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ABSTRACT
We present GAMER-2, a GPU-accelerated adaptive mesh refinement (AMR) code for astro-
physics. It provides a rich set of features, including adaptive time-stepping, several hydro-
dynamic schemes, magnetohydrodynamics, self-gravity, particles, star formation, chemistry,
and radiative processes with GRACKLE, data analysis with YT, and memory pool for efficient
object allocation. GAMER-2 is fully bitwise reproducible. For the performance optimization,
it adopts hybrid OpenMP/MPI/GPU parallelization and utilizes overlapping CPU computa-
tion, GPU computation, and CPU–GPU communication. Load balancing is achieved using a
Hilbert space-filling curve on a level-by-level basis without the need to duplicate the entire
AMR hierarchy on each MPI process. To provide convincing demonstrations of the accuracy
and performance of GAMER-2, we directly compare with ENZO on isolated disc galaxy sim-
ulations and with FLASH on galaxy cluster merger simulations. We show that the physical
results obtained by different codes are in very good agreement, and GAMER-2 outperforms
ENZO and FLASH by nearly one and two orders of magnitude, respectively, on the Blue Wa-
ters supercomputers using 1–256 nodes. More importantly, GAMER-2 exhibits similar or even
better parallel scalability compared to the other two codes. We also demonstrate good weak
and strong scaling using up to 4096 GPUs and 65 536 CPU cores, and achieve a uniform
resolution as high as 10 2403 cells. Furthermore, GAMER-2 can be adopted as an AMR + GPUs
framework and has been extensively used for the wave dark matter simulations. GAMER-2 is
open source (available at https://github.com/gamer-project/gamer) and new contributions are
welcome.

Key words: methods: numerical.

1 IN T RO D U C T I O N

Many problems in computational astrophysics require resolving
structures at a wide range of spatial scales. For this reason, the
adaptive mesh refinement (AMR) method (Berger & Oliger 1984;
Berger & Colella 1989) has played an indispensable role by en-
abling high dynamic range simulations of astrophysical phenom-
ena. The fundamental principle in AMR is to allow the simulation
resolution, in both space and time, to adaptively and locally adjust

� E-mail: hyschive@phys.ntu.edu.tw

so as to concentrate computational resources on regions requiring
higher resolution. It is achieved by first covering the entire computa-
tional domain with a uniform-resolution grid, and then adding hier-
archies of nested refined grid patches (also referred to as ‘patches’,
‘grids’, or ‘blocks’) with decreasing cell spacing over subvolumes
of interest.

There have been many hydrodynamic AMR codes for astro-
physics (e.g. Kravtsov, Klypin & Khokhlov 1997; Fryxell et al.
2000; Teyssier 2002; Cunningham et al. 2009; Schive, Tsai & Chi-
ueh 2010; Almgren et al. 2010; Mignone et al. 2012; Almgren et al.
2013; Bryan et al. 2014; White, Stone & Gammie 2016). Among
these, the AMR implementations can be broadly classified into three
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categories based on the basic units adopted for grid refinement. The
first category uses rectangular patches of arbitrary aspect ratios as
the refinement units, where different patches can have different
sizes and shapes; for example, ENZO (Bryan et al. 2014) utilizes this
scheme. The second category performs refinement on a cell-by-cell
basis, for example, ART (Kravtsov et al. 1997) and RAMSES (Teyssier
2002). The third category performs refinement on patches of fixed
size (e.g. 83 cells); in other words, all patches are restricted to be ge-
ometrically similar to each other. Examples include FLASH (Fryxell
et al. 2000), GAMER (Schive et al. 2010), and ATHENA+ + (Stone
et al. 2008; White et al. 2016). In addition to AMR, it is also
possible to achieve high resolution with Lagrangian particles (e.g.
GADGET-2, Springel 2005), a moving unstructured mesh (e.g.
AREPO, Springel 2010), or a meshless method (e.g. GIZMO, Hopkins
2015).

Use of graphic processing units (GPUs) has recently become
a promising technique to achieve substantial speedups in simula-
tion performance. However, compared to the uniform-resolution
approaches, it remains extremely challenging for AMR codes to
efficiently exploit the petascale computing power in heterogeneous
CPU/GPU supercomputers, mainly due to the complicated AMR
data structure, load imbalance, and the great amount of work re-
quired to isolate and convert existing physics modules to run with
high efficiency on GPUs. So far, only a few astrophysical AMR
codes have taken advantage of GPU acceleration. For example,
both ENZO (Bryan et al. 2014) and RAMSES (Teyssier 2002) have
ported the hydrodynamic and magnetohydrodynamic solvers to
GPUs (Wang, Abel & Kaehler 2010; Kestener, Château & Teyssier
2010), and FLASH has ported an octree Poisson solver to GPUs
(Lukat & Banerjee 2016). GAMER (GPU-accelerated Adaptive
MEsh Refinement, Schive et al. 2010, hereafter referred to as
GAMER-1), is the first astrophysical AMR code designed from
scratch to exploit GPU acceleration. It supports both GPU hy-
drodynamic and Poisson solvers. However, the physical modules
supported in GAMER-1 are much more limited compared to other
widely adopted AMR codes, which restricts possible applications
of the code.

Here, we present GAMER-2, a significant revision of GAMER-1
that includes much richer functionality, including adaptive time-
stepping, several hydrodynamic schemes, magnetohydrodynam-
ics, dual energy formalism, self-gravity, particles, star forma-
tion, chemistry, and radiative processes with the GRACKLE library,
data analysis with the YT package, memory pool, bitwise repro-
ducibility, test problem infrastructure, and the capability of be-
ing used as an AMR + GPUs framework. It also incorporates
significant improvements in accuracy, stability, performance, and
scalability.

For a GPU-accelerated astrophysical AMR code, there are at least
three questions to be addressed in order to make a fair performance
comparison with a CPU-only AMR code. First, does it sacrifice
accuracy for performance? Second, does it still outperform CPUs by
a large margin when enabling a rich set of physical modules? Third,
how does the performance scale with the number of GPUs especially
when running extremely large parallel simulations? To provide clear
and convincing answers to these questions, we directly compare
GAMER-2 with two widely adopted AMR codes, FLASH and ENZO,
based on realistic astrophysical applications, namely, binary cluster
merger simulations and isolated disc galaxy simulations, where
we enable GPU acceleration for ENZO as well. These comparison
simulations show that the physical results obtained by different
codes are in very good agreement, and GAMER-2 outperforms ENZO

and FLASH by nearly one and two orders of magnitude, respectively,

on the Blue Waters supercomputer1 using 1–256 nodes. We also
demonstrate good weak and strong scaling in GAMER-2 using up to
4096 GPUs and 65 536 CPU cores.

This paper is structured as follows. We describe the numeri-
cal algorithms in Section 2 and the performance optimizations
in Section 3. Section 4 shows the code tests, especially focusing
on the comparison simulations with GAMER-2, ENZO, and FLASH.
Finally, we summarize our results and discuss future work in
Section 5.

2 N U M E R I C A L A L G O R I T H M S

We provide in this section an overview of the numerical algorithms
implemented in GAMER-2, including the AMR structure, hydrody-
namic and gravity solvers, particle integration, and other miscella-
neous features. Detailed descriptions of the performance optimiza-
tions and parallelization are given in Section 3.

2.1 Adaptive mesh refinement

The AMR structure in GAMER-2 is very similar to that in the original
GAMER-1 code, and therefore we only provide a short summary here.
Note that in this paper, we use the terms ‘patch’, ‘grid’, and ‘block’
interchangeably. GAMER-2 adopts a block-structured AMR where
the simulation domain is covered by a hierarchy of patches with
various resolutions. Patches with the same resolution are referred
to as being on the same AMR level, where the root level, l = 0, has
the coarsest resolution. The resolution ratio between two adjacent
levels is currently fixed to 2. The levels of any two nearby patches
can differ by at most 1, so the GAMER-2 AMR hierarchy is always
properly nested.

All patches are restricted to be geometrically similar to each other,
which is similar to the AMR implementation in FLASH. We assume
a fixed patch size of 83 cells throughout this paper unless otherwise
specified. The AMR hierarchy is manipulated by an octree data
structure. A patch on level l can have zero or eight child patches on
level l + 1 that cover the same physical domain as their parent patch,
and up to 26 sibling patches (including those along the diagonal
directions) on the same level. For convenience, all patches store
the patch identification numbers of their parent, child, and sibling
patches (if any exist).

For advancing patches on different levels, GAMER-2 supports
both the shared time-step and adaptive time-step integrations. For
the former, all patches in the simulations are restricted to have the
same evolution time-step, which is generally more robust but less
efficient as patches on lower levels might have unnecessarily small
time-steps. This fixed time-step scheme is used by the FLASH code.
For the latter, patches on higher levels can have smaller time-steps.
Furthermore, GAMER-2 does not require the time-step ratio between
two adjacent levels to be a constant, which is similar to the imple-
mentation in ENZO. Different levels are advanced in a way similar
to the W-cycle in a multigrid scheme, where the lower levels are
advanced first and then wait until they are synchronized with higher
levels. This approach can improve performance notably, especially
when higher refinement levels only cover small subvolumes of the
simulation domain.

For the adaptive time-step integration, in order to synchronize two
adjacent levels, the finer level sometimes requires an extra update

1https://bluewaters.ncsa.illinois.edu
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with an extremely small time-step, which can have a non-negligible
impact on the overall performance. To alleviate this issue, we al-
low the time-step on level l, �tl, to increase by a small fraction
(typically Cinc∼10 per cent) if that helps synchronize with level l
− 1. Moreover, and less intuitively, we also allow �tl to decrease
by a small fraction (typically Cdec∼10 per cent as well) if it could
remove that extra small time-step on level l + 1. See Fig. 1 for
an illustration of the second optimization. The procedure for com-
puting the final optimum �tl can be described by the following
pseudo-code:
// ’’lv’’ is the abbreviation of ’’level’’
dt(lv) = ComputeTimeStep(lv)
dt inc = t(lv-1) - t(lv)
dt dec = 2∗dt(lv+1)
// synchronize lv and lv-1
if (1+C inc)∗dt(lv)>dt inc
dt(lv) = dt inc

// synchronize lv and lv + 1
else if dt(lv)>dt dec and
(1-C dec)∗dt(lv)<dt dec
dt(lv) = dt dec

Note that �tl + 1 is taken from the previous update under the
assumption that this value does not change too quickly, and the co-
efficient 2 for computing �tdec further assumes that �tl is linearly
proportional to the cell spacing on level l. Also note that this pro-
cedure can be directly applied to simulations with multiple levels.
In principle, allowing �t to vary by a larger fraction (by increasing
Cinc or Cdec) can improve performance further, but it could also
deteriorate accuracy and stability.

A patch can be checked for refinement when synchronized with
the child level. GAMER-2 supports a variety of refinement criteria,
including, for example, the amplitude, first and second derivatives
of simulation variables, vorticity, and Jeans length. The second
derivative criterion follows the error estimator suggested by Löhner
et al. (1987) and implemented in FLASH. For the simulations with
particles, one can also check the number of particles in a patch, the
number of particles in a cell, and the particle mass in a cell. The
refinement thresholds on different levels can be set independently.
A patch is flagged for refinement if any of its cells satisfy the re-
finement criteria. In addition, we add (1 + 2Nbuf)3 − 1 flag buffers,
where Nbuf = 0 − 8, around each flagged cell and refine the corre-
sponding sibling patches as well if any of these flag buffers extend
across the patch border. See fig. 2 in Schive et al. (2010) for an
illustration.

GAMER-2 does not implement explicit grid derefinement criteria.
A patch is removed if its parent patch does not satisfy any refine-
ment criteria and if it has no child patches. In addition, a patch is
not refined if it would violate the proper-nesting constraint. This
approach makes grid refinement significantly more efficient, since
only one refinement level is altered at a time and there is no need
to reconstruct the entire AMR hierarchy, which would otherwise be
very expensive. However, it could also cause an issue of insufficient
resolution since patches might not be refined in time due to the
proper-nesting check. To solve this issue, we typically set Nbuf = 8
on all levels except for lmax − 1, where lmax is the maximum refine-
ment level, so that patches on lower levels are always pre-allocated.
Having Nbuf = 8 on level lmax − 1 is unnecessary as no patches will
be allocated above level lmax, and thus we typically set Nbuf = 2–4
on level lmax − 1 just to prevent the phenomenon of interest from
leaving the highest resolution regions. As will be demonstrated in
Section 4, this approach, although not optimal, is found to do a
reasonable job.

2.2 Hydrodynamics

GAMER-2 supports four hydrodynamic schemes: the relaxing to-
tal variation diminishing scheme (RTVD; Jin & Xin 1995), the
MUSCL–Hancock scheme (MHM; for an introduction, see Toro
2009), a variant of the MUSCL–Hancock scheme (VL; Falle 1991;
van Leer 2006), and the corner transport upwind scheme (CTU;
Colella 1990). There are several variants of the CTU scheme in the
literature, and we adopt the one requiring six Riemann solvers per
cell per time-step, similar to that implemented in ATHENA (Stone
et al. 2008). The detailed implementation of these schemes have
been described previously (Trac & Pen 2003; Stone et al. 2008;
Stone & Gardiner 2009; Schive et al. 2010; Schive, Zhang &
Chiueh 2012), which we do not repeat here. GAMER-2 also supports
magnetohydrodynamics2 (Zhang, Schive & Chiueh 2018) using the
CTU scheme and the constrained transport (CT; Evans & Haw-
ley 1988) technique to ensure the divergence-free constraint on the
magnetic field, for which we closely follow the implementation in
ATHENA.

