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(Received 15 July 2018; accepted 4 September 2018; published online 28 September 2018)

We present a linear mode analysis of the relativistic magnetohydrodynamics equations in the

presence of finite electrical conductivity. Starting from the fully relativistic covariant formulation, we

derive the dispersion relation in the limit of small linear perturbations. It is found that the system

supports ten wave modes which can be easily identified in the limits of small or large conductivities.

In the resistive limit, matter and electromagnetic fields decouple and solution modes approach pairs

of light and acoustic waves as well as a number of purely damped (non-propagating) modes. In the

opposite (ideal) limit, the frozen-in condition applies and the modes of propagation coincide with a

pair of fast magnetosonic, a pair of slow and Alfv�en modes, as expected. In addition, the contact

mode is always present and it is unaffected by the conductivity. For finite values of the conductivity,

the dispersion relation gives rise to either pairs of opposite complex conjugate roots or purely imagi-

nary (damped) modes. In all cases, the system is dissipative and also dispersive as the phase velocity

depends nonlinearly on the wavenumber. Occasionally, the group velocity may exceed the speed of

light although this does not lead to superluminal signal propagation. Published by AIP Publishing.
https://doi.org/10.1063/1.5048496

I. INTRODUCTION

The dynamics of relativistic plasmas are of great interest

both in the laboratory, as in the case of laser produced plasmas,

and for high energy astrophysics. The large scale properties of

such plasmas can be described by using the magnetohydrody-

namics (MHD) approximation, whose relativistic extension

has been developed by Lichnerowicz1 and Anile2 paralleling

the well-studied non-relativistic version. Relativistic MHD

(RMHD henceforth) has been employed over the last few dec-

ades to describe the dynamics of such systems well in their

nonlinear regimes, particularly through the use of numerical

simulations and remarkable progress has been made in the

development of numerical methods for the RMHD equations

(see, e.g., Refs. 3–8). Even though the ideal limit, where dissi-

pative effects are neglected, captures effectively the dynamics

in most of the situations, there are cases in which resistivity

plays a fundamental role, magnetic reconnection is a notable

example. Therefore, in the last few years strong interest has

been devoted to the resistive RMHD equations and to finding

robust and accurate numerical schemes for their solution.9,10

The ideal RMHD linear wave dynamics are well known:

just as in the case of classical MHD, the plasma supports

slow, fast magnetosonic and Alfv�en waves and expressions

for the wave speeds have been obtained and used, for exam-

ple, in numerical schemes for relativistic magnetofluid

codes, see Refs. 3–6,11,12 and references therein. A com-

pendium of the properties of such linear waves can be found,

for example, in Keppens and Meliani.13 The properties of

linear waves in the resistive case are less well known and the

purpose of this paper is to give a comprehensive analysis of

such waves. The results presented in this paper, in addition

to being of interest per se, can be particularly relevant for

the construction of numerical schemes for the resistive

RMHD equations.

The propagation of electromagnetic waves in resistive

pair plasmas has been presented by Koide14 using a one-fluid

theory derived from the relativistic two-fluid equations. An

approximate dispersion relation for the resistive RMHD

equations, that considers only transverse wave propagation

(i.e., Alfv�en waves) in the magnetic field direction, has been

derived in Appendix of Ref. 15 in the development of a

numerical scheme. More recently, a linear analysis of the

resistive RMHD equations has been presented by Del Zanna

et al.16 in the context of tearing mode instability by investi-

gating the stability of an initial force-free current field. In

their study, the authors assume an incompressible plasma

and neglect Ampere’s law by assuming an electric field

which includes the usual convective and diffusive contribu-

tions. In the present work, instead, we present an extensive

normal mode analysis of the resistive RMHD equations by

retaining the complete form of the equations. In the presence

of resistivity, the RMHD equations take the form of hyper-

bolic equations with relaxation terms,10,17–19 this leads to

several modifications of the wave properties. In addition to

introducing wave damping (as one would expect), resistivity

leads to other qualitative changes in the wave properties as

well. As in all hyperbolic systems with relaxation, we can

distinguish two regimes:18 at small wavenumbers resistivity

tends to be negligible and the system supports standard

RMHD waves, i.e., slow, fast magnetosonic and Alfv�en; at

large wavenumbers, instead, Maxwell equations decouple

from the fluid equations and the system supports light and

sound waves. For intermediate wavenumbers, connecting

these two regimes, the system becomes dispersive.

The plan of the paper is the following. In Sec. II, starting

from the full covariant form of the resistive relativistic MHD

(RRMHD) equations, we carry out the normal mode analysis

in the limit of small perturbations and obtain the characteristic
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polynomial whose roots give the desired dispersion relation.

In Sec. III, we provide asymptotic solutions to the dispersion

relations in the resistive and ideal limits. In Sec. IV, the solu-

tions of the dispersion relation are analyzed for finite values

of the conductivity and for different values of the parame-

ters. Conclusions are finally drawn in Sec. V.

II. EQUATIONS

A. The resistive relativistic MHD equations

Our starting point is the covariant equations of resistive

relativistic MHD which follow from the conservation of par-

ticle number density and stress-energy tensor coupled to the

Maxwell’s equations of classical electromagnetism, see

Refs. 1,9,10 and references therein. Using a system of units,

where c¼ 4p ¼ 1, we have

@aðnuaÞ ¼ 0

@b Tabð Þ ¼ 0

@bF
ab ¼ �Ja

@b
�Fab ¼ 0

;

8>>>><
>>>>:

(1)

where Fab is the electromagnetic tensor (F0i ¼ �Fi0 ¼ �Ei;
Fij ¼ ��ijkBk), �Fab is its dual, and Ja is the four-current

vector.

The stress-energy tensor for the composite system fluid-

electromagnetic fields can be written as Tab ¼ Tab
fluid þ Tab

em,

where

T
ab
fluid ¼ wuaub � pgab

Tab
em ¼ galFlkF

kb þ 1

4
Fl�F

l�gab

8<
: (2)

are the fluid and electromagnetic tensors, respectively, w is

the gas enthalpy, ua ¼ cð1;vÞ is the fluid four-velocity, p is

the gas pressure, and gab is the metric tensor.

The explicit form of the four-current vector is defined

by Ohm’s law and accounts only for the plasma resistivity g
¼ 1/r, where r is the electrical conductivity1,9

Ja ¼ 1

g
Falul þ q0ua ; (3)

where q0 ¼ �Jaua is the electric charge density in the fluid

rest frame. Note that the fluid charge q and current density J
in the lab frame are given by the temporal and spatial com-

ponents of the four-current, respectively,

q � J0 ¼ rðE � uÞ þ q0c; (4)

J � Ji ¼ cr Eþ v� B� ðE � vÞv½ � þ qv : (5)

Projecting Eq. (1) in the directions parallel and perpendicu-

lar to any time-like vector nl, we obtain the three-dimensional

form of the resistive relativistic magnetohydrodynamics

(RRMHD henceforth) which, after simple manipulations, can

be written as

@ðqcÞ
@t
þr � ðqcvÞ ¼ 0; (6)

@

@t
ðwc2vÞ þ r � ðwc2vvÞ þ rp ¼ qEþ J � B; (7)

@B

@t
þr� E ¼ 0; (8)

@E

@t
�r� B ¼ �J; (9)

@

@t
ðwc2 � pÞ þ r � ðwc2vÞ ¼ J � E; (10)

where q ¼ nm is the rest-mass density, c ¼ ð1� v2Þ�
1
2 is the

fluid Lorentz factor, v is the fluid velocity, E and B are the

electric and magnetic field vectors, and w and p are the gas

enthalpy and pressure, respectively.

The temporal components of the third and fourth equa-

tions in (1) yield the time-independent Maxwell’s relations

for the field divergences

r � E ¼ q ; r � B ¼ 0 : (11)

Finally, an equation of state (EoS), in the form w¼w(q, p),

must be provided for appropriate closure.

B. Normal mode analysis

The equilibrium state consists of a homogeneous plasma

at rest with constant density and pressure q0 and p0, respec-

tively. The system is threaded by a constant and uniform

magnetic B0, while the electric field must vanish in this

frame: E0 ¼ 0.

