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ABSTRACT

In a recent study we analysed period–luminosity–metallicity (PLZ) relations for RR Lyrae stars using the Gaia Data Release 2 (DR2)
parallaxes. It built on a previous work that was based on the first Gaia Data Release (DR1), and also included period–luminosity (PL)
relations for Cepheids and RR Lyrae stars. The method used to infer the relations from Gaia DR2 data and one of the methods used
for Gaia DR1 data was based on a Bayesian model, the full description of which was deferred to a subsequent publication. This paper
presents the Bayesian method for the inference of the parameters of PL(Z) relations used in those studies, the main feature of which
is to manage the uncertainties on observables in a rigorous and well-founded way. The method encodes the probability relationships
between the variables of the problem in a hierarchical Bayesian model and infers the posterior probability distributions of the PL(Z)
relationship coefficients using Markov chain Monte Carlo simulation techniques. We evaluate the method with several semi-synthetic
data sets and apply it to a sample of 200 fundamental and first-overtone RR Lyrae stars for which Gaia DR1 parallaxes and literature
Ks-band mean magnitudes are available. We define and test several hyperprior probabilities to verify their adequacy and check the
sensitivity of the solution with respect to the prior choice. The main conclusion of this work, based on the test with semi-synthetic
Gaia DR1 parallaxes, is the absolute necessity of incorporating the existing correlations between the period, metallicity, and parallax
measurements in the form of model priors in order to avoid systematically biased results, especially in the case of non-negligible
uncertainties in the parallaxes. The relation coefficients obtained here have been superseded by those presented in our recent paper
that incorporates the findings of this work and the more recent Gaia DR2 measurements.

Key words. methods: statistical – methods: data analysis – stars: variables: RR Lyrae – parallaxes

1. Introduction

Cepheids and RR Lyrae stars are primary standard candles of
the cosmological distance ladder because they follow canoni-
cal relations linking their intrinsic luminosity to the pulsation
period and/or the metal abundance. Specifically, for Cepheids the
intrinsic luminosity (L) at any passband depends on the period
(P) of light variation. This is traditionally referred to as the
Cepheid period–luminosity relation or Leavitt law, after its dis-
coverer Mrs Henrietta Swan Leavitt (Leavitt & Pickering 1912).
Modern realisations of the Cepheid PL relations from optical
to infrared passbands include, among others, the ground-based
studies of Madore & Freedman (1991), Ripepi et al. (2012), and
Gieren et al. (2013), works based on Hubble Space Telescope
(HST) data such as those by Freedman et al. (2001), Saha et al.
(2006), and Riess et al. (2011), and theoretical investigations
such as those by Marconi et al. (2005). Among the most recent
studies of the Cepheid period–luminosity relations are those
based on Gaia trigonometric parallaxes of Galactic Cepheids
(e.g. Clementini 2017; hereafter Paper I and references therein;
Riess et al. 2016, 2018). For RR Lyrae stars the intrinsic lumi-
nosity (L) in the infrared passbands depends on P and possi-
bly stellar metallicity (Z; PL – metallicity relation – PL(Z)), as
first shown by Longmore et al. (1986) and later confirmed by
(i) empirical studies of field and cluster RR Lyrae stars (e.g.
Sollima et al. 2006, 2008; Borissova et al. 2009), (ii) theoretical
models by Marconi et al. (2015) and Neeley et al. (2017), and

(iii) the Gaia parallax-calibrated relations of Sesar et al. (2017),
Paper I and references therein, and Muraveva et al. (2018a,b).
In the visual passband, the luminosity L depends on Z in the
form of the so-called RR Lyrae luminosity–metallicity relation
(see e.g. Cacciari & Clementini 2003; Clementini et al. 2003;
the pulsation models by Bono et al. 2003; the theoretical cal-
ibration by Catelan et al. 2004; or the Gaia-based relations in
Paper I; Muraveva et al. 2018a and references therein). The
predicted precision of the Gaia end-of-mission parallaxes for
local Cepheids and RR Lyrae stars1 will allow us to deter-
mine the slope and zero-point of these fundamental relations
with unprecedented accuracy, thus setting the basis for a global
reassessment of the whole cosmic distance ladder. As a first
anticipation of the Gaia potential in this field of the cos-
mic distance ladder and a first assessment of improved pre-
cision with respect to previous astrometric missions such as
Hipparcos, and the dramatic increase in statistics compared to
what is achievable, for instance, through measuring parallaxes
with the HST, Gaia DR1 published parallaxes for more than
700 Galactic Cepheids and RR Lyrae stars, computed as part
of the Tycho-Gaia Astrometric Solution (TGAS; Lindegren et al.
2016). A number of papers after Gaia intermediate data releases
in 2016 and 2018 (Gaia Data Release 1 – DR1 and DR2,
respectively) have discussed Gaia Cepheids and RR Lyrae stars,
1 See https://www.cosmos.esa.int/web/gaia/science-
performance
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specifically presenting the released samples (Clementini et al.
2016, 2019), their parallaxes (e.g. Lindegren et al. 2016) and
possible offsets affecting them (Arenou et al. 2017, 2018);
and addressing in particular their use as standard candles
(Casertano et al. 2017 and Paper I for Gaia DR1 and Riess et al.
2018; Muraveva et al. 2018a for Gaia DR2). In Paper I we
have used TGAS parallaxes, along with literature photometry
and spectroscopy, to calibrate the zero-point of the PL rela-
tions of classical and type II Cepheids, and the near-infrared
PL and PL(Z) relations of RR Lyrae stars by fitting these rela-
tions through adopting different techniques that operate either
in parallax or absolute magnitude space. In that paper, different
sources of biases affecting the TGAS samples of Cepheids and
RR Lyrae stars were discussed at some length, and the possible
systematic errors caused in the inferred luminosity calibrations
were analysed in detail.

Section 3.2 of Paper I in particular discussed the problem of
fitting general luminosity relations between the absolute magni-
tude MTrue, the decadic logarithm of the period PTrue, and possi-
bly also the metallicity [Fe/H]True of the form

MTrue = b + c · log(PTrue) + k · [Fe/H]True (1)

with a sample that is truncated in parallax (by removing the
non-positive values) and for which the assumption of normality
of uncertainties in the absolute magnitude is not valid. A more
detailed description of the intricacies involved in using astromet-
ric measurements for the inference of quantities of astrophysical
interest in general and PLZ relation coefficients in particular can
be found in Luri et al. (2018). Our proposal in Paper I was to
construct a two-level statistical model that distinguishes between
true and measured parallaxes. This model can then be used to
infer the true parallaxes and absolute magnitudes from the mea-
surements. One of the rigorous ways to construct such a model
is to apply the Bayesian method, where a prior probability dis-
tribution is assigned to the true parallax population. In doing so,
a suitable selection of this prior will improve the estimation of
individual true parallaxes in the sense that their posterior cred-
ible intervals are “shrunken” with respect to the measurement
uncertainties. Setting a specific prior is always controversial, but
in principle, it is possible to define only a functional form that
depends on a set of unknown parameters. The specific prior is
then inferred from the data as part of the global inference pro-
cess. This prior functional form should be flexible enough to
properly model the true distribution of parallaxes but should also
be sufficiently restrictive to enforce a plausible distribution for
the true parallaxes on the basis of the knowledge present in the
astronomical literature.

