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Abstract

Asteroseismology of solar-like oscillators often relies on the comparisons between stellar models and stellar
observations in order to determine the properties of stars. The values of the global seismic parameters, νmax (the
frequency where the smoothed amplitude of the oscillations peak) and Δν (the large frequency separation), are
frequently used in grid-based modeling searches. However, the methods by which Δν is calculated from observed
data and how Δν is calculated from stellar models are not the same. Typically for observed stars, especially for
those with low signal-to-noise data, Δν is calculated by taking the power spectrum of a power spectrum, or with
autocorrelation techniques. However, for stellar models, the actual individual mode frequencies are calculated and
the average spacing between them directly determined. In this work we try to determine the best way to combine
model frequencies in order to obtain Δν that can be compared with observations. For this we use stars with high
signal-to-noise observations from Kepler as well as simulated Transiting Exoplanet Survey Satellite data of Ball
et al. We find that when determining Δν from individual mode frequencies the best method is to use the ℓ=0
modes with either no weighting or with a Gaussian weighting around νmax.

Key words: stars: fundamental parameters – stars: interiors – stars: oscillations

1. Introduction

In the field of asteroseismology, stellar models play a key role
in determining the properties of observed stars. Just by knowing
the basic seismic parameters, νmax (the frequency where the
smoothed amplitude of the oscillations peak) and Δν (the large
frequency separation), as well as Teff for a star, models can
be used to place constraints on stellar age, radius, and mass.
Since there is such frequent reliance on matching the seismic
parameters determined from observations to the seismic
parameters extracted from stellar models, we need to be sure
that the methods by which we calculate Δν and νmax from
models produce accurate representations of the observed global
values. Determining the correct way to extract the value of Δν
and νmax from a stellar model is therefore of great importance.

The large frequency separation, Δν, is the average frequency
spacing between modes of adjacent radial order (n), of a given
degree (ℓ). The radial order n is the number of nodes in the
radial direction and ℓis the number of node lines on the star’s
surface. This quantity Δν arises from the asymptotic relation
(Tassoul 1980; Gough 1986), which is applicable for modes of
low ℓand high n. The relation is not exact and the spacings
between the modes have some variability. Therefore, the value
of Δν will depend on the method by which this average
spacing is calculated.

The value of Δν can be approximately related to the density
of the star, as n rD µ ¯ (see, e.g., Tassoul 1980; Ulrich 1986;
Christensen-Dalsgaard 1988, 1993). This leads to the Δν
scaling relation
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For an observed star, the value of Δν can be determined from
the excited p-modes in the star’s power spectrum. This

observed Δν is not usually calculated directly from individual
mode spacings, as this would require high signal-to-noise, but
instead through other methods. For example, Δν is often
determined by taking a power spectrum of a power spectrum
(Hekker et al. 2010; Mathur et al. 2010) or autocorrelation
techniques (Roxburgh & Vorontsov 2006; Huber et al. 2009;
Mosser & Appourchaux 2009; Roxburgh 2009; Verner &
Roxburgh 2011; Kiefer 2013).
It is important to note that this is not how the value of Δν is

determined for stellar models. Since for a stellar model the
radius and mass are known quantities, a simple approach to
determine Δν would be to make use of the Δν scaling relation
in Equation (1). However, studies have shown that the Δν
scaling relation has deviations, is a function of Teff and [Fe/H],
and only holds to a few percent (White et al. 2011; Miglio et al.
2013; Mosser et al. 2013; Guggenberger et al. 2016; Sharma
et al. 2016; Yıldız et al. 2016; Rodrigues et al. 2017; Ong &
Basu 2019). Therefore, Δν for stellar models is not usually
determined using the scaling relation, but by calculating the
model’s individual mode frequencies. The value of Δν can
then be calculated by finding the average spacing between
these frequencies (of a certain ℓ). This average is usually
determined as the slope of a linear fit to the ν–n relationship for
modes of a given ℓ. Since the spacing of modes is not exactly
the same throughout the excited mode envelope, then the
manner in which the averaging is performed is important. This
leaves some ambiguity as to what the best method of
calculating Δν from these individual mode frequencies is.
For example, which ℓmodes to include in the averaging or
whether to weight the modes around νmax more heavily, are
decisions that can produce important differences in the value of
Δν. Rodrigues et al. (2017) show that there is a difference
between Gaussian-weighted and error-weighted values of Δν
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up to about 1%. Roxburgh (2014) also discusses that depending
on the method of calculating Δν, the results can differ by about
1%. If relying on the scaling relation to determine mass, a 1%
deviation in Δν can have a meaningful impact.

The frequency where the smoothed amplitude of the
oscillations peak, νmax, can be shown to be proportional to
the acoustic cutoff frequency, νac (Belkacem et al. 2011), and
goes as n nµ µ -gTmax ac eff

1 2 (Brown et al. 1991; Kjeldsen &
Bedding 1995; Bedding & Kjeldsen 2003; Belkacem et al.
2011). This leads to the νmax scaling relation, given by
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While one could determine the approximate value of νmax for a
stellar model using Equation (2), the νmax scaling relation must
be used with caution, as many studies have shown that
deviations do exist (Bedding & Kjeldsen 2003; Stello et al.
2009; Bruntt et al. 2010; Miglio 2012; Bedding 2014; Coelho
et al. 2015; Silva Aguirre et al. 2015; Yıldız et al. 2016; Viani
et al. 2017). For stellar models, a more accurate way to
calculate νmax is to avoid the νmax scaling relation and instead
use the acoustic cutoff frequency, as described in Viani et al.
(2017).