Equations (6)–(10) are linearized assuming plane wave

perturbations in the form V1 / �eiðk�x�xtÞ, where V is any of

the fluid variables, � is a small amplitude, x is the (complex)

frequency, and k is the wavevector. By retaining only terms

of order one, we have

�ixq1 þ iq0k � v1 ¼ 0

�ixw0v1 þ ikp1 ¼ J1 � B0

�ixB1 þ ik � E1 ¼ 0

�ixE1 � ik � B1 ¼ �J1

�ix ðw0p � 1Þp1 þ w0qq1

� �
þ w0ik � v1 ¼ 0 :

8>>>>>>>><
>>>>>>>>:

(12)

Here, J1 ¼ r½E1 þ v1 � B0� is the perturbation of the cur-

rent density. From the third equation, we always have

B1 � E1 ¼ 0 that is, magnetic and electric field perturbations

are always orthogonal. In addition, the divergence-free con-

dition for magnetic field requires k � B1 ¼ 0. Also, the

Lorentz factor is a second-order quantity (c � O(�2)) and

the charge density q � ik � E1 appears only through second

(or higher) order terms in �. Both quantities, therefore, can

be neglected.

Without the loss of generality, the equilibrium magnetic

field is taken to lie in the x–y plane: B0 ¼ ðB0x; B0y; 0Þ and

we the wavevector k along the x direction, k � kêx. The line-

arized RRMHD equations (12) can then be written as a

homogenous 10� 10 linear system
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A

q1

v1

Bt1

E1

p1

0
BBBBBBBB@

1
CCCCCCCCA
¼ 0 ; (13)

where the matrix A is given, in compact form, by

A ¼

�k q0e>x 0 0 0> 0

0 T 0 0 M e>x

0 0> �k 0 �ê>z 0

0 0> 0 �k ê>y 0

0 �M �êz êy D 0

�kw00;q w0e>x 0 0 0> �kðw00;p � 1Þ

2
666666666664

3
777777777775
:

(14)

In the previous expression, k ¼ x=k 2 C is the (complex)

eigenvalue, while T; M, and D are 3� 3 matrices with

components

Tij ¼ � w0kþ i~rB2
0

� �
dij þ i~rB0iB0j (15)

and

Mij ¼ i~reijkB0k ; Dij ¼ diagð�kþ i~rÞ ; (16)

where �ijk is the Levi-Civita symbol. Note that the wavenum-

ber and the conductivity always enter through the combina-

tion ~r ¼ r=k.

After straightforward algebra, the characteristic polyno-

mial of (14) can be written as

PðkÞ ¼ kP5ðkÞP4ðkÞ ; (17)

where P5ðkÞ and P4ðkÞ are given by

P5ðkÞ ¼ k5 þ i~rðu2
A þ 1Þk4 � ða2 þ 1Þk3

� i~rða2u2
A cos 2hþ a2 þ u2

AÞk2

þ a2kþ i~ra2u2
A cos 2h (18)

and

P4ðkÞ ¼ k4 þ i~rðu2
A þ 2Þk3 � ðu2

A þ 1Þr2 þ 1
� �

k2

� i~rðu2
A þ 1Þkþ ~r2u2

A cos 2h : (19)

Note that P4ðkÞ could have been directly obtained from the

sub-matrix involving only the equations for vz1, Bz1, Ex1, and

Ey1 which are not coupled to the remaining variables.

Equations (18) and (19) have been expressed in terms of the

four parameters a2, u2
A, h, and ~r which we now briefly describe.

• The first parameter, a2, defines the square of the sound

speed which can be defined in terms of the derivatives of

the gas enthalpy w

a2 ¼
w0 � q0w00;q

w00;p � 1

1

w0

: (20)

For an ideal gas, w0 ¼ q0 þ Cp0=ðC� 1Þ so that the sound

speed becomes a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp0=w0

p
, where C is the specific

heat ratio. Note that P4 is independent of the sound speed.
• The second parameter is the magnetization u2

A ¼ B2
0=w

¼ v2
A=ð1� v2

AÞ, where

vA ¼
jB0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w0 þ B2
0

p (21)

reduces to the Alfv�en velocity in the case of parallel

propagation.
• The third parameter is the angle h between the magnetic

field and the wavevector

h ¼ arctan
B0y

B0x

� �
: (22)

• Finally, the fourth parameter is ~r ¼ r=k.

The zeros of the characteristic polynomial give the desired

dispersion relation. From Eq. (17), we immediately see that

PðkÞ possesses one trivial root k ¼ 0, which corresponds to

the contact (or entropy) mode. The other propagation modes

are given by the roots P5 and P4.

While some general properties of the solution can be

established by inspecting the two polynomials (Sec. III), the

actual eigenmodes and their dependency on the parameters

have to be investigated numerically (Sec. IV).

III. GENERAL PROPERTIES OF THE SOLUTION

In general, the eigenvalues k of the system are complex

quantities and the real part identifies the phase velocity, i.e.,

vp � <ðkÞ while the damping rate is proportional to the

imaginary part through �k=ðkÞ.
By taking the complex conjugate of P5 or P4, it is easily

seen that if k is a solution then the opposite of its complex

conjugate, ��k, is also a solution. Thus roots with a non-zero

real part must always come as pairs of left- and right-going

propagating waves with equal damping rates. Solution

modes of this kind, with non-zero phase velocity, will be

labeled type P modes. In addition, as shown in Appendix A,

P5 should always admit a strictly imaginary solution

(<ðkÞ ¼ 0) which corresponds to a purely damped, non-

propagating mode. Likewise, P4 always has (at least) two

imaginary solutions. Solution modes of this kind will be

labeled as type N modes.

As we shall see, the system is dissipative since �=ðkÞ > 0

and also dispersive since the phase velocity depends nonli-

nearly on ~r ¼ r=k and therefore on the wavenumber k. The

group velocity can be calculated directly using

vg �
dx
dk
¼ � dðk=~rÞ

d~r
~r2 : (23)

Near degenerate points (roots with multiplicity two or

higher), Eq. (23) can occasionally exceed unity and the
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system presents peculiarities of anomalous dispersion

(regions where the group velocity becomes superluminal).

This, however, does not violate causality as we discuss in

Sec. IV D.

In Secs. III A and III B, we derive analytical expressions

which hold in the limit of small ~r (the resistive limit) and

large ~r (ideal limit). We point out that the resistive limit can

be obtained by either fixing the wave number and letting r
! 0 or, alternatively, by fixing the conductivity and consid-

ering large wavenumbers. Conversely, the ideal limit is

recovered for a large value of r (at fixed wavelength) or for

small wavenumbers (at fixed r).

A. Resistive limit (~r fi 0)

In the ~r ! 0 limit, one can easily show that P5 simpli-

fies to

Pð~r!0Þ
5 ¼ k k4 � ða2 þ 1Þk2 þ a2

� �
¼ 0; (24)

whose solutions are

k1 ¼ 0 k2;3 ¼ 6a k4;5 ¼ 61 : (25)

The solutions are thus given by four propagation modes (a

pair of acoustic waves and a pair of light modes) and a non-

propagating mode. This is not surprising since, for ~r ! 0

(infinite resistivity limit), electromagnetic waves and fluid

motion are no longer coupled.

Likewise, in the resistive limit, P4 reduces to

Pð~r!0Þ
4 ¼ k2ðk2 � 1Þ ¼ 0 (26)

with solutions

k6;7 ¼ 0 k8;9 ¼ 61 (27)

representing a pair of type N non-propagating modes and a

pair of light waves.

Using a perturbative expansion in ~r, we find that the

first-order correction terms to the eigenvalues are, for the

roots of P5,

k1 � �i~ru2
A cos2 hþ Oð~r3Þ;

k2;3 � 6a� i
~r
2

u2
A sin2 hþ Oð~r2Þ;

k4;5 � 61� i
~r
2
þ Oð~r2Þ;

(28)

valid, of course, only for ~r 	 1. Similarly, we find for P4

the regular expansion

k6;7 ¼�i
~r
2
ðu2

A þ 1Þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4u2

A cos2 h

ðu2
Aþ 1Þ2

s2
4

3
5þOð~r3Þ;

k8;9 ¼61� i
~r
2
þOð~r2Þ :

(29)

Note that, to the first-order in ~r, the imaginary part of the

light modes is �~r=2, as also shown by Takamoto and

Inoue15 in the case of parallel propagation.

