters derived from the transit fit
with those given by model atmospheres. The precision of the
limb-darkening parameters derived from the fitting of the aver-
age transit profile is remarkably high because Kepler-17 has a
photometry with a high signal-to-noise ratio. Nevertheless, the
theoretical linear coefficient is significantly different from that
derived from the transit fitting. The discrepancy is more clearly
evident in the recent analysis by Maxted (2018) who considered
all the short-cadence quarters available in Kepler Data Release
25 and suggested that the responsibility lies with the remarkable
activity of Kepler-17 (cf. his Fig. 4). In other words, the active
regions on the stellar surface, most of which are not resolved
even by methods applied to detect spot occultations during tran-
sits, make the limb-darkening profile of Kepler-17 significantly
different from that computed from model atmospheres. In our
spot modelling, we shall adopt the limb-darkening coefficients
as derived from the transit fitting, thus modelling the out-of-
transit light curve in a way consistent with that adopted for
the occulted spots. However, we shall investigate the impact of
this choice by computing additional models with the theoret-
ical limb-darkening coefficients to show that our main results
are not critically dependent on those coefficients (cf. Sect. 5
and Appendix A). Specifically, we shall adopt the coefficients
as derived by Müller et al. (2013) from a model atmosphere
with Teff = 5787 K, log g = 4.45, and solar metallicity (cf. their
Sect. 5.1).

In consideration of his use of the full dataset of the lat-
est Kepler Data Release, we assume the transit fit by Maxted
(2018) as the best for our purposes and derive the quadratic limb-
darkening coefficients from his model. Specifically, given that
Maxted (2018) adopted a non-polynomial limb-darkening law of
the form I(µ)/I0 = 1− c(1−µα) with free parameters c and α, we
fitted our quadratic law in Eq. (1) to 105 realizations of this equa-
tion with the values of the coefficients c and α drawn from their
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Table 1. Parameters adopted for the modelling of the light curves of
Kepler-17.

Parameter Value Ref.

Star mass (M�) 1.16 B12
Star radius (R�) 1.05 B12
Teff (K) 5780 B12
log g (cm s−2) 4.53 B12
ap 0.581 L19
bp 0.340 L19
cp 0.079 L19
Prot (days) 12.01 BL12
εrot 4.66 × 10−5 BL12
i (deg) 89.88 M18
cs 0.550 V17
cf 0.115 BL12
Q 2.4 L19
∆tf (days) 8.733 L19

References. BL12: Bonomo & Lanza (2012); B12: Bonomo et al.
(2012); L19: present study; M18: Maxted (2018); V17: Valio et al.
(2017).

a posteriori distributions. The quadratic fit is good, except for a
relative deviation of ∼2−3 % close to the limb (µ > 0.8), which
can be neglected because the photometric effect of starspots close
to the limb is negligible owing to the strong reduction of their
projected area by foreshortening. In such a way, we obtain the
limb-darkening coefficients in Table 1 as the medians of their a
posteriori distributions. We point out that we cannot adopt the
same functional form of the limb darkening as in Maxted (2018)
because our computer code should have been completely rewrit-
ten given that it makes use of the quadratic form of the limb-
darkening law to speed up calculations.

The inclination of the stellar spin axis is assumed equal to
that of the orbital plane as derived from the transit fitting as in
Bonomo & Lanza (2012). Adopting the parameters of the model
of Maxted (2018), we obtain the median value listed in Table 1,
which is also compatible with that of Müller et al. (2013) and
with the estimate coming from the rotation spectral line broaden-
ing ν sin i, Prot and the estimated stellar radius (Bonomo & Lanza
2012). The mean rotation period Prot is adopted as in Bonomo
& Lanza (2012) for a straightforward comparison with their
results.

The contrast of the dark spots was assumed to be equal
to that of sunspot groups, that is cs = 0.677, by Bonomo &
Lanza (2012). However, the recent work by Valio et al. (2017)
provides a direct measure based on the modelling of starspots
occulted during transits. Their modelling gives the mean value
cs = 0.55 ± 0.17 adopted in the present analysis. However, in
view of the large differences in cs among the different spots mod-
elled by Valio et al. (2017), in Sect. 5 and in Appendix A, we
explore the effects of the variation of the spot contrast on our
results by computing regularized models with the two extreme
values cs = 0.38 and 0.72.

The facular-to-spotted area ratio Q was derived using the
simplified three-spot model to fit the entire light curve of Kepler-
17 by selecting the value that gives the minimum total χ2. The
plot of the ratio between the χ2 and its minimum χ2

min versus Q
is shown in Fig. 2 for the ARC2 light curve and in Fig. 3 for the
light curve de-trended as in Bonomo & Lanza (2012) assuming
∆tf = 8.733 days. The ratio of the χ2 to its minimum is statis-
tically distributed according to the Fischer-Snedecor statistics F

as (cf. Lampton et al. 1976, Sect. VI):

χ2

χ2
min

∼ 1 +
p

NT − p
F(p,NT − p), (4)

where p is the total number of free parameters in the model
and NT the total number of datapoints in the fitted time series.
Equation (4) allows us to estimate the confidence interval
of the parameter Q that depends on the maximum value of
the ratio χ2/χ2

min corresponding to a given confidence limit
(Lampton et al. 1976).

The best fit to the ARC2 light curve shows some oscillations
of the total χ2 as a function of Q, probably related to some resid-
ual suppression of the facular modulation by the ARC2 pipeline.
Using the original PDC light curve, the oscillations dominate
the plot and prevent the determination of the optimal Q value
because there is no clearly determined global minimum. This
happens because solar-like faculae produce a photometric sig-
nal only when they are close to the limb, that is, only in lim-
ited intervals of the rotational modulation produced by active
regions (Lanza 2016). Such a tiny signal is easily suppressed by
the PDC de-trending leading to insufficient information to con-
strain the value of Q in the PDC light curve. On the other hand,
the ARC2 pipeline, although still based on the use of the CBVs
derived by the PDC pipeline, applies only the first one or a lin-
ear combination of the first two CBVs in an attempt to preserve
the intrinsic stellar variability on all the accessible timescales. In
such a way, most of the facular signal is preserved allowing us
to constrain the value of Q. The light curve de-trended with the
method by Bonomo & Lanza (2012), that removes only long-
term trends by a parabolic fit, gives an even cleaner result. From
both the light curves, we derive an optimal value of Q = 2.4 that
shall be adopted for our analysis. It is different from the value
Q = 1.6 found by Bonomo & Lanza (2012) as a consequence
of the smaller value of the spot contrast cs used in the present
modelling as we verified by running another minimization with
the previous cs = 0.667. Given the impact of the value of Q on
our results, in Sect. 5 and Appendix A, we also consider spot
models with Q = 1.0 and Q = 4.0, which are well beyond the
95% confidence regions in Figs. 2 and 3, to explore the effect of
varying Q on our models.

The duration of the individual segments of the light curves
fitted with the three-spot model has been kept at ∆tf = 8.733 days
in all of the above models, that is, the same value given in
Bonomo & Lanza (2012). When we increase ∆tf by only 2.5%,
the total χ2 found by minimising with respect to Q becomes sig-
nificantly worse, increasing beyond the value corresponding to
the 95% confidence region as computed with the statistics in
Eq. (4). This suggests that the previous ∆tf value is still the opti-
mal one. Together with the choice of the same rotation period
Prot, this has the advantage of yielding spot maps directly com-
parable with those obtained by Bonomo & Lanza (2012). The
remarkable sensitivity of the χ2 to ∆tf is caused by the best fits of
some individual time intervals that become significantly worse
when adopting a longer ∆tf , likely as a consequence not only of
the short spot lifetimes, but also of the difficulty experienced by
the numerical optimization routine in reaching the same mini-
mum χ2 when the number of datapoints is increased.