In this paper we investigate various methods of calculating
the large frequency separation from individual mode frequen-
cies (referred to as Δνfreq from now on) to determine which
method gives values of Δν that best represent the global
observational Δν values. This will be done using observations
of high signal-to-noise stars, with individual mode frequencies
already determined from previous studies in the literature. For
these stars, the individual mode frequencies will serve as a
proxy for the frequency values that one would have if they
were modeling the star. For each star in our sample, the value
of Δνfreq will be calculated using a variety of methods and
compared to the global value of Δν, calculated using standard
observational methods. This will allow us to determine the
optimal way to calculate Δν from individual mode frequencies
and develop a better understanding of how Δνfreq of stellar
models should be determined. We then verify these results
using the Ball et al. (2018) simulations of light curves for
NASA’s Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2015). This issue is especially important as a multitude of
new observations from TESS become available.

The paper is organized as follows. Section 2 gives an
overview on the stars used in the study, explains the methods
used to determine the seismic parameters from the observed
data, and discusses the various methods used to calculate Δν
from the individual mode frequencies. Section 3 presents the
results and compares the different values of Δν. Section 4
discusses the findings, and Section 5 provides concluding
remarks.

2. Data and Analysis

2.1. Sample of Stars in the Study

The stars used in this study consist of the 66 main-sequence
stars from the Kepler Asteroseismic LEGACY Sample from
Lund et al. (2017), 34 solar-type planet-hosting stars from
Davies et al. (2016), the 23 main-sequence and subgiant stars
from Appourchaux et al. (2012) that were not already included
from the LEGACY Sample, and 17 red giant stars from NGC

6791 that were in Corsaro et al. (2017a) and McKeever et al.
(2019). It should be noted that while Davies et al. (2016)
examined 35 stars, we excluded KIC 8684730 as it did not
have a readily available multiquarter power spectrum. For each
of the 140 stars in our sample, the Kepler power spectrum was
obtained from the KASOC website.5 For the main-sequence
and subgiant stars the short-cadence KASOC weighted version
of the power spectra were used while for the RGB stars the
“Working Group 8” long-cadence data were used. The seismic
parameters were extracted from the power spectrum using
several different methods as described in Section 2.2.

2.2. Determining Seismic Parameters from Power Spectra

2.2.1. 2D Autocorrelation Method

One method to determine the value of νmax and Δν from a
power spectrum is the 2D autocorrelation function (ACF)
method, as in Huber et al. (2009), Verner & Roxburgh (2011),
and Kiefer (2013). The premise of this technique is to perform
a series of autocorrelations on segments of the power spectrum
to determine the frequency range of the envelope of excited
modes. First the power spectrum is smoothed, to estimate the
background, using a median filter with a window size of
100 μHz for the main-sequence and subgiant stars and a
window of 10 μHz for the giants. An example of this
smoothing for star KIC 6116048 can be seen in Figure 1.
Then the power relative to the smoothed background spectrum
(PBS) is determined using Equation (3) (Verner & Roxburgh
2011; Kiefer 2013):

n
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where P(ν) is the power at a given frequency and Bg(ν) is the
smoothed background.
A series of autocorrelations are then performed on different

segments of the PBS. Starting with the lowest frequency in the
power spectrum, an autocorrelation is calculated for a 250 μHz
wide window (25 μHz window for the giant stars). The window
size for the main-sequence stars was chosen to match that of
Kiefer (2013). The central frequency of the window is then

Figure 1. Power spectrum for KIC 6116048. The blue line shows the smoothed
background estimate.

5 kasoc.phys.au.dk
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shifted by 1 μHz (as in Verner & Roxburgh 2011 and
Kiefer 2013), toward higher frequencies, and another auto-
correlation is performed. This is continued until the window
reaches the end of the power spectrum. The results of this
process can be seen in the top panel of Figure 2, where the
autocorrelation power for each frequency lag can be plotted as
a function of the central window frequency.

As can be seen in the top panel of Figure 2, when in the
frequency range of the excited p-modes, the autocorrelation
power spikes with a regular spacing that corresponds to Δν/2.
This clear pattern in the autocorrelation power is not present
outside of the frequency range of the p-mode envelope. Thus,
by examining where the autocorrelation shows this spacing, we
can determine the frequency range of the envelope of excited
modes as well as the value of νmax.

To make this more clear, we can collapse the top panel in
Figure 2 to examine just the total average autocorrelation
power at each central frequency. This quantity, called the mean
collapsed correlation (MCC; Kiefer 2013), is calculated for

each central frequency as

å
=

-
=

n
MCC

ACF 1
, 4i

n
i1

lags

lags( )∣ ∣
( )

where nlags is the number of lags in the ACF. In the numerator
1 is subtracted because at lag 0 the autocorrelation is 1 since the
spectrum has not been shifted. The presence of the absolute
value in the equation is because a negative correlation power
also holds valuable information. We plot the MCC as a
function of central window frequency in the middle panel of
Figure 2, again for KIC 6116048.
From the collapsed 2D autocorrelation, the frequency range

in which the excited p-modes reside can clearly be seen. A
Gaussian is then fit to the MCC peak, with the Gaussian’s
center being νmax, as done for example by Huber et al. (2009),
Verner & Roxburgh (2011), and Kiefer (2013). The envelope
of excited p-modes is then defined, following Kiefer (2013), to
be the frequency range around νmax where the MCC value is at
least 10% of the Gaussian peak height.
Once the frequency range of the excited p-mode envelope is

determined, the value of Δν can be calculated by taking a
power spectrum of the power spectrum (PS⊗PS) for this
frequency range (see, e.g., Hekker et al. 2010; Mathur et al.
2010). A Lomb–Scargle periodogram (Lomb 1976; Scargle
1982) is computed on the PBS spectrum for the frequency
range of the excited envelope. For the example star, KIC
6116048, the PS⊗PS can be seen in the bottom panel of
Figure 2. A Gaussian is then fit to the periodogram, with the
Gaussian’s center corresponding to Δν/2. The ℓ=1 peak falls
between the ℓ=0 peaks and so the power maximizes at Δν/2
instead of at Δν. To help fit the Gaussian, and determine the
correct peak in the PS⊗PS, we estimate Δνexpected using our
calculated value of νmax. Many studies have shown a relation-
ship where n nD µ b

max , where β is between about 0.7 and 0.8
(see, e.g., Hekker et al. 2009; Stello et al. 2009; Huber et al.
2011; Yu et al. 2018), which allows us to determine which of
the peaks in the PS⊗PS corresponds to Δν/2. The uncertainty
in the location of the peak is determined using the standard
deviation of grouped data as in Hekker et al. (2010):