In our notations, kk with k¼ 2, 3, 4, 5, 8, 9 are type P
modes, while kk with k¼ 1, 6, 7 are type N modes. All roots

have negative imaginary parts which indicate damping. The

four light modes (k4,5 and k8,9) behave essentially in the

same way and the damping rate varies linearly with the con-

ductivity and it does not depend on the sound speed. The

damping rate of the acoustic wave is proportional to the

magnetization and the inclination angle. The three type N
modes (k1 and k6,7) have different damping rates, which all

increase with the magnetization (/ B2
0). For perpendicular

propagation, two of them vanish identically and only one is

non-zero. As we shall see later, this feature holds for any

value of ~r. Interestingly, it can be shown that the phase

velocities of the type P modes involve only even powers of

~r, while the damping term can be expressed as a series of

odd powers.

B. Ideal limit (~rfi‘)

In the limit ~r !1, we have that P5 reduces to the fol-

lowing biquadratic equation:

Pð~r!1Þ5 ¼ ðu2
A þ 1Þk4 � ða2u2

A cos2 hþ a2 þ u2
AÞk2

þa2u2
A cos2 h : (30)

Equation (30) admits four propagating modes given by the

fast and slow magnetosonic speeds (see, e.g., Ref. 4)

kf 6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2u2

A cos2 hþ a2 þ u2
A þ

ffiffiffiffi
D
p

2ðu2
A þ 1Þ

s
;

ks6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2u2

A cos2 hþ a2 þ u2
A �

ffiffiffiffi
D
p

2ðu2
A þ 1Þ

s
;

(31)

where D ¼ ða2u2
A cos2 hþ a2 � u2

AÞ
2 þ 4a2u2

A sin2 h. Simple

differentiation with respect to h shows that kf6 and ks6 are,

respectively, monotonically increasing and decreasing func-

tions of h in the range h 2 [0, p/2]. Therefore, one always

has that k2
s;6 
 a2 
 k2

f ;6. The same condition holds in the

non-relativistic limit which is easily obtained by letting u2
A

þ 1! 1 and a2u2
A ! 0.

In the same limit, one finds that P4 reduces to the simple

quadratic equation

Pð~r!1Þ4 ¼ k2ðu2
A þ 1Þ � u2

A cos2 h ¼ 0 ; (32)

which admits a pair of Alfv�en wave solutions

kA6 ¼ 6
uA cos hffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
A þ 1

p : (33)

The asymptotic behavior for large ~r can be obtained by

conveniently introducing the resistivity parameter ~g ¼ 1=~r
and rewriting Eqs. (18) and (19) as
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P5 ¼ ~gk5 þ iðu2
A þ 1Þk4 � ~gða2 þ 1Þk3

� iða2u2
A cos2 hþ a2 þ u2

AÞk2

þ a2k~g þ ia2u2
A cos2 h (34)

and

P4 ¼ ~g2k4 þ i~gðu2
A þ 2Þk3 � ðg2 þ u2

A þ 1Þk2

�i~gðu2
A þ 1Þkþ u2

A cos2 h : (35)

Regular type P solutions to these equations, in the limit

~g ! 0 ð~r !1Þ, may be found using the same perturbative

technique adopted in Sec. III A. The result is

kf 6ð~gÞ � kf 6 � i
~g
2

ð1� k2
f 6Þðk2

f 6 � a2Þffiffiffiffi
D
p ;

ks6ð~gÞ � ks6 � i
~g
2

ð1� k2
s6Þða2 � k2

s6Þffiffiffiffi
D
p ;

kA6ð~gÞ � kA6 � i
~g
2

1� k2
A6

u2
A þ 2

u2
A þ 1

 !
;

(36)

where kf6 and ks6 are given by (31). Equation (37) shows

that the damping rate of fast and slow modes is proportional

to ~g � kg and, since k ¼ x/k, we get that the damping rate is

proportional to gk2, i.e., it has, as expected, a diffusive

behavior.

Equations (34) and (35) also admit asymptotically sin-

gular solutions which disappear when ~g ! 0. The asymp-

totic behavior can be recovered by the rescaling method, i.e.,

by setting z ¼ k=~g which turns the singular perturbation

problem into a regular one. Solving the regularized problem

in z using the perturbative approach and then rewriting the

solution in the original variable k yields the three type N
roots in the asymptotically singular (as) limit

kas;1 ¼ �i
u2

A þ 1

~g
þ i

a2u2
A sin2 hþ 1

ðu2
A þ 1Þ2

~g þ Oð~g3Þ;

kas;2 ¼ �i
u2

A þ 1

~g
þ i

cos2 h

ðu2
A þ 1Þ2

~g þ Oð~g3Þ;

kas;3 ¼ �
i

~g
þ i sin2 h~g þ Oð~g3Þ;

(37)

where the first solution (kas,1) is the singular root of P5,

while the remaining two come from P4.

C. Eigenvector structure

From Eq. (13), we can obtain a formal expression for

the eigenvectors in terms of the eigenvalue k. A generic

eigenvector component represents a perturbation that can be

written as V1 ¼ jVAjeiðkx�xRtþuÞexI t, where VA 2 R is the

wave amplitude and u is the wave phase.

Whenever a plane wave carries a non-zero density per-

turbation (compressible mode), we assume q1 ¼ �eiðkx�xtÞ

and, after some algebra, we obtain

q1

v1x

v1y

v1z

B1y

B1z

E1x

E1y

E1z

p1

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼ q1

1
k
q0

k sin h cos hD2

q0D
0

� k2w0B0~r sin h
q0D
0

0

0

k3w0B0~r sin h
q0D

k2w0ðD1 þ D2Þ
q0D

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (38)

where D ¼ D1 þ cos2 hD2; D1 ¼ kw0ðik2 � k~r � iÞ; D2

¼ ~rB2
0ð1� k2Þ. Compressible modes are possible only if k is

a root of P5 [roots of P4 do not involve density perturbations

as explained after Eq. (19)]. From the previous expression, it

is seen that velocity and magnetic field perturbations lie in

the plane defined by k and B0, whereas the electric field is

orthogonal to this plane. In the infinite conductivity limit,

perturbations are real quantities and the resulting expressions

are well-behaved yielding the eigenvectors for the fast and

slow magnetosonic waves (see Appendix B). For finite val-

ues of ~r, perturbations become complex quantities and a

phase shift appears. Of particular interest is the case of a

purely imaginary eigenvalue, i.e., k ¼ iY: Eq. (38) shows

that velocity and electric field perturbations become out of

phase by p/2 with respect to those of density, magnetic field,

and pressure.

By setting q1 ¼ 0 in Eq. (13), only the 4� 4 sub-system

formed by the equations of {v1z, B1z, E1x, E1y} has a non-

trivial solution. The incompressible perturbation modes are

thus associated with the roots of P4 and can be written as

q1

v1x

v1y

v1z

B1y

B1z

E1x

E1y

E1z

p1

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

¼ B1z

0

0

0

1� k2 � ik~r
i~rB0 cos h

0

1

tan h
1� k2 � ik~r

kþ i~r
k

0

0

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (39)

Modes described by Eq. (39) propagate fluctuations of veloc-

ity and electromagnetic field components perpendicular to

the plane defined by k and B0.

Limit expressions in the resistive and ideal regimes are

reported in Appendix B.
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IV. RESULTS

We now study in detail the solutions of the characteristic

polynomial by exploring the parameter space defined by a,

vA, h, and ~r.

Since neither P5 nor P4 have simple analytical solutions

for a finite value of the conductivity ~r � r=k, we adopt a

numerical approach based on the Durand-Kerner method20

which is widely used for calculating both the real and the com-

plex roots of a univariate polynomial at the same time. Given a

polynomial of m-th degree, the Durand-Kerner algorithm iter-

ates on all of the roots ki (with i¼ 1,…, m) simultaneously

kðkþ1Þ
i ¼ kðkÞi �

PmðkðkÞi ÞY
j 6¼i

ðkðkÞi � kð�Þj Þ
; (40)

where k is the iteration cycle and k�j is the most recent

updated value (kð�Þ ¼ kðkÞj if j> i or kð�Þ ¼ kðkþ1Þ
j otherwise).

The iteration process converges quadratically provided suffi-

ciently close guesses are provided.