The solution described in the previous paragraph can be rep-
resented as a graph model that incorporates the PL(Z) relation,
the definition of absolute magnitudes in terms of the apparent
magnitude m and the parallax $, and the corresponding distri-
bution of the measurements given the true values. In this way,
we guarantee that the observational uncertainties are simultane-
ously propagated through the graph and that the uncertainties of
the parameters of the PLZ relationship are estimated in a way
that is consistent with the measurement uncertainties. Moreover,
the effect of including the relationship

b + c · log P + k · [Fe/H] = m + 5 log$ − 10 (2)

in the model is to constrain the parameter space in such a way
that the PLZ relationship coefficients and the individual true par-
allaxes have to be consistent.

The objective of this paper is to infer estimates of the
parameters of the PLZ relationship. We apply the hierarchical

Bayesian method, which consists of dividing the variability of
the statistical inference problem into several levels. In this way,
we partition the parameter space associated with inferring the
PLZ relation into population-level parameters and observations.
We represent the hierarchical Bayesian model with a directed
acyclic graph and perform the inference using Markov chain
Monte Carlo (MCMC) simulation techniques (Robert & Casella
2013). A minimal description of the methodology and prelimi-
nary results was already presented in Paper I which we intend
to extend and clarify here. For reasons of clarity and scope, we
focus on the inference of the PLZ relationship in the K band
for 200 fundamental and first-overtone RR Lyrae stars, the main
properties of which are provided in Table A.3 of Paper I. The
model is applicable with minimal modifications to other variabil-
ity types such as Cepheids or long-period variables and different
photometric bands. In this work we present the results of the full
model including the slopes of the relation, expanding the results
presented in Paper I where only the zero-points were inferred,
while the slopes were fixed to literature values.

A similar method has been applied by Sesar et al. (2017)
to constrain PLZ relations of fundamental-mode (ab type)
RR Lyrae stars in the mid-infrared W1 and W2 bands of
the Wide-field Infrared Survey Explore (WISE; Wright et al.
2010), using TGAS parallaxes, but modelling true distances with
an exponentially decreasing volume density (hereafter EDVD)
prior proposed by Bailer-Jones (2015).

The Bayesian hierarchical method presented in Paper I used
a log-normal prior to model the distribution of true parallaxes
independently of the other model parameters. With this prior,
the log (P) slope were severely underestimated when compared
to the literature values, although this result was not specifically
discussed therein. In the present work we extend the Bayesian
analysis performed in Paper I in three directions. First, we vali-
date the model with semi-synthetic data and analyse the causes
of the slope underestimation. Second, we extend the Bayesian
analysis by testing alternative prior distributions for parallaxes
and demonstrate that one of them mitigates to some degree the
problem of the underestimation of the PLZ log (P) slope. Third,
we study the sensitivity of the Bayesian analysis results under
different prior choices for some critical hyperparameters of our
hierarchical model (HM).

The structure of the paper is as follows. In Sect. 2 we sum-
marize the theoretical foundations of the hierarchical Bayesian
method and describe extensively the HM used for inferring the
PLZ relationship in Paper I and Muraveva et al. (2018a) (in the
latter case with minor adaptations). In Sect. 3 we study the data
set in detail and explore its properties by means of semi-synthetic
samples constructed assuming a known PLZ relation; in Sect. 4
we present the full results of the MCMC samples of the pos-
terior distribution for the Gaia DR1 data used in Paper I; in
Sect. 5 we study the sensitivity of the results to the choice of
hyper-parameters, and in Sect. 6 we summarise the findings of
the paper.

2. Hierarchical Bayesian model

A full introduction to Bayesian inference and hierarchical Bayes
is beyond the scope of this manuscript. We refer to Gelman et al.
(2004) and Gelman & Hill (2007) for very instructive introduc-
tions, and to Luri et al. (2018) for a more astronomy-oriented
introduction. In what follows, we summarise the main concepts
of the method. Bayesian inference is based on Bayes’ rule:

p (Θ | D) ∝ p (D | Θ) × p (Θ) , (3)
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where D are the observations (data), Θ are the parameters of a
model proposed to explain the data, and p represents a proba-
bility distribution. The right side of Eq. (3) represents the model
itself, specified by the joint probability distribution p (D,Θ) of
the data and the parameters. This distribution factorizes into

– the conditional distribution p (D | Θ) of the data given the
parameters (the so-called likelihood), and

– the prior distribution of the parameters p (Θ), which repre-
sents our knowledge about plausible parameter values before
observing the data.

The basic model of Eq. (3) divides the variability of the statis-
tical problem into two levels: observations and parameters. The
hierarchical Bayesian method consists of distinguishing further
levels of variability. In our case, we introduce a new depen-
dence of the prior distribution p (Θ) on a new set of param-
eters Φ (the so called hyperparameters) and assign hyperprior
distributions p (Φ) to them. We explain its nature in the fol-
lowing sections. In order to have a better understanding of the
dependency structure dictated by the model, it is customary to
represent the factorization of the joint probability distribution
p (D,Θ,Φ) using the Bayesian network formalism (Pearl 1988;
Lauritzen 1996), which consists of drawing a directed acyclic
graph (DAG) in which nodes encode model parameters, mea-
surements, or constants, and directed links represent conditional
probability dependence relationships.

The inference in a hierarchical Bayesian model proceeds by
calculating the marginal joint posterior distribution of a set of
parameters of interest given the data. In complex problems with
many parameters, the posterior distribution usually is not avail-
able in an analytically tractable closed form, but can be approx-
imately evaluated using MCMC simulation techniques.

2.1. Conditional dependencies

In this and the next section we describe our sample and the hier-
archical model that encodes the conditional probability relations
between the observations and the parameters of the linear PL(Z)
relations. We include Fig. 19 of Paper I here as Fig. 1 to facilitate
reading, but include some additional clarifications that could not
be described there due to space and scope limitations.

In the following, we change the notation to avoid clutter-
ing of subscripts. We denote measured quantities with a cir-
cumflex accent (^) and remove the subscript True from the true
values. The DAG in Fig. 1 encodes the probabilistic relationships
between the variables of our model and shows the measurements
at the bottom level: decadic logarithm of periods log P̂i, apparent
magnitudes m̂i, metallicities ̂[Fe/H]i, parallaxes $̂i, and extinc-
tions Âmi The subindex i runs from 1 to the total number of stars
N in each sample. Our model assumes that the measurements

di =
(
m̂i, log P̂i, $̂i, ̂[Fe/H]i, Âmi

)
(4)

are realisations from normal distributions centred at the true
(unknown) values and with standard deviations given by the
measurement uncertainties

σdi =
(
σmi , σlog Pi , σ$i , σ[Fe/H]i , σAmi

)
. (5)