=
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å -

å
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where f is the bin height, x is the frequency, and the summation
includes the bins around the peak that have a height �1% of
the peak’s height. In the remainder of the paper we will refer to
the seismic parameters determined using the ACF method as
νmax,ACF and ΔνACF.

2.2.2. Determining Seismic Parameters Using the Coefficient of
Variation Method

While the 2D autocorrelation method has been shown to
provide reliable measurements of seismic parameters it can be
computationally time consuming. To obtain another set of νmax

and Δν measurements for our data we also determined the
seismic parameters using a more efficient technique. The recent
work of Bell et al. (2019) has shown that νmax can be quickly
determined using what is called the coefficient of variation, or
CV. The coefficient of variation is the ratio of the standard

Figure 2. Top: the 2D autocorrelation results for KIC 6116048. The abscissa
shows the central window frequency, the ordinate shows the autocorrelation
lag, and the colors indicate the autocorrelation power. Middle: the mean
collapsed correlation (MCC). The abscissa shows the central window
frequency and the ordinate shows the average absolute value of the
autocorrelation power for each window (see Equation (4)). Bottom: the power
as a function of Δν/2 for the PS⊗PS of the p-mode envelope for the example
star KIC 6116048.
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deviation to the mean of the power spectrum. The basic
premise is that in a power spectrum of pure noise, this ratio
should be about 1. Thus, examining where in the power
spectrum this ratio is greater than 1 can be used to determine
the location of solar-like oscillations.

Our implementation of the CV method to determine νmax and
the frequency range of the excited p-mode envelope is as
follows. First, the power spectrum is broken up into a series of
segments and the CV value is calculated for each segment.
Starting with a window centered at 1 μHz, the window size is set
to be the same as the estimated value of Δν if the central
frequency were assumed to be the value of νmax. This is done
to ensure that the window size is large enough so that if there
were oscillations present, some would fall within the window.
The Δνestimate value is calculated assuming that nD =estimate

n0.267 max
0.764 as in Yu et al. (2018). With the window size for this

central frequency defined, the CV ratio is calculated for this
window. The central frequency then shifts to higher frequencies
by one-sixth of the previous window size. A new window size is
calculated based on the new central frequency and the CV value
is found again. The process is repeated until the end of the power
spectrum is reached. The CV value for each window can be seen
as the blue diamond points in Figure 3.

Next, the CV values from the different overlapping windows
are smoothed. For each central frequency (each blue point in
Figure 3) the width of the smoothing window is given by

n0.66 central
0.88 (referred to as WMosser in the remainder of the

paper), based on the FWHM of the excited mode envelope
from Mosser et al. (2012). The CV values within this window
are then averaged together. The resulting smoothed CV trend
can be seen as the yellow points in Figure 3. The location of the
highest smoothed value (the highest yellow point in Figure 3) is
used as the initial estimate of νmax. From this initial νmax,estimate,
a weighted mean is performed, using the points that are within
a window of n0.66 max,estimate

0.88 , to determine the true value of
νmax. The weighted mean of the peak is calculated by

å
å

n n

n
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=
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j
i i

i

j
i

1

1

( )

( )
( )

where ν is the frequency, CV(ν) is the smoothed CV value at
that frequency, and j is the number of frequency bins that are

within the window defined by n0.66 max,estimate
0.88 . The uncertainty

in νmax was again calculated using the standard deviation of
grouped data, Equation (5).
The value of Δν was then calculated in a manner similar to

the method used in the 2D autocorrelation approach. A
Gaussian was fit to the smoothed CV νmax peak, and the
envelope of excited p-modes was determined to be the
frequency range where the value was at least 10% of the peak
height. A Lomb–Scargle periodogram was then computed on
the power spectrum for this frequency range, following the
traditional PS⊗PS method of determining Δν (see, e.g.,
Hekker et al. 2010; Mathur et al. 2010). As previously
described in Section 2.2.1, a Gaussian was then fit to the peak
in the periodogram, were the Gaussian’s center corresponds to
Δν/2. As before, the uncertainty in the location of the peak is
determined using the standard deviation of grouped data as in
Hekker et al. (2010). The seismic parameters determined using
the CV method will be referred to as νmax,CV and ΔνCV for the
remainder of the paper.
It should be noted that our implementation of the CV method

is not identical to that of Bell et al. (2019). This is necessary
because the Bell et al. (2019) CV method was designed for red
giant stars, using long-cadence light curves, while our sample
also contains main-sequence and subgiant stars that have short-
cadence data. For example, Bell et al. (2019) use 2000
overlapping bins spaced evenly in log-frequency (for their
“oversampled” spectrum), while we implement the moving
window overlapping by an amount based on the previous
window size. This allows our windows to behave in the same
manner regardless of whether we are using long or short-
cadence data. Since our implementation is different, the
parameter choices that we used were tested (see the Appendix)
to ensure that we were determining the location of νmax

correctly. For example, we examine the impact of changing the
window size and smoothing size. As can be seen in the
Appendix, the CV method described in this section provided
the best νmax values.