Equation (40) is typically solved by fixing a, uA, and h
for different values of the conductivity ~r. We start at ~r ¼ 0

where we have exact expressions for the eigenvalues given by

Eqs. (25) and (27), respectively. These values are then used as

guesses to start the iteration cycle for the next value of ~r.

We first discuss, in Secs. IV A and IV B, the characteris-

tic modes of P5 and P4 for fixed orientation angle h ¼ 0.7

� 40�). Next, in Sec. IV C, we examine the behavior of the

system at arbitrary angles h.

As already stated in Sec. III, we conveniently label type
P mode pairs of propagating waves with non-zero phase

velocity, that is, kðPÞ ¼ 6<ðkÞ þ i=ðkÞ. On the contrary,

type N modes are purely imaginary, nonpropagating damped

modes and have the form kðNÞ ¼ i=ðkÞ. A transition from a

type P mode to a type N mode (e.g., light to purely damped

waves) can occur through a degeneracy point characterized

by a root of multiplicity two. In these cases, degeneracy

points are (by convention) named after the limiting value of

the type P mode at ~r ! 0 (for a P–N transition) or ~r !1
(for an N–P transition). Likewise, a pair of degeneracy
points appears in correspondence of two double roots and

marks a transition between pairs of type P modes (e.g., light-

acoustic).

A. Mode analysis for P5

We first consider the eigenvalues of P5 in the cold

(a¼ 0.15) and hot (a¼ 0.55) gas cases and study the behav-

ior of the system for different values of the magnetization.

1. Low magnetization (0.1 � vA � 0.2) - cold gas

In Fig. 1, we plot the roots of P5 for vA ¼ 0.1 and h
¼ 0.7. In the left panel, the real and imaginary parts are

plotted as functions of ~r ¼ r=k, while the right panel gives

the path followed in the complex k plane. The different

curves show the five modes which can be easily identified in

the limit of zero conductivity [see Eq. (25)]. Starting at

~r ¼ 0, in fact, we have a pair of light modes k2,3 ¼ 61 (red

and orange curves in the figure), a pair of acoustic modes

k4,5 ¼ 6a (blue and cyan), and a null-mode k1 ¼ 0 (black).

In the limit of small ~r, our results agree with the expansion

given in Eq. (28).

For 0 � ~r � 1:96, the phase velocities of the light modes

decrease (in absolute value) until they become degenerate

reaching zero phase speed. The light degeneracy point sets

the transition to a pair of type N modes and the correspond-

ing formation of a pair of damped standing waves for

1:96 � ~r � 6 (red and orange curves on the imaginary axis in

the left panel of Fig. 1). As noticed in Sec. III C, modes with

a purely imaginary part are characterized by a p/2 phase shift

between velocity and magnetic field perturbations. The

FIG. 1. Roots of P5 in the cold gas case (a¼ 0.15), low magnetization regime (vA ¼ 0.1) and h ¼ 0.7. In the left panel, we plot the real and imaginary parts of

the solution as functions of ~r � r=k. The right panels show the corresponding eigenmode positions in the complex k plane (initial values at ~r ¼ 0 are denoted

with small filled circles). At small values of ~r, blue and cyan curves denote the acoustic modes while red and orange curves represent the light modes; the

black line is a purely damped mode. At large values of ~r, blue and cyan curves tend to the fast magnetosonic waves (small squares), black and orange curves

approach the slow magnetosonic waves (small triangles), while the red line show the rapidly damped mode.
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damping rates of the type N modes have an opposite trend:

while one of the two modes becomes rapidly suppressed

(red), the other one (orange) features a decreasing damping

rate until it merges with the purely damped mode (black) at

~r � 6. This settles the slow degeneracy point and the transi-

tion to type P modes which asymptotically approach a pair

of left- and right-going slow magnetosonic waves.

The acoustic modes (blue and cyan), on the other hand,

remain always distinct and are characterized by very small

damping rates which vanishes as they approach the fast mag-

netosonic speed in the ideal limit, see Eq. (28). They also

weakly depend on ~r.

2. Moderate magnetization (vA � 0.19) - cold gas

By increasing the magnetization, the light and acoustic

modes move closer in the complex plane. At vA � 0.193, two

double roots appear (the light-acoustic degeneracy point)
and hence, the two mode pairs switch their asymptotic

branches: the acoustic modes now tend to the slow magneto-

sonic waves (rather than the fast), while the light modes

approach the fast (rather than the slow) modes. This pattern

is best illustrated in Fig. 2 where the roots are plotted in the

complex k plane immediately prior and after the degeneracy,

which takes place for ~r � 3:8.

3. High magnetization (0:25�vA�0:41) - cold gas

For vA ¼ 0.25 (top panels in Fig. 3), the light degeneracy

point shifts at a slightly smaller value of ~r � 1:75. Damped

standing waves (corresponding to a pair of type N modes)

form in a much narrower range on the negative imaginary

axis. At ~r � 2:1, we have again a type N–type P transition

through the fast degeneracy point leading to a pair of for-

ward/reverse waves approaching the fast magnetosonic

speed (rather than the slow) in the ~r !1 limit.

When the magnetization is further increased to vA

¼ 0.41 (bottom panels), degeneracies are removed and all

roots remain distinct for any value of ~r. This is best seen in

the bottom right panel of Fig. 3 where four type P modes

(orange, cyan, blue, and red) and an isolated type N solution

are visible. While the acoustic modes smoothly connect with

the slow mode in the ideal limit, the phase velocities of the

light waves decrease, in absolute value, to a minimum (found

at r � 1.43) and shortly after rapidly approach the fast

magnetosonic speeds. Finally, the type N mode increases lin-

early for ~r�1 [see the first equation in (28)] and then much

faster for ~r � 1.

4. Results for a hot gas

Next we increase the sound speed to a¼ 0.55 (slightly

below the asymptotic value 1=
ffiffiffi
3
p

), in order to investigate

relativistic thermodynamic effects. Eigenvalues are plotted

in the six panels of Fig. 4 for increasing values of the magne-

tization (from top to bottom, vA ¼ 0.25, 0.45, and 0.6,

respectively). Although the qualitative behavior is essentially

the same one identified for the cold gas case, few differences

are discernible.

For vA�0:25 (top panels), we again have, for increasing

~r, two light waves followed by a pair of type N modes and

then a pair of slow magnetosonic waves. The damped stand-

ing waves are delimited by the two degeneracy points around

~r � 1:77 and ~r � 2:48. Acoustic modes (blue and cyan)

show a weak dependence of the conductivity and smoothly

connect to the fast magnetosonic waves.

At vA ¼ 0.45 (middle panels), degeneracies have been

removed and we have again five distinct modes (4 type P sol-

utions and 1 type N mode). Light and slow magnetosonic

waves are connected continuously and so are the acoustic-

fast magnetosonic waves. The non-propagating type N mode

(black) becomes quickly damped as ~r increases.

Finally, when the magnetization reaches vA ¼ 0.6 (bot-

tom panels), light and acoustic modes swap their asymptotic

behavior through a double degeneracy point: the light

(acoustic) modes approach the fast (slow) magnetosonic

speeds. The type N mode shows the same features as in the

cold gas case as its asymptotic behavior [see kas,1 in Eq.

(37)] is independent of the sound speed.

B. Mode analysis for P4

Since P4 does not depend on the sound speed, it suffi-

ces to consider different values of vA. The overall behavior

of roots is qualitatively similar albeit simpler than the cases

discussed above. This is shown in the two panels of Fig. 5

for vA ¼ 0.25 (top) and vA ¼ 0.6 (bottom). For small values

of ~r, we always have two damped light modes (red and

orange curves) and a pair of purely damped type N modes

with different imaginary parts (blue and cyan lines).

FIG. 2. Merging and asymptotic switch of the light and acoustic modes in the complex plane. From left to right, the three panels trace the eigenmode position

in the complex plane for vA ¼ 0.191, 0.192, and 0.193. The double degeneracy point takes place in the middle panel.
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To first-order in ~r, these modes are given by the regular

expansions in Eq. (29). The mode with larger damping

(cyan) remains always distinct and it coincides with k7 in

Eq. (29) or kas,3 in Eq. (37) in the small or large ~r limits,

respectively.

