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Abstract

Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential
cyclotron resonant scattering feature (CRSF) at E∼13 keV in the pulsed spectrum of the recently discovered
ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic
field of the central neutron star is B∼1012 G (assuming scattering by electrons), similar to that estimated from the
observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this
result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the
recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.
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1. Introduction

Ultraluminous X-ray sources (ULXs) are off-nuclear sources
that appear to radiate in excess of the Eddington limit for the
standard ∼10 M stellar remnant black holes seen in Galactic
X-ray binaries (i.e.,LX>1039 erg s−1; see Kaaret et al. 2017
for a recent review). The discovery that at least some ULXs are
powered by accreting pulsars brought about a paradigm shift in
our understanding of this exotic population. These neutron stars
are the most extreme persistent accretors known, with apparent
luminosities up to ∼500 times the Eddington limit for a
standard neutron star mass of 1.4 M (∼2×1038 erg s−1).
Until recently, only three such sources were known: M82 X-2
(Bachetti et al. 2014), NGC 7793 P13 (Fürst et al. 2016; Israel
et al. 2017b), and NGC 5907 ULX1 (Israel et al. 2017a). In
addition, although pulsations have not been seen from this
source, Brightman et al. (2018) report the likely detection of a
cyclotron resonant scattering feature (CRSF) in the spectrum of
a ULX in M51, which would require this to be another neutron
star accretor. However, the similarity of these sources to the
broader ULX population has led to speculation that neutron
star accretors may dominate the demographics of ULXs
(Koliopanos et al. 2017; Pintore et al. 2017; Walton et al.
2018a, 2018b). The recent discovery of a fourth ULX pulsar in
NGC 300 by Carpano et al. (2018) provides further evidence
that neutron stars may be common among ULXs.

NGC 300 ULX1 was originally identified as a supernova
candidate in 2010 after a strong optical outburst, and given the
identifier SN 2010 da (Monard 2010). However, the discovery
of a moderately bright (LX∼1038 erg s−1), recurring X-ray
counterpart and its subsequent rebrightening in the infrared
∼2000 days after the optical outburst ultimately helped to
confirm NGC 300 ULX1 to be a high-mass X-ray binary

(Binder et al. 2016; Lau et al. 2016; Villar et al. 2016).
Observations in 2016 December revealed a further X-ray
outburst from this source, in which it reached observed ULX
luminosities (LX∼3×1039 erg s−1; Carpano et al. 2018), and
the detection of a ∼32-s pulse period from this epoch
confirmed the accretor as a neutron star (and the fourth ULX
pulsar). Subsequent X-ray monitoring revealed the neutron star
to be undergoing an extreme rate of spin-up, with P 10 7> -˙ s/s,
resulting in a pulse period of ∼20 s only ∼15 months after the
2016 observations in which the pulsations were initially
discovered (Bachetti et al. 2018; Kennea 2018). Similar to the
other ULX pulsars, the pulse profile appears to be broad and
relatively sinusoidal (Carpano et al. 2018), but one of the
remarkable aspects of this particular source is that its pulsed
fraction is extremely high, reaching >75% at energies >2 keV.
Finally, there is also now evidence that this source is launching
an extreme and variable X-ray wind (Kosec et al. 2018b),
consistent with the basic expectation for super-Eddington
accretion (Shakura & Sunyaev 1973; Poutanen et al. 2007)
and similar to other ULXs (Pinto et al. 2016; Walton et al.
2016a; Kosec et al. 2018a).
Here we present a broadband X-ray spectral analysis of NGC

300 ULX1, in which we find potential evidence for a CRSF in
the 2016 XMM-Newton+NuSTAR data.

2. Observations and Data Reduction

NuSTAR (Harrison et al. 2013) and XMM-Newton (Jansen
et al. 2001) performed a coordinated observation of the galaxy
NGC 300 starting on 2016 December 17 (XMM-Newton
OBSIDs 0791010101 and 0791010101, taken over back-to-
back orbits, and NuSTAR OBSID 30202035002). Although the
primary target of the observation was the Wolf–Rayet X-ray
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binary NGC 300 X-1, the observation serendipitously caught
an outburst of NGC 300 ULX1. The two sources are separated
by ∼70″, and during these observations ULX1 is more than an
order of magnitude brighter than X-1. Our reduction of the
NuSTARdata follows the procedure outlined in Kosec et al.
(2018b), and we extract both the standard “science” and the
“spacecraft science” data (Walton et al. 2016b). For XMM-
Newton we just focus on the data from the EPIC-pn and EPIC-
MOS detectors (Strüder et al. 2001; Turner et al. 2001). Our
reduction again largely follows Kosec et al. (2018b), although
we use a slightly smaller region of 30″ radius to extract source
products to reduce the background. The total good exposures
are 140 and 190 ks for the EPIC-pnand EPIC-MOS detectors,
and 180 ks for the NuSTAR FPMA/B modules, respectively. In
all cases, the cleaned event files were barycentered using the
DE-200 ephemeris.