Our test sample D = {di}
N
i=1 consists of N = 200

fundamental-mode and first-overtone RR Lyrae (RRL) stars with
near-infrared (NIR) photometry (m̂i = m̂Ksi) selected amongst
the stars of the Dambis et al. (2013) compilation for which
TGAS parallaxes (Lindegren et al. 2016) and associated uncer-
tainties were available. This is essentially the same Ks-band sam-
ple as in Paper I for which the periods of first-overtone stars

were “fundamentalised” by adding 0.127 to the decadic loga-
rithm of the period and uncertainties on log (P) were estimated
as σlog(P) = 0.01 · log (P), which is equivalent to an uncertainty
of 2% in the period. Unlike in Paper I (Sect. 6.1), where metal
abundances were transformed from the Zinn & West (1984) to
the Gratton et al. (2004) metallicity scale to be consistent with
a period term slope of the PMKs Z relationship fixed to the
value of −2.73 mag dex−1 reported by Muraveva et al. (2015),
in this paper we use the original metal abundances provided by
Dambis et al. (2013) because we aim to infer the period term
slope. Because Dambis et al. (2013) did not provide metallicity
uncertainties, in Paper I we assigned a constant uncertainty of
0.2 dex to all metallicities in the sample. In this paper we distin-
guish among techniques used to estimate metal abundances and
respectively adopt uncertainties of 0.1, 0.2 and 0.3 dex for metal-
licities estimated from high-resolution spectroscopy, measured
by the ∆S method of Preston (1959) and determined from pho-
tometry or other non-spectroscopic methods. The Dambis et al.
(2013) catalogue does not include uncertainties on absorption.
We estimate them as σAK = 0.114 · σAV , where σAV = 3.1 ·
σE(B−V) (Cardelli et al. 1989) and σE(B−V) = 0.16 · E (B − V)
(Schlegel et al. 1998). All measured quantities are represented
as blue nodes in the DAG where we do not include the nodes
corresponding to the uncertainties of Eq. (5) in order to facilitate
interpretation.

We represent the likelihood of the model with the nodes
corresponding to the true values mi, $i, log Pi, [Fe/H]i, and
Ami and the arcs going from true values to measurements. True
values and observations are all enclosed in a black rectangle
that represents replication for the N stars in the sample (plate
notation). Equation (1) can be written for every star i in the
sample as

Mi = b + c · log Pi + k · [Fe/H]i, (6)

where Mi represents the true absolute magnitude for star i. This
is a linear model in the parameters: the intercept b, the slope c
for the period term, and the slope k for the metallicity term. The
last term can be dropped if metallicities are thought to play a
negligible role in the relationship. We keep it in the following for
the sake of completeness, but the particularisation to PL relations
is straightforward. In Fig. 1 we shadow the left-hand rectangle
that includes the metallicity terms to highlight this choice.

In Fig. 1 the PL(Z) relationship of Eq. (6) is denoted by
the grey node Mi and all incoming arrows from c, k, b, Pi, and
[Fe/H]i (i.e. the three parameters and two predictive variables).
An additional arrow links w and Mi. w represents an intrinsic dis-
persion in the PL(Z) relationship that may be due to evolutionary
effects, for example. This dependence on additional predictive
variables that are not accounted for in the model is incorporated
as an additional Gaussian spread of the standard deviation w.
This spread is analysed as part of the inference results. Includ-
ing the additional Gaussian spread that represents unaccounted
predictive variables, we have that

Mi ∼ N
(
b + c · log Pi + k · [Fe/H]i ,w

)
, (7)

where ∼ should be read as “is distributed as”, N represents the
normal (Gaussian) distribution, and the comma separates values
inside the parenthesis that represent the mean and standard devi-
ation of the normal distribution, respectively.

Of course, we do not observe absolute magnitudes, and our
model has to account for the transformation between absolute
magnitudes and the observations, that are (potentially affected
by interstellar absorption) apparent magnitudes. This is shown in
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Fig. 1. Directed acyclic graph that
represents the forward model used
to infer the PLZ relation coefficients
when the prior of true metallicities,
logarithm of true periods, and (nat-
ural) logarithm of true parallaxes
is assumed to be a 3D Gaussian
mixture distribution.

the lower part of Fig. 1, where the parallaxes (right-hand block)
are handled as we explain next.

The transformation from absolute to unabsorbed apparent
magnitudes is a well-known deterministic one:

m0i = Mi − 5 log($i) + 10, (8)

where the parallax $i is measured in mas. This is not a prob-
abilistic relation, and we use dashed lines in the arrows going
into m0i to distinguish them from the arcs denoting conditional
probability links. The absorbed apparent magnitudes are com-
puted as mi = m0i + Ami , where the grey node Ami represents the
true absorption. The model also contemplates the possibility of
a TGAS global parallax offset $0. The offset can be inferred by
the model or fixed to a predefined value. We shadow the top right
rectangle of the graph that includes the offset node to denote this
choice.

2.2. Priors, hyperparameters, and hyperpriors

Prior distributions allow us to pose probabilistic statements
about plausible values of the model parameters based on knowl-
edge available prior to and independent of the observations.
Most importantly, however, they allow us by means of Bayes’
theorem to make statements about the distribution of the param-
eters we aim to infer (the posterior distribution of the model
parameters in the left side of Eq. (3)). In the astrophysical con-
text of this paper, we aim at formulating probabilistic statements
about the values of the hyperparameters: the most probable value
of the PL(Z) slopes or intercepts or their credible intervals. We
use green rectangular nodes at the top of the graph to denote
fixed prior hyperparameters.

Often the prior definitions used in the literature are
conservative choices in the sense that they aim to be as

non-informative as possible. For both slopes c and k of the
PL(Z) relationship of Eq. (6), we specify a standard Cauchy
prior (centred at 0 with scale parameter equal to 1), which
is equivalent to a uniform prior supported on the interval
[−π/2,+π/2] assigned to the angles θ1 = arctan (c) and θ2 =
arctan (k). The prior probability distribution of the intercept
is a Cauchy distribution centred at its mode µb = 0 with
scale parameter σb = 10. The intrinsic dispersion of the
PLZ relation is given by an exponential prior with inverse
scale λw = 1.

The only block of the graph that remains to be clarified
is the left-hand top block describing the distribution of peri-
ods, metallicities, and parallaxes. Our model assigns a joint 3D
prior to the true distribution of metallicities, periods, and paral-
laxes. Furthermore, we distinguish two components with differ-
ent chemical composition and a different relationship between
pulsation period and parallax (distance). The prior is defined
as a mixture of Gaussian distributions (Gaussian mixture, GM)
given by

(
[Fe/H]i , log Pi, ln$i

)
∼

2∑
k=1

φkMN
(
µk,TkΩkTk

)
, (9)

where φk represents the mixing proportion of the kth component
of the mixture, and MN is a 3D Gaussian probability density
with mean vector µk = (µk

Z , µ
k
P, µ

k
$), diagonal matrix of standard

deviations Tk = diag(σk
Z , σ

k
P, σ

k
$) and correlation matrix

Ωk =

 1 0 0
0
0 Ωk

P,$

 . (10)

The parameters of the prior defined by Eq. (9) are themselves
model parameters and subject to the Bayesian inference as well.
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Table 1. Prior (π) definitions for the hierarchical Bayesian model of the
PL(Z) relations.

π
(
Mi | b, c, k,w, log Pi, [Fe/H]i

)
= N

(
b + c · log Pi + k · [Fe/H]i,w

)
π (b) = Cauchy (0, 10)

π (c) = π (k) = Cauchy (0, 1)
π (w) = Exp (1)

π
(
[Fe/H]i , log Pi, ln$i | φ

{k},µ{k},T{k},Ω{k}
)

=
2∑

k=1
φkMN

(
µk,TkΩkTk

)
π (φ) = Dirichlet (1, 1)

π
(
µk

)
= MN

(
Q2k−1

([
F̂e/H

]
, log P̂, ln $̂

)
, diag

(
0.22, 0.12, 0.052

))
π
(
σk

Z

)
= π

(
σk

P

)
= π

(
σk
$

)
= Exp (1)

π
(
Ωk

P,$

)
= LKJ (1)

π ($0) = N (0, 0.1)

Notes. We use the π symbol to refer to the prior probability.