For vA ¼ 0.25, the phase velocity of the light modes

decreases (in absolute value) and a type P–type N transition

takes place at the light degeneracy point around r � 1.86

(top panels). Here, the imaginary part of the light modes is

intermediate between the two damped modes, i.e.,

=ðk6Þ < =ðk8;9Þ < =ðk7Þ. A pair of damped standing waves

forms for a narrow value range of ~r ð1:86�~r�2:62Þ and

while one of the two modes becomes rapidly suppressed,

the other one (orange) features a smaller damping rate. At

~r � 2:62, we have a second degeneracy (the Alfv�en degen-

eracy point) accompanied by a type N–type P mode transi-

tion. Increasing ~r leads to the appearance of Alfv�en waves.

For vA ¼ 0.6, both degeneracies have been removed and

all roots are now distinct: a pair of smoothly connected light-

Alfv�en modes and a pair of damped modes with rapidly

growing damping rates (bottom panels in Fig. 5). The two

light modes decrease their speed of propagation until a mini-

mum value in the range 1 < r < 2, and then approach the

Alfv�en velocity as r!1. In the same limit, the asymptotic

expression for the type N modes is given by the singular per-

turbation solution given in Eq. (37).

C. Dependency on the angle h

While in Secs. IV A and IV B the angle between the

wavevector k and the magnetic field B has been fixed to h
¼ 0.7, we now explore the effect of different orientation

angles. We first consider, in Secs. IV C 1 and IV C 2, the lim-

iting cases corresponding to parallel and perpendicular prop-

agation and leave the discussion at arbitrary angles to Sec.

IV C 3.

1. Parallel propagation (h 5 0)

When B and k are aligned, the two characteristic poly-

nomials simplify to

Pk5 ¼ ðk
2 � a2Þ k3 þ i~rð1þ u2

AÞk
2 � k� i~ru2

A

� �
; (41)

FIG. 3. Roots of P5 in the cold gas case (a¼ 0.15) for larger magnetizations corresponding to vA ¼ 0.25 (top panel) and vA ¼ 0.41 (bottom panel). Plot sym-

bols have the same meaning as in Fig. 1.
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Pk4 ¼ ðkþ i~rÞ k3 þ i~rð1þ u2
AÞk2 � k� i~ru2

A

� �
: (42)

Equation (41) always admits the solutions k ¼ 6a which

show that acoustic wave propagation is unaffected by electri-

cal resistivity. Equation (42) has the solution k ¼ �i~r which

corresponds to the rapidly damped mode (again k7 or ks,3 in

the opposite limits). The remaining solutions are given by the

roots of the cubic in square brackets which are common to

both P5 and P4 and depend solely on uA. They reduce to a

null mode and a pair of light modes k ¼ 61, 0 (for ~r ! 0) or

a pair of Alfv�en waves k ¼ 6vA (for ~r !1). This result has

also been found in the Appendix of Ref. 15.

FIG. 4. Roots of P5 in the hot gas case (a¼ 0.55) and different magnetizations, as reported in the title. Plot symbols have the same meaning as in Fig. 1.
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From the discriminant of the cubic, it is easily found

that a pair of type N waves joining the light and Alfv�en

degeneracy points (given the black line segment with a van-

ishing real part in the left panel of Fig. 6) is found between

the two values of ~r satisfying

~r2
c ¼
�8u4

A þ 20u2
A þ 16ð1� 8u2

AÞ
3=2

8u2
Aðu2

A þ 1Þ3
: (43)

When uA ¼ 1=
ffiffiffi
8
p

(vA ¼ 1/3), a triple root k ¼ �i=
ffiffiffi
3
p

forms

at ~rc � 8
ffiffiffi
3
p

=9 � 1:54. The degeneracy is then removed

when vA � 1/3 so that five distinct roots appear with the two

light modes always approaching the Alfv�en velocity while

the non-propagating mode becomes rapidly damped. This

behavior, shown in the middle and right panels of Fig. 6, is

also found in classical MHD.

2. Perpendicular propagation (h 5 p/2)

When k and B are perpendicular, P5 reduces to the fol-

lowing expression:

P?5 ¼ k k4þ i~rðu2
Aþ 1Þk3�ða2þ 1Þk2� i~rða2þ u2

AÞkþ a2
� �

;

(44)

which always has a vanishing root. At ~r ¼ 0, we recover the

usual pairs of light and acoustic modes while, in the limit

~r !1, the polynomial inside the square bracket admits the

magnetoacoustic wave solution

kf 6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

A

u2
A þ 1

s
(45)

and a second k ¼ 0 solution. The two vanishing roots at

~r ¼ 1 show that the slow magnetosonic modes disappear,

as in classical MHD.

It is possible to show (see Appendix C) that the quartic

inside the square brackets in Eq. (44) admits a triple root

when

vA;6 ¼
ffiffiffi
2
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B6ð1� a2ÞC3=2

ða2 þ 1Þ3

s
for a < 3�

ffiffiffi
8
p

; (46)

FIG. 5. Roots of P4 for h ¼ 0.7 and vA ¼ 0.25 (top panels) or vA ¼ 0.6 (bottom panels). The rapidly damped mode (cyan) has been omitted from the right panel

for the sake of clarity.
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in correspondence of ~r given by Eq. (C4). The coefficients B
and C are given immediately after Eq. (C6). In the (a, vA)

plane (see Fig. 7), the two solutions given by Eq. (46) define

the lower boundary curve above which light modes are no

longer degenerate (for vA > vA,þ) or the curve below which

acoustic modes never degenerate (for vA < vA,–).

Also, a couple of double roots with non-zero phase

speed appears when

vA ¼
ffiffiffiffiffiffiffiffiffiffiffi

a

1þ a

r
or uA ¼

ffiffiffi
a
p� �

; for 0 
 a 
 1 ; (47)

in correspondence of ~r ¼ 2ð1� aÞ=ð1þ aÞ, where

k?6 ¼
1

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ 6a� 1

p
� ið1� aÞ

h i
: (48)

This pair of roots with multiplicity 2 marks a light-acoustic

degeneracy point with the corresponding asymptotic switch

(similar to the situation illustrated in Fig. 2).

Mode diagrams for different magnetizations vA ¼ 0.25,

0.41 (cold gas) and vA ¼ 0.45, vA ¼ 0.6 (hot gas) are illus-

trated in Fig. 8. At small magnetizations (left panels), acous-

tic modes smoothly connect to the magnetoacoustic solution

(45), while light waves transition to a pair of type N modes.

At large magnetizations (right panels), light and acoustic

modes reverse their asymptotic behaviors: the light degener-

acy point disappears being replaced by the acoustic degener-

acy point through which acoustic waves transition to a pair

of type N modes. By increasing ~r, one of these modes coin-

cides with the rapidly damped mode (blue), while the second

one (cyan) vanishes in the ideal limit.

The other four modes are given by the roots of

P?4 ¼ k k3þ i~rðu2
Aþ2Þk2� ðu2

Aþ 1Þ~r2þ1
� �

k� irðu2
Aþ 1Þ

h i
;

(49)

which have the simple analytical expressions

k ¼

0

1

2
�i~r6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ~r2

p	 

�i~rðu2

A þ 1Þ:

8>>><
>>>:

(50)

In this case, there is a single light degeneracy (a root of

multiplicity 2) always at ~r ¼ 2 and it is independent of the

magnetization. A triple root is not physically admissible in

this case. The purely damped mode grows proportionally

to u2
A.

3. Propagation at arbitrary angle h

Taking advantage of the previous results, we now

explore the behavior at intermediate values of h. The left

panels in Fig. 9 show the locations of the degenerate roots

for P5 for cold and hot gases (top and bottom plots on the

left, respectively) in the ð~r; vAÞ plane for different values of

h (corresponding to different colored curves).

Inside each curve, a pair of type N modes exist; outside

of this region, all roots (except the purely damped mode) are

type P modes. Across the leftmost branch of the curve, a root

of multiplicity 2 sets the transition from type P to type N,

typically a light or acoustic mode degeneracy. Across the

FIG. 7. Eigenmode degeneracies for P5 when h ¼ p/2. Red and orange

curves give the locus of (vA, a) points where a triple root exist [plus and

minus sign in Eq. (46)]. Light (acoustic) waves are never degenerate above

(below) the red (orange) curve and they smoothly connect to the fast modes

in the ideal limit. In-between the triple point curves, light (acoustic) waves

become degenerate for a finite value range of ~r if they lie above (below) the

blue line [Eq. (48)] but retain the same asymptotic limit.