3. The Pulsed Spectrum of NGC 300 ULX1

Our analysis focuses on the broadband X-ray spectrum of the
pulsed emission from the accretion column in NGC 300 ULX1.
Model fits are performed with XSPEC v12.6.0f (Arnaud
et al. 1996), and unless otherwise stated uncertainties on the
spectral parameters are quoted at the 90% confidence level for
one interesting parameter. All of the models presented include a
Galactic absorption component with a fixed column of
NH,Gal=4.2×1020 cm−2(Kalberla et al. 2005), and we also
allow for absorption intrinsic to the source at the redshift of
NGC 300 (NH;int; z=0.00048). Both absorption components
are modeled with the TBNEW absorption code, and we use
the cross-sections of Verner et al. (1996) and the abundance set
presented in Wilms et al. (2000). We also allow for cross-
calibration uncertainties between the different detectors by
including multiplicative constants that are allowed to float
between the data sets, fixing Focal Plane Module A (FPMA) at
unity. These are always within ∼12% of unity, as expected
(Madsen et al. 2015).

We isolate the spectrum of the pulsed component following
the approach taken in our recent analyses of M82 X-2, NGC
7793 P13,and NGC 5907 ULX1(Brightman et al. 2016;
Walton et al. 2018a, 2018b). In brief, we phase-tag the cleaned
event files, and extract spectra from the brightest and the
faintest quarters of the pulse cycle (the pulse profile of NGC
300 ULX1is broad and nearly sinusoidal, fairly similar to the
other known ULX pulsars; see Figure 1). We then subtract the
latter from the former (i.e.,“pulse-on”–“pulse-off”). The
timing solution used to phase-tag the events combines a pulse
frequency of ν=0.0315275(3) Hz (at MJD 57738.65732) and
a strong frequency derivative of 5.535 2 10 10n = ´ -˙ ( ) Hzs−1

(the parentheses indicate the 1σ error on the last digit). This
was derived using a combination of the HENDRICS(version
0.4rc1; Bachetti 2015) and PINT10 software packages, and is
consistent with Carpano et al. (2018). The spectra extracted are
rebinned to have a minimum of 25 counts per energy bin to
allow the use of 2c statistics, and we fit the data over the
∼0.3–40 keV energy range.
The pulsed spectrum is shown in Figure 1 (left panel). We

initially fit these data with a CUTOFFPL model, which
provides an excellent description of the pulsed emission in the
other ULX pulsars. However, we find that this simple model
cannot successfully fit the data for NGC 300 ULX1. Although
the fit is not terrible in a statistical sense, with χ2=1669 for
1597 degrees of freedom (DoF), the model leaves a clear
excess of emission at the highest energies; the data/model
ratios for a number of the models considered here are also
shown in Figure 1 (right panel). This is reminiscent of the hard
excesses ubiquitously seen in the average spectra of the
broadband ULX sample (Walton et al. 2018a), including the
ULX pulsars NGC 7793 P13and NGC 5907 ULX1. However,
a critical difference is that in the ULX pulsars (and potentially
the rest of the ULX population as well) these excesses in the

Figure 1. Left:the pulsed spectrum of NGC 300 ULX1 observed in 2016 by XMM-Newton (EPIC-pn in black, EPIC-MOS in red) and NuSTAR (blue; while we fit
both of the Focal Plane Modules (FPMA and FPMB) separately in our analysis, for plotting purposes we combine the two modules), unfolded through a model that is
constant with energy. Inset:the pulse profile in the 3–40 keV NuSTAR band; the shaded regions indicate the periods from which data were extracted to produce the
pulsed spectrum in the main panel. Right:data/model ratios for some of the models considered (see Section 3). The data have been rebinned for visual clarity.

10 https://github.com/nanograv/pint
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average spectra are related to the presence of the pulsed
emission from the accretion column (Walton et al. 2018a,
2018b). Here, we have already isolated this pulsed emission.