The RTVD scheme is dimensionally split and Riemann-solver-
free, and the other three schemes are dimensionally unsplit and
Riemann-solver-based. GAMER-2 supports four Riemann solvers
for hydrodynamics, namely, exact solver based on Toro (2009),
Roe’s solver (Roe 1981), HLLC solver (Toro 2009), and HLLE
solver (Einfeldt et al. 1991), and three Riemann solvers for mag-
netohydrodynamic (MHD), namely, Roe’s solver, HLLD solver
(Miyoshi & Kusano 2005), and HLLE solver . For the data re-
construction schemes, we have implemented the piecewise linear
method (PLM; van Leer 1979) and piecewise parabolic method
(PPM; Woodward & Colella 1984), both of which can be applied
to either primitive or characteristic variables. We have also im-
plemented a variety of slope limiters, including the generalized
minmod limiter, van Leer-type limiter, van Albada-type limiter, and
a hybrid limiter combining the generalized minmod and van Leer-
type limiters (for an introduction, see Toro 2009).

All Riemann-solver-based schemes support multispecies hydro-
dynamics by additionally solving the continuity equations of an
arbitrary number of chemical species, which can be renormalized
after every update to ensure that the sum of their mass fractions
equals unity. The non-equilibrium chemical reaction network is up-
dated by the library GRACKLE (Smith et al. 2017, see Section 2.5).

There are four standard fluid boundary conditions available in
GAMER-2, namely, periodic, outflow, inflow (i.e. user-defined), and
reflecting boundaries. See, for example, Bryan et al. (2014), for an
introduction. The user-defined boundaries can be time-dependent.
The boundary conditions on different faces of the computational
domain can be set independently.

It is a well-known problem that the pressure of flows with very
high Mach number suffers from large truncation errors, which can
be a serious issue when the gas temperature is required (e.g. for cal-
culating chemistry and radiative cooling). The common remedy is
to adopt the so-called dual energy formalism, for which one evolves
an additional auxiliary variable, either thermal energy (Bryan et al.
1995, 2014) or entropy (Ryu et al. 1993; Springel 2010), and uses
that to calculate pressure or temperature when required. GAMER-
2 adopts the gas entropy per unit volume, s ≡ P/ργ − 1, where P
is gas pressure, ρ is gas mass density, and γ is adiabatic index,
as the auxiliary variable, since it is a conserved quantity outside

2The MHD extension has not been made publicly available yet, but will be
released soon.
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time

level 1

level 2

unoptimized adaptive time-step optimized adaptive time-step

level 0

time

∆t0

∆t1

∆t2

∆t0

∆t1’

∆t2

Figure 1. Illustration of the adaptive time-step integration. The left-hand panel shows the unoptimized scheme where the diagonal hatching highlights the
extra small time-steps on level 2 required to synchronize with level 1. The right-hand panel shows the optimized scheme where the time-steps on level 1, �t ′1,
are reduced by a small fraction in order to eliminate the extra synchronization time-steps on level 2. The vertical dotted lines represent the original time-steps
on level 1. Note that the optimized scheme reduces the total number of updates on level 2 from 7 and 5, while that on levels 0 and 1 remain unchanged.

the shocks and therefore can be easily incorporated by regard-
ing it as one of the passively advected scalars. In the end of the
fluid solver, we check the ratio between the gas thermal energy
Ethe and kinetic energy Ekin on each cell, where Ethe is estimated
from the original total energy formulation (i.e. Ethe = Etot − Ekin

where Etot is the gas total energy density). If this ratio is below a
given threshold, Ethe/Ekin < ξ , where ξ ∼ 10−2 typically, we correct
Etot using the entropy calculated from the dual energy formalism.
Otherwise, the auxiliary entropy information on this cell is simply
disregarded.

Unphysical results such as negative density and pressure may still
arise even with the help of the dual energy formalism, especially
when adopting a less diffusive hydrodynamic scheme (e.g. CTU
scheme and PPM reconstruction) in poorly resolved cold flows
(e.g. when the radiative cooling is very effective). If an unphysical
result is detected in a cell, GAMER-2 adopts the following procedure
to try to remedy the problem.

(i) If unphysical results occur in the intermediate region of the
Roe’s solver, we follow the approach adopted in ATHENA and switch
to either HLLE, HLLC, or exact solver to recalculate the fluxes on
the failed cell interfaces.

(ii) If unphysical results occur in the final update of the fluid
solver, we recalculate the solutions with only first-order accuracy
in space and time and in a dimensionally unsplit fashion.

(iii) If step (ii) still fails, we repeat step (ii) but with a dimen-
sionally split update.

(iv) If step (iii) still fails, we reduce the time-step by a fixed ratio
(0.8 by default) and recalculate all patches on the currently targeted
level with this reduced time-step.

(v) Repeat step (iv) until no unphysical results are detected or
reaching a given minimum time-step threshold, for which the pro-
gram is aborted.

Note that steps (i)–(iii) are applied only to the cells with unphys-
ical results, and steps (iv) and (v) are applied to all patches on the
currently targeted level. The latter is feasible thanks to the adap-
tive time-step integration described in Section 2.1. Moreover, the
time-step in the next update is automatically restored to the origi-
nal value, and thus a maximum time-step can be applied whenever
possible to reach optimal performance.

When a coarse level is synchronized with its child level, there
are two ‘fix-up’ operations required to correct the coarse-grid data
in order to ensure the consistency between different levels. First,
for non-leaf coarse patches (i.e. patches with child patches), their

conserved quantities are replaced by the volume-weighted average
of the child patch data. This operation is sometimes referred to as
‘restriction’. Second, for leaf coarse patches (i.e. patches without
child patches) near coarse-fine interfaces, the conserved quanti-
ties on the coarse cells adjacent to the interfaces are corrected by
the differences between the coarse-grid and fine-grid fluxes across
the interfaces. These corrections ensure conservation of conserved
quantities to machine precision in pure hydrodynamic simulations
(see the next section for the case with self-gravity).

2.3 Gravity

Gravitational potential is evaluated by solving the discretized Pois-
son equation subject to given boundary conditions. GAMER-2 sup-
ports both periodic and isolated boundary conditions for gravity.
On the root level, we use the standard fast Fourier transform (FFT)
method with the FFTW package (Frigo & Johnson 2005) to convolve
mass density with a proper Green’s function in k-space and then
transform back to get real-space potential defined at the cell centres.
For periodic boundary conditions, the Green’s function corresponds
to a second-order finite-difference representation of the Laplacian
operator (Hockney & Eastwood 1988). For isolated boundary con-
ditions, the Green’s function takes into account proper zero-padding
in the real space (Eastwood & Brownrigg 1979), which is equiva-
lent to regarding all cells as point masses and solving their pairwise
potential.

The gravitational potential in refined regions is calculated by
solving the discretized Poisson equation with the Laplacian opera-
tor replaced by its second-order finite-difference equivalent. We set
the potential boundary conditions by interpolating from the coarse
patches using quadratic interpolation in space (and linear interpola-
tion in time when adopting the adaptive time-step integration), and
then use relaxation methods to solve the discretized Poisson equa-
tion to machine precision. GAMER-2 by default uses the successive
over-relaxation (SOR; Press et al. 2007) method. See Section 3.1
for more discussions.

We calculate the gravitational potential of different patches on
the same refinement level independently in the sense that we do
not exchange solutions between nearby patches during the relax-
ation. This approach leads to a significantly more efficient par-
allelization compared to the multilevel Poisson solver adopted in
GAMER-1, mainly because all patches on the same level can be up-
dated simultaneously. Moreover, it can be applied straightforwardly
to the adaptive time-step integration since no correction from fine

MNRAS 481, 4815–4840 (2018)
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Figure 2. 2D example of the active and buffer zones adopted in the Poisson
solver used for refined regions. For each patch with 82 active zones (central
black-filled circles), we add five additional buffer zones (open and grey-
filled circles) around it to make the potential smoother across the patch
boundaries. The outermost cells (grey-filled circles) provide the boundary
conditions which are fixed during the SOR iterations. Buffer zones are only
temporarily allocated for the patches being updated and are discarded after
being used for evaluating both the potential and acceleration in the active
zones.

to coarse grids is required. However, it also results in numerical
errors accumulated on patch boundaries, including the interfaces
between patches both on the same level and on different levels (e.g.
Huang & Greengard 1999; Martin & Colella 2000; Ricker 2008).
To partially alleviate this problem, we add five additional buffer
zones around each patch (see Fig. 2) and perform relaxation for the
entire (8 + 2 ∗ 5)3 = 183 grid, with the outermost cells being fixed
during the iterations. These buffer zones are only temporarily allo-
cated for the patches being updated and are discarded after used for
evaluating both potential and acceleration in the active zones. This
approach is found to substantially reduce errors on patch boundaries,
though not completely eliminate them. See Appendix A for details.
The comparisons with other codes based on realistic astrophysical
applications show satisfactory results (see Section 4). More com-
plicated schemes dedicated to AMR simulations (e.g. Ricker 2008)
will be investigated in the future. Also note that although solving a
large 183 grid for each 83 patch might, at first glance, seem to have
a great impact on the performance, experiments show that our GPU
Poisson and hydrodynamic solvers achieve similar performance
(see Section 4.1).

Gravity is coupled to hydrodynamics in an operator-unsplit
predictor-corrector approach identical to that implemented in AREPO

(Springel 2010) and described by Müller & Steinmetz (1995), which
is second-order accurate. First, we invoke the original hydrody-
namic solver with the half-step prediction of velocity incorporating
gravity defined at the beginning of the time-step. This gives us the
proper mass density at the end of the time-step, from which we can
update gravity. With the gravity both at the beginning and end of
the time-step in hand, we can correct momentum and then use the
corrected momentum to further correct energy, which completes
the second-order accurate updates of all fluid variables. Note that
this procedure requires only one invocation of Poisson solver per
time-step.

For a given potential field, we evaluate the gravitational accel-
eration at the cell centres via either two- or four-point central dif-
ferencing along each direction. It can incorporate a user-defined,

time-dependent external acceleration. Note that the conservation
of total momentum and energy are prone to truncation errors when
self-gravity is included since it is not implemented in a conservative
form (see e.g. Jiang et al. 2013).

2.4 Particles

GAMER-2 supports evolving active particles. We adopt the standard
‘kick-drift-kick’ (KDK) instead of ‘drift-kick-drift’ (DKD) integra-
tor, since the former requires the gravitational acceleration at the
beginning and end of each time-step that is more consistent with
the way we incorporate gravity into hydrodynamic solvers (see
Section 2.3). Particles are associated with leaf patches and updated
together with these patches. They can be dynamically created (e.g.
for star formation) or removed (e.g. for those leaving the compu-
tational domain) at runtime. The built-in particle attributes include
mass, positions, velocities, accelerations, and time. We store the
accelerations of each particle to avoid redundant computations as-
sociated with the two kick operators in the KDK scheme. We also
record the physical time of each particle since, for the adaptive
time-step integration, particles are not guaranteed to be synchro-
nized with the associated leaf patches, which will be discussed
shortly. Particles can also carry an arbitrary number of additional
attributes (e.g. metallicity fraction).

When adopting the adaptive time-step integration, particles mov-
ing across coarse-fine interfaces (after the ‘drift’ operator) need to
be treated with special care, since the coarse level is updated before
the fine level and with a larger time-step. First, for particles moving
from coarse to fine patches, we always use the coarse-grid gravity
for the next kick operator to avoid temporal extrapolation on the
potential. Second, particles may not be synchronized with their new
associated leaf patches after moving across coarse-fine interfaces.
For particles moving from coarse to fine patches, their physical time
is always ahead of the time associated with the new host patches.
On the other hand, for particles moving from fine to coarse patches,
their physical time may be behind the time of the new host patches.
To solve this issue, we record the physical time of all particles so
that we can synchronize each particle and its host patch in time by
taking into account their small time interval differences during the
next particle update. It also allows us to ‘predict‘ particle positions
at any given time when required (e.g. for assigning particle mass
onto grids as discussed below).

Particles and fluid share the same gravitational force. Since
GAMER-2 adopts a grid-based gravity solver, one needs to not only
deposit particles onto grids to get the total mass density for the
Poisson solver, but also interpolate the cell-centred accelerations
to particle positions. We have implemented the standard nearest-
grid-point, cloud-in-cell (CIC), and triangular-shape cloud schemes
(Hockney & Eastwood 1988) for this purpose. Special care needs
to be taken when assigning the buffer-zone densities (i.e. the open
circles in Fig. 2) outside the coarse-fine interfaces of fine patches.
Instead of depositing particle mass onto coarse grids and then per-
forming spatial interpolation, we deposit particles onto the buffer
zones of fine patches directly. This approach avoids the possibility
of double counting particles adjacent to the coarse-fine interfaces.
In addition, for the adaptive time-step scheme, particles collected
from both higher and lower levels need to be synchronized with the
targeted level before mass deposition.

There are several limitations in the current implementation of
particles. (i) Tracer particles following the motion of fluid are not
supported. (ii) Comoving coordinates for cosmological simulations
are not supported. (iii) There can only be a single particle type in
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the sense that the number of particle attributes must be the same
for all particles. These restrictions will be removed in the near
future.

2.5 Chemistry and radiative processes

GAMER-2 supports multispecies hydrodynamics and has incorpo-
rated the publicly available GRACKLE3 chemistry and radiative cool-
ing/heating library (Smith et al. 2017). GRACKLE supports both a
non-equilibrium solver with 6–12 species and a tabulated cooling
function assuming ionization equilibrium for the primordial chem-
istry and cooling. It also includes other features such as tabulated
metal cooling, photoelectric heating from dust, effective cosmic
microwave background (CMB) temperature floor, and various ul-
traviolet (UV) background models. See Smith et al. (2017) for
details.