FIG. 6. Eigenmodes of P5 and P4 in the case of parallel propagation (h ¼ 0) as a function of ~r. Note that while the acoustic modes (blue and cyan curves) are

roots of P5 only, the other modes (red, orange and black) are common roots to both P5 and P4. The non-propagating and rapidly damped mode of P4 has been

omitted for clarity.
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rightmost branch, one has a transition from type N to type P
(e.g., slow/fast magnetosonic degeneracy). Left and right

branches intersect at a cusp point which marks the appear-

ance of a triple root (see Appendix C for h ¼ p/2).

The horizontal gray dotted line corresponds to the pres-

ence of a pair of double roots in the perpendicular case found

at uA ¼
ffiffiffi
a
p

[Eq. (47)]. As it will be shown shortly, this con-

dition is nearly independent of h and it will be used to sepa-

rate the low magnetization region (where light waves may

become degenerate, uA�
ffiffiffi
a
p

) from the high magnetization

region (where acoustic waves may become degenerate,

uA �
ffiffiffi
a
p

).

The right panels in Fig. 9 employs color-filled contour

levels to show the corresponding values of ~r, in the h–vA

plane, at which the first degeneracy point is found. Orange-

filled contour levels correspond to light degeneracy points,

i.e., transition from type P to type N modes. Likewise, blue-

filled levels indicate acoustic degeneracy points. In the white

region, no degeneracy is present (all roots are distinct). If a

given value of vA and h lies on a color-filled contour, then

there exists a critical value of ~r for which a degeneracy

occurs. This value is labeled by the corresponding contour

level. A triple root exists at the boundary between a con-

toured and the white regions: cusp points on the left panel lie

on this delimiting curve.

For h ¼ 0, degenerate roots are found only when vA

< 1/3 [in correspondence of the two values of ~r given by

Eq. (43)]. This degeneracy affects only light modes (orange

contours in the right panels), it does not depend on the

sound speed and it is the same for P5 and P4. By increasing

h to p/3, the corresponding curve encloses a larger fraction

of the parameter space the extent of which now depends on

the value of the sound speed. The cusp forms at larger val-

ues of vA (vA � 0.6 in the hot gas case), as it is also clear

from the right panels. Results change significantly at larger

angles (h � 1): depending on the magnetization (uA�
ffiffiffi
a
p

or

uA �
ffiffiffi
a
p

) either light or acoustic modes become degenerate

for some values of ~r as shown by the orange and blue con-

tours in the right panels, respectively. An overlapping

region where both light and acoustic waves become type N
modes exists for the cold gas case (green area in the top

right panel). As h approaches p/2 (perpendicular

FIG. 8. Roots of P5 in the complex plane for the perpendicular case (h ¼ p/2): top panels correspond to the cold gas with vA ¼ 0.25, 0.41 while bottom panels

refer to a hot gas and vA ¼ 0.55, 0.6 At small (large) magnetizations—left (right) panels—acoustic (light) modes are non-degenerate and tend to the magnetoa-

coustic solution. Plotting conventions are the same one used throughout this paper.
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propagation), a degeneracy takes place at any magnetiza-

tion (dashed curves in the left panels in Fig. 9). In the limit-

ing case h ¼ p/2, the rightmost branch of the curve

becomes horizontal and stretches out to ~r ¼ 1 indicating

the disappearance of the slow modes.

The previous discussion can be extended to the roots of

P4 using the same plotting conventions. From the left and

right panels in Fig. 10, it is seen that light modes always suf-

fer from a degeneracy (type P–type N transition) at some

critical value of ~r in the two following cases:

• For any h 2 [0, p/2] and vA < 1/3 (weak magnetizations).

This is a weak condition since the value of vA ¼ 1/3 pro-

vides only a lower bound which we know from the case of

parallel propagation [see the discussion after Eq. (43)].

The region extends indeed to larger values of vA as h is

increased.
• For h � h1 � cos�1ð1=3Þ and any value of vA. The value

h1 corresponds to the intersection point between the

orange-white demarcation line and the vA ¼ 1 axis. The

exact value of h1 can be found by writing P4 in the limit

of strong magnetization (vA ¼ 1),

lim
uA!1

P4 ¼ i~rk3 � ~r2k2 � i~rkþ ~r2 cos2 h; (51)

and by imposing the condition for a perfect cubic (triple

root). This yields cos h1 ¼ 1=3 and ~r1 ¼
ffiffiffi
3
p

and corre-

sponds to the cusp point brushing the vA ¼ 1 axis in the

left panel of Fig. 10 (light grey solid line). Thus, for

strongly magnetized plasmas (vA  1) light modes propa-

gating almost perpendicularly become degenerate for

some value ~r �
ffiffiffi
3
p

.

The second degeneracy, corresponding to the type N–type P
transition (rightmost branch in the left panels in Fig. 10),

shifts at increasingly larger values of ~r and it extends to

infinity as h! p/2.

4. Polar diagram

The phase velocity of the waves can be plotted as a func-

tion of the polar angle measured from the direction of the

background field B0. Since our results are only weakly depend-

ing on the value of the sound speed, we now restrict our atten-

tion to a¼ 0.55. The most prominent cases are shown in the

FIG. 9. Eigenmode degeneracies of P5 for arbitrary angle in the cold (a¼ 0.15, top panels) and hot (a¼ 0.55, bottom panels) gas cases. The curves in the left

panels show the values of ð~r; vAÞ corresponding to a root of multiplicity 2 and mark a transition from a type P to type N mode (left branch) or vice-versa (right

branch). The cusp corresponds to the formation of a triple root. Light and dark-gray solid lines correspond to h ¼ 0 and h ¼ p/3. Similar dashed lines are used

for h ¼ cos�1ð1=3Þ; 24p=50. In the right panel, we show contour levels, in the (h, vA) plane, of ~r at which the first degeneracy (type P-type N) occurs. Orange-

filled levels correspond to the values of ~r for which a light degeneracy point occurs, while blue-filled levels correspond to the acoustic degeneracy point.

092114-13 Mignone, Mattia, and Bodo Phys. Plasmas 25, 092114 (2018)



sequence of panels Fig. 11 where polar diagrams for the roots

of P5 and P4 are shown using green, red (for the former), and

blue (for the latter). From left to right, we show a sequence of

panels corresponding to increasing values of ~r. From the pre-

vious discussion, a type P–type N transition is expected around

~r � 2 for a weakly magnetized plasma. For this reason,

selected plots are shown using values of ~r immediately before

and after this transition threshold.

• For small values of the conductivity (~r ¼ 0:5, leftmost pan-

els in Fig. 11), signal velocities of light and acoustic modes

propagate essentially isotropically with a weak dependence

on the angle. The light-waves of P4 are slightly larger than

those of P5 but they coincide in the case of parallel propa-

gation (h ¼ 0), as also shown by Eqs. (42) and (41).
• At ~r ¼ 1:8 (second column of panels), no degeneracy is

yet present for vA ¼ 0.2 and the phase speed of the light

FIG. 10. Eigenmode degeneracies of P4 for arbitrary angle propagation. The same plotting convention of Fig. 9 is used.

FIG. 11. Polar diagrams showing the phase velocity for different values of ~r (left to right) and of the magnetization parameter vA (top to bottom).
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modes becomes smaller than the sound speed. When

the magnetization is increased at vA ¼ 0.45, light-waves of

P5 become degenerate in a narrow range around h � p/3

(see the bottom left panel in Fig. 9), whereas acoustic

waves propagate distinctly. Finally, when vA ¼ 0:7
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð1þ aÞ

p
, light modes are distinct and the acoustic

modes are now degenerate.

In the case of P4, light modes become first degenerate

at some intermediate value of h (1 � h � 1:2, see the right

panel in Fig. 10), while roots are again distinct for larger val-

ues of h.

• For ~r ¼ 2:2 (third column of panels), only the acoustic

modes can propagate at small magnetization (vA ¼ 0.2,

top), while all light modes have become type N modes.