Nevertheless, it is possible that the pulsed continuum in this
particular case is more complex than a simple CUTOFFPL
model can describe. We first attempt to fit these data with other
phenomenological models typically used for the high-energy
emission in neutron star X-ray binaries, which allow for more
complex spectral shapes: FDCUT (a cutoff power-law model
which includes both the folding energy, Efold, and the energy at
which this folding begins to act, Ecut, as free parameters;
Tanaka 1986) and NPEX (a combination of two CUTOFFPL
models with Efold linked between the two; traditionally the
slope of one component is free to vary, while the other is fixed
to Γ=−2; Mihara et al. 1998). However, we find that both of
these models result in hard excesses similar to the CUTOFFPL
model (and the fits are statistically similar, with χ2/DoF=
1672/1596 and 1663/1596 for FDCUTand NPEX, respec-
tively). The curvature in the ∼5–10 keV band is too strong for
any smoothly varying single-component model to account for
the highest energies probed by NuSTAR, and a second model
component is clearly required to fit the data.

Similar to our early work on the average ULX spectra, we
first attempt to account for this high-energy excess by allowing
for a further high-energy power-law tail using an additional
SIMPL component (Steiner et al. 2009; note that this model
has a lower limit on the photon index of ΓSIMPL�1). In these
subsequent fits, we find that for the NPEX model the
normalization of the Γ=−2 runs to zero, making the model
indistinguishable from the simpler CUTOFFPL case, so from
this point we only report the results from the latter. The quality
of fit depends on the choice of continuum model (the results are
presented in Table 1), but in both of the cases considered the
addition of the SIMPL component provides a significant
improvement (Δχ2�15 for two additional free parameters,
giving a chance improvement probability of 0.004 according to
the Akaike Information Criterion), and the high-energy data are
much better described (see Figure 1). However, when treating
the hard excess as a power-law tail, the sharper curvature that
FDCUT can provide in the ∼5–10 keV band is preferred.

However, given that there is currently no evidence for
similar hard excesses in the pulsed emission from the other
ULX pulsars, we also explore another possibility in which the
residuals seen in Figure 1 are not caused by a real hard excess,
but are actually an indication of a broad cyclotron line causing
a deficit in the ∼5–20 keV band (see Figure 1). We therefore

replace SIMPL with GABS, which provides a multiplicative
line with a Gaussian optical depth profile (energy E, width σ,
depth d) and is often used to describe CRSF features
(e.g., Staubert et al. 2007; Fürst et al. 2014a, 2014b; Jaisawal
& Naik 2016). For both of the continuum models presented,
this provides a similarly excellent description of the data, and a
significant improvement over the baseline continuum fits
(Δχ2�60 for three additional parameters; Table 2). We
show the line profile inferred with the CUTOFFPL continuum
in Figure 2. The line parameters are consistent for the two
continuum models (see Figure 3), and there is particularly good
agreement over a line energy of ECRSF=12.8 keV. In the case
of the CUTOFFPL continuum, the CRSF provides a superior
fit to the broadband data than the model including SIMPL,
while for the FDCUT continuum the CRSF and SIMPLfits
are statistically very similar. We also show the contours of the
baseline continuum parameters for the CUTOFFPL model for
comparison with the other ULX pulsars in Figure 3; aside from