2.3. Comparing Δν Results

Since the ACF and CV methods define the frequency range
of the excited p-mode envelope slightly differently, the
resulting Δν value from the PS⊗PS will be affected.
Figure 4 shows the difference between ΔνCV and ΔνACF. As
can be seen in Figure 4, the value of ΔνCV tends to be slightly
lower than the value ofΔνACF; however, the values ofΔν from
the two methods are in excellent agreement, with the difference
being less than 0.5% for the vast majority of stars, and less than
1.5% in all cases. The spread in the difference between the
values of ΔνCV and ΔνACF is less than the spread when
comparing our Δν values to those in the literature (as seen in
Figure 5). It should also be noted that the CV method offers a
significant speed advantage over the ACF method.
Additionally, we can compare the value of Δν determined

using the CV method to the value of Δν from the literature for
our set of stars. For the comparison, values of Δν for our
sample of stars were obtained from Lund et al. (2017), Davies
et al. (2016), Appourchaux et al. (2012), Huber et al. (2013),
Bellamy & Stello (2015), and Bellamy (2015). A histogram of
the fractional difference between our calculated value of ΔνCV
and the corresponding literature value of Δν can be seen in
Figure 5. As can be seen in Figure 5, our calculated values of
Δν agree very well with the literature values of Δν. Over 94%

Figure 3. Coefficient of variation for KIC 6116048. The blue diamonds show
the CV value for each window, and the yellow points show the smoothed trend.
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of the stars have calculated values of Δν within 1% of their
corresponding Δν value in the literature, and the distribution is
centered around zero. Even in the most extreme case, the
difference in the value of Δν is around 3%.

2.4. Testing the Seismic Parameter Extraction on Solar Data

Both the 2D autocorrelation method and the coefficient of
variation method to extract seismic parameters were then tested
using solar data. This exercise served as a check to ensure our
methods of seismic parameter extraction were providing
reasonable values for Δν and νmax and as a way to compare
the two methods. The Solar data were obtained from the 1
minute cadence photometric observations from the VIRGO
instrument (Fröhlich et al. 1995; Frohlich et al. 1997) on the
ESA/NASA spacecraft SOHO. A segment of VIRGO data was

used that was the same length as our Kepler data. Using the CV
method, the values of νmax and Δν for the Sun were
3091.4±11.9 μHz and 135.0±1.4 μHz, while for the 2D
autocorrelation method the values of νmax and Δν were
3417.6±81.6 and 135.5±1.5 μHz. The typical accepted
values of νmax,e and Δνe are 3090 and 135.1 μHz (e.g., see
Huber et al. 2011). The value of Δνe for both the 2D ACF
method and the CV method are in good agreement with the
accepted value of Δνe, with the CV method’s value being
slightly closer to the accepted Δνe. Looking at the νmax,e
value, while the CV νmax,e value is in good agreement with the
accepted value, the 2D ACF νmax,e value is too large. While
the focus of the paper is on measurements of Δν, obtaining the
correct value of νmax is important as the value of νmax can in
some cases affect the calculation of Δνfreq (see Section 2.5).
Therefore, due to our inability to reproduce νmax,e using our
ACF prescription, along with the fact that it is time consuming,
we use the seismic parameters determined using the CV
method for the remainder of this work.

2.5. Determining Δν from Individual Mode Frequencies

Since the goal of this work is to compare the value of ΔνCV
to Δνfreq, we also must calculate the large separation using the
individual mode frequencies for these stars. Observed indivi-
dual mode frequencies for the Lund et al. (2017), Davies et al.
(2016), and Appourchaux et al. (2012) stars were obtained
from the corresponding publications. For the NGC 6791 red
giant stars the individual mode frequencies were determined by
peak-bagging using the DIAMONDS code6 (Corsaro & De
Ridder 2014) and the methodology for red giants (Corsaro et al.
2015), for a sample of cluster red giants from Corsaro et al.

Figure 4. Difference between ΔνCV and ΔνACF normalized by the uncertainty, σdifference (left). σdifference is the propagated uncertainty for the value of ΔνCV–ΔνACF.
The black points show the RGB stars, the orange triangles are the subgiants, and the blue circles are the main-sequence stars. The right panel shows a histogram of the
fractional difference between ΔνCV and ΔνACF for all the stars in the sample. The red dashed line marks 0 difference.

Figure 5. Fractional difference between Δν calculated using the CV method
and Δν from the literature for our sample of stars. The red dashed line marks 0
difference.

6 Software and DIAMONDS code description are available athttps://github.
com/EnricoCorsaro/DIAMONDS.
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(2017a). The DIAMONDS code determines parameters using a
nested sampling Monte Carlo algorithm.

From the individual mode frequencies Δνfreq can be
calculated by determining the slope of the line of best fit for
a plot of frequency versus n for modes of the same ℓ. The issue,
however, is that performing this fit in different ways will alter
the values of Δνfreq. For example, the slope of the line will be
different depending on which ℓmodes are being used.
Additionally, there is the question if there should be any
weighting on the frequencies. Should modes closer to νmax be
more heavily weighted? Should the modes be weighted by their
uncertainties? Should only modes closest to νmax be used? All
of these options will result in a different value of Δνfreq.

In the literature there are many different methods used to
determine the value of Δν from individual mode frequencies.
For example, Handberg et al. (2017) calculated the average Δν
by weighting the frequencies by their observational errors.
Other studies have implemented some type of Gaussian
weighting around νmax (White et al. 2011; Rodrigues et al.
2017). Hekker et al. (2013) used both a Gaussian-weighted
linear fit, an unweighted fit, as well as the median of the
pairwise differences of the modes. It is also possible to just use
the modes closest to νmax, for example, Corsaro et al. (2017b)
determined Δν using a Bayesian linear regression on the
asymptotic relation using the central 3 ℓ=0 mode frequencies.