Increasing the magnetization to vA ¼ 0.45 (second panel

from top), we see that light modes can propagate parallel

to the field but become suppressed in a narrow range

around h � p=3. Strengthening the field to vA ¼ 0.7 leads

to the degeneracy of the acoustic modes and the P4 light

modes at large angles, while light-waves of P5 are, as

expected, distinct.
• For ~r ¼ 10 (rightmost column of panels), we recover the

usual ideal polar diagram for fast, slow, and Alfv�en waves.

Fast and slow magnetosonic modes are given by the roots of

P5, while Alfv�en waves are given by the roots of P4. For

weak and moderate magnetizations (first and second panels

from the top), the green curve identifies the fast mode (this

solution is always smoothly connected to the acoustic mode),

while red and blue curves are very similar and represent pairs

of slow and Alfv�en modes (no perpendicular propagation is

allowed for these solutions). This trend reverses once the

magnetization is strong enough (vA ¼ 0.7, third panel from

the top) because of the light-acoustic degeneracy: the light

modes of P5 (red) have now become fast magnetosonic

waves, whereas blue and green identity, respectively, pairs of

Alfv�en and slow magnetosonic modes.

D. Group, signal, and front velocity

The explicit dependence of k on ~r obtained in Secs.

IV A–IV C raises some interesting questions about the signifi-

cance of the group velocity. Being the medium dissipative,

the classical expression for the group velocity vg ¼ dx/dk [see

Eq. (23)] is complex, so a first question is about its physical

meaning. This issue has been addressed by Muschietti and

Dum21 who showed that, because the wavenumber compo-

nents are damped at different rates, the central wavenumber

changes with time. The imaginary part of the group velocity

accounts for this change.

A second question arises because (the real part of) vg

may occasionally exceed unity when the real part of k
quickly approaches zero at degenerate points or for small

conductivities. An example, using h ¼ 0.7, a¼ 0.1 and vA

¼ 0.1 is shown in Fig. 12 where we plot the group velocity

for the light and acoustic waves. We remind, however, that

the group velocity represents the propagation speed of an

envelope which is not too broad in wave number but, in gen-

eral and contrary to a diffuse misconception, it does not

define the speed at which information travels [see, for

instance, Refs. 22 (p. 337), 23, and 24 (p. 324)]. The actual

signal velocity, instead, is related to the propagation of a

wave packet with a finite spatial width25 or to a short isolated

succession of wavelets, with the system being at rest before

the signal arrives and also after it has passed.23 In this

respect, a closely related concept is that of the front velocity
which tracks the very first arrival of a disturbance that carries

information that cannot be predicted from an earlier time.

Causality cannot be violated if the front velocity is less than

or equal to the speed of light.

For this purpose, we consider the special case of perpen-

dicular propagation (Sec. IV C 2) for which the dispersion

relation has analytical expressions given by Eq. (50). From

that expression, the group velocity is found to be

vgðkÞ ¼ 6
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� ~r2
p ¼ 6

2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � r2
p ; (52)

which is always superluminal and even diverges for

~r ! 1=2. Note also that the previous expression coincides

with the expression given in Sec. IV of Ref. 14. It is easy to

show that the equations for the Ey and Bz reduce to the tele-

graph equation

@2w
@t2
þ r

@w
@t
� @

2w
@x2
¼ 0 ; (53)

where w � w(x, t) stands for either Ey or Bz. A harmonic

analysis in space (see Sec. 5.10 of Ref. 22) shows that the

solution of Eq. (53) is determined by the wavefunction

wðx; tÞ ¼ e�rt=2

2
w0ðxþ tÞþw0ðx� tÞþr

2
D0ðx; tÞþD1ðx; tÞ

� �
;

(54)

where w0(x) ¼ w(x, 0) is the initial condition, while the Dn

terms are integrals of the Bessel function of the first kind and

its derivative times the initial distribution

FIG. 12. Group velocities for P5 corresponding to the same parameters used

in Fig. 1. Only the upper-half plane in the region ~r 2 ½0; 5� is shown.
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D0ðx; tÞ ¼
ðxþt

x�t

w0ðnÞJ0ðzðx; t; nÞÞd n;

D1ðx; tÞ ¼
ðxþt

x�t

w0ðnÞ
@

@t
J0ðzðx; t; nÞÞd n;

(55)

with zðx; t; nÞ ¼ ðr=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nÞ2 � t2

q
(in our derivation we

have set the term @w=@tjt¼0 ¼ 0). For an initial square pulse

w0ðxÞ ¼ ð1þ sgnðx0 � jxjÞÞ=2, the wavefunction given by

Eq. (54) has been computed numerically and it is plotted in

Fig. 13 at different times ¼ 0, 1, 2.5, 4. For this calculation,

r ¼ 1/2 has been used. The evolution discloses that the ini-

tial distribution splits into a pair of damped, left- and right-

going waves. The contribution of the integrals Dn does not

alter the propagation speed (the integral vanishes for jxj
> jx0j þ t), but it deformates the shape of the wave leaving a

residue field after the front has passed through. The speeds

of the two fronts always remain equal to the speed of light

(¼ 1).

V. SUMMARY

A characteristic analysis of the resistive relativistic MHD

equations has been the subject of this work. Starting from an

equilibrium state describing a static and homogeneous relativ-

istic plasma threaded by a constant magnetic field, perturba-

tions have been introduced in the form of plane waves

/ exp ½iðkx� xtÞ�, where k 2 R while x 2 C is a complex

quantity. The dispersion relation has been obtain as a ten-

degree polynomial which can be factorized into a single root k
¼ 0 and two lower-order polynomials of degree five and four,

respectively. The coefficients of the two polynomials are

expressed in terms of four parameters: the sound speed a, the

magnetization uA ¼ B0=
ffiffiffiffiffiffi
w0
p

(or vA ¼ uA=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

A

p
), the

angle h between the wavevector and the background magnetic

field B0, and the ratio r/k between the electric conductivity r
and the wavenumber k.

Solution modes are of two kinds: (i) waves with non-

zero phase speed which always come as pairs of opposite

complex conjugate solutions or (ii) purely damped standing

waves. The isolated root k ¼ 0 coincides with the contact

mode and it is unaffected by resistivity. The remaining

waves can be easily identified in the fully resistive limit

(zero conductivity or small wavelengths) where electromag-

netic fields and matter are decoupled so that characteristic

information is propagated through light or sound waves. In

this limit, one has four light-waves, two acoustic waves, and

three damped waves (in addition to the contact mode). In the

ideal limit (infinite conductivity or large wavelengths), solu-

tion modes asymptotically approach pairs of fast, slow, or

Alfv�en waves (and the contact mode). Using asymptotic

analysis, we have shown that the damping rates of these

propagating modes scales as gk2 (g is the plasma resistivity),

as expected for a diffusive system. Conversely, the three

damped modes become singular solutions of the equations

and become linearly suppressed with the conductivity.

For arbitrary values of r/k, the dispersion relation can-

not be solved in a closed analytical form and a numerical

approach has been employed. Our results confirm that eigen-

values are, in general, complex quantities with a negative (or

zero) imaginary part indicating wave damping, a defining

feature of dissipative systems. Given the nonlinear depen-

dency on r/k, the system is also dispersive with light waves

propagating at small wavelengths while fast or slow mode

propagating at large wavelengths.

In general, the solution space is characterized by a number

of mode transitions which involve a root degeneracy. Isolated

roots of multiplicity two define a boundary region of the param-

eter space inside which a pair of propagating (type P) modes

has transitioned to a pair of non-propagating (type N) modes.