When updating a given AMR level, we transfer the species den-
sity and internal energy of a fixed number of patches to GRACKLE at
a single time. It then evolves the chemical network with a semi-
implicit method (for the non-equilibrium solver), computes the
radiative cooling and heating rates, and updates the gas internal
energy on a cell-by-cell basis. The integrations are subcycled since
the characteristic time-scales of chemistry and radiative processes
could be much smaller than those of hydrodynamics and parti-
cles. We adopt an operator-split approach to couple the radiative
cooling and heating as energy source terms to a hydrodynamic
scheme.

2.6 Time-step

GAMER-2 adopts various time-step criteria listed below:

�tCFL1 <= CCFL
�h

max(|vx |, |vy |, |vz|) + cs
, (1)

�tCFL2 <= CCFL
�h

|vx | + |vy | + |vz| + 3cs
, (2)

�tacc <= Cacc

(
�h

max(|ax |, |ay |, |az|)
)1/2

, (3)

�tpar <= Cpar
�h

max(|vpar,x |, |vpar,y |, |vpar,z|) , (4)

where �h is cell spacing. For simplicity, here we assume that all
cells are cubic. CCFL, Cacc, and Cpar are the safety factors with typical
values of ∼0.5.

Equations (1) and (2) specify the Courant–Friedrichs–Lewy
(CFL) condition of hydrodynamic schemes, where vx, vy, and vz

are the fluid velocities and cs is the sound speed. Equation (1) ap-
plies to the RTVD and CTU schemes and equation (2) applies to
the MHM and VL schemes. Note that the CTU scheme in GAMER-
2, which invokes six Riemann solvers per cell per time-step, re-
quires CCFL ≤ 0.5, while the other three schemes support CCFL

≤ 1.0. Equation (3) takes into account the accelerations result-
ing from both self-gravity and external forces, where ax, ay, and
az are the accelerations of both fluid and particles. Equation (4)
prevents particles from travelling more than one cell width in a sin-
gle time-step, which is important for both improving accuracy and
simplifying particle manipulation.

3https://grackle.readthedocs.io

For the shared time-step integration, we evaluate the time-step
constraints of equations (1)–(4) on all levels and take the mini-
mum value. For the adaptive time-step integration, we only need to
evaluate these constraints for the patches and particles on a given
AMR level, with an additional constraint that the physical time on a
child level cannot be ahead of that on its parent level. Moreover, as
mentioned in Section 2.1, we allow the minimum time-step deter-
mined from equations (1)–(4) to vary by a small fraction (typically
∼10 per cent) to help synchronize adjacent levels. Finally, as men-
tioned in Section 2.2, we further reduce the time-step by a fixed ratio
(0.8 by default) if the previously adopted time-step led to unphysical
results in the hydrodynamic solver.

2.7 Miscellaneous features

2.7.1 Bitwise reproducibility

GAMER-2 supports bitwise reproducibility, in the sense that the
round-off errors can be guaranteed to be the same when (i) run-
ning simulations with different numbers of message passing in-
terface (MPI) processes and OpenMP threads (see Section 3.2),
and (ii) restarting simulations from checkpoint files. This is a non-
trivial task for any parallel AMR code, especially with particles,
since the order of all floating-point operations needs to be carefully
designed to be deterministic. Specifically, GAMER-2 performs the
following additional calculations when bitwise reproducibility is
demanded:

(i) Recalculate gravitational potential before writing snapshots if
the potential data are not stored on disc. This ensures that the po-
tential and total mass density are fully consistent with the adopted
Poisson solver, which otherwise is not strictly guaranteed, for ex-
ample in non-leaf patches after applying the fine-to-coarse data
averaging (i.e. the ‘restriction’ operation; see Section 2.2) and in
newly allocated patches whose potential data are initialized by in-
terpolation instead of Poisson solver.

(ii) Ensure that the differences between the coarse- and fine-grid
fluxes across the coarse-fine interfaces (which are used in the flux
correction; see Section 2.2) are computed in a deterministic order
even when the coarse- and fine-grid fluxes are calculated separately
by different MPI processes.

(iii) Ensure that the average total mass density in the entire com-
putational domain, which is required when solving the Poisson
equation in the comoving coordinates, is calculated in a determin-
istic order.

(iv) Sort particles in the same patches by their spatial coordinates
before mass deposition.

(v) Use the static OpenMP scheduling when necessary.

Note that, in general, GAMER-2 does not support bitwise repro-
ducibility for simulations requiring random numbers. However, it
is achievable, for example, by having random number seeds be a
function of time and patch coordinates. We have implemented it
in the stochastic star formation model adopted in the isolated disc
galaxy simulations described in Section 4.4.

Bitwise reproducibility is important for scientific reproducibility
and very helpful for debugging. However, it can also deteriorate
performance, especially for simulations requiring a large number of
particles due to the extra particle sorting. Therefore, we implement
this feature as a compile-time option, and disable it throughout
Section 4. Also note that the bitwise reproducibility addressed here
does not apply to the results using different processors (e.g. different
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CPUs or GPUs), different compilers, or even different compilation
flags.

2.7.2 Data analysis

GAMER-2 supports two file formats for writing simulation snapshots:
a simple binary format and HDF5.4 HDF5 is our preferred format
as it is more extensible, portable, and easier for post-processing. We
currently store each snapshot into a single file and have different
MPI processes dump data serially. Writing data in parallel and into
multiple files will be investigated in the future. Snapshots in both
formats can be used for restarting simulations and can be loaded in
parallel.

The HDF5 snapshots of GAMER-2 can be loaded by YT5 (Turk
et al. 2011), a powerful, publicly available, PYTHON-based package
for analysing and visualizing volumetric data. YT supports multi-
ple simulation codes (e.g. FLASH and ENZO), which is indispens-
able for this work as it provides direct and fair comparisons be-
tween the simulation results of different codes. It also allows one to
share the data analysis scripts to the community straightforwardly,
which greatly improves the scientific reproducibility. In addition,
for conducting inline analysis, we are experimenting with libyt,6

a runtime interface for passing in-memory GAMER-2 data structures
to YT.

To help monitor the simulation status, GAMER-2 supports record-
ing a rich set of simulation information after each root-level update
(i.e. after all levels are synchronized), which can be used as diag-
nostics during as well as after the simulations:

(i) Detailed timing analysis of all major routines (such as hydro-
dynamics, gravity, particles, MPI, etc.).

(ii) Maximum and average memory consumption per MPI pro-
cess.

(iii) Overall performance in terms of total cell updates and parti-
cle updates per second.

(iv) Number of patches and particles on each level.
(v) Estimation of load imbalance.
(vi) Errors in the conserved quantities (e.g. gas mass and

momentum).
(vii) Message size and achieved bandwidth in various MPI calls.
(viii) Evolution time-steps on each level estimated from various

constraints (see Section 2.6).

2.7.3 Test problem infrastructure

The test problem infrastructure in GAMER-2 is designed in a way
that each problem is self-contained and largely decoupled from
the complicated AMR structure and parallelization. To add a new
simulation, in most cases, one does not have to touch the exist-
ing source code (except for defining a new problem identifica-
tion). Instead, one creates a new problem directory and specifies
the gas and particle initial conditions therein. The gas quantities
can either be set by an analytical function of space and time or
loaded from a binary file with a uniform-resolution array. The par-
ticle attributes can also either be set dynamically or loaded from a
binary file. In addition, one can specify various problem-specific
runtime parameters and functionalities, for instance, refinement

4https://support.hdfgroup.org/HDF5
5http://yt-project.org
6https://bitbucket.org/data-exp-lab/libyt

criteria, time-step constraints, boundary conditions, and external
accelerations.

2.7.4 AMR + GPUs framework

Although GAMER-2 is mainly designed for astrophysical hydrody-
namic simulations, it can also be adopted as a high-performance,
multiscience AMR framework powered by multi-GPU acceleration
(Shukla et al. 2011). It is because the AMR structure, parallelization,
and performance optimizations (see Section 3) are implemented
carefully to be largely independent of the partial differential equa-
tions (PDE) being solved. As a successful example, the code has
been extensively used for the wave dark matter (ψDM) simula-
tions (Schive, Chiueh & Broadhurst 2014a; Schive et al. 2014b;
De Martino et al. 2017), where we solve the Schrödinger–Poisson
equation by replacing the hydrodynamic solver with a quantum-
mechanical kinematic energy solver and by reusing the same Pois-
son solver. The detailed implementation of this work will be de-
scribed elsewhere (Schive et al., in preparation).

3 PE R F O R M A N C E O P T I M I Z AT I O N S

In this section, we focus on various performance optimization
strategies in GAMER-2, including the GPU implementation, hybrid
MPI/OpenMP/GPU parallelization, load balancing, and memory
management.

3.1 GPU implementation

We use CPUs to manipulate the AMR data structure and only port
the time-consuming routines to GPUs, currently including the hy-
drodynamic solvers, Poisson solvers, and time-step calculations.
This approach takes advantage of both CPUs and GPUs, allowing
a substantial performance improvement compared to a calculation
using only CPUs without sacrificing the flexibility and extensibility
of the code. In addition, it allows us to store all the data in the CPU
memory and only temporarily transfer a small portion of data to the
relatively small GPU memory. We use CUDA (NVIDIA 2017) as
the GPU programming interface.

We have implemented all the hydrodynamic solvers mentioned
in Section 2.2 on GPUs, namely, the RTVD, MHM, VL, and CTU
schemes. See Schive et al. (2010) and Schive et al. (2012) for the
detailed implementation. Note that the RTVD scheme takes ad-
vantage of the fast GPU shared memory, while the others only
use the GPU global memory, since the latter schemes are dimen-
sionally unsplit which makes using the small shared memory less
straightforward. However, we still find that the MHM, VL, and
CTU schemes achieve significantly larger performance speedups
compared to the RTVD scheme, conceivably because the Riemann-
solver-based schemes have much higher arithmetic intensity and
thus are more GPU-friendly. See Section 4.1 for the performance
benchmarks of various CPU and GPU solvers.

The SOR solver mentioned in Section 2.3 has been ported to
GPUs. We have abandoned the complicated scheme implemented
in GAMER-1 that utilizes both the fast GPU shared memory and the
per-thread registers to reduce the shared memory usage. Modern
GPUs have a significantly larger shared memory (at least 48 KB
per multiprocessor), and thus we can simply store the gravitational
potential of the entire 183 grid into the shared memory to boost
the performance. To reduce the communication between CPUs and
GPUs, we transfer the coarse-grid potential to GPUs, and then
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perform spatial interpolation on the GPU to set both the boundary
conditions and initial guess of the potential solution for subsequent
iterations. Obtaining an initial guess of the potential on the entire
183 grid, although unnecessary, accelerates convergence. Also note
that we calculate the cell-centred gravitational acceleration and use
that to update fluid variables on GPUs immediately after solving
the potential, which helps reduce the amount of data transferred
between CPUs and GPUs.

We also use GPUs to compute the time-step constraints on grids,
i.e. equations (1)–(3), which otherwise would take a surprisingly
large fraction of simulation time (e.g. see the timing results of
various operations shown in the end of Sections 4.3.3 and 4.4.3).
However, currently we have not ported any particle routines to
GPUs, which will be investigated in the future.

GAMER-2 stores all the data on the CPU’s main memory, includ-
ing both the AMR structure and physical data, and only sends the
data of patches being updated to GPUs. Moreover, when updating
a given level, it is usually unnecessary to transfer all patches on this
level to GPUs as long as the performance has saturated. Therefore,
the GPU memory consumption can be greatly reduced, and, more
importantly, is largely independent of the simulation scale. How-
ever, one drawback of this approach is that we need to transfer data
between CPUs and GPUs frequently, which can be expensive. To
mitigate this issue, we utilize CUDA streams (NVIDIA 2017) to
overlap CPU–GPU communication by both CPU and GPU compu-
tations (see fig. 5 in Schive et al. 2010 for an illustration), which
can lead to a factor of 2 speedup in the GPU solvers (see Sec-
tion 4.1). In addition, as a result of the octree data structure, we can
always group eight sibling patches that share the same parent into a
larger grid (referred to as a ‘patch group’). Manipulating on patch
groups instead of individual patches reduces both the computation
and communication overhead associated with the ghost zones of
each patch.

All GPU solvers in GAMER-2 support single and double precision,
as a compile-time option. On high-end GPUs (e.g. P100 and V100),
single-precision performance is about 2 times faster than double-
precision performance, but this ratio can be noticeably higher on
older GPUs. We typically find that single precision provides a sat-
isfactory accuracy, as demonstrated in the comparison simulations
shown in Sections 4.3.3 and 4.4.3, except for applications requir-
ing either an extremely large dynamic range or resolving extremely
small perturbations. Therefore, we adopt single precision through-
out this paper unless otherwise specified.

3.2 Hybrid MPI/OpenMP/GPU

In GAMER-2, only the most time-consuming routines are ported to
GPUs, and the code still uses CPUs extensively for various tasks,
including, for example, manipulating the AMR structure, checking
the grid refinement criteria, depositing particle mass onto grids,
and updating particle attributes. Moreover, even for those GPU-
accelerated routines, we still need to use CPUs to collect data from
different patches and fill the ghost zones of each patch (or patch
group) by either copying directly from sibling patches or interpo-
lating from coarse patches. Therefore, it is essential to efficiently
exploit both the CPU and GPU computing power in order to achieve
optimal overall performance.