As such, they have their own hyperpriors. We assign a Gaus-
sian prior centred at the first (Q1) and third (Q3) quartiles of
the distribution of the measurements

([
F̂e/H

]
, log P̂, ln $̂

)
and a

covariance matrix equal to diag
(
0.22, 0.12, 0.052

)
for the mean

vector µk of each mixture component. This prior is chosen to
prevent the non-identifiability of mixture components (the pos-
terior multimodality arising from the fact that swapping the label
of the two 3D Gaussian components results in exactly the same
solution). We assign a weakly informative exponential prior with
inverse scale λTk = 1 to the standard deviations in each T k.
For each correlation submatrix Ωk

P,$, we specify a LKJ prior
(Lewandowski et al. 2009) with ν = 1 degrees of freedom. The
choice of prior given by Eq. (9) will prove to be critical for the
correct inference of the PLZ relation coefficients for reasons that
will become apparent in Sect. 3.

Figure 1 translates into the following likelihood:

p (D | Θ) =

N∏
i=1

p (di | Θ) =

N∏
i=1

p
(
̂[Fe/H]i | [Fe/H]i, σZi

)
· p

(
log P̂i | log Pi, σPi

)
· p

(
m̂i | Mi, Ami , $i, σmi

)
· p

(
$̂i | $i, σ$i , $0

)
· p

(
Âmi | Ami , σAmi

)
(11)

and priors:

π (Θ) =π
(
φ{k},µ{k},T{k},Ω{k}P,$

)
· π (b, c, k,w) · π ($0)

·

N∏
i=1

π
(
[Fe/H]i , log Pi, ln$i | φ

{k},µ{k},T{k},Ω{k}
)

· π
(
Mi | b, c, k,w, log Pi, [Fe/H]i

)
, (12)

where each prior probability is defined in Table 1.
We have encoded our HM using the Stan probabilistic mod-

elling language (Carpenter et al. 2017) and used the No-U-Turn
sampler (NUTS) of Hoffman & Gelman (2014) to compute the
MCMC samples corresponding to the parameters of interests.

3. Model validation with semi-synthetic data

In this section we aim at validating the improved HM described
in Sect. 2 on synthetic data as close as possible to true data sets

but exactly following an RR Lyrae PMKs Z relation from the liter-
ature. We simulate three sets A, B, and C of semi-synthetic true
absolute magnitudes and parallaxes using that PMKs Z relation
and the apparent magnitudes of the sample described in Sect. 2.
The only difference between the synthetic data sets A and B lies
in the assumed parallax uncertainties. In data set A we generate
parallax uncertainties from an hypothesized distribution, and in
data set B we use the TGAS uncertainties. No parallax offset is
introduced in the simulations. Data set C is identical to data set A
except for the uncertainty on metallicity measurements, which is
reduced by half. Our objective is to analyse the impact of the
hyperprior choice and the influence of the parallax and metal-
licity uncertainties on the inferred coefficients under these three
scenarios, and detect potential biases in the sample.

3.1. Validation data sets

In what follows, we describe the construction of the three data
sets A, B and C that reproduce the generative process of the
observations of Eq. (4) from the model hyper-parameters for the
three simulated scenarios. In the generation of the semi-synthetic
samples, we first used a Bayesian model to draw individual
true metallicities and logarithms of the true periods from Gaus-
sian posterior distributions inferred from their measurements and
associated uncertainties in the real data set described in Sect. 2.1
with vague Gaussian priors assigned to both sets of parameters.
Then the observed values were drawn from a Gaussian distribu-
tion centred at the true value and with standard deviation given
by the measurement uncertainties. For the particular case of data
set C, the metallicity measurements have been generated divid-
ing by 2 the uncertainties in the real sample. We generated true
absolute magnitudes from the PMKZ theoretical calibration of
Catelan et al. (2004) adopting [α/Fe] = 0.3 and converting from
[Fe/H] to log Z by means of its Eqs. (9) and (10):

MKs = −2.353 log P + 0.175 [Fe/H] − 0.869. (13)

We generated true parallaxes from

$i = 102+0.2(Mi−m0 i), (14)

where m0i is the unabsorbed apparent magnitude of the ith star
in the real sample. For data set A, we generated measured paral-
laxes from a Gaussian distribution centred at the true parallaxes
given by Eq. (14) with standard deviations drawn from an expo-
nential distribution with inverse-scale parameter equal to 10 plus
a zero-point of 0.01 mas. We note that the uncertainties on TGAS
parallaxes are higher than these by approximately one order of
magnitude, but our objective here is to evaluate the performance
of our HM under the small uncertainties typical of the Gaia DR2.
The measured parallaxes of data set B were generated using the
TGAS parallax uncertainties.

Figure 2 represents in the top panel the values of the abso-
lute magnitudes and logarithms of the true periods generated for
simulations A and B. The red line shows the PL relation for the
median value of [Fe/H] in the simulated sample. Because this
plot is a 2D projection of the 3D PMKs Z relation and the abso-
lute magnitudes were sampled from it, any deviations from the
red line can only be explained by metallicities differing from
the median and the intrinsic dispersion of the relation (which is
symmetric). A correlation between periods and metallicities is
evident, which results in correlated residuals (lower panel) with
respect to the assumed PL for the median true metallicity. We
also observe in the figure a correlation with the distance: brighter
magnitudes correspond (on average) to longer periods and lower
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Fig. 2. Observed absolute magnitudes as a function of the true decadic
logarithm of the period for simulations A and B. The red solid line rep-
resents the projection of the PMKs Z relation of Eq. (13) for a value of
the true metallicity equal to the median of the values generated accord-
ing to the text. Colours encode the simulated true parallaxes according
to the logarithmic scale on the right.

metal abundances at larger distances (lower parallaxes) and vice
versa. Figure 3 demonstrates that the correlation between peri-
ods, metallicities, and parallaxes is not an added effect in the
simulations and is present in the measurements both for the sim-
ulated and the real data set. The figure represents the measured
metallicities versus the logarithm of the period for simulations
A and B and for the real sample. The colour code reflects the
natural logarithm of the parallaxes: the same true value for sim-
ulations A and B in the top panel, the observed value for simula-
tion B in the middle panel, and the measured value of the TGAS
catalogue in the bottom panel. The black crosses denote the first
and third quartiles of the marginal distributions along each axis.
In principle, we expect the period distribution to be independent
of distance. However, Fig. 3 shows that the left half of the plot
(stars with short periods) is predominantly populated by stars
with larger parallaxes and higher metallicities, while the right
half is, again on average, predominantly populated by distant
stars (smaller parallaxes) with lower metallicities. We observe
that the correlation between the simulated true parallaxes, mea-
sured periods, and metallicities shown in the top panel of the
figure persists for the measured parallaxes depicted in the middle
panel, although with larger dispersion due to the higher parallax
uncertainties of simulation B. We also note that the correlation
is also present in the real sample of TGAS parallaxes (bottom
panel). The interpretation is as follows: we expect nearby stars in
our sample to be characterised on average by the higher metal-
licities of the disc, while the opposite is true for those farther
away in the halo. This dependence of distance on metallicity is
visible in the colour code of Fig. 3 and is crudely characterised
by the two black crosses in each panel. Each cross represents the
projection of the point Qk

(
[Fe/H] , log P, lnω

)
(with Qk denot-

ing the kth quartile for k = 1, 2) onto the period–metallicity
plane. The crosses in the top panel of the figure correspond to
distances of 1.87 and 1.07 kpc for a lower (−1.72 dex) and higher
(−1.11 dex) metallicity component, respectively.
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Fig. 3. Scatter plot of observed metallicities and log(P) for validation
sets A and B and the real sample used in the paper. The black crosses
represent the first (Q1) and third (Q3) quartile of the distribution of mea-
sured log(P) and [Fe/H] for simulations A and B (top and middle panel)
and the real sample (bottom panel). The colour encodes the natural log-
arithm of true parallaxes of simulations A and B (top panel), measured
parallaxes of simulation B (middle panel), and TGAS parallax estimates
(bottom panel).