5. Results

5.1. Light-curve models

The best fit of the ARC2 light curve without regularization
(λ = 0) was computed with the parameters in Table 1. The
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Fig. 2. Ratio of the χ2 of the best fit to the entire ARC2 light curve
to its minimum value vs. the parameter Q, i.e. the ratio of the area of
the faculae to that of the dark spots in active regions. The horizontal
dashed line indicates the 95% confidence level for χ2/χ2

min determining
the interval of acceptable Q values.

minimum and maximum of the residuals are −0.00110 and
0.00160, respectively, with an arithmetic mean of 1.751×10−7 in
relative flux units. The best fit to the distribution of the residuals
with a Gaussian has a mean of −3.428×10−6 and a standard devi-
ationσARC2 0 = 2.333×10−4. This value is close to the photomet-
ric accuracy of the datapoints indicating that the spot model is
generally able to fit the light curve down to the level of the pho-
ton shot noise (cf. Sect. 2).

The composite regularized best fit obtained with the ARC2
light curve is plotted in Fig. 4. The light curve and the best fit
have been normalized to the maximum of the light curve. The
intervals plotted in the three panels of Fig. 4 have different dura-
tions because long gaps have been excluded from our plots with
the exception of that in the bottom plot that was left to avoid a
fourth plot with too short an interval. The minimum and max-
imum residuals are −0.00163 and 0.00175, respectively, with a
mean of −1.325 × 10−5 in relative flux units. The distribution of
the residuals is plotted in Fig. 5. The best fit with a Gaussian has
a mean of −1.412×10−5 and a standard deviation of 2.689×10−4.
The negative mean of the residuals is a consequence of the reg-
ularization that tends to reduce the spotted area as much as pos-
sible leading to a best fit systematically higher in flux than the
data points. The convergence criterion |µreg| = σARC2 0/

√
N is

verified within 7% in all the cases, with more than 75% of the
individual intervals verifying it within 2%.

The best fit of the light curve obtained with the de-trending
approach of Bonomo & Lanza (2012) and without regularization
(λ = 0) was computed with the parameters listed in Table 1. The
residuals of the best fit range between −0.00230 and 0.00241
with a mean of 3.491 × 10−7 in relative flux units. The largest
residuals are found close to data gaps and are probably associ-
ated with the residual systematic trends before and after the gaps
that the approach by Bonomo & Lanza (2012) is not capable
of correcting as efficiently as the ARC2 pipeline. The best fit
with a Gaussian to the distribution of the residuals has a mean of
−2.631 × 10−6 and a standard deviation σBL 0 = 2.504 × 10−4 in
relative flux units.

The composite regularized best fit of the light curve obtained
with the approach of Bonomo & Lanza (2012) is plotted in
Fig. 6. The light curve and the best fit have been normalized
to the maximum flux of the light curve. The minimum and the

Fig. 3. As in Fig. 2 but for the best fit to the light curve obtained with
the de-trending of Bonomo & Lanza (2012).

maximum of the residuals are −0.00603 e 0.00260, respectively,
while the mean of the residuals is −1.326 × 10−5 in relative
flux units. The distribution of the residuals is plotted in Fig. 7
together with a Gaussian best fit with a mean of −1.415 × 10−5

and a standard deviation of 3.067×10−4. While the mean is com-
parable with that of the fit to the ARC2 light curve, the standard
deviation is about 10% larger as indicated by the greater fraction
of relatively larger residuals. The convergence criterion |µreg| =

σBL 0/
√

N is verified with a maximum deviation of 6% for all
the individually fitted intervals of duration ∆tf = 8.733 days,
with more than 75% of the intervals verifying the criterion
within 3%.

In contrast with the distribution of the residuals of the light
curve fitted by Bonomo & Lanza (2012), which showed a posi-
tive tail in excess of the Gaussian best fit, the present distribution
is well fitted by a Gaussian and has a symmetric shape. This dif-
ference is likely due to the improved correction of the residual
systematic trends in the latest release of Kepler data.

It is interesting to explore possible periodicities in the time
series of the residuals of the light-curve best fits. To this aim,
we analyse the residuals of the unregularized best fit because
they have no systematic bias introduced by the regularization.
In Fig. 8, we plot the Generalized Lomb-Scargle periodogram
(GLS; see Zechmeister & Kürster 2009) of the residuals of the
light curve de-trended with the approach of Bonomo & Lanza
(2012), chosen because it has more datapoints and less gaps than
the ARC2 light curve. Given that the removal of the transits
may affect the power spectrum, we checked the spectral win-
dow of the time series finding low side lobes at frequencies of
∼2 and ∼3.25 day−1 that are away from the orbital frequency of
0.672 day−1, showing that the transit removal does not signifi-
cantly affect our periodogram. The relative duration of the dis-
carded intervals is in fact 12.7% of each orbital period, which
explains why the impact on the spectral window is limited when
applying the GLS periodogram, specifically designed to treat
time series with gaps.

We find that our spot modelling accounts for the light mod-
ulations with timescales longer than ∼3.5 days as indicated by
the almost complete disappearance of power in the periodogram
for periods longer than that limit. There is a peak at the orbital
period with a false-alarm probability of ∼10−8 as estimated
with the analytic formula of Zechmeister & Kürster (2009).
This suggests a variability with the orbital phase that can be
attributed to light reflection and secondary eclipses as discussed
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Fig. 4. Top panel: light curve detrended
with the ARC2 pipeline and fitted with our
composite maximum-entropy regularized spot
model and the parameters listed in Table 1.
The observed flux, normalized to its maximum
value, is plotted vs. time (filled dots) and the
best fit is superposed (solid line). Lower panels:
residual of the regularized best fit vs. time
(filled dots).

Fig. 5. Histogram of the distribution of the residuals of the regularized
best fit to the light curve in Fig. 4 (solid red histogram) and its best fit
with a Gaussian (solid green line). The vertical dotted line marks the
zero value.

by Bonomo et al. (2012). However, we are not in the position
to characterize such effects because we are analysing only long-

cadence data the time sampling of which is too coarse to give
precise information on these phenomena, in particular on the
secondary eclipses. We also indicate in Fig. 8 the synodic period
Psyn calculated as P−1

syn = |P−1
orb − P−1

rot |, where we adopted a mean
rotation period Prot = 12.01 days. Variability with the synodic
period could be an indication of magnetic star-planet interac-
tions (Lanza 2008, 2012). In the present case, the peaks close
to Psyn are not particularly prominent suggesting that there is
no detectable effect of the planet on stellar variability in the
present dataset. Similar results are obtained from the analysis of
the residuals of the regularized best fits, but they are not shown
here.

5.2. Longitude distribution of active regions, comparison with
occulted spots, and differential rotation

In Fig. 9 we plot the distribution of the filling factor of the
starspots f versus the longitude and the time for the regular-
ized spot maps obtained with the ARC2 light curve. The ori-
gin of the longitude is at the meridian pointing toward the Earth
on BJDTDB 2454964.512 and the longitude is increasing in the
same direction as the stellar rotation and the orbital motion of
the planet. The reference frame is rotating with the star with
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Fig. 6. As in Fig. 4 but for the light curve de-
trended with the approach of Bonomo & Lanza
(2012).