To this end, we have implemented a hybrid MPI/OpenMP/GPU
parallelization model. In addition to the GPU acceleration described
in the previous section, we further adopt OpenMP for intranode
parallelization of all time-consuming CPU routines and MPI for
internode communication. Fig. 3 shows an illustration. This ap-

proach allows the code to fully exploit the computing power in
heterogeneous CPU/GPU supercomputers. Moreover, the hybrid
MPI/OpenMP implementation can significantly improve the par-
allel scalability by reducing the amount of MPI communication,
especially when using a large number of nodes. It can also reduce
the CPU memory overhead associated with MPI buffers.

Note that the GRACKLE library used for solving chemistry and
radiative processes also supports OpenMP (Smith et al. 2017), and
therefore can be easily incorporated into the hybrid MPI/OpenMP
parallelization model adopted here. A GPU-accelerated version of
GRACKLE is under development.

To boost the performance further, we have utilized the asyn-
chronous feature of GPU kernels to let CPUs and GPUs work con-
currently. Specifically, we divide all patches on a given level to
several subsets, and use CPUs to prepare the input data of one sub-
set and GPUs to update a different subset simultaneously. See fig. 9
in Schive et al. (2010) for an illustration. The number of patches in
a single subset is chosen to saturate the GPU performance (see Sec-
tion 4.1) and is set by default to the product of the number of CUDA
streams and the number of multiprocessors in the adopted GPU. We
find that substantial performance improvement up to a factor of 2
can be achieved by this approach, especially for simulations where
the CPU and GPU computation times are comparable.

There is no restriction on the number of MPI processes per node
and the number of OpenMP threads associated with each MPI pro-
cess. Typically, we set the number of MPI processes equal to the
total number of GPUs, and then determine the number of OpenMP
threads from the ratio between CPU cores and GPUs. However,
empirically we have found that launching multiple MPI processes
to access the same GPU using the CUDA Multi-Process Service
(MPS) can improve the performance. It is also important to take into
account thread affinity and non-uniform memory access (NUMA).
Generally, it is recommended to have OpenMP threads running in
the same NUMA domain to improve memory affinity. But one needs
to experiment with different configurations to fine-tune the overall
performance.

Note that GAMER-2 can also run in a ‘CPU-only’ mode, since
for all GPU solvers we have implemented their CPU counter-
parts. These ‘CPU’ solvers are parallelized with OpenMP, with
different threads calculating different patches (or patch groups).
This parallelization method is found to be very efficient since the
computational workload associated with each patch is not only
balanced (when disregarding particles) but also generally much
larger than the OpenMP overhead. Moreover, the same MPI im-
plementation can be applied to both GPU-accelerated and CPU-
only simulations. Therefore, GAMER-2 is also suitable for CPU-
only supercomputers, particularly for those with a larger number
of cores per node (e.g. Intel Xeon Phi Knights Landing; KNL), for
which hybrid MPI/OpenMP is essential to get optimal performance.
We will further investigate and optimize this promising feature
in the future.

3.3 Load balancing

Load balancing is crucial for parallel scalability. For a given level,
we use a Hilbert space-filling curve to map the three-dimensional
(3D) coordinates of all patches on this level onto a 1D curve. We
assign a weight to each patch, which estimates its computational
workload, and then cut the curve into Nprocess segments with ap-
proximately equal weights, where Nprocess is the total number of
MPI processes. Load balancing can then be achieved by having dif-
ferent MPI processes calculate patches on different curve segments.
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Figure 3. Illustration of the hybrid OpenMP/GPU parallelization in a single MPI process. Left-hand panel: flowchart of the main loop for evolving a given
AMR level l, where dashed boxes are CPU-only operations parallelized with OpenMP and solid boxes are GPU-accelerated solvers. Right-hand panel:
procedure for invoking a GPU solver, such as computing �t and solving hydrodynamics and gravity as indicated in the left-hand panel. Dashed boxes are
CPU-only operations parallelized with OpenMP (see Section 3.1 of Schive et al. 2010 for the definitions of CPU preparation and closing steps) and solid
boxes are GPU-related operations. Note that both the GPU kernel execution and CPU–GPU communication are asynchronous and can be overlapped with
CPU computation as long as they are targeting different patches. See also figs 5 and 9 in Schive et al. (2010).

Since some PDE solvers use patch groups (a patch group is de-
fined as the set of eight sibling patches that have the same parent
in the octree data structure) instead of patches as the basic unit
(e.g. hydrodynamic solvers), we require the eight patches belong-
ing to the same patch group to be located in the same MPI process.
However, we do not require parent and child patches to be located
in the same process, which allows patches on different levels to
be distributed on different MPI processes in a completely indepen-
dent fashion. Accordingly, we can adopt different and independent
Hilbert curves on different levels and then use the Hilbert curve
of a given AMR level to assign unique 1D indices for all patches
on that level. By doing so, the load balancing can be achieved on
a level-by-level basis. This feature is particularly important for the
adaptive time-step integration, since in that case patches on different
levels in general cannot be evolved simultaneously. In addition, the
Hilbert curve mapping between 3D and 1D space preserves locality,
meaning that, in general, patches close along a 1D curve are also
close in 3D space. This property reduces MPI communication and
thus is very important for achieving higher parallel scalability.

We do not duplicate the entire AMR hierarchy on each MPI
process. Instead, for each process, we only allocate its ‘real’ patches
that store the physical data (i.e. fluid variables and particles) to be
updated by this process, and the ‘buffer’ patches necessary for
filling the ghost zones of these real patches by either direct copy
or interpolation. Specifically, for each real patch, we examine its
sibling, parent, and parent–sibling patches (i.e. sibling patches of a
parent patch), and allocate the corresponding buffer patches locally
if any of these patches exist in the complete AMR hierarchy but do
not live on the same MPI process as the targeted real patch. These
buffer patches allow each process to correctly identify the nearby
AMR structure (e.g. finding the coarse-fine interfaces) and to retain
a copy of physical data received from other MPI processes for filling
the ghost zones of real patches. By avoiding duplication of the entire
AMR hierarchy, we can reduce CPU memory consumption and

improve parallel scalability, particularly when running extremely
large parallel simulations.

For the simulations without particles, it is relatively straight-
forward to achieve good load balancing since the computational
workloads of different patches are roughly the same. However, it
becomes much more challenging when particles are involved, not
only because different patches now may have different workloads
due to the different numbers of particles associated with them, but
because there may be unavoidable MPI synchronization between
grid and particle routines. See Fig. 4 for an illustration. To partially
alleviate this problem, we assign a relative weight to each particle,
Wpar, which is normalized to the weight per cell, when estimating the
total weight of each patch for load balancing. Moreover, we arrange
the order of various grid routines (e.g. hydrodynamic and gravity
solvers), particle routines (e.g. mass deposition and particle update),
and MPI communication (e.g. filling the grid data of buffer patches
and transferring particles between neighbouring patches) carefully
so as to minimize the MPI synchronization between grid and parti-
cle routines. We typically adopt Wpar = 1.0–2.0. The optimal value
depends on the adopted physics, for example, whether or not the
radiative library GRACKLE is included. See Sections 4.3.3 and 4.4.3
for some comparisons between the simulation performance with
and without applying these optimizations. Also note that chemistry
and radiative cooling/heating (e.g. when using GRACKLE) may also
lead to widely different costs from cell to cell and deteriorate load
balancing.

Note that, when estimating the load-balancing weight of a non-
leaf patch, it is necessary to take into account all particles occupying
the same space as this targeted patch, even though these particles
live on leaf patches. It is because we still need to temporarily transfer
the masses and positions of particles from leaf to non-leaf patches
when calculating the total mass density on a lower level. Ignoring
the weights of higher level particles may result in an undesirable sit-
uation where a large fraction of particles are temporarily transferred
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Figure 4. Illustration of load balancing in the simulations with particles.
Open and filled rectangles represent the computational workloads associated
with grids and particles, respectively. Case (a) does not take into account
particle weights, and thus the total workloads of two MPI processes are im-
balanced. Case (b) considers both grid and particle weights. However, there
is an undesirable MPI synchronization between grid and particle routines,
leading to even worse performance compared to case (a). Case (c) further
eliminates this MPI synchronization and gives the optimal performance.

to a small fraction of MPI processes when depositing particles onto
lower level grids, which could lead to severe load imbalance and
memory exhaustion. See also Section 5 for a possible alternative
solution.

Also note that it may be impossible to completely eliminate the
MPI communication between grid and particle routines. For exam-
ple, after updating particle positions, one must transfer the particles
moving across patch boundaries to neighboring patches before in-
voking the Poisson solver. We will investigate other more advanced
approaches, for example, using MPI non-blocking communication
(e.g. ENZO; Bryan et al. 2014) or task-based parallelism model (e.g.
ATHENA+ + 7) in the future.

As a side note, we reuse large MPI send and receive buffers when
applicable. In other words, we do not deallocate these buffers after
performing an MPI communication. Instead, we reuse them for the
next communication provided that their sizes are large enough. We
find that this approach improves the achieved bandwidth in some
circumstances.

3.4 Memory management

AMR simulations require allocating and deallocating grids and
rebuilding the data structure frequently, which can easily lead to
memory fragmentation that deteriorates performance and exhausts
memory. GAMER-2 supports using a local memory pool for each
MPI process to solve this problem. However, unlike conventional
methods, it does not require pre-allocating this memory pool. In-
stead, it relies on the reuse of allocated memory. Specifically, when
removing patches from the AMR hierarchy after the derefinement
operation, we simply mark these patches as ‘inactive’ but do not ac-
tually free the memory associated with them. These inactive patches
can then be ‘reactivated’ later to serve as new patches, which can be

7http://princetonuniversity.github.io/athena

either real or buffer patches, after the refinement operation. In com-
parison to the method of pre-allocating a large memory pool (which
is also supported in GAMER-2), this approach is more flexible since
it eliminates the need for users to guess in advance the maximum
number of patches required. On the contrary, the size of the memory
pool will be adjusted automatically to fit the requirement.

We also allocate a separate memory pool for each MPI process
to store all particle attributes, and have leaf patches only record the
particle indices associated with them. By doing so, when particles
moving between patches living on the same MPI process, we only
have to update the particle index list of relevant leaf patches and do
not have to touch the particle memory pool. In addition, for particles
travelling to different host processes, we simply mark these particles
as ‘inactive’ in their original host processes but do not actually free
the memory associated with them, which is similar to the method
adopted in the grid memory pool. These inactive particles can then
be reactivated later to represent, for example, particles migrating
from other processes or new particles triggered by star formation.
Moreover, to further minimize memory management due to particle
movement, we pre-allocate small memory buffers (10 per cent of
the total number of particles tracked by a given MPI process by
default) for both the particle memory pool and the particle index
list of each leaf patch. For example, for a process owning 1000
particles, we can pre-allocate a particle memory pool with the size
of 1100 particles to reduce frequent memory reallocation caused by
the migration of a small number of particles. Also note that the size
of the particle memory pool will be adjusted automatically based
on the number of particles currently hosted by each process, and
thus users do not have to guess in advance the maximum number of
particles per process during the entire simulation.

The ghost zones associated with each patch can lead to severe
memory overhead. For example, the CTU scheme with PPM re-
construction needs three ghost zones. Accordingly, for a patch con-
sisting of 83 cells, the total memory consumption including the
ghost zones is ∼5.4 times larger than that without the ghost zones.
To solve this problem, GAMER-2 does not permanently allocate the
ghost zones of all patches. Instead, it only temporarily allocates the
ghost zones for the patches being transferred to GPUs, the number
of which can be fixed (typically a few thousand) and is independent
of the simulation scale. This approach also solves the issue of the
relatively small GPU memory since the code does not need to send
all patches to GPUs at a single time.

4 C ODE TESTS

In this section, we conduct various tests to demonstrate the per-
formance and accuracy of GAMER-2. Since the numerical algo-
rithms of GAMER-2 (see Section 2) have been tested extensively
by many astrophysical codes (e.g. Fryxell et al. 2000; Stone et al.
2008; Bryan et al. 2014), we do not repeat the analysis of these
standard numerical tests here (see however, Schive et al. 2010;
Schive et al. 2012 for the standard tests conducted previously).
Instead, we directly compare GAMER-2 with two widely adopted
codes, namely, FLASH (Fryxell et al. 2000) and ENZO (Bryan et al.
2014), based on more complicated and realistic astrophysical appli-
cations, which arguably provides much more direct and convincing
results.

This section is organized as follows. We first measure the perfor-
mance of individual GPU solvers (Section 4.1) and the weak scaling
with and without AMR in a 3D Kelvin–Helmholtz (KH) instability
test (Section 4.2). We then compare the accuracy and strong scal-
ing performance of GAMER-2 with FLASH in binary cluster merger
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simulations (Section 4.3), and with ENZO in isolated disc galaxy
simulations (Section 4.4).

4.1 Performance of GPU solvers

The key feature of GAMER-2 is GPU acceleration. So we first mea-
sure the performance of individual GPU solvers, which is largely
independent of the adopted test problems. This performance in-
cludes the time of transferring data between CPU and GPU but
excludes the time of all other CPU operations related to AMR and
MPI communication. It thus represents the optimal performance of
GAMER-2, which can only be approached in certain particular cases
(e.g. large uniform-grid simulations) according to Amdahl’s law
(Amdahl 1967). This information can be useful for assessing the
performance deterioration in more complicated simulations.