Conversely, through a pair of double roots, solution modes

switch their asymptotic behavior (e.g., light and acoustic waves

interchange with each other) by remaining type P modes. These

transition points are described by degeneracy conditions of

quintic and quartic polynomials and, in general, no simple

expression has been found except for special cases. However,

some general results could be established:

• For weak magnetization—namely uA < 1=
ffiffiffi
8
p

for parallel

propagation or uA�
ffiffiffi
a
p

at larger angles—there is always a

finite range of values of r/k where light modes degenerate

into a pair of standing damped waves. On the contrary,

acoustic modes remain distinct for any value of r/k and, in

the ideal limit, they asymptotically approach the fast

(when vA�a) or slow magnetosonic (when vA � a) waves.
• For sufficiently stronger magnetizations and cos h�1=3,

no degeneracy occurs and the four light-waves and the

two acoustic modes smoothly connect to fast, slow, and

Alfv�en waves in the ideal limit. The magnetization thresh-

old coincides with uA ¼ 1=
ffiffiffi
8
p

for parallel propagation but

it increases with the inclination angle.
• As the inclination becomes more perpendicular ( cos�1ð1=3Þ

�h 
 p=2) and uA �
ffiffiffi
a
p

, only two light-waves remain dis-

tinct while the remaining type P solutions (2 acoustic and 2

FIG. 13. Evolution of a square pulse in a dissipative dispersive media with

dispersion relation given by xðkÞ ¼ � i
2g 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1

4g2

q
[see Eq. (50)] where g

¼ 1/r ¼ 2. The dotted line gives the corresponding solution in an ideal

medium (x ¼ k).
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light modes) always become degenerate for some intermedi-

ate value range of r/k. In the limit of very strong magnetic

fields, acoustic modes become quickly suppressed and disap-

pear for perpendicular propagation. In the limit r/k!1, the

two distinct roots smoothly connect to the fast magnetosonic

modes, while the remaining ones tend to slow and Alfv�en

solutions.

To the extent of our knowledge, our results provide the

first systematic analysis of the characteristic structure of the

relativistic MHD equations in the presence of a finite con-

ductivity. The outcome of this work may be particularly rele-

vant in the field of relativistic magnetic reconnection as well

as representing a potential benefit for the development of

improved numerical methods in the solution of these kinds

of equations.

APPENDIX A: PURELY IMAGINARY SOLUTIONS OF
THE DISPERSION RELATION

Here, we show that P5 always admits at least one type N
(purely imaginary) solutions while, in the case of P4, at least

two solutions of this type must be present.

1. Proof for P5

We seek for a solution of the type k ¼ iY in Eq. (18).

Hence, it is readily found from Eq. (18) that

P5ðiYÞ ¼ i Y5 þ ~rðu2
A þ 1ÞY4 þ ða2 þ 1ÞY3

�
� ~rðC2 þ a2 þ u2

AÞY2 þ a2Y þ ~rC2
�
; (A1)

where C ¼ a2u2
A cos2 h. The polynomial inside the square

brackets is a real-valued quintic function which must always

possess at least one real root. Thus, k ¼ iY is a purely imagi-

nary solution of the original polynomial.

2. Proof for P4

Similarly, we seek for a solution of the type k ¼ iY in

Eq. (19). Upon substituting in Eq. (19) we find

P4ðiYÞ ¼ Y4 þ ~rðu2
A þ 2ÞY3 þ ðu2

A þ 1Þr2 þ 1
� �

Y2

þ ~rðu2
A þ 1ÞY þ ~r2u2

A cos2 h : (A2)

The previous equation is again a real-valued quartic equation

which has the following properties:

lim
Y!�1

P4ðiYÞ ¼ þ1

P4ð0Þ ¼ ~r2u2
A cos2 h

P4ð�i~rÞ ¼ �~r2u2
A sin2 h:

8>><
>>: (A3)

For h > 0, the quartic is positive at Y ! �1 and Y¼ 0 but

negative in the neighbourhood of Y ¼ �~r and thus (at least)

two roots must be found in the range Y 2 [�1, 0] which

proves our statement. In the special case h ¼ 0, the quartic

simplifies to

ðY þ ~rÞ Y3 þ ~rðu2
A þ 1ÞY2 þ Y þ ~ru2

A

� �
¼ 0; (A4)

which is satisfied for Y ¼ �~r and by at least one root of the

cubic inside the square brackets.

APPENDIX B: EIGENVECTOR EXPRESSION IN THE
RESISTIVE AND IDEAL LIMITS

In the ~r ! 0 (resistive) limit, Eq. (38) can still be used

to obtain the eigenvectors for the compressible modes which,

not surprisingly, reduce to a pair of relativistic sound waves

carrying perturbations in density, pressure, and normal

velocity only

q1

v1x

p1

0
BBB@

1
CCCA ¼

1

a

q0

a2w0

q0

0
BBBBBB@

1
CCCCCCA
: (B1)

However, for the light modes, the assumption q1¼ 0 leads

to a singular expression but the direct solution of Eq. (13)

with q1¼ 0 provides the usual eigenvectors for Maxwell

equations

B1y

B1z

E1x

E1y

E1z

0
BBBBBBBB@

1
CCCCCCCCA
¼

1

0

0

0

61

0
BBBBBBBB@

1
CCCCCCCCA
;

0

1

0

61

0

0
BBBBBBBB@

1
CCCCCCCCA
; (B2)

where q1 ¼ v1 ¼ p1 ¼ 0.

In the ideal limit (large wavelengths or infinite conduc-

tivity), the compressible modes are given by Eq. (38) by

simply taking r/k!1

q1

v1x

v1y

v1z

B1y

B1z

E1x

E1y

E1z

p1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

¼ q1

1

k
q0

� ku2
A sin h cos hð1� k2Þ

q0D

0

k2 ffiffiffiffiffiffi
w0
p

uA sin h

q0D

0

0

0

� k3 ffiffiffiffiffiffi
w0
p

uA sin h

q0D

k2w0ððu2
A þ 1Þk2 � u2

AÞ
q0D

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (B3)

where now D ¼ k2 � ð1� k2Þu2
A cos2 h, while k is given by

the fast and slow modes [Eq. (31)]. Incompressible perturba-

tions are instead given by
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q1

v1x

v1y

v1z

B1y

B1z

E1x

E1y

E1z

p1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

¼ B1z

0

0

0

� k~r
B0 cos h

0

1

�k tan h

k

0

0

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

; (B4)

where now k is given by the Alfv�en modes [Eq. (33)].

Moreover, Eq. (B4) reduces to the classical MHD expres-

sions in the non-relativistic limit w0! q0, where v1z ¼ 71=ffiffiffiffiffi
q0

p
; B1z ¼ 1 and E1 ¼ �v1 � B0.

APPENDIX C: TRIPLE ROOT OF P5 IN THE
PERPENDICULAR CASE

We now discuss the degenerate roots of P5 in the per-

pendicular case. From Eq. (44), the quartic polynomial inside

square bracket can be converted to depressed form using the

substitution k ¼ i(Y � c3/4), where c3 ¼ ~rðu2
A þ 1Þ. This

yields

f ðYÞ ¼ Y4 þ a2Y2 þ a1Y þ a0; (C1)

where

a2 ¼ �
3

8
ðu2

A þ 1Þ2 þ a2 þ 1;

a1 ¼
~rðuA þ 1Þ

2

1

4
~r2ðuA þ 1Þ2 þ ðuA � 1Þð1� a2Þ

� �
;

a0 ¼ �
3

256
ðu2

A þ 1Þ4~r4 þ 1

16
ðu2

A þ 1Þ

� 1� 3a2 þ ða2 � 3Þu2
A

� �
~r2 þ a2:

(C2)

Written in this form, the condition to have a triple root (see,

for instance, Ref. 26) is

a2
2 þ 12a0 ¼ 0 and 8a3

2 þ 27a2
1 ¼ 0 (C3)

together with a2 < 0. The first of the two conditions can be

readily solved for ~r2 yielding

~r2 ¼ 1

3

a4 þ 14a2 þ 1

ðu2
A þ 1Þðu2

A þ a2Þ (C4)

and then inserted into the second one, giving the following

biquadratic equation for uA:

þ8 a6 þ 3a2ða2 þ 1Þ þ 1
� �

u4
A

� a8 þ 76a2ða4 þ 1Þ � 282a4 þ 1
� �

u2
A

þ 8a2 a6 þ 3a2ða2 þ 1Þ þ 1
� �

¼ 0:

(C5)

Apart from the tedious form of the coefficients, the solution

can be written

u2
A ¼

1

16

B6ð1� a2ÞC3=2

ða2 þ 1Þ3
; (C6)

where B¼ a8þ 76a2ða4þ 1Þ � 282a4þ 1; C¼ ða2þ 1Þ2
�36a2 physically admissible solutions require the argument

of the square root to be positive, that is, 0
 a
 3�
ffiffiffi
8
p

. The

location of the triple roots is shown by the red and orange

curves in Fig. 7.
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