For each star in our sample, we calculate Δνfreq in seven
different ways for each ℓ. So, for stars with ℓ=0, 1, and 2
values, then Δνfreq was calculated 21 different times. The
different methods of determining Δν are summarized in
Table 1 and explained in more detail as follows:

I. No Weighting: The best-fit slope of the frequency versus
n plot is simply calculated without taking any weighting
or uncertainties into account. The full set of observed
modes for a given ℓ is used.

II. Error Weighting: The best-fit slope takes into account the
uncertainties in the observed frequency values. The full
set of observed modes for a given ℓis used.

III. Gaussian Weighting: High signal-to-noise data show that
the power envelope of the excited modes is a Gaussian
with an FWHM of n0.66 max

0.88 (Mosser et al. 2012).
Therefore, it may be reasonable to weight those modes
closer to νmax more heavily in the best-fit slope. Here
each frequency is given a weight, where the weighting
function is a Gaussian centered on νmax with an FWHM
given by n0.66 max

0.88 . The weight, W, for each point is then
given by

= n n s- -W e , 72max
2 2 ( )( ) ( )

where s = FWHM 2 2 ln 2( ( ) ). This is similar to what
was done in Rodrigues et al. (2017), with the difference

being the value of σ used. Rodrigues et al. (2017) use
s n= 0.66 max

0.88 , while we use that as our FWHM, thus
making our values of σ differ by a factor of 2 2 ln 2( ) .
With the weighting for each frequency determined, the
slope of the line of best fit is then calculated by
minimizing

å n - ´ +
=

W nslope intercept , 8
i

k

i i i
1

2[ ( )] ( )

where k is the number of modes. The full set of observed
modes for a given ℓis used.

IV. No Weighting, 4 Points: Only 4 frequencies are used in
the fit, 2 on each side of νmax. No errors or weighting
equation is used.

V. Error Weighting, 4 Points: Only 4 frequencies are used in
the fit, 2 on each side of νmax. The uncertainties in the
observed frequencies are included in the best-fit slope
calculation.

VI. No Weighting, 10 Points: Only 10 frequencies are used in
the fit, 5 on each side of νmax. No errors or weighting
equation is used.

VII. Error Weighting, 10 Points: Only 10 frequencies are used
in the fit, 5 on each side of νmax. The uncertainties in the
observed frequencies are included in the best-fit slope
calculation.

For each star, and for each ℓ, these seven methods were used to
compute Δνfreq. For the remainder of the paper the methods
will be referred to by their corresponding Roman numeral.
Note that when determining the individual mode frequencies in
actual stellar models then methods II, V, and VII cannot be
used since there is no associated observational uncertainty on
the frequencies.

3. Results

3.1. Comparing ΔνCV and Δνfreq

The large frequency spacing calculated using the CV method,
ΔνCV, can be compared to the different values of Δνfreq
calculated in Section 2.5. Figure 6 shows the difference between
the values of Δνfreq and ΔνCV divided by the uncertainty in the
difference, as a function of νmax, for each different method of
calculating Δνfreq for the ℓ=0, 1, and 2 modes. As can be seen
in Figure 6, the difference between the values of Δν are mostly
all within 1σ. The exception to this is Δν calculated with the
ℓ=1 modes in the subgiant stars, which have a large scatter.
This is due to the fact that the subgiant stars have mixed-modes.
For the sake of making the ordinate scale in Figure 6 small
enough to easily view the data, some of the values of Δν
calculated using the ℓ=1 frequencies for the subgiant stars fall
outside the range of the figure and are not visible. Additionally,

Table 1
A Summary of the Various Different Methods Used to Calculate Δνfreq

Method Weighting Used in Slope Determination Number of Frequencies Used

I None Full Set of Observed Modes Used
II Error Weighted Full Set of Observed Modes Used
III Gaussian with an FWHM of 0.66 νmax

0. 88 (Mosser et al. 2012) Full Set of Observed Modes Used
IV None 4 Total, 2 on Each Side of νmax

V Error Weighted 4 Total, 2 on Each Side of νmax

VI None 10 Total, 5 on Each Side of νmax

VII Error Weighted 10 Total, 5 on Each Side of νmax
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one should note that for the RGB stars there were not enough
modes on either side of νmax for the value of Δνfreq to be
calculated using methods VI and VII.

It can also be seen in Figure 6 that there is a larger scatter
and disagreement for the method of determining Δνfreq using
only two frequencies on either side of νmax (methods IV and

Figure 6. The difference, (Δνfreq − ΔνCV)/σDifference, as a function of νmax for each of the different methods of determining Δνfreq and for each ℓ. Note that some of
the subgiant stars are not in the ordinate range of this plot. Colors are the same as Figure 4. For reference, the dashed line is at 0, and the dotted lines are at ±1.
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V). This suggests that using only four frequencies in the Δν
determination is not ideal when attempting to match the value
of Δν one would calculate from the observed power spectrum.
This larger scatter makes sense due to the fact that the value of
ΔνCV uses nearly the entire region of oscillations from the
power spectrum and therefore takes many more than four
frequencies into account. So, one might expect that the value of
ΔνCV and Δνfreq would match more poorly when Δνfreq only
uses a few modes.

Additionally, for some of the methods it does appear that the
value of Δνfreq tends to be smaller than the value of ΔνCV.
This can be seen in Figure 6 for the ℓ=0 modes in methods II,
III, VI, and VII as well as the ℓ=1 and ℓ=2 modes for
method VII. Despite the differences among the methods, with
exception to some of the subgiant stars, the values ofΔνCV and
Δνfreq agree to within a few percent.