Fig. 5 shows the performance in cell updates per second for
individual GPU solvers and their CPU counterparts using exactly
the same numerical schemes. The performance is measured on a
Blue Waters XK node with an NVIDIA Tesla K20X GPU and a
16-core AMD Opteron 6276 CPU. We also measure the perfor-
mance on an NVIDIA Tesla P100-PCIe GPU. The key findings can
be summarized as follows.

(i) The K20X GPU is measured to be 27 and 8 times faster
than the 16-core CPU for the hydrodynamic and Poisson solvers,
respectively. Furthermore, the P100 GPU is measured to be
2.3–3.0 times faster than the K20X GPU, achieving ∼2 ×
108 cells s−1 in all three solvers.

(ii) The GPU performance already begins to saturate when up-
dating only ∼106 cells at a time. It is typically much smaller than
the total number of cells computed by each MPI process in a real
astrophysical application, suggesting that we only need to transfer
a small fraction of cells to GPU at a time to fully exploit the GPU
acceleration. This important property allows for (1) efficient over-
lapping between CPU and GPU computations (see Section 3.2) and
(2) efficient overlapping between CPU–GPU communication and
CPU/GPU computations.

(iii) The GPU performance increases by a factor of 2 by taking
advantage of the asynchronous data transfer between CPU and GPU
with CUDA streams. The performance saturates when using more
than ∼10–20 streams.

(iv) The GPU hydrodynamic and Poisson solvers exhibit com-
parable performance (∼5 × 107–2 × 108 cell updates per second).

(v) The performance of CPU hydrodynamic solvers seems to be
relatively low compared to other codes, for example, ATHENA and
RAMSES, partially because of the different CPU and the smaller patch
size (83 cells) adopted in this work. More quantitative comparisons
and further optimizations will be investigated.

The small patch size (83 cells) adopted throughout this paper
results in a considerable computational overhead associated with
the ghost zones of each patch (although it allows for more flexible
grid refinement and efficient load balancing). Increasing the patch
size to 163 cells is found to improve the performance of the hydro-
dynamic GPU solvers by ∼20 per cent. In addition, compared to
the single-precision performance, adopting double precision on the
P100 GPU is measured to be 2.1 and 2.6 times slower for the hy-
drodynamic and Poisson solvers, respectively. The Poisson solver
shows greater performance degradation due to the larger number
of iterations required to converge to the machine precision and the
limited amount of GPU shared memory.

4.2 Weak scaling

We now measure the overall performance of GAMER-2, starting by
showing the weak scaling from a 3D KH instability test. The weak
scaling is useful for demonstrating algorithmic scalability and is
particularly important for uniform-grid simulations, for example, in
the study of non-gravitating turbulence.

The simulation setup is as follows. Each node computes a periodic
domain of unit length on a side. We set the gas density ρ = 2 and
velocity vx = 0.5 in the regions z < 0.25 and 0.5 < z < 0.75
and have ρ = 1 and vx = −0.5 otherwise, leading to four surfaces
of contact discontinuities per node. Velocity perturbations with an
amplitude of 10−2 and a white noise spectrum are added along all
three directions to trigger the instabilities and make it a 3D test. The
gas has a uniform pressure P = 2.5 and an adiabatic index γ = 1.4.
All simulations are conducted from t = 0 to 0.5. We adopt the CTU
scheme with PPM reconstruction and Roe’s solver.

We measure the performance of both uniform-grid and AMR
simulations using 1–4096 nodes on Blue Waters, where we use one
MPI process and 16 OpenMP threads per node. For the uniform-
grid test, each node computes a 6403 grid, resulting in an overall
resolution as high as 10 2403 with 4096 nodes. For the AMR test,
each node computes a 1283 root grid with three refinement levels,
where we adopt flow vorticity as the refinement criterion and enable
the adaptive time-stepping. Fig. 6 shows a density slice perpendic-
ular to the shear-flow plane at t = 0.5 in a single node, with the grid
patches overlaid.

Fig. 7 shows the weak scaling of the KH instability test, and
Fig. 8 records the corresponding performance metrics, including
the number of cell updates per second per node, total number of
cells, parallel efficiency, and the fraction of time spent on MPI
communication as a function of the number of nodes. The parallel
efficiency of weak scaling is defined as

Pweak(Nnode) = T (1)

T (Nnode)
, (5)

where T(Nnode) is the simulation wall time using Nnode nodes.
Both the uniform-grid and AMR tests exhibit reasonably good
scalability for Nnode = 1–4096. Note that, thanks to the hybrid
MPI/OpenMP/GPU parallelization, we are able to fully exploit both
4096 GPUs and 65-536 CPU cores simultaneously, and achieve
a peak performance of 8.3 × 1010 cells s−1 and Pweak(4096) =
74 per cent in the uniform-grid test and 4.6 × 1010 cells s−1 and
Pweak(4096) = 58 per cent in the AMR test. A noticeably higher
fraction of time in MPI is found in the case with AMR (see the
lower right panel of Fig. 8), thus partially explaining the relatively
lower parallel efficiency achieved. The total CPU memory con-
sumption for Nnode = 4096 is ∼53 and ∼74 TB for the uniform-grid
and AMR tests, respectively.

4.3 Galaxy cluster merger: GAMER-2 versus FLASH

Mergers play an important role in the formation of galaxy clusters,
driving shocks, and turbulence that heat up the intracluster medium
(e.g. Gaspari & Churazov 2013; Banerjee & Sharma 2014; Lau
et al. 2017), provide additional support against gravity (e.g. Nagai,
Vikhlinin & Kravtsov 2007; Khatri & Gaspari 2016), and accelerate
relativistic particles emitting radio waves (e.g. Brunetti & Lazarian
2007; Eckert et al. 2017). Numerical simulations of the galaxy
cluster merger are challenging partially due to the large dynamic
range required to both capture the large-scale effects of the cluster
merger and to resolve the properties of turbulence down to at least
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4826 H.-Y. Schive et al.

Figure 5. Performance in cell updates per second for individual GPU solvers and their CPU counterparts. The first three panels show the performance of
the hydrodynamic solver with the CTU scheme, PPM reconstruction, and Roe’s solver (upper left), the hydrodynamic solver with the MHM scheme, PLM
reconstruction, and HLLC solver (upper right), and the Poisson solver with the SOR scheme (lower left) as a function of the number of cells updated at a
time. The GPU performance is measured on both NVIDIA Tesla K20X and P100-PCIe GPUs, and the CPU performance is measured on a 16-core AMD
Opteron 6276 processor (using all 16 cores). The P100 GPU achieves a performance of ∼2 × 108 cells s−1 in all three solvers. We also measure the K20X GPU
performance as a function of the number of CUDA streams (lower right), demonstrating a factor of 2 speedup when utilizing the asynchronous data transfer
between CPU and GPU.

Figure 6. Density slice and grid patches in a single node in the KH insta-
bility weak scaling test at t = 0.5.

the kpc scale. The lack of sufficient resolution will produce non-
negligible numerical viscosity that alters the turbulence cascade and
biases the mass estimates of clusters.

Figure 7. Weak scaling for the KH instability test, showing the total number
of cell updates per second as a function of the number of XK nodes on Blue
Waters. Each XK node is composed of one NVIDIA Tesla K20X GPU and
one 16-core AMD Opteron 6276 CPU. We measure the performance of both
uniform-grid (6403 cells per node; solid line) and AMR (1283 root grid per
node with three refinement levels; dashed line) simulations. Note that for the
uniform-grid test with 4096 nodes, we achieve a resolution of 10 2403 cells
and an overall performance of 8.3 × 1010 cells s−1. The dashed–dotted line
represents the ideal scaling. See Fig. 8 for the detailed performance metrics
of this test.
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GAMER-2 4827

Figure 8. Performance metrics of the KH instability weak scaling test. This is complementary to and uses the same symbols as Fig. 7. Different panels show
the number of cell updates per second per node (upper left), total number of cells (upper right), parallel efficiency (lower left), and fraction of time spent on
MPI communication (lower right).

In this section, we conduct cluster merger simulations with both
GAMER-2 and FLASH, and demonstrate that the physical results
produced by the two codes agree very well with each other, and
GAMER-2 outperforms FLASH by almost two orders of magnitude.
We first describe the simulation setup, with particular emphasis on
the similarities and differences of the two codes. We then check the
consistency of the physical results, and finally compare the strong
scaling performance.

4.3.1 Simulation setup

We simulate a head-on merger of two equal-mass clusters for
10 Gyr. The simulation setup is identical to that of ZuHone (2011).
The two clusters have initial separation of 3.1 Mpc and initial
relative velocity of 1352 km s−1. The simulation domain is cu-
bic with a length L = 14.26 Mpc. Each cluster has a virial mass
M200 = 6 × 1014 M� and a gas mass fraction fg = 0.1056. We
adopt an Navarro–Frenk–White (NFW; Navarro, Frenk & White
1996) profile with a concentration parameter c = 4.5 as the total
density profile, and calculate the gas density profile under the as-
sumptions of spherical symmetry, hydrostatic equilibrium, and a
power-law entropy profile. The DM particle velocities are realized
by sampling the velocity distribution function directly via solving
the Eddington formula (Eddington 1916) instead of assuming a
Maxwellian distribution. See ZuHone (2011) for the detailed im-
plementation.

Table 1 summarizes the similarities and differences of the nu-
merical setup adopted by GAMER-2 and FLASH in these comparison
simulations. Here, we elaborate on the major differences.

(i) GAMER-2 adopts an adaptive time-step integration where
higher levels can have smaller time-steps. Moreover, the time-step
ratio between two adjacent levels does not need to be a constant
(see Section 2.1). By contrast, FLASH adopts a shared time-step
integration where all levels share the same time-step.

(ii) GAMER-2 adopts the original CTU scheme (Colella 1990;
Stone et al. 2008) requiring six Riemann solvers per cell per time-
step and CCFL ≤ 0.5. In comparison, FLASH adopts a revised CTU
scheme (Lee 2013) requiring only three Riemann solvers per cell
per time-step and allowing for a larger CFL number CCFL ≤ 1.0,
which in principle should be significantly faster than GAMER-2. We,
however, adopt CCFL = 0.6 for FLASH since it crashed with CCFL >

0.6.
(iii) For the Poisson solver, GAMER-2 uses the SOR scheme and

adds five additional buffer zones around each patch to make the
potential smoother across the patch boundaries (see Fig. 2). In com-
parison, FLASH adopts a finite-volume multigrid scheme that aims
to minimize the global residual (Ricker 2008), which, in general,
should be more accurate but also more computationally expensive.

(iv) Unlike FLASH, GAMER-2 does not implement explicit grid
derefinement criteria (see Section 2.1). However, we have verified
that the grid distribution of the two codes are very similar in this
test (the difference in the numbers of maximum level cells is less
than ∼20 per cent, e.g. see Table 2).

(v) For the floating-point accuracy, GAMER-2 uses single preci-
sion while FLASH uses double precision, because single precision is
not officially supported in FLASH. This discrepancy makes our per-
formance comparison in favor of GAMER-2, which could be unfair
in this sense. However, we also demonstrate in the next section that
the physical results obtained by the two codes are very consistent,
suggesting that double precision may not be necessary for this test.

4.3.2 Accuracy comparison

Fig. 9 shows the slices of gas temperature through the cluster centre
at t = 0.0, 3.3, 6.6, and 10.0 Gyr obtained by GAMER-2 and FLASH.
The first core passage occurs at t ∼ 1.5 Gyr, after which the oscil-
lating DM cores continue driving shocks and turbulence that heat
up the intracluster medium, eventually forming a high temperature
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4828 H.-Y. Schive et al.

Table 1. Comparison of the numerical setup between GAMER-2 and FLASH in the galaxy cluster merger simulations.

GAMER-2 FLASH

AMR implementation Fixed patch size of 83 cells, no permanent allocation for patch ghost zones Fixed patch size of 83 cells, patch ghost zones are allocated permanentlya

Grid resolution Root grid 1283, four refinement levels, maximum resolution �h = 7.0 kpc Same as GAMER-2
Particle resolution Number of particles Np = 5 × 106 (for each cluster) and mass resolution mp = 1.4 × 108 M� Same as GAMER-2
Fluid solver CTU scheme with six Riemann solvers per cell, PPM reconstruction, Roe’s solver, and van Leer

slope limiter
Same as GAMER-2 except for a revised CTU scheme requiring only three Riemann
solvers per cellb

Poisson solver SOR multigridc

Particle solver CIC interpolation and KDK particle update CIC interpolation and variable time-step Leapfrog particle update
Boundary condition Fluid solver: outflow Poisson solver: isolated Same as GAMER-2
Refinement (1) Löhner’s error estimator on gas density, pressure, and temperature with a refinement

threshold of 0.8 and a minimum gas density threshold of 10−28 gcm−3 (2) Maximum number
of particles in a patch: 100

Same as GAMER-2

Derefinement No explicit derefinement criteria (1) Löhner’s error estimator with a derefinement threshold of 0.2 (2) Minimum
number of particles in a patch: 12

Time-step Cpar = 0.8, CCFL = 0.5 Cpar = 0.8, CCFL = 0.6
Parallelization Hybrid MPI/OpenMP/GPU MPI and CPU-only
Load balancing Hilbert space-filling curve Morton space-filling curve
Time integration Adaptive time-step Shared time-step
Floating-point format Single precision Double precision

Notes. aFLASH supports the ‘NO-PERMANENT-GUARDCELLS’ (npg) mode, which however does not work well with active particles. We have therefore disabled this functionality.
bLee (2013).
cRicker (2008).
dSingle precision is not officially supported in FLASH. But we have demonstrated that this discrepancy does not affect the physical results here. See discussions in Sections 4.3.2 and 4.3.3.