Fig. 7. As in Fig. 5 but for the light curve de-trended as in Bonomo &
Lanza (2012) and plotted in Fig. 6.

a period Prot = 12.01 days as in Bonomo & Lanza (2012). In
the following, we measure the time t starting from a reference
epoch, that is, we introduce a time t′ = t − 2454900.0 measured
in BJDTDB.

Spots occulted by the planet during transits have been mod-
elled by Valio et al. (2017) by analysing the short-cadence
Kepler photometry whose time series began after the first transit
detection, that is, approximately after t′ ∼ 290 days. The belt
covered by the planet during its transits extends from −7.0◦ to
8.4◦ in latitude, assuming that the transit chord covers the north-
ern hemisphere of the star, given that the impact parameter is
b = 0.012 ± 0.010 and the radius of the planet 0.1335 ± 0.0001
stellar radii according to Maxted (2018). A similar result is
obtained with the transit model by Valio et al. (2017), who took
into account the systematic effects of the spots on the transit pro-
file obtaining a slightly larger radius than that of Maxted, that is,
0.138 ± 0.001 and an impact parameter b = 0.10 ± 0.01 stellar
radii, leading to an occulted belt between −3.6◦ and 13.8◦ in lati-
tude, again assuming a transit chord on the northern hemisphere.
In Fig. 9, the occulted spots are marked as white open circles
the size of which is proportional to their flux deficit defined as
D = πr2

s (1 − Ispot/I), where rs is the radius of the spot as derived
by the duration of its occultation and Ispot/I the ratio of its spe-
cific intensity to the unperturbed intensity as derived from the
height of the photometric anomaly produced by the spot itself
(the “bump” along the residual transit profile).

The map of the distribution of the spot filling factor as
derived from the light curve de-trended with the approach of
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Fig. 8. Generalized Lomb-Scargle periodogram of the residuals of the
unregularized best fit to the light curve de-trended with the approach
of Bonomo & Lanza (2012). The vertical red dashed line indicates the
orbital period of Kepler-17b, while the red dotted line indicates the syn-
odic period (see the text).

Bonomo & Lanza (2012) is displayed in Fig. 10 together with
the spots occulted by the planet during its transits. The ARC2
pipeline discarded the datapoints of an interval centred around
t′ ∼ 400 days that were instead retained by the simpler de-
trending algorithm applied by Bonomo & Lanza (2012), there-
fore the corresponding map shows only three major gaps.

The two maps in Figs. 9 and 10 are remarkably similar. This
is due to the fact that the maps are based on best fits to short indi-
vidual time intervals of ∆tf = 8.733 days, along which the light
variations are comparable in the two time series, thus the differ-
ent trends of the light curves on longer timescales do not strongly
affect the spot distributions. However, we see that the map based
on the ARC2 light curve shows a slight preference for a greater
filling factor, in particular for values closer to the maximum, as
indicated by the more extended red and orange areas in Fig. 9.
In Appendix B and Fig. B.1, we show an enlargement of Fig. 10
to better show the migration of the spot pattern and the associ-
ation between spots mapped from the out-of-transit light curve
and spots occulted during transits.

Considering Figs. 9 and 10, during the first time interval
(t′ . 550), two main active longitudes are apparent, one begin-
ning at ≈50◦ longitude and slowly migrating to ≈0◦, the other
beginning at ≈200◦ and staying approximately stationary in the
adopted reference frame. Another active longitude appears in
between, characterized by a remarkable intermittency. Individ-
ual starspots have a duration ranging from ≈10 to ≈40−50 days,
which is remarkably shorter than the duration of the active lon-
gitudes (cf. Fig. B.1). This pattern is very similar to that mapped
by Bonomo & Lanza (2012) using the Kepler long-cadence data
available at that time (cf. their Fig. 4).

To measure the association between the longitude distribu-
tion of the spots as derived from the out-of-transit light curves
and the distribution as mapped from the occultations during tran-
sits, we define the cross-correlation coefficient ρcc as:

ρcc(`) =


∑NL−|`|

k=1 (soot(k+|`|)−soot)(socc(k)−socc)√∑NL
k=1(soot(k)−soot)2(socc(k)−socc)2

for ` < 0
∑NL−`

k=1 (soot(k)−soot)(socc(k+`)−socc)√∑NL
k=1(soot(k)−soot)2(socc(k)−socc)2

for ` ≥ 0,
(5)

where soot is the out-of-transit longitude distribution of the spot
filling factor f and socc the distribution of D of the occulted

spots, both mapped onto NL = 20 equal longitude bins of 18◦;
the overbar indicates the mean value; and ` ∈ [−10, 10] is the
lag index, the longitude lag being given by ∆λ = 18◦ × `. The
distributions socc and soot are treated as circular datasets, that
is, they repeat themselves beyond an interval of 360◦. Because
∆tf < Prot, we consider the mean of two consecutive out-of-
transit spot distributions and smooth them to a resolution of 54◦
to derive soot. Similarly, to have a complete longitude coverage
along the chords occulted by the planet, we average the distri-
butions of the occulted spots along four consecutive transits to
compute socc. The association between the two distributions is
measured by the cross-correlation coefficient at zero lag, that is,
ρcc(0), which is plotted against time in Fig. 11 for our two light
curves. The correlation is zero for t′ . 290 because no tran-
sits were observed. We note that ρcc(0) is equal to the Pearson
linear correlation coefficient r between soot and socc as defined
in Sect. 14.5 of Press et al. (2007). Estimating the significance
of the correlation, that is, the probability of obtaining the given
r or a larger one in the case of a chance association, is difficult
because the statistical distributions of the correlated variables are
in general not known. A good alternative is to resort to the Spear-
man or rank-correlation coefficient rS for which an analytic eval-
uation is possible (cf. Press et al. 2007, Sect. 14.6). Therefore,
we can use rS to compute the significance of ρcc(0).

We can apply Eq. (5) also to evaluate the migration of
the spot pattern between two consecutive out-of-transit spot
longitude distributions. Specifically, the longitude lag ∆λ that
maximizes the cross-correlation ρcc between consecutive out-
of-transit spot distributions can be used to quantify the longi-
tude migration of the spot pattern occurring between them. This
migration is assumed to be produced by the differential rotation
when the most prominent spots are not rotating with the period
of 12.01 days assumed for the reference frame. In Fig. 12, the
migration rate obtained from the derivative of ∆λ as a function
of time is plotted against time itself.

Considering Figs. 9 and 10, we see that several spots
occulted during transits are concentrated around the active lon-
gitudes found by the out-of-transit spot modelling with the coin-
cidence being better for the two more persistent longitudes and
during some time intervals, in particular when ρcc(0) & 0.25.
This coincidence provides independent confirmation of our spot
modelling approach and indicates that some of the occulted
spots and the active longitudes mapped by the out-of-transit light
curve are at a similar latitude. The migration of the trails of the
occulted spots towards positive longitudes indicates that they
are rotating slightly faster than the main active longitude with
a period of ∼11.90 ± 0.04 days. We note that the longitude reso-
lution of the maps of the occulted spots can be as small as a few
degrees, while that of the spots mapped from the out-of-transit
light curve reaches only ≈50◦ in the best cases, thus accounting
for the lack of a complete coincidence between the two maps
(cf. Lanza et al. 2007; Silva-Valio & Lanza 2011) and the rela-
tively low significance of the correlation that ranges from ∼0.1
to ∼0.4 for ρcc(0) ∼ 0.25 as derived from the analytical method
introduced above.