Table 1
Best-fit Parameters Obtained for the Pulsed Spectrum with the Models

Including a High-energy Power-law Tail

Parameter Model Combination

SIMPL⊗CUTOFFPL SIMPL⊗FDCUT

NH;int (10
20 cm−2) 2.3 1.1

1.0
-
+ 7.6 1.3

1.1
-
+

Γ 0.72 0.05
0.06

-
+ 1.20 0.06

0.04
-
+

Ecut (keV) L 5.9 0.4
1.1

-
+

Efold (keV) 4.9 0.4
0.5

-
+ 0.8±0.5

Norm (10−3) 1.7 0.6
0.3

-
+ 0.8 0.2

0.7
-
+

ΓSIMPL <2.8 2.7 0.3
0.1

-
+

fsc (%) 43 39
9

-
+ >52

2c /DoF 1654/1595 1588/1594

Table 2
Best-fit Parameters Obtained for the Pulsed Spectrum with the Models

Including a Gaussian CRSF

Parameter Model Combination

GABS×CUTOFFPL GABS×FDCUT

NH;int (10
20 cm−2) 4.0±1.0 6.3 1.3

1.1
-
+

Γ 0.88±0.04 1.11 0.08
0.05

-
+

Ecut (keV) L 11.2 7.1
5.5

-
+

Efold (keV) 7.4 0.6
0.7

-
+ 4.9 1.8

1.2
-
+

Norm (10−3) 0.96±0.04 1.0 1.2
0.5

-
+

ECRSF (keV) 12.8 0.9
1.0

-
+ 12.8 0.9

1.1
-
+

σCRSF (keV) 3.1 0.7
0.8

-
+ 3.9 0.9

1.1
-
+

dCRSF 3.5 1.2
1.7

-
+ 7.6 3.5

8.8
-
+

2c /DoF 1607/1594 1593/1593

Figure 2. Top: the best-fit model combining GABS×CUTOFFPL for the
pulsed spectrum of NGC 300 ULX1. The solid line shows the full model, and
the dashed line shows the intrinsic continuum after removal of the CRSF.
Bottom: data/model ratio after the removal of the CRSF, showing the best-fit
line profile. This agrees well with that inferred in Figure 1 (the same data are
shown).
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the additional complexity in the 5–20 keV band, the pulsed
spectrum of NGC 300 ULX1 appears broadly similar to that
seen from M82 X-2, NGC 7793 P13,and NGC 5907 ULX1.

4. Discussion and Conclusions

The pulsed spectrum from the 2016 XMM-Newton+NuSTAR
observation of the ULX pulsar NGC 300 ULX1—the latest
addition to the sample of ULX pulsars (Carpano et al. 2018)—
cannot be fit with simple, single-component continuum models.
The curvature in the ∼5–15 keV band is quite strong, and there
is more emission above ∼20 keV than can be accounted for by
any smoothly varying model that adequately fits this curvature.
In addition to a curved baseline continuum, the data can be well
explained with either an additional high-energy power-law tail,
or a cyclotron scattering feature at ECRSF=12.8 keV
imprinted on top of an otherwise simple continuum. The other
known ULX pulsars do not currently show any evidence for a
hard excess in their pulsed spectra that could also be related to
the presence of a high-energy power-law tail (Brightman
et al. 2016; Walton et al. 2018a, 2018b). In addition, when
invoking an additional power-law tail, Efold is abnormally low
when compared with Galactic X-ray pulsars for the FDCUT
model preferred in this scenario (e.g., Fürst et al. 2014b;
Vybornov et al. 2017). Therefore, although we cannot rule out
the possibility that the intrinsic pulsed continuum is more
complex in this case, we prefer the CRSF interpretation, and
will focus our discussion on this solution.

The potential detection of a CRSF is significant, as these
features offer the most robust measure of the magnetic field (B)
close to the surface of the neutron star, as the energy of the
fundamental electron CRSF (in keV) is given by ECRSF=
11.57×B12(1+zgrav), assuming electron scattering. Here, B12

is the magnetic field strength in units of 1012 G, and zgrav is the
gravitational redshift of the line-forming region. Assuming that
the potential CRSF is indeed the fundamental, this solution
would therefore imply B∼1012 G (as zgrav�0.25, as the line

must be formed at or beyond the neutron star surface).
Critically, this is remarkably similar to the B-field estimated
from the spin-up of NGC 300 ULX1 (B∼3×1012 G;
Carpano et al. 2018), particularly given the uncertainties in
both of these calculations (the exact position of the line-
forming region is not formally well known (Poutanen
et al. 2013) and because B P P 7 2µ ( ˙ ) any errors on P and
Ṗ are magnified when estimating B with this method). This is
also quite similar to the magnetic fields inferred for typical
Galactic X-ray pulsars (see Caballero & Wilms 2012 for a
review). Furthermore, the width of the line inferred in NGC
300 ULX1 relative to its energy is similar to the electron CRSF
(eCRSF) features seen in other luminous X-ray pulsars (where
such features have been detected). Both V0332+53 and
SMC X-2 show σCRSF/ECRSF∼0.2 (Tsygankov et al. 2006;
Jaisawal & Naik 2016), and for NGC 300 ULX1 we find
0.2σCRSF/ECRSF0.4 (combining the constraints for the
continuum models considered; see Figure 3). As an aside, we
note that because the line is broad, it should not significantly
impact the detection of the wind reported by Kosec et al.
(2018b).
The only other probable CRSF reported from a ULX to date

comes from M51 ULX-8, where Brightman et al. (2018) report
a narrow (σ<0.2 keV) absorption feature at 4.5 keV.
Although a firm identification is not possible, the preferred
interpretation for M51 ULX-8 is a proton CRSF (pCRSF),
rather than an eCRSF. If correct, this would imply an extreme
(magnetar-like) magnetic field of B∼7×1014 G. This
identification was based on the ratio of the width and energy
of the line, σCRSF/ECRSF<0.045, which is unusually low in
comparison to the eCRSF features seen in other luminous
pulsars (see above), but is more in line with the pCRSF features
claimed in some magnetar spectra (Ibrahim et al. 2002; Tiengo
et al. 2013). Thus, the similarity of σCRSF/ECRSF between NGC
300 ULX1 and the other high-luminosity pulsars further
strengthens the pCRSF interpretation for M51 ULX-8