Table 2. Comparison of the volume-filling fractions on the refinement levels
between GAMER-2 and FLASH in the lower resolution galaxy cluster merger
simulations at t = 5 Gyr.

Level �h/ kpc Filling fraction Number of cells
GAMER-2
(per cent)

FLASH

(per cent) GAMER-2 FLASH

1 55.70 56.45 38.65 9.5 × 106 6.5 × 106

2 27.85 31.62 23.08 4.2 × 107 3.1 × 107

3 13.93 7.13 6.48 7.7 × 107 7.0 × 107

4 6.96 0.86 0.75 7.4 × 107 6.4 × 107

and constant entropy core. The results of GAMER-2 (upper panels)
and FLASH (lower panels) are verified to be very consistent with
each other.

Fig. 10 shows the radial profiles of the electron number density
ne, gas entropy S, gas temperature T, and DM mass density ρDM at
t = 10 Gyr, where gas is assumed to be fully ionized and the gas
specific entropy is defined as S ≡ kBT n−2/3

e with kB the Boltzmann
constant. A constant entropy core can be clearly identified within
∼300 kpc. Most strikingly, the results obtained by GAMER-2 and
FLASH are found to be literally indistinguishable. It demonstrates
the consistent numerical setup we adopt for this code comparison
experiment, including, for example, the initial condition, boundary
conditions, spatial and temporal resolution, AMR implementation,
and grid refinement criteria. It also indicates that the different nu-
merical schemes between the two codes described in Section 4.3.1,
for example, the time integration, fluid and Poisson solvers, and
floating-point accuracy, do not have a significant impact here.

4.3.3 Performance comparison

Based on the very consistent physical results between GAMER-2
and FLASH, as shown in Figs 9 and 10, here we compare their
strong scaling performance on Blue Waters. In order to have a fair
comparison between the codes with and without GPU acceleration,
we run GAMER-2 on the XK nodes while FLASH on the XE nodes:
each XK node is composed of one GPU (NVIDIA Tesla K20X)
and one 16-core CPU (AMD Opteron 6276), and each XE node is
composed of two 16-core CPUs. In addition, since there are two
NUMA domains per XK node, each of which shares an eight MB

L3 cache, for GAMER-2, we launch two MPI processes per node and
78 OpenMP threads per MPI process in order to improve memory
affinity by having all threads running in the same NUMA domain.
The two MPI processes running on the same node shares the same
GPU by taking advantage of the CUDA MPS. For FLASH, we launch
32 MPI processes per XE node.

Fig. 11 shows the strong scaling of the cluster merger simulations.
We first conduct the lower resolution tests (�h ∼ 7.0 kpc, the same
as that adopted in Section 4.3.2) for both GAMER-2 and FLASH using
up to 256 nodes. Note that the minimum number of nodes adopted in
FLASH is 16 instead of 1 due to its much larger memory consumption,
which will be discussed at the end of this section. We measure the
performance in t = 4–6 Gyr, during which there are ∼2.1 × 108

cells in total and ∼7.1 × 107 cells on the maximum refinement level.
When using the same number of nodes, the speedup of GAMER-2
over FLASH is measured to be 78–101 and 64–83 in terms of total
wall time and cell updates per second, respectively. For example, for
Nnode = 16, GAMER-2 achieves 8.3 × 106 cell updates per second per
XK node, and FLASH achieves 1.0 × 105 cell updates per second per
XE node (corresponding to 3.1 × 103 cell updates per second per
CPU core). Moreover, this speedup ratio only drops by ∼23 per cent
when increasing Nnode from 16 to 128, and the performance of both
codes starts to decline when Nnode > 128. It suggests that GAMER-2
and FLASH exhibit similar parallel scalability, despite the fact that
the computational time of GAMER-2 has been greatly reduced with
GPUs.

The different speedups measured from the total wall time and
cell updates per second are due to several factors. The cell updates
per second depends mostly on the performance of individual PDE
solvers, which itself is related to the CPU/GPU performance, the
adopted floating-point accuracy, and the numerical schemes adopted
in the PDE solvers. In comparison, the speedup in term of total wall
time is arguably more comprehensive, since it takes into account not
only the performance of PDE solvers but also many other factors,
such as the time integration scheme, the evolution time-step, and the
number of cells on each level. See Section 4.3.1, especially Table 1,
for the summary of different numerical setup between GAMER-2 and
FLASH.

8We use seven instead of eight OpenMP threads per MPI process since using
eight threads somehow binds two threads to the same CPU core.
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GAMER-2 4829

Figure 9. Slices of gas temperature through the cluster centre at four different epochs in the galaxy cluster merger simulations. Each panel is 8 Mpc on a
side. The results obtained by GAMER-2 (upper panels) and FLASH (lower panels) are found to be in very good agreement with each other. See Fig. 10 for more
quantitative comparisons of the radial profiles.

Figure 10. Radial profiles at t = 10 Gyr in the galaxy cluster merger simu-
lations. Different panels show the electron number density (upper left), gas
entropy (upper right), gas temperature (lower left), and DM mass density
(lower right). A remarkable agreement is observed between the results of
GAMER-2 (solid lines) and FLASH (dashed lines).

In short, FLASH uses a more efficient fluid solver and a more
accurate but also more computationally expensive Poisson solver.
The CFL safety factor adopted for FLASH (CCFL = 0.6) is larger than
GAMER-2 (CCFL = 0.5), but the average time-steps on the maximum
level are found to be very similar due to the same time-step criterion
for updating particles. More precisely, the minimum time-steps in
both codes are set by the fastest-moving particles on the maximum
refinement level, which always move faster than the characteris-
tic hydrodynamic speed which sets the hydrodynamic time-step.
GAMER-2 is found to allocate ∼30–50 per cent more cells on lower
levels and ∼10–20 per cent more cells on higher levels than FLASH

(e.g. see Table 2), mainly because GAMER-2 tends to pre-allocate

patches earlier than FLASH due to the implementation of large flag
buffers (see Section 2.1). This issue of overallocation in GAMER-2 is
relatively more serious on lower levels, since there are fewer patches
on these levels. However, it is not a serious problem since GAMER-
2 adopts an adaptive time-step integration that allows patches on
lower levels to have larger time-steps. It is also the main reason why
the speedup in terms of total wall time is ∼20 per cent higher than
that in terms of cell updates per second. Last but not least, we remind
the reader that we adopt single precision for GAMER-2 and double
precision for FLASH in this test. In principle, using single precision
for FLASH could improve performance, however single-precision
calculations are not currently supported by FLASH.

To test the scalability of GAMER-2 further, we also conduct higher
resolution runs (�h ∼ 0.87 kpc, eight times higher than the lower
resolution counterpart) using 16–2048 XK nodes. We measure
the performance from t = 4.0 to 4.5 Gyr, during which there are
∼8.8 × 109 cells in total and ∼7.1 × 109 cells on the maximum
refinement level. The total number of particles is fixed to 107, the
same as the lower resolution test. The total memory consumption
for Nnode = 2048 at t = 4.5 Gyr is ∼2.2 TB. Fig. 11 (upper panel,
dotted line) shows the strong scaling of this higher resolution test,
exhibiting a much better scaling than its lower resolution coun-
terpart. It demonstrates that GAMER-2 can scale well to thousands
of GPUs in a realistic astrophysical application. It also indicates
that the parallel scalability may be sensitive to the load imbalance
resulting from particles, which will be investigated shortly in this
section.

Before giving a more detailed analysis of strong scaling, we
first introduce two quantities useful for quantifying the parallel
scalability. The ‘parallel efficiency’ of strong scaling is defined as

Pstrong(Nnode) = T (Nnode,ref )Nnode,ref

T (Nnode)Nnode
, (6)

where T(Nnode) is the simulation wall time using Nnode nodes. Gen-
erally speaking, the parallel efficiency also depends on the refer-
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4830 H.-Y. Schive et al.

Figure 11. Strong scaling of the galaxy cluster merger simulations run
with GAMER-2 and FLASH on Blue Waters. GAMER-2 runs on the XK nodes
composed of one GPU (NVIDIA Tesla K20X) and one 16-core CPU (AMD
Opteron 6276) per node, while FLASH runs on the XE nodes composed of
two 16-core CPUs per node. The upper panel shows the total number of
cell updates per second for (i) the lower resolution tests (�h ∼ 7.0 kpc) of
GAMER-2 (solid line) and FLASH (dashed line) using up to 256 nodes, and (ii)
the higher resolution test of GAMER-2 (�h ∼ 0.87 kpc, dotted line) using
16–2048 nodes. Note that the minimum number of nodes adopted in FLASH

is 16 instead of 1 due to its much larger memory consumption (see the text
for details). The dashed–dotted line represents the ideal scaling. The lower
panel shows the speedup of GAMER-2 over FLASH in the lower resolution
tests in terms of either cell updates per second (solid line) or total wall time
(dashed line). Both cases reveal nearly two orders of magnitude speedup. See
Fig. 12 for the detailed performance metrics of this test. Note that GAMER-2
uses single precision but FLASH uses double-precision arithmetic.

ence performance T(Nnode, ref). For a proper comparison, we adopt
Nnode, ref = 16 for the lower resolution tests of both codes, even
though the minimum Nnode in the GAMER-2 runs is 1 instead of
16. For the higher resolution test, we adopt Nnode = 16. We also
introduce another quantity to quantify the scalability, namely, the
‘doubling efficiency’, which is defined as

Dstrong(Nnode) = T (Nnode/2)

T (Nnode)
− 1, (7)

This quantity corresponds to the performance gain when dou-
bling the computational resource from Nnode/2 to Nnode, which is
arguably more intuitive than the conventional parallel efficiency
and has the advantage of being independent of the minimum Nnode

adopted. For example, one may have Dstrong(Nnode) = 0.6 for Nnode

= 2–2048, which suggests reasonable scalability since a perfor-

mance speedup of 1.6 is always obtained when doubling the number
of nodes. However, the corresponding parallel efficiency is as low as
Pstrong(2048) = (1.6/2)11 ∼ 9 per cent, which could be misleading.

Fig. 12 shows the performance metrics of the cluster merger
simulations, including the total wall time, maximum CPU memory
consumption per MPI process, parallel efficiency, and doubling effi-
ciency as a function of the number of XK and XE nodes for GAMER-2
and FLASH, respectively. Most importantly, as demonstrated by both
the parallel and doubling efficiencies, the two codes exhibit similar
parallel scalability, especially for Nnode > 32. It is consistent with
the finding of an almost constant speedup of GAMER-2 over FLASH

for Nnode > 32, as shown in the lower panel of Fig. 11.
In addition, the higher resolution test of GAMER-2 shows a

better scaling than its lower resolution counterpart. The scal-
ability is reasonably good in a large range of Nnode from 16
to 1024. The parallel efficiency is measured to be 78 per cent
for Nnode = 128 and 37 per cent for Nnode = 1024, and
the doubling efficiency is measured to be 87 per cent for
Nnode = 128 and 35 per cent for Nnode = 1024.

Also, note that the CPU memory consumption per MPI process in
GAMER-2 deviates from the ideal scaling, especially when increasing
the number of nodes. It is most likely due to the allocation of buffer
patches and MPI buffers.

To determine the performance bottleneck in GAMER-2, especially
for large Nnode, we show in Fig. 13 the wall time of various op-
erations in the lower resolution runs using 8 and 64 nodes. It is
found that the grid PDE solvers, namely, the hydrodynamic and
Poisson solvers, are the major performance bottlenecks for Nnode =
8, while for Nnode = 64 the bottlenecks shift to the particle rou-
tines and MPI communication. From Nnode = 8 to 64, the fraction
of time spent on the hydrodynamic and Poisson solvers decrease
from 21 per cent and 30 per cent to 8 per cent and 16 per cent, re-
spectively; in comparison, the fraction of time spent on the particle
routines and MPI communication increase from 17 per cent and
14 per cent to 24 per cent and 32 per cent, respectively.

There are several things to note about these results. First of all,
the average MPI message size per process for Nnode = 64 is found
to be as small as ∼1 MB, which thus suffers from a relatively larger
latency. Second, for better clarification, the performance shown in
Fig. 13 is measured from a separate set of simulations that (i) adds
an explicit MPI synchronization between grid and particle routines
in order for a proper timing analysis, and (ii) does not consider
the particle load-balancing weights when estimating the workload
of each patch (i.e. Wpar = 0.0). It partially explains the poor scal-
ability observed in the particle routines and MPI communication,
the latter of which also includes transferring particles. For Nnode =
64, it is found that by removing that extra MPI synchronization
between grid and particle routines, the overall performance is im-
proved by ∼37 per cent. Having Wpar = 2.0 further improves the
performance by ∼10 per cent. The performance shown in Figs 11
and 12 has incorporated these optimizations. These findings reveal
the importance of balancing the workload of both grids and particles
simultaneously, as discussed in Section 3.3.

Finally, we compare the CPU memory consumption between
GAMER-2 and FLASH. We find that FLASH consumes about an or-
der of magnitude more memory than GAMER-2 when using the
same number of nodes, which is why the minimum Nnode adopted
for FLASH is 16 instead of 1 as for GAMER-2. This is mainly
because FLASH allocates the ghost zones of all patches perma-
nently (see footnote a in Table 1) but GAMER-2 does not (see
Section 3.4). For a patch with 83 interior cells and four ghost
zones on each side (which is the number of ghost zones adopted in

MNRAS 481, 4815–4840 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/481/4/4815/5106358 by guest on 17 N
ovem

ber 2020



GAMER-2 4831

Figure 12. Performance metrics of the strong scaling of the cluster merger simulations. This is complementary to and uses the same symbols as Fig. 11.
Different panels show the total wall time (upper left), maximum CPU memory consumption per MPI process (upper right), parallel efficiency (lower left), and
doubling efficiency (lower right). See equations (6) and (7) for the definitions of parallel and doubling efficiencies in strong scaling. Note that the minimum
number of nodes adopted in FLASH is 16 instead of 1 due to its much larger memory consumption. Therefore, for a proper comparison, we adopt Nnode, ref = 16
in equation (6) for both codes when calculating the parallel efficiency. GAMER-2 and FLASH exhibit similar parallel scalability, even though GAMER-2 is about
two orders of magnitude faster. We do not show the maximum per-process memory consumption of FLASH because it is mainly determined by the size of the
pre-allocated memory pool set manually.