These correlations show themselves in the period luminosity
diagram of Fig. 2 in the following way. Because higher metal-
licities correspond to shorter periods (as illustrated in Fig. 3),
we then expect the nearby stars (which we recall are on aver-
age more metal-rich) to be characterised by shorter periods (the
left half of the PL diagram). The opposite is also true: the dis-
tant (small parallax) halo stars have on average lower metallici-
ties and hence longer periods (the right half of the PL diagram).
This scenario is then prone to systematic biases in the log(P)
slope inference results because it is precisely at the right edge
of the PL diagram that there is a concentration of the most dis-
tant sources that will inevitably be characterised by larger frac-
tional parallax uncertainties. We know that in general, the prior
plays a minor role when the uncertainties are small because a
narrow likelihood dominates the posterior. The opposite is true
for stars with large fractional parallax uncertainties: the likeli-
hood is barely informative, and it is the prior that dominates the
posterior. Bailer-Jones (2015) showed very instructive illustra-
tions of this for the problem of inferring distances for parallaxes
under several prior specifications. In our case, the stars for which
the prior has a larger impact on the inference of the parallax are
predominantly placed at the rightmost range of periods.

These relatively hidden correlations have important conse-
quences for the inference as we show below. In particular, they
have an impact on the choice of prior. In general, the parallax
prior has to have support (non-vanishing values) in the entire
range of true parallaxes. This is even more important given
the correlation between periods and true parallaxes, however,
because in the case of our simulations, long periods have the
smallest parallaxes on average. If the prior has zero probabil-
ity density for the small true parallaxes, and given the rela-
tively large parallax uncertainties in our sample, the model will
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Fig. 4. Projection of a two-component 3D GM PDF fitted to the true val-
ues of

(
[Fe/H] , log P, ln$

)
in data set B onto the plane period-parallax.

The grey contours represent iso-probability lines. The coloured and grey
points represent true and measured parallaxes, respectively. The black
crosses indicate the median of the mean posterior distribution of each
GM component. The colour encodes the metallicity.

systematically assign parallaxes larger than the true ones (will
overestimate them). Because in both simulated data sets the full
range of absolute magnitudes is reduced to a brighter magnitude
range for lower parallaxes and because of the strong determinis-
tic relationship between absolute magnitudes and true parallaxes
established by Eq. (8) of the HM, the model will infer absolute
magnitudes fainter than the true (brighter) ones. Finally, if the
stars with long periods are assigned fainter absolute magnitudes,
the model will systematically underestimate the absolute value
of the period slope coefficient of the PLZ relation. Hence, if our
interpretation is correct, the distance prior has to be made depen-
dent on metallicity. The model described in Sect. 2 addresses this
problem using a 3D prior that distinguishes between two prob-
abilistic classes of metal abundance in the data and constrains
the true parallaxes of each class by means of their relationship
with periods. Figure 4 shows an example of our 3D GM prior fit-
ted to the distribution of true

(
[Fe/H] , log P, ln$

)
in simulation

B using a Bayesian HM. The figure represents the projection
of the fitted probability density function (PDF) onto the plane
period-parallax (with the parallax represented in linear scale)
and depicts the measured pairs log(P)-parallax in the simulated
data set. We note that without a proper modelling of the selection
effect that gives rise to the correlation between periods and true
parallaxes, the inference will return a severely underestimated
log(P) slope, as we demonstrate towards the end of this section,
where our model is compared with a model that uses 1D inde-
pendent prior distributions for period, metallicity, and parallax.
This comparison illustrates the shrinking power of hierarchical
models.

3.2. Validation results

Figure 5 compares the parallaxes inferred by our HM with the
true parallaxes simulated for data sets A (top panel) and B (bot-
tom panel). The colours in both panels represent the log(P)
according to the colour scale to the right. For simulation B
we observe that lower parallaxes (typical of the longer peri-
ods) are slightly overestimated. We also observe that the smallest
(and overestimated) parallaxes correlate with longer periods, as
expected. The largest parallax overestimations do not correspond
systematically to the longest periods, however, which is guaran-
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Fig. 5. Comparison between inferred and true parallaxes for validation
sets A and B. The solid lines represent the bisectors and the colour
encodes the value of the decadic logarithm of the period in days accord-
ing to the colour scale on the right.

teed by the 3D prior used in our HM. The overestimation of the
smallest parallaxes is interpreted as a deficiency of our Gaussian
3D prior that fails to adequately represent the more complex spa-
tial distribution of RR Lyrae stars in the Galaxy.

Figure 6 compares for simulations A and B the inferred abso-
lute magnitudes with the true periods and represents the PMKZ
relation inferred in each case. Table 2 summarises the coeffi-
cients of the resulting PMKZ relations providing 68% credi-
ble intervals around the median of the posterior distributions of
them. For simulation B (bottom panel of Fig. 6) we observe that
brighter magnitudes are slightly underestimated for long-period
stars. This mild bias is not present for data set A (upper panel)
because the negligible parallax uncertainties tightly constrain
the model parameters (the true parallaxes and hence, the abso-
lute magnitudes and the slopes of the relation). To better appre-
ciate this result, we suggest that the inferred absolute magni-
tudes of the two scenarios in Fig. 6 are also compared with their
simulated values in Fig. 2. The mild underestimation of brighter
magnitudes for simulation B translated into a mild underestima-
tion of the inferred log(P) slope (second row of Table 2) with
a credible interval of −2.13+0.75

−0.78 mag dex−1, which in any case
is in good agreement with the value c = −2.35 used for the
simulation taken into account the large parallax uncertainties in
this case. For simulation A, the credible interval obtained for the
log(P) slope was −2.48+0.15

−0.14 mag dex−1, which slightly overesti-
mate c = −2.35. We hypothesize that this mild overestimation
of the log(P) slope is a consequence of the correlation between
period and metallicity and the relatively large uncertainties of
measured metallicities. In order to evaluate this hypothesis, we
used the third semi-synthetic data set (labelled C), whose uncer-
tainties on simulated metallicity measurements are of the order
of magnitude that is typical for high-resolution spectroscopic
techniques. The results for simulation C, presented in the bot-
tom row of Table 2, confirm our intuition.

Table 3 compares the results obtained with the 3D GM prior
discussed above with those of alternative 1D priors based on
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Fig. 6. Comparison between inferred absolute magnitudes and true peri-
ods for validation sets A and B. The black solid and red dashed lines rep-
resent the projections of the PMKZ relation of Eq. (13) and the relation
inferred by our HM (adopting the median value of the posterior distribu-
tion of each coefficient), respectively, for a value of the true metallicity
equal to the median of the values generated according to the text. The
colour encodes the metallicity according to the scale on the right.