The best correspondence between the out-of-transit and the
occulted spot distributions is found for t′ ≈ 300, 900, and 1100
as indicated in Fig. 11 by ρcc(0) & 0.35, which corresponds
to an analytical significance better than 0.1. At those times, we
see active longitudes in Figs. 9 and 10, while the migration rate
of the out-of-transit spot distributions is close to zero or fluc-
tuates between zero and +1.5 deg day−1 in Fig. 12, indicating
that the out-of-transit light curve is dominated by low-latitude
spots, mostly occulted during transits. On the other hand, when
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Fig. 9. Distribution of the spot filling fac-
tor vs. the longitude and time as derived by
our maximum-entropy spot model of the long-
cadence ARC2 light curve. The maximum of
the filling factor is indicated by the yellow-
orange colour, while the minimum by dark blue
(see colour scale in the lower right corner).
We note that the longitude scale is repeated
beyond the [0◦, 360◦] interval to better fol-
low the migration of the spot features. White
circles mark the longitude and time of the
spots occulted by the planet during transits as
detected by modelling transit profiles observed
in short cadence (Valio et al. 2017). Their size
is proportional to their flux deficit D as defined
in Sect. 5.2 (see the text). Data gaps without
enough observations to compute a spot map
along the individual ∆tf intervals are indicated
by a black bands. We note that short-cadence
transit data are available during the first gap of
the light curve extracted by the ARC2 pipeline.

ρcc(0) . 0.2, active longitudes are not apparent in the adopted
reference frame and we see mostly negative migration rates as,
for example, for 750 . t′ . 850 or 1400 . t′ . 1500 (cf. Figs. 12
and B.1). The minimum migration rate is of −(3–4) deg day−1, if
we consider couples of consecutive similar measurements and
exclude more extreme, isolated values which have smaller cor-
relation coefficients as indicated by the smaller sizes of their
plotted symbols. This minimum migration rate corresponds to
a rotation period of 13.35−13.85 days that gives a relative differ-
ential rotation of ∆Prot/Prot ' 0.14±0.05 considering an error of
±20◦ in the measurement of the lag between successive distribu-
tions and basing the determination on two consecutive measure-
ments. The differential rotation is solar-like, that is, the lower
latitudes rotate faster than the higher latitudes as we deduce from
the occultation of the faster rotating spots during transits.

The regular increase of the migration rate as observed in
Fig. 12 during 750 . t′ . 850 or 1400 . t′ . 1500
can be interpreted as a consequence of the evolution of the
high-latitude spots that produce the negative values of the rate
itself. When those spots first appear, they dominate the correla-
tion between successive spot distributions producing the largest
negative deviations from the angular velocity corresponding to
the rotation period of the reference frame of 12.01 days. Their
subsequent decay makes the spots at lower latitudes increas-
ingly more relevant in the cross-correlation until the migration
rate crosses the zero value and becomes positive when the lat-
ter completely dominate the cross-correlations. From the dura-
tion of such phases of ∼100 days, we deduce that high-latitude

spots have a maximum lifetime of about three months. Alter-
natively, individual high-latitude spots may have a shorter life-
time (cf. Fig. B.1), while it is the latitude of the activity belt that
steadily migrates towards the equator as we observe in the solar
cycle. In this case, we can trace three cycles in Fig. 12 sepa-
rated by ∼400 and ∼600 days, respectively. These periods agree
with the period in the total area of the occulted spots as found by
Estrela & Valio (2016) who reported a modulation with a period
of 490 ± 100 days.

In Fig. 12, we see some very fast changes in the migration
rate of the starspots. This is similar to the observations of the
solar rotation period as derived from disc-integrated tracers such
as the chromospheric Ca II H&K lines. In those time series, the
onset of a new cycle is marked by an abrupt increase of the
period as activity disappears at low latitudes and re-appears at
higher latitudes (e.g. Donahue & Keil 1995; Hempelmann &
Donahue 1997).

We explore the effect of varying the parameters of our spot
modelling in Appendix A finding that decreases in the contrast
of the spots cs = Ispot/I or in the facular-to-spotted area ratio Q
have the highest impact on our measurement of the differential
rotation, reducing its amplitude by approximately a factor of two
for the extreme values of those parameters.

5.3. Variation of the spotted area

Our spot modelling of the out-of-transit light curve allows us
to determine the variation of the total spotted area versus time
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Fig. 10. As in Fig. 9 but for the spot modelling
of the light curve de-trended with the method
of Bonomo & Lanza (2012).

by integrating the filling factor over the longitude. The error
is estimated from the photometric accuracy of the data points.
The presence of gaps inside each individually fitted interval of
duration ∆tf affects the total area because the maximum entropy
regularization drives the solution towards the minimum spotted
area compatible with the data, thus reducing the filling factor
at the longitudes that are in view during the gaps in the light
curves.

To reduce the impact of this effect on the variation of the total
spotted area, we measured the presence of significant gaps along
each interval ∆tf . We divided each interval into five equal subin-
tervals and counted the number of data points into each subinter-
val ni, with i = 1, . . . , 5 numbering the subinterval. A measure
δ of the inhomogeneous distribution of the data points along the
interval ∆tf is defined as δ ≡ [max(ni)−min(ni)]/max(ni). In the
case of the area values obtained from the light curve with the de-
trending of Bonomo & Lanza (2012), the intervals with δ > 0.2
are discarded giving a total of 83 area measurements unaffected
by the gaps over a total of 135 intervals. We note that as the
intervals with δ > 0.2 have on average ∼4% less datapoints, they
show a similar systematic decrease of the spot coverage values.
With a mean spot coverage of ∼0.068, this amounts to a system-
atic difference of ∼2.7× 10−3 that is comparable with the ampli-
tude of the modulation we detect in the spot coverage itself (see
below). Therefore, we choose δ = 0.2 as our acceptance thresh-
old to avoid systematic errors comparable with the amplitude we
intend to measure.

For the spot coverage obtained by the best fits to the ARC2
light curve, we had to relax the acceptance criterion and dis-
carded only the intervals with δ > 0.25 to obtain a comparable
number of coverage measurements, that is, 70 acceptable values
over a total of 133 time intervals. We note that the ARC2 light
curve has less data points and more gaps than the light curve
de-trended with the approach of Bonomo & Lanza (2012). We
therefore base our analysis mainly on the latter light curve.

The plot of the total spotted area versus the time for this
light curve is shown in Fig. 13 together with the best-fitting
sinusoid with a period of 47.906 days as obtained by the GLS
periodogram. The area values put in phase with that period are
shown in Fig. 14. The false-alarm probability (FAP) estimated
with the analytic formula proposed by Zechmeister & Kürster
(2009) is 0.0166. By performing 10 000 shuffling of the area
values of the time series, we estimate a FAP of 0.05, which is
not significantly different from the analytic estimate. The plot in
Fig. 13 shows that the 48 day oscillation is particularly evident
for t′ < 600 days, possibly around t′ ∼ 800 days, and in the latest
part of the time series, that is for t′ > 1100−1200 days, although
with a varying amplitude.

To trace this varying periodicity, we apply a Morlet wavelet
with the same parameters as in Bonomo & Lanza (2012). The
amplitude of the wavelet versus period and time is plotted in
Fig. 15. The relative maxima of the power are concentrated
around a period of ∼50 days, although there is sometimes power
at periods around 30 days. The gaps in the time series affect the

A38, page 11 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833894&pdf_id=10


A&A 626, A38 (2019)

Fig. 11. Cross-correlation coefficient at zero lag (see text) between the
distributions of the starspots as obtained from the ME models of the out-
of-transit light curves and the spots occulted during transits as mapped
by Valio et al. (2017). The considered ME spot longitude distributions
are those obtained from the light curve of Bonomo & Lanza (green dia-
monds) and the ARC2 light curve (orange triangles).