Figure 3. Left:confidence contours for the line energy and width for the CUTOFFPL (top) and FDCUT (bottom) continuum models. The dotted lines show
σCRSF/ECRSF=0.1, 0.2, 0.3, 0.4 and 0.5 (from left to right). Right:a comparison of the constraints on Γ and Efold for the pulsed spectrum of NGC 300 ULX1 with the
GABS∗CUTOFFPL (solid contours) model with the constraints for the other known ULX pulsars (transparent contours). In each case, the 90%, 95%, and 99%
confidence contours for two parameters of interest are shown in blue, magenta, and red, respectively.
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(although the inclination effects discussed by Meszaros &
Nagel 1985 mean that it is still difficult to completely exclude
an eCRSF).

Magnetar-level B-fields are one of the possibilities invoked
to explain the extreme luminosities seen from the ULX pulsars
known prior to NGC 300 ULX1 (e.g., Mushtukov et al. 2015,
and references therein). Fields this strong suppress the electron
scattering cross-section (Herold 1979), which locally reduces
the radiation pressure and raises the effective Eddington limit.
In NGC 300 ULX1, which has a peak luminosity of LX,peak∼
3×1039 erg s−1, the inferred B-field (B∼1012 G) is too weak
for significant suppression of the cross-section to occur.
However, M51 ULX-8 has both a much stronger field (B∼
7×1014 G) and a higher peak luminosity of LX,peak∼
1040 erg s−1. This is similar to the other known ULX pulsars,
which also have LX,peak�1040 erg s−1, ∼100× (or more)
the classical Eddington limit for a standard neutron star
(i.e.,assuming the Thomson cross-section). It is important to
note that the cross-section can only be suppressed for electrons
in the regions of strong magnetic field, i.e., the accretion
column. Phase-resolved analysis of the ULX pulsars NGC
7793 P13and NGC 5907 ULX1implies there are additional,
non-pulsed components that likely arise from the accretion flow
beyond the magnetospheric radius (RM) and can make a
significant contribution to the total X-ray flux (up to ∼50%;
Walton et al. 2018a, 2018b). These cannot be subject to the
same magnetic effects, which means that there is a limit to how
much the B-field can help to increase the total luminosity in
these cases, and that super-Eddington accretion is still required
in addition to any magnetic effects (see also King et al. 2017).
Nevertheless, taken at face value, the results for M51 ULX-8
and NGC 300 ULX1 are consistent with the idea that in the
more luminous ULXs very strong B-fields help to boost the
observed luminosity to some degree, but this does not occur in
the less luminous systems.

Assuming that M82 X-2, NGC 7793 P13,and NGC 5907
ULX1do host magnetar-level fields similar to M51 ULX-8,
given their spin periods of ∼1 s it has been suggested that these
fields may have to be quadrupolar in nature in order to prevent
these sources from being persistently in the propeller regime
(which is clearly not the case; Israel et al. 2017a). If the
difference in B-field strength between NGC 300 ULX1 and the
other ULX pulsars is driven by the absence of a strong
quadrupole B-field component in the former, this may also help
to explain the much higher pulse fractions seen in NGC 300
ULX1, even at the highest energies probed by NuSTAR(where
dilution from the accretion flow beyond RM is negligible;
>70% in NGC 300 ULX1 versus ∼30% in the other ULX
pulsars), as quadrupolar field geometries can result in
significantly diluted pulse fractions (Long et al. 2008). Sig-
nificantly stronger fields in M82 X-2, NGC 7793 P13,and
NGC 5907 ULX1would also naturally explain the lack of
evidence for similar CRSFs in their pulsed spectra, as they
would be outside of the currently observable band.

Observationally confirming that the complexity in the pulsed
spectrum of NGC 300 ULX1 arises from a CRSF is clearly of
significant importance. Distinguishing between the high-energy
power-law tail and CRSF solutions may require extending the
coverage of the high-energy continuum to energies above
40 keV, where the two models naturally diverge, or may be
possible by identifying the expected luminosity-dependent
variations in ECRSF (e.g., Fürst et al. 2014b and references

therein). Unfortunately, based on the current peak flux
exhibited by NGC 300 ULX1, the former will be extremely
challenging for current facilities (i.e.,NuSTAR), and may
require the next generation of hard X-ray observatory such as
the High Energy X-ray Probe,11 a potential successor to
NuSTAR.
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