Table 2. Coefficients of the PMKZ relations inferred from the measure-
ments of simulations A, B, and C: slopes (c and k), zero-point (b), and
intrinsic dispersion (w).

Simulation c k b w
(mag dex−1) ( mag dex−1) (mag) (mag)

A −2.48+0.15
−0.14 0.15+0.03

−0.02 −0.93+0.07
−0.06 0.03+0.02

−0.01
−2.51 0.15 −0.94 0.03

B −2.13+0.75
−0.78 0.22+0.10

−0.10 −0.72+0.31
−0.31 0.20+0.07

−0.07
−2.03 0.22 −0.71 0.21

C −2.39+0.15
−0.14 0.17+0.02

−0.03 −0.89+0.07
−0.07 0.03+0.02

−0.071
−2.39 0.17 −0.88 0.03

Notes. The posterior distribution of coefficients is summarised by the
median plus minus the difference in absolute value between the median
and the 84th and 16th percentile (first line) and the MAP estimate (sec-
ond line) for each simulation.

the log-normal prior used in Paper I and the EDVD prior of
Bailer-Jones (2015) given by Eq. (15).

p ($) =
1

2L3$4 exp
(
−

1
$L

)
· (15)

It shows that the existing correlations amongst periods, par-
allaxes, and metallicities have a small impact in the context of
the small parallax uncertainties that characterise simulation A,
but significantly affect (worsen) the inference outcome for the
typical TGAS uncertainties. Figure 7 illustrates these facts by
comparing the parallaxes inferred by an HM with an EDVD prior
with the true parallaxes of both semi-synthetic data sets A and
B. We observe that in simulation B (bottom panel) the overesti-
mation and underestimation of the inferred parallaxes is severer
than in Fig. 5 of Sect. 3. It is important to bear in mind that
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Fig. 7. Comparison between inferred and true parallaxes for validation
sets A and B when an HM with an EDVD prior is used. The colour
encodes the value of the decadic logarithm of the period in days accord-
ing to the colour scale on the right.

although succesive Gaia data releases will tend to decrease the
measurement uncertainties in general, the community will often
work with samples of stars (not necessarily classical pulsators
like in the case of Paper I; Muraveva et al. 2018a) with Gaia
uncertainties in the range exemplified by our TGAS sample.

4. Application to the RR Lyrae Gaia DR1 data

Table 4 presents summary statistics associated with the PMKZ
relationships obtained by our HM trained with the RR Lyrae
sample described in Sect. 2 for the cases of a potential TGAS
global parallax offset inferred by the model or fixed to litera-
ture values. Figure 8 shows the MCMC posterior samples (in 2D
projections) of the relationship parameters for the model with
inferred offset. The black contours in the figure represent iso-
probability lines. We see clear correlations between the three
strong parameters (two slopes and the intercept). The poste-
rior medians of the log(P) slope, the metallicity slope and the
intercept are −2.1 mag dex−1, +0.25 mag dex−1 and −0.79 mag,
respectively (top portion of Table 4). The inferred period slope
is consistent with the values reported in the literature for empir-
ical and theoretical studies (see Table 3 of Muraveva et al.
2015). The metallicity slope is systematically higher than the
values reported from empirical studies, but is in good agree-
ment with the theoretical calibrations of Bono et al. (2003)
and Catelan et al. (2004). The posterior median of the intrin-
sic width is 0.15 mag. The credible interval of the parallax off-
set $0 = +0.014 ± 0.032 disagrees with the negative estimate
$0 = −0.036 ± 0.002 of Arenou et al. (2017), but is consistent
with the MAP estimate $0 = +0.02 inferred by the probabilistic
approach of Sesar et al. (2017) using W2 band RR Lyrae data.
However, we explain a hypothetical overtestimation (towards
positive values) of the global parallax offset inferred by our HM
model as follows. As we showed in Sect. 3.2, the model with
3D GM prior mitigates the systematic overstimation of smaller
parallaxes for the longest periods in a scenario of large paral-
lax uncertainties. As a consequence of this, the lowest parallaxes
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Table 3. Coefficients of the PMKZ relations inferred for the simulated scenarios A and B by an HM using the 3D GM prior and two 1D parallax
priors (the log-normal prior used in Paper I and the EDVD prior of Bailer-Jones 2015): slopes (c and k), zero-point (b), and intrinsic dispersion
(w).

Simulation Prior c k b w
(mag dex−1) (mag dex−1) (mag) (mag)

3D GM −2.48+0.15
−0.14 0.15+0.03

−0.02 −0.93+0.07
−0.06 0.03+0.02

−0.01
−2.51 0.15 −0.94 0.03

A EDVD −2.46+0.16
−0.15 0.16+0.03

−0.03 −0.92+0.08
−0.07 0.03+0.02

−0.01
−2.48 0.15 −0.92 0.03

Log-normal −2.46+0.16
−0.15 0.15+0.03

−0.03 −0.93+0.07
−0.07 0.04+0.02

−0.01
−2.47 0.15 −0.94 0.03

3D GM −2.13+0.75
−0.78 0.22+0.10

−0.10 −0.72+0.31
−0.31 0.20+0.07

−0.07
−2.03 0.22 −0.71 0.21

B EDVD −1.31+0.63
−0.67 0.12+0.10

−0.10 −0.62+0.28
−0.29 0.18+0.07

−0.06
−1.32 0.12 −0.62 0.17

Log-normal −0.95+0.59
−0.63 0.08+0.10

−0.10 −0.52+0.26
−0.27 0.24+0.06

−0.06
−0.87 0.10 −0.50 0.25

Notes. The posterior distribution of each coefficient is summarised as in Table 2.

Table 4. Coefficients of the PMKZ relation inferred from the real RRL sample described in Sect. 2: slopes (c and k), zero-point (b), intrinsic
dispersion (w), global parallax offset ($0), and LMC distance modulus (µLMC).

c k b w $0 µLMC
(mag dex−1) (mag dex−1) (mag) (mag) (mas) (mag)

−2.10+0.87
−0.75 0.25+0.12

−0.11 −0.79+0.36
−0.32 0.15+0.06

−0.05 +0.014+0.032
−0.032 18.73+0.11

−0.11
−2.26 0.23 −0.85 0.12 +0.013 –
−2.04+0.77

−0.72 0.25+0.11
−0.11 −0.68+0.33

−0.31 0.16+0.06
−0.06 −0.036 18.64+0.11

−0.11
−2.05 0.25 −0.71 0.16 – –

Notes. The posterior distribution of each coefficient is summarised as in Table 2.

inferred by the model are on average smaller that their measure-
ments (with the obvious exception of parallaxes with negative
measurements), which in turn leads to a positive offset estimate.
We stress that the parallax offset reported in this paper should no
to be used as a reliable estimate of the potential TGAS offset. On
the contrary, the global parallax offset $0 = −0.057 reported in
Muraveva et al. (2018a) for Gaia DR2 was inferred from a sce-
nario of sufficiently precise parallax uncertainties in which the
parallax prior played a relatively minor role and is therefore in
principle more reliable.