3.2. Simulated TESS Data

So far our comparisons have used observed data with the
determined mode frequencies acting as a proxy for the frequencies
one would have from a stellar model. Since the properties of the
observations, for example, the signal-to-noise ratio or time-series
length, will determine which modes were observed, we need to
make sure that our results also hold when using stellar models.
Additionally, since the goal of this project is to determine the best
method of calculatingΔν from stellar models, it is critical that we
repeat the experiment using frequencies from actual stellar
models. To accomplish this, we make use of the simulated TESS
data from Ball et al. (2018). Ball et al. (2018) created a mock
catalog of light curves to simulate data from NASA’s TESS
(Ricker et al. 2015). From this mock catalog we selected 34 main-
sequence stars, 37 subgiants, and 47 red giants to analyze. The
selected stars can be seen in the Kiel diagram in Figure 7. Note
that the Ball et al. (2018) simulated TESS data were restricted to
stars that would be observed with the short-cadence (2minute)
mode of TESS, and as a result the red giant stars available in this
catalog are those that are not evolved too far along the red giant
branch. All of the selected stars and light curves used are from
“Sector 1” in Ball et al. (2018). Additionally, it should be noted
that the light curves used did not have white noise added to them.

While Ball et al. (2018) provide the expected value of the white
noise for each light curve, the scope of this project is not
concerned with the actual observing capabilities of TESS, rather
the comparison between the value ofΔν from the power spectrum
and Δν from frequencies. Hence, the clean light curves from Ball
et al. (2018) were used without added noise.
From the simulated TESS data, the “observed” values were

calculated from the light curves. The values of νmax and ΔνCV
were calculated using the coefficient of variation method as
discussed in Section 2.2.2. For the simulated stars Ball et al.
(2018) also model each star and provide individual mode
frequencies. It should be noted that the frequencies from the
models were used in the creation of the simulated spectra. So,
unlike typical model frequencies that may disagree with the
true frequency values, these modeled frequencies are actually
those found in the simulated spectra. Using these model
frequencies, the value of Δνfreq was calculated as discussed in
Section 2.5. The frequencies provided from the Ball et al.
(2018) models are for values between 0.15 and 0.95νac. Thus,
for the model stars, when calculating Δνfreq using methods I
and III, which utilize the full set of modes, this corresponds to
all modes between 0.15 and 0.95νac.
As in Section 3.1, we then compare the values of ΔνCV and

Δνfreq. Figure 6 can be remade, but for the sample of stars from
the simulated TESS data. This can be seen in Figure 8. Note
that methods II, V, and VII are not used in this case. This is due
to the fact that these methods use the observational uncertain-
ties when determining the value of Δνfreq and the model values
do not have observational uncertainties. As seen in Figure 8,
again the values of ΔνCV and Δνfreq agree well and for the
most part are within 1σ or 2σ. Additionally, it can be seen that
for method I the value of Δνfreq tends to be smaller than the
value of ΔνCV.

4. Discussion

We can put the information in Figures 6 and 8 on a more
quantitative footing to determine which method of calculating
Δνfreq is most in agreement with the value of ΔνCV. The
root mean square (rms) value of the percent difference, 100×
(Δνfreq−ΔνCV)/ΔνCV, can be compared for each method of
calculating Δνfreq. Table 2 shows the rms value for each
method of calculating Δνfreq for each set of stars for the
observed sample. As can be seen in Table 2, the best method to
calculate Δνfreq depends on the star’s evolutionary stage and
the ℓof interest.
For the main-sequence stars using the ℓ=0 modes, methods

I, III, and VI perform equally well and produce values ofΔνfreq
closer to the values of ΔνCV than the other methods. Using the
ℓ=1 modes instead, methods I, III, and VI again outperform
the other methods, with method VII being equally good as well.
When using only the ℓ=2 modes methods VI and VII perform
equally well and better than the other methods. However, we
must be careful with comparing all the methods at once, since
not every star in the sample can be included in every method of
calculating Δνfreq. For example, not all the stars had enough
observed modes to use methods VI and VII. Since all the stars
are included in methods I, II, and III, then it is safest to
compare these three against each other. Doing this we see that
for the main-sequence stars using the ℓ=0 or ℓ=1 modes are
much better than using the ℓ=2 modes. Also, we see that
using methods I and III are nearly equivalent and better than
method II. So, this means that for the main-sequence stars using

Figure 7. Kiel diagram of the stars selected from Ball et al. (2018). The black
points are the red giant stars, the orange triangles are the subgiant stars, and the
blue circles are the main-sequence stars. The background gray lines show
tracks of mass 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 M☉, created using YREC
(Demarque et al. 2008).
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either no weighting or the Mosser et al. (2012) Gaussian
weighting is better than weighting by the observational
uncertainties.

For the subgiant stars, using the ℓ=0 modes, methods I, III,
and VI perform nearly equivalently and are better than the other
methods. The ℓ=1 modes do not provide good values, as
expected due to the presence of mixed-modes. For the ℓ=2
modes, all the methods perform about the same, except for
methods I and VII being worse.

For the red giant stars, using the ℓ=0 modes, method III is
the best; however, all methods except II do equally well. Note
that methods VI and VII are not included for the RGB stars
because there were not enough modes to have five frequencies
on each side of νmax. Using the ℓ=2 modes, methods I and III
perform equally well and better than the other methods. For
every method, using the ℓ=0 modes provided the best results
for the RGB stars. Similar to the main-sequence stars, we see
that using either no weighting or the Mosser et al. (2012)
Gaussian weighting is better than using the observational
uncertainties.