Fig. 12. Migration rate between consecutive spot pattern distributions
as derived from the Bonomo & Lanza light curve (green diamonds) and
the ARC2 light curve (orange triangles). The size of the symbols is
proportional to the cross-correlation coefficient ρcc (cf. Eq. (5)).

Morlet wavelet and can account for the secondary maxima at dif-
ferent periods. A comparison of the wavelet map in Fig. 15 with
that in Fig. 7 of Bonomo & Lanza (2012) shows the same overall
structure, although the new map extends for a longer time inter-
val and suggests a re-appearance of the periodicity at ∼50 days
close to the end of the time series.

We explore the impact of the variation of our model param-
eters on the spot coverage in Appendix A considering dif-
ferent values of the limb-darkening coefficients, spot contrast
cs = Ispot/I, and facular-to-spotted area ratio Q. We find that
the ∼48 day periodicity is retrieved in all cases, although its FAP
becomes larger for non-optimal values of the Q parameter or the
largest values of the spot contrast cs.

The variation in the total spotted area as derived from the
intervals of the ARC2 light curve with δ ≤ 0.25 is plotted in
Fig. 16 together with the GLS best-fitting sinusoid. This sinu-
soid has a period of 48.202 days, but its analytic FAP is 0.1667,
while the FAP from 10 000 shuffling is 0.40, likely as a conse-
quence of the lower number of data points and larger fluctuations

Fig. 13. Total spotted area as derived from the ME best fits to the light
curve de-trended with the method of Bonomo & Lanza (2012) vs. time
(green filled circles). The error bars have an amplitude of 3σ, where
σ is the standard deviation as derived from the photometric accuracy of
the datapoints. Values for the intervals with δ > 0.2 have been excluded.
The best fitting sinusoid with a period of 47.906 days is superposed to
the time series (red solid line).

Fig. 14. As in Fig. 13, but with the area values put in phase with
the period of 47.906 days. The best-fitting sinusoid with a period of
47.906 days is superposed to better show the oscillation of the spotted
area (red solid line).

from one interval to the next. The corresponding Morlet wavelet
map is plotted in Fig. 17 and its overall aspect is similar to that
of the map in Fig. 15, reinforcing the case for a periodicity in the
spotted area of ∼50 days during the first half of the time series. In
the second half, the wavelet power is split among several differ-
ent periodicities, likely as a consequence of the gaps in the time
series and a long-term modulation with a period of several hun-
dred days appearing for t′ & 800 days. Such a modulation is not
observed in the area time series obtained from the light curve de-
trended with the approach of Bonomo & Lanza (2012) that fits
and removes a parabolic trend within each quarter, thus filter-
ing out the variations on timescales comparable with the quarter
duration of ∼90 days (cf. the photometric time series in Figs. 1,
4, and 6).

Unfortunately, Kepler data are not useful to search for long-
term changes of the mean light level of Kepler-17 to confirm
the activity cycle of ∼400−600 days suggested by the differ-
ent regimes of spot longitude migration (cf. Sect. 5.2). Some
hint of a long-term variation of the spotted area may be appar-
ent in Fig. 16, but the lack of a complete correction for the
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Fig. 15. Amplitude of the Morlet wavelet of the total spotted area varia-
tion in Fig. 13 vs. period and time. The amplitude was normalized to its
maximum value. Different colours indicate different relative amplitudes
from the maximum (orange) to the minimum (dark blue) as indicated in
the colour scale in the right lower corner.

Fig. 16. As in Fig. 13, but for the area values derived by the ME best fit
to the ARC2 light curve. Intervals with δ > 0.25 have been discarded.
The period of the GLS best fitting sinusoid is 48.202 days. We highlight
the different scale on the y-axis.

systematic variations from one quarter to the next hampers our
attempts to confirm this result. We note that the variation in the
spotted area plotted in Figs. 13 and 16 refers to the spots that
are unevenly distributed in longitude, because the amplitude of
the rotational modulation is insensitive to uniformly distributed
spots. In other words, if the cycle of ∼400−600 days is associated
with a variation of the area of spots almost uniformly distributed
in longitude, it can go undetected in those plots and only a long-
term variation of the mean light level would reveal its presence.
With a chromospheric index log R′HK = −4.47 (Bonomo et al.
2012, Sect. 4.2.2), Kepler-17 is at the boundary separating very
active stars with predominantly non-axisymmetric spot distribu-
tions and active longitudes from less active rotators with an almost
uniform distribution of spots in longitude. This may account for
the complex behaviour of Kepler-17, probably indicating phe-
nomena common to both kinds of stars (Lehtinen et al. 2016).

5.4. Star–planet interaction: tides

We did not find evidence of a light modulation associated with a
possible star–planet interaction in the residuals of our spot mod-

Fig. 17. As in Fig. 15, but for the time series in Fig. 16.

els (cf. Sect. 5.1). However, some effect of the planet on the star
is expected because of its mass of ∼2.5 Jupiter masses and its
proximity. Tides raised on the star by the planet are an exam-
ple of such an interaction. Thanks to our determination of stel-
lar rotation, we can derive information on the tidal dissipation
inside the G2V star Kepler-17 that is useful to model the evo-
lution of the rotation itself. This can be applied to evaluate the
activity level of the star in the past, thus providing information
for models of planetary evolution and evaporation (e.g. Murray-
Clay et al. 2009), as well as the confidence of stellar age based
on gyrochronology.

The orbital angular momentum of the planet is approxi-
mately four times the stellar spin angular momentum, while
the total angular momentum of the system is only ∼0.6 of that
required to reach a synchronous final state, in the hypothesis that
the total angular momentum of the system is conserved (Hut
1980). However, the stellar magnetized wind produces a steady
loss of angular momentum from the system that accelerates the
shrinking of the planetary orbit until the planet is engulfed by
the star (cf. Damiani & Lanza 2015).

We investigate the evolution of the stellar rotation and the
orbital semimajor axis by applying the simple model of Lanza &
Mathis (2016) that includes the wind braking of the stellar rota-
tion using a Skumanich-type law. The star is assumed to rotate
rigidly and the strength of the tidal interaction is parameterized
by the stellar modified tidal quality factor Q′ (Zahn 2008). A
stronger interaction implies a faster dissipation of the kinetic
energy of the tides and is parameterized by a smaller value of Q′.
We include in the model the evolution of the radius of the star
calculated by means of the EZweb interface3 because the tidal
torque is proportional to (R/a)6, where R is the stellar radius and
a the orbit semimajor axis (Zahn 2008). We consider a model
for a main-sequence star of mass 1.095 M� and metal abundance
Z = 0.03 because it has a radius of 1.06 R� at the estimated age
of Kepler-17, that is 1.8 Gyr (cf. Bonomo et al. 2012). This value
of the mass is different from that derived by Désert et al. (2011)
and Bonomo et al. (2012) by fitting different stellar evolution
models to the position of the star in the mean density–effective
temperature diagram, but it is still within ∼1σ from their mass
estimates. We prefer to adopt a stellar evolution model that fits
the radius at the putative age of 1.8 Gyr rather than the estimated

3 http://www.astro.wisc.edu/~townsend/static.php?ref=
ez-web
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mass because the radius evolution has a much stronger impact
on the tidal evolution of the system, while the ratio of the stellar
mass to the planetary mass stays fixed in our model. We assume
a circular orbit because tides inside the planet damp any initial
eccentricity on timescales of 10−100 Myr, which is much shorter
than the age of the star. The obliquity of the planetary orbit is
assumed to be zero following the discussion in Sect. 7.2.1 of
Désert et al. (2011).