The bottom portion of Table 4 presents the PLZ relation-
ship parameters inferred by our HM with a global parallax offset
fixed to the value $0 = −0.036 mas estimated by Arenou et al.
(2017). We do not observe major differences in the slopes with
regard to those obtained by the HM based on the inferred off-
set of +0.014 mas (see top portion of the table). Nevertheless,
the difference between the intercepts is equal to 0.11 mag, which
translates into a Large Magellanic Cloud (LMC) distance modu-
lus 0.09 mag longer than inferred by the model with offset fixed
to$0 = −0.036 mas. The distance moduli were estimated from a
sample of 70 RRLs located close to the LMC bar, with photom-
etry in the Ks band and spectroscopically measured metallicities
(described and used in Paper I; Muraveva et al. 2018a).

Figure 9 shows a comparison between the parallaxes cata-
logued in TGAS and the posterior estimates of our hierarchi-
cal model. The horizontal error bars represent TGAS uncertain-
ties and the vertical ones are given by 68% credible intervals
calculated around the median of the marginal posterior distri-

butions. Our hierarchical model is capable of reducing (“shrink-
ing”) the uncertainties using the constraint that the absolute mag-
nitudes must follow a linear relationship with (the logarithm of
the) periods and metallicities with a slope in agreement with
previous estimates. The median of the standard deviations of
the posterior samples is 0.07 mas with a maximum value of 0.2,
which is the minimum value of the TGAS parallax uncertainties.
As shown in Fig. 9, the maximum uncertainties of the MCMC
parallax samples correspond to the same stars with minimum
TGAS uncertainties (those with maximum TGAS parallax mea-
surements). This means that the hierarchical model is not capa-
ble of significantly improving the parallax uncertainties of the
stars near the Sun. We also see that there are stars with TGAS
and HM parallaxes that disagree beyond the error bars. We plot
in red stars that are two to three standard deviations away from
the diagonal (as measured in the 2D plane of Fig. 9 by the
Mahalanobis distance

√
(x − µ)TΣ−1(x − µ), where x is the vec-

tor ($TGAS,$HM) and µ is the perpendicular projection of x onto
the diagonal).

Figure 10 shows the PL relations derived from the HM. Each
grey line corresponds to one sample in the Markov chain. All
PMKZ relations have been particularised to a value of the metal-
licity [Fe/H] = −1.46 dex, which is the median of the distri-
bution of inferred values. In the left-hand panel we show the
values of the absolute magnitude in the K band derived from the
MCMC samples as

Mi,n
K = cn · log(Pi,n) + kn · [Fe/H]i,n + bn, (16)
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Fig. 8. Marginal posterior distributions
from the MCMC samples of the PMKZ
relationship parameters for our HM
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Fig. 9. Comparison between the TGAS parallaxes and the maximum
a posteriori estimates from the HM. The error bars correspond to the
TGAS parallax uncertainties (horizontal) and credible intervals calcu-
lated as the median plus minus the difference between the median and
the 84th and 16th percentile (vertical). The red circles correspond to
stars with parallax difference beyond twice the combined uncertainties.

where the superindex i tags stars (from 1 to N) and the
superindex n tags the sample in the MCMC set of samples. In

the right-hand panel we show the same diagram, but computing
the absolute magnitude from the measured apparent magnitude
and the MCMC parallax:

Mi,n
K = m̂i

0 + 5 · log($i,n) − 10, (17)

where m̂i
0 represents the measured value of the apparent mag-

nitude corrected for the measured absorption (i.e. we only use
the parallaxes from the model, but the absorptions and appar-
ent magnitudes used in Eq. (17) are the measured values in the
sample described in Sect. 2). The black circles correspond to
the discrepant sources marked by red circles in Fig. 9. The out-
lier at log(P) ≈ −0.26 corresponds to V363 Cas. This star was
classified as a double-mode pulsator by Hajdu et al. (2009). A
detailed analysis of its nature is beyond the scope of this paper,
but we note that it would be consistent with its discrepant posi-
tion in the diagrams. The two panels of Fig. 10 can be compared
to the period-absolute magnitude diagram of Fig. 11, in which
the absolute magnitudes were predicted from a PLZ relation
whose coefficients were estimated through fitting by weighted
non-linear least-squares the following equation:

$̂100.2m̂0−2 = 100.2
(
c log P̂+k

[
F̂e/H

]
+b

)
, (18)

where the dependent variable α = $̂100.2m̂0−2 in the left side
of Eq. (18) is the astrometry-based luminosity (ABL) defined
by Arenou & Luri (1999), where $̂ denotes the TGAS paral-
lax. The red line in Fig. 11 represents the projection of the PLZ
relation derived by this method for a value of the metallicity
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Fig. 10. Left panel: samples of the PLZ relations derived from the MCMC samples for [Fe/H] = −1.46 (the median of the distribution of inferred
metallicities; grey lines) and period-MK values inferred by the HM and computed according to Eq. (16). Right panel: as in the left panel, but with
MK computed according to Eq. (17). The colour encodes the inferred metallicity according to the scale on the right.
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Fig. 11. PLZ relations defined by the MCMC samples for the value
of [Fe/H] = −1.46 (dark grey lines) and the measured periods, and
absolute magnitudes predicted by using the ABL method described in
the text. The red line represents the projection of the PLZ relation used
for predictions for a value of the metallicity equal to its median in the
sample.

equal to its median in the sample. The log(P) slope, metallicity
slope, and intercept estimates were c = −1.34 ± 0.95 mag dex−1,
k = 0.20 ± 0.13 mag dex−1, and b = −0.62 ± 0.40 mag,
respectively.

One of the advantages of addressing the problem of calibrat-
ing a PL(Z) relationship by means of a Bayesian HM is that
the posterior distribution of any parameter of interest can be
inferred. In particular, we aimed to derive individual heliocen-
tric distances to the RRL stars in our sample and locate their
positions in the Galaxy. For this, the measured coordinates (α, δ)
of our RRL stars were first transformed to Galactic coordinates
(l, b). We then derived for each RR Lyrae samples of the pos-
terior distribution of its rectangular coordinates (xi, yi, zi) from
samples of its posterior parallax ($i) in the Cartesian Galacto-
centric coordinate system of Jurić et al. (2008) by

xn
i = R� − dn

i cos (li) cos (bi)
yn

i = −dn
i sin (li) cos (bi)

zn
i = dn

i sin (bi) , (19)
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Fig. 12. Spatial distribution and metallicity of the RR Lyrae sample rep-
resented in a Galactocentric reference frame. rGC and z denote the radial
distance to the GC and the vertical distance with regard to the Galactic
midplane x−y, respectively. The Cartesian Galactocentric coordinates
and the radial distances to the GC have been summarised by the median
plus minus the difference in absolute value between the median and the
84th and 16th percentile of the posterior samples of Eqs. (19) and 20.

where dn
i = 1/$n

i denotes the posterior distance calculated as
the reciprocal of the posterior parallax and R� = 8.3 kpc is
the adopted distance to the Galactic centre (GC; Gillessen et al.
2009). The samples of the posterior distribution of the radial dis-
tance of each star to the GC were calculated as

rGC
n
i =

√(
xn

i

)2
+

(
yn

i

)2
. (20)

Figure 12 represents the spatial distribution and metal abun-
dance of our RR Lyrae sample in the plane z−rGC associated
with the Galactocentric reference frame. Each Sun-centred cir-
cumference in the figure corresponds to Galactocentric coor-
dinates calculated from the Galactic longitudes l = 0◦ and
l = 180◦ (at any Galactic latitude) and the distances corre-
sponding to the median of the mean log-parallax posterior dis-
tribution associated with each Gaussian mixture component of
our HM.
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Table 5. Summary statistics corresponding to the sensitivity analysis performed to the HM with joint 3D GM prior presented in this paper: slopes
(c and k), zero-point (b), intrinsic dispersion (w), and global parallax offset ($0).