Figure 13. Wall time of various operations measured from the lower reso-
lution cluster merger simulations with GAMER-2 using 8 and 64 nodes. For
each operation, we also show the fraction of time in the two runs and the
speedup gained from increasing Nnode = 8 to 64. The ‘MPI’ time includes
transferring both grids and particles for the ‘Hydro’, ‘Poisson’, and ‘Particle’
routines but excludes the MPI communication during the grid refinement,
which is included in the ‘Refine’ time. The ‘Poisson’ time includes deposit-
ing particle mass onto grids with the CIC interpolation. It shows that the
grid PDE solvers (i.e. the hydrodynamic and Poisson solvers) are the major
performance bottlenecks for Nnode = 8, while the particle routines and MPI
communication become the bottlenecks for Nnode = 64 as these operations
exhibit poor scalability. Note that, for better clarification, the performance
shown here does not consider particle weights for load balancing, which is
therefore different from the optimized performance shown in Figs 11 and 12.
See the text for details.

FLASH), the total memory consumption including the ghost zones
is eight times larger than that without the ghost zones. In addi-
tion, FLASH uses double precision arithmetic which doubles the
memory consumption. On the other hand, GAMER-2 adopts the
adaptive time-step integration requiring storing all the grid data
at two different physical times for the temporal interpolation,
which also roughly doubles the memory consumption. Last but
not least, unlike FLASH, GAMER-2 does not pre-allocate a memory
pool for all blocks that will be used during the simulation (see
Section 3.4).

4.4 AGORA isolated disc galaxy: GAMER-2 versus ENZO

Simulations of the gas, stars, and DM in an idealized isolated disc
galaxy present a unique numerical challenge for astrophysical simu-
lation codes. These simulations combine self-gravity, gas dynamics,
particle dynamics with particles existing at a range of masses, radia-
tive cooling, and star formation. In addition, gas temperatures may
reach as low as 10 K, but have a velocity relative to the simulation
box of hundreds of kilometres per second, requiring the use of a
dual energy formalism to avoid spurious temperature fluctuations
and negative temperatures due to truncation errors. On top of the
bulk circular velocity, the gas also exhibits supersonic turbulence
driven by gravitational instability (Goldbaum, Krumholz & Forbes
2015). Despite these challenges, isolated disc galaxy simulations
are commonly used to understand more complicated zoom-in sim-
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ulations (Kim et al. 2016), galaxy merger simulations (Robertson
et al. 2006), and as a testbed for physics modules that will be used
in more realistic simulations. These simulations also allow ab initio
exploration of the dynamics of the interstellar medium (ISM) of a
galaxy much like the Milky Way (Goldbaum, Krumholz & Forbes
2016), enabling direct comparison with observations of the ISM of
our own Galaxy.

In this section, we simulate a Milky Way-sized isolated disc
galaxy with star formation using both GAMER-2 and ENZO, from
which we demonstrate that, not only the physical results obtained
by the two codes are in good agreement, but GAMER-2 outperforms
ENZO by almost one order of magnitude. Similar to the previous
section, we first describe the simulation setup, with particular em-
phasis on the similarities and differences of the two codes. We then
check the consistency of the physical results, and finally compare
the strong scaling performance.

4.4.1 Simulation setup

The simulation setup of our isolated disc galaxy simulations closely
follow Goldbaum et al. (2015) and the AGORA High-resolution
Galaxy Simulations Comparison Project (Kim et al. 2016). So we
only provide a short summary here.

The initial condition is composed of three components: a DM
halo, a galactic disc consists of both gas and stars, and a stellar
bulge. (i) The DM halo follows an NFW profile with a virial mass
M200 = 1.1 × 1012 M�, a concentration parameter c = 10, and a
spin parameter λ = 0.04. (ii) The disc follows an exponential pro-
file with a total disc mass Md = 4.3 × 1010 M�, a scale length
rd = 3.4 kpc, a scale height zd = 0.34 kpc, and a gas mass fraction
fd = Md, gas/Md = 0.2. The gas disc has an initial metal mass frac-
tion Zd = Md, metal/Md, gas = 1.3 × 10−2 and an initial temperature
Td = 104 K. The circular velocity is set such that the disc is in cen-
trifugal equilibrium. (iii) The stellar bulge is modelled as a Hern-
quist profile (Hernquist 1990) with a mass Mb = 4.3 × 109 M�.
The initial conditions of both DM and stellar particles as well as the
gas rotation curve can be downloaded from the AGORA Project.9

The simulation has a cubic domain with a length L = 1.31 Mpc and
is evolved for 500 Myr.

The GRACKLE library is used to solve the chemistry and radia-
tive processes in this work. We adopt the equilibrium solver in
GRACKLE using tabulated cooling and heating rates, which are func-
tions of gas density and temperature. These tables incorporate both
primordial and metal cooling as well as a UV background. We also
include the photoelectric heating from dust and an effective CMB
temperature floor. The metal field is treated as a passive scalar ad-
vected along with the gas, and thus the metal fraction can vary in
space and time. To avoid artificial fragmentation, we follow Gold-
baum et al. (2015) and Kim et al. (2016) and employ a pressure
floor in the hydrodynamic solver to ensure that the local Jeans
length is resolved by at least four cells on the maximum refinement
level.

The full details of the subgrid model for stochastic star formation
can be found in Section 2.4 of Goldbaum et al. (2015). Specifi-
cally, we adopt a gas density threshold nH,thres = 20 cm−3 and a star
formation efficiency f� = 1 per cent. We also impose a minimum
star particle mass m� = 2 × 103 M�. No star formation feedback
is included in this work.

9http://goo.gl/8JzbIJ. Note that we use the high-resolution files, while Kim
et al. (2016) use the low-resolution files.

Table 3 summarizes the similarities and differences of the nu-
merical setup adopted by GAMER-2 and ENZO in these comparison
simulations. Here, we elaborate on the major differences.

(i) GAMER-2 restricts all patches to have exactly the same size
(83 cells in this work), which has several advantages. For example,
the AMR hierarchy can be manipulated efficiently with an octree
data structure. The memory allocation is more predictable, which
eases the issue of memory fragmentation and maximizes memory
reuse (see Section 3.4). The smaller patch size conceivably leads
to a more efficient use of both CPU and GPU caches. In addition,
it is more straightforward to optimize load balancing. In compari-
son, ENZO allows all patches to have different sizes. It reduces the
number of cells that are unnecessarily refined compared to GAMER-
2. The relatively larger patches also reduce both the computation
and communication overhead associated with the ghost zones of
each patch. However, arguably, reconstructing the AMR hierarchy
becomes more expensive in this approach due to the more compli-
cated grid structure, which might deteriorate the parallel scalability,
especially in massively parallel simulations.

(ii) For the Poisson solver, GAMER-2 uses the SOR scheme suit-
able for smaller grids (see Section 3.1), while ENZO adopts the
multigrid scheme suitable for larger grids due to its higher conver-
gence rate. In addition, GAMER-2 has a fixed patch size of 83 cells
and adds five additional buffer zones around each patch to make
the potential smoother across the patch boundaries (see Fig. 2). In
comparison, ENZO has grid patches generally larger than 83 and also
allocates a slightly larger buffer zones of six around each patch.
Besides, it applies an iterative procedure to exchange potential be-
tween sibling grids to improve the accuracy further, which has not
been implemented into GAMER-2. In this work, we adopt 10 such
iterations in the ENZO simulations, which is measured to increase
the simulation time by ∼10 per cent.

4.4.2 Accuracy comparison

Fig. 14 shows the face-on projection of gas density in the cen-
tral 30 kpc region at t = 0, 100, 300, and 500 Myr obtained by
GAMER-2 and ENZO. The filamentary structures form quickly due to
self-gravity, radiative cooling, and shear flow. These filaments then
continuously collapse into gravitationally bound clouds and trigger
star formation. We notice that, at later epochs of the simulations,
a significant fraction of gas has collapsed and merged into large
clouds and formed unrealistically massive star clusters, and there
is no prominent spiral structure. These results are inconsistent with
the smooth disc and prominent spiral arms observed in disc galax-
ies, and are mainly due to the lack of star formation feedback in
this work that leads to overcooling of gas (see fig. 2 in Goldbaum
et al. 2016). Active galactic nucleus feedback is also expected to
strongly change the thermodynamics and kinematics of the multi-
phase gas (e.g. Gaspari et al. 2018). It is, however, not a concern
here since we focus on the comparison between different codes.
Fig. 14 shows that the gross morphological features obtained by
GAMER-2 and ENZO agree well with each other. Subtle differences
are expected to some extent because of the stochastic star formation
and the different numerical implementations (see Table 3). More
quantitative comparisons are provided below.

Fig. 15 shows the azimuthally averaged profiles of various gas
properties at t = 500 Myr, including the surface density, tempera-
ture, rotation velocity, and velocity dispersion. Following Kim et al.
(2016), we set the galactic centre to the location of peak gas density
within 1 kpc from the centre of gas mass. All profiles exhibit clear
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Table 3. Comparison of the numerical setup between GAMER-2 and ENZO in the isolated disc galaxy simulations.

GAMER-2 ENZO

AMR implementation Fixed patch size of 83 cells, no permanent allocation of patch ghost
zones

Patch size is not fixed, patch ghost zones are allocated
permanently

Grid resolution Root grid 643, 10 refinement levels, maximum resolution
�h = 20 pc

Same as GAMER-2

Particle resolution Halo: Np = 1 × 107 and mp = 1.3 × 105 M� stellar disc: Np =
1 × 107 and mp = 3.4 × 103 M� bulge:
Np = 1.25 × 106 and mp = 3.4 × 103 M�

Same as GAMER-2

Fluid solver Dimensionally unsplit MUSCL-Hancock scheme with PPM
reconstruction (requiring three Riemann solvers per cell), HLLC
solver, hybrid van Leer and generalized minmod slope limiter, dual
energy formalism solving the entropy equation

Dimensionally split direct Eulerian approach with PPM
reconstruction (requiring three Riemann solvers per cell),
HLLC solver, hybrid van Leer and generalized minmod slope
limiter, dual energy formalism solving the internal energy
equation

Poisson solver SOR Multigrid
Particle solver CIC interpolation and KDK particle update CIC interpolation and DKD particle update
Boundary condition Fluid solver: outflow Poisson solver: isolated Fluid solver: periodica Poisson solver: isolated
Refinement (1) Maximum particle mass in a cell: 1.0 × 106 M�

(2) Maximum gas mass in a cell: 3.4 × 102 M�
(3) Resolving Jeans length by at least 64 cells
(4) Five additional levels of statically refined regions above the root
grid, enclosing volumes that are successively smaller by a factor of 8

Same as GAMER-2

Derefinement No explicit derefinement criteria Same as GAMER-2
Time-step Cpar = 0.5 and CCFL = 0.5 Same as GAMER-2
Parallelization Hybrid MPI/OpenMP/GPU MPI and GPU accelerationb

Load balancing Hilbert space-filling curve Same as GAMER-2
Time integration Adaptive time-stepc Same as GAMER-2
Floating-point format Single precision Same as GAMER-2

Notes. aThe difference in the boundary conditions of the fluid solver is found to have negligible effect in this work.
bIn ENZO, currently only the fluid and MHD solvers have been ported to GPUs.
cBoth GAMER-2 and ENZO do not restrict the time-step ratio between two adjacent levels to be a constant.

Figure 14. Face-on projection of gas density at four different epochs in the isolated disc galaxy simulations. Each panel is 30 kpc on a side. The simulations
with GAMER-2 (upper panels) and ENZO (lower panels) show very similar filamentary structures. Subtle differences are expected to some extent because of the
stochastic star formation and the different numerical implementations (see Table 3). See Figs 15–17 for more quantitative comparisons between the two codes.
At late times, a significant fraction of gas has collapsed and merged into large gravitationally bound clouds and there are no prominent spiral arms, mainly
because we do not include star formation feedback in this work (see fig. 2 in Goldbaum et al. 2016).

oscillation, which become more prominent in time as an increas-
ing fraction of gas collapses into massive clouds. The temperature

within ∼12 kpc drops significantly from the initial temperature of
104 K to below ∼100 K due to the balance between efficient metal
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4834 H.-Y. Schive et al.

Figure 15. Azimuthally averaged profiles at t = 500 Myr in the isolated
disc galaxy simulations. Different panels show the gas surface density (upper
left), gas temperature (upper right), gas rotation velocity (lower left), and
gas velocity dispersion (lower right). The results of GAMER-2 (red lines) and
ENZO (blue lines) are in good agreement with each other. A relatively large
discrepancy appears in the innermost region, which is somewhat expected
since the central region is sensitive to both the determination of the galactic
centre and local mergers.