We can perform the same investigation for the simulated
TESS data, again looking at the rms value of the percent
difference, 100×(Δνfreq−ΔνCV)/ΔνCV, for each method.
Table 3 shows the rms value for each method of calculating
Δνfreq for each set of stars and each ℓ. There are a few

important differences to note with using the simulated TESS
data compared to the observational data. First of all, for the
simulated TESS data, we only selected the ℓ=1 modes that
were not mixed-modes. So, the rms values of the subgiant
ℓ=1 modes are unrealistically good. Additionally, since the
mode frequencies are from models, we have many more modes
than we would actually have from observations for these stars.
This also means that all of the stars in our sample of simulated
TESS data had enough modes that all stars could be put through
each method of calculating Δνfreq for every ℓ. However, since
the modes are from stellar models, methods II, V, and VII
could not be calculated since there was no observational
uncertainty on the modes.
As can be seen in Table 3, for the main-sequence stars, when

using the ℓ=0 modes, methods III and VI perform nearly
equally well and better than the other methods. Methods III and
VI again outperform the others when using the ℓ=1 modes or
the ℓ=2 modes as well. When comparing using the ℓ=0 and
ℓ=2 modes for the main-sequence stars we see that for
methods III, IV, and VI the resulting rms values are very
similar. For method I using the ℓ=0 modes is better than
using the ℓ=2 modes.
For the subgiant stars methods III and VI are slightly better

for the ℓ=0 modes. For the ℓ=1 and ℓ=2 modes method III

Figure 8. The difference, (Δνfreq − ΔνCV)/σDifference, as a function of νmax for each of the different methods of determining Δνfreq and for each ℓ for stars from the
TESS simulated data. Colors are the same as Figure 4. For reference, the dashed line is at 0, and the dotted lines are at ±1.
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performs the best. For every method, using the ℓ=0 modes for
the subgiants outperforms using the ℓ=2 modes.

For the red giant branch stars, regardless of which method is
being used, using the ℓ=0 modes give a lower rms value than
using the ℓ=1 or ℓ=2 modes. Additionally, regardless of
which ℓmodes are being used, method I is the best in all cases.
However, since for these simulated stars we have a lot more
modes than we would get in observations, then perhaps using
all available frequencies as in method I is unrealistic. If instead
for the RGB stars we are restricted to only using five points on
either side of νmax, as in method VI, then the resulting rms
values are either better or nearly the same as using the Gaussian
weighting of method III.

Finally, for our observed RGB stars we can compare our
νmax,CV and ΔνCV values to those from Corsaro et al. (2017b).
Corsaro et al. (2017b) determined Δν using a Bayesian linear
regression on the asymptotic relation using the central 3 ℓ=0
mode frequencies. We see that the values of Δν agree to within
1.5% and values of νmax agree to within 10%. Comparing the
values of Δνfreq to the Δν values from Corsaro et al. (2017b)
we see that for the ℓ=0 modes, method V is in the most
agreement. This is as expected since method V uses two points
on each side of νmax with error weights and is the most similar
method compared to the technique of using the three central
frequencies performed in Corsaro et al. (2017b).

5. Summary and Conclusion

When comparing observed values of Δν to values of Δν
calculated from stellar models, we must be aware that the
manner in which these two values of Δν are being determined
is different. The observed value of Δν from photometric time-
series data is typically determined using autocorrelation
techniques or PS⊗PS methods, while this is not the case when
calculating Δν from stellar models. In stellar models the actual
individual mode frequencies are calculated and then the value
of Δνfreq can be determined by fitting a line to the frequency
versus n data. There are many different methods by which to

perform this linear fit, for example, to weight the frequencies
closer to νmax more heavily, to only use a few points around
νmax, and deciding which ℓmodes to include. It is critical that
when we determine the value of Δν for stellar models that we
are doing so in a way that will provide consistent results with
the values of Δν calculated through observations. Otherwise,
the comparison between the two values of Δν loses accuracy.
In this work we took high signal-to-noise Kepler observa-

tions and determined the seismic parameters using standard
methods. Each of these stars also had individual mode
frequencies determined in the literature. Using these individual
mode frequencies as a proxy for the frequencies one would
have from modeling a star, we determined Δνfreq in several
different ways to compare to the value of ΔνCV. We also made
use of simulated TESS light curves and stellar models to
compare the methods of calculating Δν values. From the
results of comparing ΔνCV and Δνfreq both from the observed
stars and the simulated TESS data, we show that using the
ℓ=0 modes with either no weighting or a Gaussian weighting
as in Mosser et al. (2012) provides the best agreement.
Additionally, we see that using the coefficient of variation
method as in Bell et al. (2019) provides a quick and accurate
way to identify the frequency range of excited modes.
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Table 2
The rms Value for the Percent Difference, 100×(Δνfreq − ΔνCV)/ΔνCV, for Each Method and Each ℓ for Our Set of Kepler Stars

ℓ=0 ℓ=1 ℓ=2 Average of ℓ=0, 1 Average of ℓ=0, 2

MS Subgiant RGB MS Subgiant RGB MS Subgiant RGB MS Subgiant RGB MS Subgiant RGB

I 0.37 0.81 0.81 0.36 1.84 L 0.63 1.63 0.91 0.33 1.16 0.81 0.38 1.10 0.75
II 0.53 1.06 0.94 0.40 2.73 L 0.63 1.04 1.25 0.44 1.68 0.94 0.44 1.02 0.93
III 0.36 0.88 0.72 0.35 2.34 L 0.63 0.97 0.92 0.29 1.50 0.72 0.39 0.90 0.72
IV 0.65 1.09 0.82 0.54 11.74 L 0.64 1.01 1.43 0.55 5.90 0.82 0.59 0.95 0.72
V 0.65 1.16 0.76 0.54 12.33 L 0.64 0.91 1.41 0.56 6.20 0.76 0.60 0.96 0.57
VI 0.34 0.86 L 0.29 3.18 L 0.28 0.91 L 0.27 1.73 L 0.32 0.81 L
VII 0.41 1.17 L 0.30 3.78 L 0.29 1.24 L 0.33 2.18 L 0.36 1.13 L