Prior c k b w $0
(mag dex−1) (mag dex−1) (mag) (mag) (mas)

π (c) = π (k) = Cauchy (0, σ = 2.5) −2.23+0.78
−0.77 +0.24+0.12

−0.11 −0.83+0.33
−0.34 0.16+0.06

−0.05 +0.015+0.035
−0.035

−2.22 +0.24 −0.83 0.15 +0.015
π (w) = Exp (λ = 0.1) −2.05+0.81

−0.81 +0.26+0.11
−0.11 −0.75+0.35

−0.35 0.16+0.05
−0.06 +0.012+0.035

−0.033
−2.06 +0.26 −0.74 0.15 +0.008

π (w) = Exp (λ = 1) −2.10+0.87
−0.75 +0.25+0.12

−0.11 −0.79+0.36
−0.32 0.15+0.06

−0.05 +0.014+0.032
−0.032

−2.26 +0.23 −0.85 0.12 +0.013
π (w) = Exp (λ = 10) −2.10+0.76

−0.78 +0.25+0.11
−0.11 −0.79+0.32

−0.33 0.12+0.05
−0.04 +0.015+0.032

−0.032
−2.13 +0.23 −0.69 0.12 +0.016

π
(
µk

)
with σk

µ$
= 0.1 −1.92+0.81

−0.69 +0.21+0.11
−0.10 −0.63+0.35

−0.30 0.16+0.06
−0.05 −0.006+0.039

−0.040
−2.08 +0.20 −0.78 0.15 −0.008

π
(
µk

)
with σk

µ$
= 0.5 −1.60+0.81

−0.69 +0.17+0.11
−0.11 −0.64+0.32

−0.33 0.17+0.06
−0.05 −0.023+0.043

−0.046
−1.58 +0.16 −0.64 0.17 −0.021

Notes. The posterior distribution of each coefficient is summarised as in Table 2.

5. Sensitivity analysis
In this section we analyse the sensitivity of the inference results
obtained by our HM with a joint 3D GM prior for metallicity,
period, and parallax to variations of some critical parameters
assigned to the different prior distributions. In the following, we
consider the hyperparameters of Table 1 (for which the results
presented in Sect. 4 were obtained) as reference values and com-
pare these results with those obtained by varying the values of
the hyperparameters. Table 5 compares the posterior medians
and credible intervals of the PLZ relationship parameters for the
different values of the prior hyperparameters. Its third row lists
the reference results introduced in Sect. 4.

In Sect. 2 we chose the prior distributions of the PLZ rela-
tionship coefficients for obvious reasons to be as non-informative
as possible. For the sample of RRL stars we expect significant
variations of the posterior distributions for other choices of their
prior hyperparameters because the prior plays a major role in
this range of uncertainties. In particular the assignment of the
slightly more informative popular Cauchy prior with scale param-
eterσ = 2.5 of Gelman et al. (2008) to the slopes c and k gave rise
to a higher absolute value of the log(P) slope posterior median
and a slightly narrower credible interval (top portion of Table 5).
The closeness of the posterior median and MAP estimates
indicates that the MCMC algorithm successfully explored the
complex parameter space of the problem in this case.

We have also tried different values for the inverse scale
hyperparameter λw of the intrinsic width prior distribution from
0.1 to 10 kpc. The results (middle part of the table) indicate a
slight decrease of the intrinsic dispersion as λw increases.

The most critical HM hyperparameters are those that cor-
respond to the GM prior of Eq. (9), which models the true
distribution of metallicities, periods, and parallaxes. We have
assigned informative hyperparameters to the standard deviations(
σk
µZ
, σk

µP
, σk

µ$

)
of the 3D Gaussian prior chosen for the mean

vector µk of each GM component. In particular, we chose for the
logarithm of parallax σk

µ$
= 0.05. We also tested the values 0.1

and 0.5 with the results listed in the bottom part of Table 5, where
we observe that the log(P) slope is severely underestimated for
σk
µ$

= 0.5. For this latter case, the inferred posterior medians
of µ$ were equal to −0.50 and −0.04 (equivalent to 0.60 and
0.95 mas or 1.65 and 1 kpc). These are the only cases in which

the inferred parallax offset turns out to be negative and reflect
the fact that the 3D GM prior does not adequately constrict the
range of smaller parallaxes.

6. Summary and conclusions

We have applied the hierarchical Bayesian method to infer esti-
mates for the parameters of the PLZ relationship in the K band
for fundamental and first-overtone RR Lyrae stars. We extended
the analysis performed in Paper I by testing new prior distribu-
tions and analysing correlations in the data, their influence on
the inference, and the consequences of the prior choice.

In Sect. 3 we have demonstrated through the use of semi-
synthetic data that the RR Lyrae sample used in Paper I presents
strong correlations that result in different spatial distributions for
the different metallicites and periods. As a result, the larger par-
allax uncertainties are not spread uniformly in period, but are
concentrated in the region of long periods, thus making the infer-
ence results strongly dependent on the prior. This is the main
result of this work. We proved that in the context of signifi-
cant parallax uncertainties (this amounts to a median fractional
uncertainty σ$/$ of 0.43 in the TGAS samples), simple inde-
pendent priors will result in systematically biased estimates of
the PLZ slopes and intercept. For small parallax uncertainties
(typically one order of magnitude smaller than the TGAS uncer-
tainties) the effect of such correlations on the parameters of the
PLZ relation inferred by our HM for a wide variety of priors
is small. In this simulated scenario, our HM is able to success-
fully recover the PLZ relation of Catelan et al. (2004) given by
Eq. (13) independently of the prior choice. Conversely, for the
TGAS parallax uncertainties used in Paper I, we propose a mix-
ture of two Gaussian 3D components with correlations between
periods and parallaxes. We proved that this prior is much less
affected by the correlations in the data set and that it recovers
the correct parameters for semi-synthetic data with metallicity
uncertainties that are half of those available in the literature. The
inadequacy of 1D priors for the inference of PL(Z) relations and
the necessity of modelling the correlations in the data set is the
second main result of our study.

In Sect. 4 we applied our HM to the sample of 200 fun-
damental and first-overtone RR Lyrae stars and Gaia DR1
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parallaxes used in Paper I. The value of the PMKZ coeffi-
cients thus derived (c =−2.10+0.87

−0.75, k = 0.25+0.12
−0.11, b =−0.79+0.36

−0.32,
and w = 0.15+0.06

−0.05) can be compared with the estimate derived
from the much more precise measurements of Gaia DR2
(c =−2.58+0.20

−0.20, k = 0.17+0.03
−0.03, b =−0.84+0.09

−0.09, and w = 0.16+0.01
−0.01;

Muraveva et al. 2018a). We see that the 68% credible intervals
have large overlap regions that make the two estimates fully
consistent. We note that the results presented in Muraveva et al.
(2018a) already incorporate the findings of the study presented
here, with the only exception that the 3D prior for parallaxes,
periods, and metallicities is not a mixture of Gaussians, but a
single Gaussian distribution: in the typical parallax uncertainty
regime of Gaia DR2, the data are sufficiently precise to distin-
guish the two metallicity populations without enforcing this sep-
aration in the prior.
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