The strength of the tidal interaction in star-planet systems
is unknown and there are theoretical reasons to believe that it
depends on the ratio between the tidal frequency4 and the rota-
tion frequency of the star (Ogilvie & Lin 2007). Observational
estimates have been performed only with statistical methods that
do not provide information on individual systems, but only an
indication of the mean values of Q′ in different regimes (e.g.
Bonomo et al. 2017; Collier Cameron & Jardine 2018). There-
fore, we model the evolution assuming two constant values for
Q′, that is 107 and 108, with a preference for the latter from a
theoretical point of view. Specifically, the tidal frequency and the
rotation frequency in Kepler-17 are always sufficiently separated
so as to avoid the excitation of inertial waves, that is, ω̂ > 2Ω,
thus leading to a weaker tidal interaction between the star and
the planet (cf. Ogilvie & Lin 2007). Conversely, in the |ω̂| ≤ 2Ω
regime, the excitation of inertial waves that are strongly dissi-
pated in wave attractors would lead to a decrease of Q′ by two
to three orders of magnitude (cf. Rieutord et al. 2001; Ogilvie &
Lin 2007; Goodman & Lackner 2009).

In Fig. 18 we plot the evolution of the stellar spin and orbit
semimajor axis together with the evolution of the stellar radius
adopted to compute the first two quantities. We also plot the
evolution of the stellar rotation without any tidal torque, that
is, under the action of the Skumanich-type wind braking only.
We assume that our model can be applied for ages later than
∼0.6 Gyr because younger ages may still show the effects of the
initial conditions and of an incomplete internal core–envelope
coupling. The stellar age is assumed to be 1.8 Gyr and the
presently measured mean rotation period of 12 days is imposed
at that age to all our models.

The spin evolution is dominated by magnetic braking up to
about ∼2 Gyr for Q′ = 108, while it deviates remarkably from
the Skumanich law for Q′ = 107 all along the evolution. This
is because the angular momentum exchange due to tides domi-
nates over the loss of angular momentum by the wind braking.
This scenario has led to a remarkably longer rotation period of
the star in the past than in the case with Q′ = 108 because the
planet spun up the star through its tidal interaction, while its orbit
decayed. However, even for Q′ = 108, the slope of the braking
law is reduced by the tidal interaction with tides that counteract
magnetic braking leading to a less steep variation of the rotation
period. This suggests that the age estimated by means of standard
gyrochronology, which ranges between 1.0 and 1.4 Gyr (Barnes
2010; Barnes et al. 2016), is not accurate for Kepler-17 because
of the tidal spin-up induced by its massive and close-by planet.
Moreover, the planet could also affect the efficiency of the stellar
wind (cf. Cohen et al. 2010; Lanza 2010). Therefore, the present
results support the adoption of a modified gyrochronology rela-
tionship to evaluate the age of Kepler-17 (cf. Lanza 2010) and
provide a rotation evolution scenario in agreement with the age
of 1.8 Gyr as estimated by Bonomo et al. (2012).

4 Considering the semidiurnal tide as the dominant component, the
tidal frequency is ω̂ = 2(n − Ω), where n = 2π/Porb is the orbital fre-
quency and Ω = 2π/Prot the spin frequency of the star.

Fig. 18. Top panel: mean rotation period of Kepler-17 vs. time for our
tidal evolution model computed with Q′ = 107 (dotted line) and Q′ =
108 (solid line). The evolution of the stellar spin without any tidal torque
and assuming a period of 12.01 days at an age of 1.8 Gyr is plotted as the
dot-dashed line. The vertical dashed line indicates the adopted age of the
star. Middle panel: as in the top panel, but for the orbit semimajor axis.
Lower panel: radius of the star adopted to compute the tidal evolution
vs. time.

The expected survival time of the planet is estimated to
be ≈0.35 Gyr in the case of the stronger tidal interaction and
≈2.4 Gyr in the case of the weaker interaction. The orbital decay
is mainly ruled by the increase of the stellar radius along its
main-sequence evolution owing to the remarkable dependence
of the tidal torque on R/a.

6. Discussion and conclusions

We have analysed the activity of Kepler-17 using two differ-
ent approaches to de-trend the systematics present in Kepler
time series. We confirm that the PDC pipeline introduces an
overcorrection of the subtle light modulations produced by
solar-like faculae in late-type stars making PDC timeseries not
recommendable to produce spot maps by light-curve inversions
(see also Aigrain et al. 2017). Conversely, the de-trending by
the ARC2 pipeline suffers from many fewer problems and pro-
vides results that are comparable to those derived by the simpler
approach by Bonomo & Lanza (2012), at least in the case of this
target with high-S/N data and a high level of activity. Neverthe-
less, the evaluation of the total spotted area from the ARC2 time
series can still be affected by some residual trends on timescales
ranging from ∼10 to ∼90 days, probably due to the use of a lim-
ited number of CBVs to correct the light curve.

Our results provide an extended comparison of the maps
obtained from the in-transit and out-of-transit light modulations,
that is from two independent datasets and methods. The good
correspondence found during certain time intervals indicates that
the adopted maximum-entropy approach is capable of recon-
structing the overall starspot distribution in longitude and time
and gives support to the existence of active longitudes. A sim-
ilar comparison was made by Silva-Valio & Lanza (2011) val-
idating the spot models for CoRoT-2, but this was based only
on ∼150 days of data, while the present comparison is more
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extended and shows the effects of a likely activity cycle of
∼400−600 days.

The active longitude around ∼200◦ is remarkable because
it lasts for at least 1400 days, although its level of activity is
continuously changing as indicated by the varying spot fill-
ing factor. Similar long-lived active longitudes are commonly
observed on very active rotators such as young solar-type stars
(Lehtinen et al. 2016) or the subgiant members of the close active
binaries II Peg (Rodonò et al. 2000) or HR 1099 (Lanza et al.
2006). Space-borne photometry has revealed an active-longitude
phenomenology similar to that of Kepler-17 in, for example,
CoRoT-2 (Lanza et al. 2009) or CoRoT-6 (Lanza et al. 2011)
or in the M dwarf GJ 1243 (Davenport et al. 2015). Active lon-
gitudes have also been proposed for the Sun, although they are
not as evident as in more active and rapidly rotating solar-like
stars (e.g. Usoskin et al. 2007). Recent hydromagnetic dynamo
models have provided some insight into the physical mecha-
nisms that could produce such active longitudes (Weber et al.
2013).

We found some indication of an activity cycle of
∼400−600 days from the latitudinal migration of the starspots
in Kepler-17. Estrela & Valio (2016) found evidence of a similar
periodicity in the area of the spots occulted during transits. This
cycle could be similar to the solar 11-year cycle, although of
remarkably shorter duration. Short activity cycles have recently
been found in ιHorologii, an F8V star that hosts a giant planet on
a 300 day orbit and shows a cycle of ∼585 days (Sanz-Forcada
et al. 2013); and in the young (∼1 Gyr) G1.5V star HD 30495
that has a rotation period of ∼11 days and shows two chromo-
spheric cycles, one of 620±150 days and another of 12±3 years.
The short-term modulation is intermittent and does not appear
to be related to the longer-term cycle (Egeland et al. 2015).
The case of HD 30495, which is similar to Kepler-17 in effec-
tive temperature and rotation period, suggests that such short
cycles may be characteristic of young Sun-like stars. Other pos-
sible examples are HD 76151, a G3V star with a rotation period
of ∼15 days and a cycle of ∼920 ± 10 days; and HD 190406,
a G1V star with a rotation period of ∼14 days and two cycles
of ∼950 ± 10 days and ∼17 years (see Baliunas et al. 1995,
1996).