Table 3
The rms Value for the Percent Difference, 100×(Δνfreq − ΔνCV)/ΔνCV, for Each Method for the Simulated TESS Stars

ℓ=0 ℓ=1 ℓ=2 Average of ℓ=0, 1 Average of ℓ=0, 2

MS Subgiant RGB MS Subgiant RGB MS Subgiant RGB MS Subgiant RGB MS Subgiant RGB

I 1.04 1.22 0.59 0.96 1.12 0.59 1.91 1.49 0.71 1.00 1.15 0.57 1.43 1.34 0.62
III 0.61 0.97 0.60 0.52 1.08 0.73 0.60 1.10 1.38 0.56 0.89 0.63 0.60 1.00 0.93
IV 0.83 1.03 0.64 0.67 3.51 1.84 0.81 1.76 2.53 0.73 1.72 1.07 0.82 1.18 1.44
VI 0.58 0.99 0.62 0.51 1.22 0.66 0.57 1.18 1.16 0.54 0.96 0.61 0.57 1.06 0.82

10

The Astrophysical Journal, 879:33 (12pp), 2019 July 1 Viani et al.



Appendix
Testing the Various CV Methods

As mentioned in Section 2.2.2, many variations of the CV
method were tested. These different implementations of the CV
method will be described here, where we refer to the method
described in Section 2.2.2 as the “base” method. In the “base”
method, each step we shift the window toward higher
frequencies by one-sixth the previous window size. We also
tested shifting the window by one-fourth, one-half, one-tenth,
and one-twentieth of the previous window size. This effectively
changes the density of the blue points in Figure 3. Also, we
tested using different window sizes when calculating the CV
value along the spectrum. In the base implementation the
window size is determined by estimating the value of Δν at the
central frequency. We also tested window sizes of 2Δν, 4.2Δν,
and WMosser. Additionally, when smoothing the CV values the
size of the smoothing window was tested. In the base method
we smoothed with a window of width WMosser and here we test
using a window of width 2WMosser, WMosser/2, 2Δν, 4.2Δν,
6Δν, and 8Δν. The final parameter that was tested was the
window sizes used when determining the weighted centroid of
the peak. In the base implementation we use a window of
WMosser and here we also test a window of 2WMosser.

To test which method works best a set of 63 randomly selected
red giant stars from the Second APOKASC Catalog (Pinsonneault
et al. 2018) was used. Using the power spectrum from KASOC,
the νmax values of the 63 stars were calculated using the base CV
method as described in Section 2.2.2. Then the various different
implementations of the CV method, described in the previous
paragraph, were used to again calculate νmax. The resulting νmax
values were compared to the values of νmax from the Second
APOKASC paper (Pinsonneault et al. 2018), as well as the
different pipelines in the Second APOKASC Catalog: A2Z
(Mathur et al. 2010; García et al. 2014), CAN (Kallinger et al.
2010), COR (Mosser & Appourchaux 2009), OCT (Hekker et al.
2010), and SYD (Huber et al. 2009). The rms value for the
percent difference, 100×(νmax,pipeline− νmax,CV)/νmax,CV, was
calculated for each CV implementation and can be seen in
Table 4. While the “best” method depends on which pipeline the

νmax value is being compared to, the base CV method was in good
agreement across all sets. Additionally, if the rms values for the
pipelines are averaged together, as seen in the last column of
Table 4, then the base CV method performs the best. Therefore,
this base method was the one selected as the best implementation
of the CV method and is the one used throughout the paper.
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Table 4
The rms Value for the Percent Difference, 100×(νmax,pipeline − νmax,CV)/νmax,CV, for Each CV Implementation for Our Sample of RGB Stars from the Second

APOKASC Catalog (Pinsonneault et al. 2018)

CV Method Pipeline

APOKASC A2Z CAN COR OCT SYD Average

Base Method 2.83 3.20 3.10 3.20 2.97 3.02 3.05
Window Shift: 1/4 Previous 3.13 3.38 3.44 3.53 3.33 3.21 3.34
Window Shift: 1/2 Previous 3.73 3.97 3.96 4.17 3.72 3.85 3.90
Window Shift: 1/10 Previous 3.16 3.67 3.36 3.57 2.94 3.44 3.35
Window Shift: 1/20 Previous 2.91 3.40 3.05 3.34 2.80 3.23 3.12
Window Size: 2Δν 4.56 4.71 4.26 5.00 4.76 4.85 4.69
Window Size: 4.2Δν 12.98 12.69 12.52 13.28 13.56 13.08 13.02
Window Size: WMosser 13.15 12.85 12.60 13.41 13.81 13.29 13.19
Smoothing Window: 2Δν 3.07 3.19 3.20 3.50 3.44 3.24 3.27
Smoothing Window: 4.2Δν 2.89 3.45 2.97 3.26 2.83 3.24 3.11
Smoothing Window: 6Δν 4.92 5.02 4.69 5.42 4.97 5.23 5.04
Smoothing Window: 8Δν 10.91 10.90 10.36 11.18 11.20 11.22 10.96
Smoothing Window: 2WMosser 10.45 10.62 10.16 10.71 10.32 10.77 10.51
Smoothing Window: WMosser/2 3.00 3.06 3.29 3.42 3.40 3.07 3.21
Weighted Centroid Peak Width: 2WMosser 3.33 3.92 4.05 3.52 2.81 3.41 3.51

Note.The columns represent the various νmax pipeline values from the catalog. The last column is an average of the rms value for all the pipelines.
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