In addition to this possible activity cycle in Kepler-17, we
find marginal evidence for an oscillation of the total spotted
area with a period of ∼48 days, previously reported by Bonomo
& Lanza (2012). The mean total area of the occulted spots
found by Valio et al. (2017) is ∼6 ± 4%, agreeing with our
mean spotted area. However, these latter authors do not find
evidence of the 48 day periodicity, probably because the large
variations in the area of the individual spots hamper its detec-
tion, making only the periodicity at the mean rotation period
clearly apparent (cf. Fig. 6 in Valio et al. 2017). The 48 day
spotted area modulation is not associated with a migration of
the main latitude of spot formation and is reminiscent of the
so-called Rieger cycles in the Sun (e.g. Oliver et al. 1998;
Zaqarashvili et al. 2010; Gurgenashvili et al. 2017). These cycles
have been attributed to Rossby-type waves propagating in the
solar interior that modulate the toroidal magnetic field respon-
sible for the formation of the spots (cf. Zaqarashvili et al. 2010;
Gurgenashvili et al. 2016; Zaqarashvili 2018). Similar cycles
have been observed in, for example, CoRoT-2 (Lanza et al.
2009), and in some young late-type stars with an age between
4 and 95 Myr investigated by Distefano et al. (2017). Short-term
cycles, possibly of Rieger type, have also been investigated using
CoRoT (Ferreira Lopes et al. 2015) and Kepler (Arkhypov et al.
2015) time series.

The amplitude of the latitudinal differential rotation in
Kepler-17 derived from our spot modelling is only a lower
limit because we do not know the latitudes of the spots rotat-
ing with different periods. Moreover, the rotation of the overall
spot pattern can be different from that of individual starspots as
suggested in the case of CoRoT-2 by Fröhlich et al. (2009) and in
our case by Fig. B.1. Therefore, our estimate of ∼14±5% relative
amplitude of the differential rotation should be taken with some
caution. Moreover, this amplitude is reduced to about 8± 5% for
some values of our spot-modelling parameters (cf. Appendix A).
Nevertheless, the solar-like character of the differential rotation,
that is, the faster rotation of the equator with respect to the higher
latitudes, is well established thanks to the comparison with the
spots occulted during the transits that are certainly located at
low latitudes. Using the measurements of the rotation periods
of those spots and assuming a solar-like differential rotation pro-
file, Valio et al. (2017) estimated a relative pole-equator angular
velocity difference of ∆Ω/Ω ' 8.0 ± 0.9%, close to the lower
limit of our determination.

The range of rotation periods derived from the modula-
tion of the chromospheric flux in late-type stars by Donahue
et al. (1996) suggests ∆Prot/Prot∼0.13 for Kepler-17, although
HD 190406, which has similar spectral type and mean rotation
period, shows ∆Prot/Prot = 0.21. The large statistical sample
considered by Reinhold & Gizon (2015) shows a relative ampli-
tude up to 0.1−0.2 for G-type stars with the mean rotation period
of Kepler-17, based on the analysis of the photometric time
series of Kepler targets. Recent theoretical models by Brun et al.
(2017) predict a solar-like differential rotation for Kepler-17, that
is, with the equator rotating faster than the poles. Its fluid Rossby
number (see Brun et al. 2017, Eq. (33) and Fig. 22) is Rof ∼ 0.6
giving an expected relative amplitude of the differential rotation
between the equator and 60◦ latitude of ∆Ω/Ω ' 0.2. Therefore,
we conclude that the amplitude of the latitudinal differential rota-
tion of Kepler-17 as derived from our analysis is in agreement
with both observations and theoretical models for stars of simi-
lar spectral type and mean rotation period.

In the Kepler-17 system, the tidal interaction between the
planet and the star is likely to be relevant. We find that it is capa-
ble of modifying the evolution of the stellar rotation by counter-
acting the braking by the stellar wind. Even if we assume a weak
tidal coupling (Q′∼108), which is favoured in our model, the stel-
lar spin up is significant and makes it impossible to derive a pre-
cise age for the star by means of gyrochronology (Barnes 2007,
2010). This is probably the case of several stars hosting mas-
sive close-by planets as discussed by Ferraz-Mello et al. (2015)
and Damiani & Lanza (2015) for example. Nevertheless, an esti-
mated age of ∼1.8 Gyr (Bonomo et al. 2012) is in agreement
with a simple model of the tidal evolution of the system. The
same model predicts a rotation period for the star of ∼7.5 days at
an age of 0.6 Gyr and an almost constant orbit semimajor axis for
the planet over the 0.6−1.8 Gyr time interval. This information
can be used to evaluate the evolution of the high-energy stellar
radiation flux (e.g. Sanz-Forcada et al. 2011), which affects the
evaporation of the planet and is controlled by the rotation rate of
the star itself (e.g. Schmitt 2010).
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Appendix A: Effects of changing model parameters
on the spot distributions

Fig. A.1. Migration rate between consecutive spot pattern distributions
as derived from the ME models of the Bonomo & Lanza light curve
with the limb-darkening coefficients as derived by fitting the transits
(green diamonds) or from model atmospheres (orange triangles; see our
Sect. 4). The size of the symbols is proportional to the cross-correlation
coefficient ρcc (cf. Eq. (5)).

We explore the effects of varying our model parameters on our
main results. Specifically, we assume theoretical limb-darkening
coefficients in place of those derived from the fitting of the tran-
sits by Maxted (2018); or change the contrast of the spots cs;
or vary the facular-to-spotted area ratio Q. In this investigation,
we change one parameter at a time to isolate its effects on our
results. We present results for the light curve detrended accord-
ing to the method of Bonomo & Lanza because it has less gaps
than the ARC2 light curve and because the results are very sim-
ilar. We focus on the migration rate of the spots and on the vari-
ation in their total coverage that affect our measurements of the
differential rotation and of the activity level, respectively.

A.1. Varying the limb-darkening coefficients

In Fig. A.1, we plot the migration rate versus time as derived
from the ME spot modelling with the limb-darkening coef-
ficients obtained from the fitting of the transits according to
Maxted (2018) (green diamonds) or from model atmospheres
(orange triangles; see Müller et al. 2013, and discussion in
Sect. 4). The migration rates of the spot distributions are closely
comparable, if we consider only the values between −4 and
+2 deg day−1. Therefore, the amplitude and the sign of the differ-
ential rotation are not affected, if we adopt the theoretical limb-
darkening coefficients.

The total spotted area shows a systematic difference of about
−2.8% with oscillations not exceeding 0.4%, which do not affect
our conclusions concerning possible activity cycles in Kepler-17
(cf. Fig. A.2). Specifically, the GLS periodogram of the mod-
ulation of the spotted area has its maximum at a period of
47.916 days, very close to that of 47.906 days obtained with our
reference model; also, the FAP is similar.

A.2. Varying the spot contrast

We explore the effect of varying the spot contrast between the
extreme values measured by Valio et al. (2017) by modelling

Fig. A.2. Upper panel: total coverage factor As of the starspots as
derived from the ME models of the light curve of Bonomo & Lanza
with the limb-darkening coefficients as derived by fitting the tran-
sits (green diamonds) or from model atmospheres (orange triangles).
Lower panel: relative difference between the values of the area obtained
with the two sets of limb-darkening coefficients.

Fig. A.3. Migration rate between consecutive spot pattern distributions
as derived from the ME models of the Bonomo & Lanza light curve
with a spot contrast cs = 0.55 (green diamonds) or cs = 0.38 (orange
triangles; see our Sect. 4). The size of the symbols is proportional to the
cross-correlation coefficient ρcc (cf. Eq. (5)).

spot occultations, that is, cs ≡ Ispot/I = 0.38 and 0.72; for com-
parison, in the case of sunspot groups, cs = 0.67. In Fig. A.3,
we see that the spot migration rate has a less negative minimum
value of about −2 deg day−1 for cs = 0.38, but a slightly greater
positive maximum value, leading to a smaller amplitude of the
relative differential rotation, that is, ∆Prot/Prot ∼ 0.08 ± 0.05
when considering a period of 11.90 days for the rotation of
the occulted spots (cf. Sect. 5.2). On the other hand, we find
∆Prot/Prot ∼ 0.12 ± 0.05 when we consider cs = 0.72 because a
minimum migration rate of about −3 deg day−1 is measured dur-
ing several cross-correlations (cf. Fig. A.5).

The total spot coverage changes in a systematic way showing
a smaller area and a smaller amplitude of its modulation when
the spots are darker, that is for cs = 0.38 (cf. Figs. A.4 and A.6).
However, the relative variations in the individual values of the
coverage of ± 2−3% do not affect the main peak of the GLS
periodogram that is at 47.916 and 47.962 days for cs = 0.38 and
0.72, respectively. Only the value of the FAP as given by the
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Fig. A.4. Upper panel: total coverage factor As of the starspots as
derived from the ME models of the light curve of Bonomo & Lanza
with cs = 0.55 (green diamonds) or cs = 0.38 (orange triangles).
Lower panel: relative difference between the values of the area obtained
with the two different spot contrasts.

Fig. A.5. Migration rate between consecutive spot pattern distributions
as derived from the ME models of the Bonomo & Lanza light curve
with a spot contrast cs = 0.55 (green diamonds) or cs = 0.72 (orange
triangles; see our Sect. 4). The size of the symbols is proportional to the
cross-correlation coefficient ρcc (cf. Eq. (5)).

formula of Zechmeister & Kürster (2009) is increased to 0.105
in the case of cs = 0.72.

A.3. Varying the facular-to-spotted area ratio

Finally, we explore the effects of the variation in the facular-to-
spotted area ratio Q between the extreme values 1.0 and 4.0 that
are well beyond the 95% joint confidence interval of this param-
eter as derived in Sect. 4 by the analysis of the ARC2 and of the
Bonomo & Lanza light curves. The spot migration rate shows
minimum negative values of about −2 deg day−1 for Q = 1.0 (cf.
Fig. A.7), while for Q = 4.0, the minimum is about −3 deg day−1

(cf. Fig. A.9), corresponding to relative amplitudes of the dif-
ferential rotation ∆Prot/Prot = 0.08 ± 0.05 and 0.12 ± 0.05,
respectively. The variation of Q produces systematic changes in
the longitudes of the model active regions because the relative

Fig. A.6. Upper panel: total coverage factor As of the starspots as
derived from the ME models of the light curve of Bonomo & Lanza
with cs = 0.55 (green diamonds) or cs = 0.72 (orange triangles).
Lower panel: relative difference between the values of the area obtained
with the two different spot contrasts.

Fig. A.7. Migration rate between consecutive spot pattern distributions
as derived from the ME models of the Bonomo & Lanza light curve
with facular-to-spotted area ratio Q = 2.4 (green diamonds) or Q = 1.0
(orange triangles; see our Sect. 4). The size of the symbols is propor-
tional to the cross-correlation coefficient ρcc (cf. Eq. (5)).

contributions of dark spots and bright faculae depend on their
positions with respect to the centre of the stellar disc at a given
rotation phase (see Lanza et al. 2007).

The total spot coverage is affected by Q because a larger spot
area is required to counterbalance the effect of the larger faculae
and reproduce the amplitude of the observed light modulation
when Q is increased (cf. Figs. A.8 and A.10). In addition to
this systematic variation, there are also fluctuations of relative
amplitude of about ±2% with respect to the reference case with
Q = 2.4 that do not affect our results on a possible short-term
activity cycle. Specifically, we find the maximum of the GLS
periodogram of the area time series at periods of 47.955 and
47.962 days for Q = 1 and Q = 4, respectively. Only the ana-
lytic FAP is increased to 0.06 and 0.12, respectively, likely as
a consequence of the non-optimal values of Q adopted in those
models.
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Fig. A.8. Upper panel: total coverage factor As of the starspots as
derived from the ME models of the light curve of Bonomo & Lanza
with facular-to-spotted area ratio Q = 2.4 (green diamonds) or Q = 1.0
(orange triangles). Lower panel: relative difference between the values
of the area obtained with the two different values of Q.

Fig. A.9. Migration rate between consecutive spot pattern distributions
as derived from the ME models of the Bonomo & Lanza light curve
with facular-to-spotted area ratio Q = 2.4 (green diamonds) or Q = 4.0
(orange triangles; see our Sect. 4). The size of the symbols is propor-
tional to the cross-correlation coefficient ρcc (cf. Eq. (5)).

Fig. A.10. Upper panel: total coverage factor As of the starspots as
derived from the ME models of the light curve of Bonomo & Lanza
with facular-to-spotted area ratio Q = 2.4 (green diamonds) or Q = 4.0
(orange triangles). Lower panel: relative difference between the values
of the area obtained with the two different values of Q.
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Appendix B: A detailed view of the filling factor map

In Fig. B.1, we show an enlargement of Fig. 10. It shows the
changes occurring between t′ ' 750 and t′ ' 850 days when
the spot pattern displayed an overall backward migration pro-
duced by a slower rotation, that is, a rotation period longer than
12.01 days, the period of the reference frame adopted to plot
the spot map. This backward migration was clearly detected
by cross-correlating successive distributions of the filling fac-
tors as obtained from the ME models of the out-of-transit light
curve (see Fig. 12). However, we see in Fig. B.1 that indi-
vidual longitudes show different migration rates also outside

750 . t′ . 850 days indicating that they are produced by spots
at different latitudes. Therefore, the migration rate given by the
cross-correlation is an average over the whole longitudinal distri-
butions. For t′ . 850 days, the correspondence between the spots
as mapped by the out-of-transit light curve and those mapped
from transit occultations is poor (the cross-correlation at zero
lag ρcc(0) . 0.15 in Fig. 11) suggesting that most of the former
are located outside the occulted belt. Individual spots are short-
lived with typical lifetimes of a few tens of days, while active
longitudes where spots form and decay are long-lived – see the
case of the active longitude around 200◦−250◦ that disappears at
t′ ≈ 770 and re-appears for t′ & 850 days (see also Sect. 5.2).

Fig. B.1. Enlargement of Fig. 10 showing the dis-
tribution of the spot filling factor (see the colour
scale at the bottom right) vs. longitude and time as
obtained by the ME modelling of the light curve
de-trended as in Bonomo & Lanza (2012). The
spots detected during transits by Valio et al. (2017)
are overplotted as white circles the radius of which
is proportional to their flux deficit D as defined
in Sect. 5.2. The longitude scale goes beyond the
interval [0◦, 360◦] to help us following the migra-
tion of the spots.
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