Figure 16. Probability distribution function of gas in the density–
temperature plane of the isolated disc galaxy simulations at t = 500 Myr.
Colour bar represents the gas mass in each bin. The results obtained by
GAMER-2 (left-hand panel) and ENZO (right-hand panel) are in very good
agreement thanks to the common library GRACKLE adopted for calculating
the chemistry and radiative processes.

line cooling and UV heating. Substantial turbulent velocity disper-
sion, primarily driven by gravitational instability, develops quickly
and increases toward the galactic centre. Importantly, we find very
good agreement between GAMER-2 and ENZO in all four profiles. A
relatively large discrepancy appears in the innermost region, which
is somewhat expected since the central region is sensitive to both
the determination of the galactic centre and local mergers.

Fig. 16 shows the probability distribution function of gas in the
density–temperature plane at t = 500 Myr. A clear branch toward
the high-density, low-temperature corner can be easily identified,
resulting from the balance between the various cooling and heating

Figure 17. SFR as a function of time in the isolated disc galaxy simulations.
We find very good agreement between GAMER-2 (red line) and ENZO (blue
line).

mechanisms adopted in this work (see Section 4.4.1). The low-
density, high-temperature component in the upper left corner cor-
responds to the gaseous halo included in the consideration of nu-
merical stability (Kim et al. 2016). This figure further validates the
consistency of the gaseous thermodynamic properties between our
GAMER-2 and ENZO simulations, thanks to the common chemistry
and radiative library GRACKLE. A relatively large scatter is found
in the GAMER-2 simulation, which however constitutes a negligible
fraction of the total gas mass.

Fig. 17 shows the star formation rate (SFR) as a function of
time, for which again GAMER-2 and ENZO agree very well with each
other. The SFR reaches ∼10 M� yr−1 after t � 100 Myr, consistent
with the result of Goldbaum et al. (2015) which also does not
include star formation feedback, and is about a factor of 5 higher
than the SFR obtained in the simulations with feedback (Kim et al.
2016; Goldbaum et al. 2016). Interestingly, the consistency between
GAMER-2 and ENZO shown in this figure seems to be better than that
found in the comparison of grid codes in the AGORA comparison
project (see fig. 26 in Kim et al. 2016). It remains to be investigated
whether this level of consistency could be achieved after including
feedback.

The agreement between the simulations results of GAMER-2 and
ENZO, as verified in Figs 14–17, demonstrates the consistent numer-
ical setup adopted for this code comparison experiment, including,
for example, the initial condition, spatial and temporal resolution,
and grid refinement criteria. It also suggests that the differences
between the two codes described in Section 4.4.1, for example, the
AMR implementation, fluid and Poisson solvers, and particle inte-
gration, do not have a serious impact here. These facts strengthen
the results of performance comparison shown in the next section.

4.4.3 Performance comparison

Here, we compare strong scaling performance between GAMER-
2 and ENZO measured on Blue Waters. Since ENZO also supports
GPU acceleration, although only for the hydrodynamic and MHD
solvers, we run both codes on the XK nodes, each of which is
composed of one GPU (NVIDIA Tesla K20X) and one 16-core
CPU (AMD Opteron 6276). Similar to the cluster merger simu-
lations described in Section 4.3.3, for GAMER-2, we launch two
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MPI processes per node and seven OpenMP threads per MPI
process to improve memory affinity, and use CUDA MPS to al-
low these two processes to share the same GPU. For ENZO, we
launch 16 MPI processes per node since it does not support hy-
brid MPI/OpenMP parallelization. In addition, for Nnode = 1–4,
we disable SubgridSizeAutoAdjust10 and set Maximum-
SubgridSize = 8192 to avoid exhausting the GPU memory
due to the too large grid size. Changing MaximumSubgrid-
Size by a factor of 2 reduces the performance of Nnode = 4
by ∼10–20 per cent. For Nnode = 8–128, we enable Subgrid-
SizeAutoAdjust and have OptimalSubgridsPerPro-
cessor = 16, which are found to generally achieve the best
performance in our tests. The Hilbert space-filling curve is adopted
for load balancing in both GAMER-2 and ENZO.11 We measure
the performance in a relatively short period of t = 300–305 Myr,
which is representative enough since both the total number of
cells and evolution time-step are found to be quite stable af-
ter t � 100 Myr. At t = 300 Myr, there are ∼2.2 × 108 cells
in total, ∼20 per cent of which are on the maximum refinement
level.

Fig. 18 shows the strong scaling of the isolated disc galaxy simu-
lations. The speedup of GAMER-2 over ENZO is measured to be about
4–8 in terms of both total wall time and cell updates per second.
For example, for Nnode = 64, GAMER-2 and ENZO achieve 1.5 × 106

and 3.2 × 105 cell updates per second per node, respectively. This
result is encouraging, especially because both codes take advantage
of GPU acceleration. More importantly, this speedup ratio is ap-
proximately a constant for Nnode ≤ 32 and increases for Nnode >

32. The overall performance of ENZO starts to drop for Nnode > 64,
while that of GAMER-2 starts to drops for Nnode > 128. These results
suggest that GAMER-2 not only runs faster but also scales better than
ENZO.

In Fig. 18, we show the performance speedups in terms of both
total wall time and cell updates per second. The former arguably
provides a more comprehensive comparison because it considers
not only the performance of all PDE solvers but also many other
factors such as the AMR implementation and evolution time-step.
In this test, the speedup in terms of total wall time is measured
to be ∼5–20 per cent higher than that in terms of cell updates per
second, partially because GAMER-2 generally requires less extra
updates for synchronizing nearby AMR levels (see Section 2.1, es-
pecially Fig. 1). On the other hand, although GAMER-2 and ENZO

allocate roughly the same number of cells on the maximum re-
finement level l = 10 (the difference is less than 3 per cent), we
find that GAMER-2 typically allocates ∼50–150 per cent more cells
than ENZO on other high levels (e.g. l = 7–9, see Table 4). It is
mainly because GAMER-2 restricts all patches to have the same
size which results in over-refinement, especially along the direc-
tion perpendicular to the galactic disc and on the levels with cell
sizes much larger than the disc scale height. This issue, how-
ever, does not pose a serious problem here since lower levels are
updated much less frequently thanks to the adaptive time-step
integration.

Fig. 19 shows the performance metrics of the isolated disc galaxy
simulations, including the total wall time, maximum CPU memory
consumption per MPI process, parallel efficiency, and doubling ef-
ficiency as a function of the number of XK nodes. Most importantly,

10See https://enzo.readthedocs.io/en/latest/index.html
11It corresponds to LoadBalancing = 4, which is not officially sup-
ported but works well in our tests.

Figure 18. Strong scaling of the isolated disc galaxy simulations run with
GAMER-2 (solid line) and ENZO (dashed line) using 1–128 nodes. Both codes
support GPU acceleration and run on the Blue Waters XK nodes, each of
which is composed of one GPU (NVIDIA Tesla K20X) and one 16-core
CPU (AMD Opteron 6276). The upper panel shows the total number of
cell updates per second, where the dashed–dotted line represents the ideal
scaling. The lower panel shows the speedup of GAMER-2 over ENZO in terms
of both cell updates per second (solid line) and total wall time (dashed line).
GAMER-2 is measured to be ∼4–8 times faster than ENZO. More importantly,
this speedup ratio is approximately a constant for Nnode ≤ 32 and increases
for Nnode > 32, suggesting that GAMER-2 exhibits better parallel scalability
than ENZO. See Fig. 19 for the detailed performance metrics of this test.

Table 4. Comparison of the volume-filling fractions on higher refinement
levels between GAMER-2 and ENZO in the isolated disc galaxy simulations
at t = 300 Myr.

Level �h/ pc Filling fraction Number of cells
GAMER-2
(per cent)

ENZO

(per cent) GAMER-2 ENZO

7 160.0 2.4 × 10−3 1.0 × 10−3 1.3 × 107 5.7 × 106

8 80.0 4.3 × 10−4 2.0 × 10−4 1.9 × 107 8.8 × 106

9 40.0 1.2 × 10−4 6.3 × 10−5 4.2 × 107 2.2 × 107

10 20.0 1.5 × 10−5 1.5 × 10−5 4.2 × 107 4.1 × 107

both the parallel and doubling efficiencies demonstrate that the two
codes exhibit very similar parallel scalability for Nnode ≤ 32, and,
furthermore, GAMER-2 scales noticeably better than ENZO for Nnode

> 32, consistent with Fig. 18.
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4836 H.-Y. Schive et al.

Figure 19. Performance metrics of the strong scaling of the isolated disc galaxy simulations. This is complementary to and uses the same symbols as Fig. 18.
Different panels show the total wall time (upper left), maximum CPU memory consumption per MPI process (upper right), parallel efficiency (lower left),
and doubling efficiency (lower right). See equations (6) and (7) for the definitions of parallel and doubling efficiencies in strong scaling. GAMER-2 and ENZO

exhibit very similar parallel scalability for Nnode ≤ 32, and GAMER-2 scales noticeably better than ENZO for Nnode > 32. The maximum per-process memory
consumption of ENZO is not shown since the data are not available.

We notice that the doubling efficiency of ENZO oscillates for
Nnode = 4–16, likely because, as described in the beginning of
this section, we enable SubgridSizeAutoAdjust for Nnode

> 4 to improve performance and scalability. Also note that the
CPU memory consumption per MPI process in GAMER-2 deviates
from the ideal scaling, especially when increasing the number of
nodes, most likely due to the allocation of buffer patches and MPI
buffers.

To determine the performance bottleneck of GAMER-2 in the iso-
lated disc galaxy simulations, especially for large Nnode, we compare
in Fig. 20 the wall time of various operations in the Nnode = 8 and
64 runs. We find that, for Nnode = 8, the chemistry and cooling
library GRACKLE is the major performance bottleneck. In contrast,
for Nnode = 64, the bottlenecks move to the particle routines and
MPI communication, which is similar to what we find in the cluster
merger simulations (see Fig. 13). It is mainly because, currently, the
load balancing in GAMER-2 is better optimized for grid solvers like
GRACKLE than for particle-related routines. From Nnode = 8 to 64,
the fraction of time spent on GRACKLE decreases from 34 per cent to
13 per cent, while that on the particle routines and MPI communi-
cation increase from 13 per cent and 15 per cent to 25 per cent and
27 per cent, respectively. Also note that a GPU-supported GRACKLE

is currently under development, which would likely lead to larger
speedups.

There are several things to note about these results, which are
similar to the discussions given in the cluster merger simulations.
First of all, the average MPI message size per process for Nnode =
64 is found to be as small as ∼1 MB, which is smaller than that for
Nnode = 8 by a factor of few. The Nnode = 64 run thereby suffers

Figure 20. Wall time of various operations measured from the isolated disc
galaxy simulations with GAMER-2 using 8 and 64 nodes. For each operation,
we also show the fraction of time in the two runs and the speedup gained from
increasing Nnode = 8–64. The ‘MPI’ time includes transferring both grids
and particles for the ‘Hydro’, ‘Poisson’, and ‘Particle’ routines but excludes
the MPI communication during the grid refinement, which is included in
the ‘Refine’ time. The ‘Poisson’ time includes depositing particle mass onto
grids with the CIC interpolation. It shows that the chemistry and cooling
library GRACKLE is the major performance bottleneck for Nnode = 8, while
the particle routines and MPI communication become the bottlenecks for
Nnode = 64 because these operations exhibit poor scalability. Note that, for
better clarification, the performance shown here does not consider particle
weights for load balancing, which is therefore different from the optimized
performance shown in Figs 18 and 19. See the text for details. Also note that
a GPU-supported GRACKLE is currently under development, which would
likely lead to larger speedups.
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from a relatively larger communication latency. Second, for better
clarification, the performance shown in Fig. 20 is measured from
a separate set of simulations that (i) adds an explicit MPI synchro-
nization between grid and particle routines in order for a proper
timing analysis, and (ii) disregards particle weights in load bal-
ancing (i.e. Wpar = 0.0), both of which deteriorate the scalability.
For Nnode = 64, we find that the overall performance is improved
by ∼22 per cent after removing that extra MPI synchronization be-
tween grid and particle routines, and by another ∼23 per cent after
adopting Wpar = 1.0. These optimizations have been incorporated
into the strong scaling shown in Figs 18 and 19. Third, note that
the time fraction of the Poisson solver shown in Fig. 20 includes
the time for depositing particle mass onto grids, which is why it
scales worse than the other two grid solvers (i.e. hydrodynamic and
GRACKLE solvers).

5 SU M M A RY A N D F U T U R E WO R K

In this paper, we have presented GAMER-2, a significant revision
of the GPU-accelerated AMR code GAMER-1 (Schive et al. 2010).
It includes much richer functionality and incorporates significant
improvements in accuracy, stability, performance, and scalability.
Table 5 summarizes the major differences between GAMER-2 and
GAMER-1.

To reveal the optimal performance of GAMER-2, we first measure
the performance of individual GPU solvers and show that both
the hydrodynamic and Poisson solvers achieve a single-precision
performance of ∼2 × 108 cells s−1 on an NVIDIA Tesla P100 GPU.
We also measure the weak scaling performance with and without
AMR in a 3D KH instability test on the Blue Waters supercomputer
using 1–4096 XK nodes, each of which is composed of one NVIDIA
Tesla K20X GPU and one 16-core AMD Opteron 6276 CPU. By
taking advantage of the hybrid MPI/OpenMP/GPU parallelization,
we are able to fully exploit both 4096 GPUs and 65 536 CPU cores
simultaneously, and achieve a peak performance of 8.3 × 1010

and 4.6 × 1010 cells s−1 and a parallel efficiency of 74 per cent and
58 per cent in the uniform-grid and AMR tests, respectively. Note
that the simulation reaches an overall resolution as high as 10 2403

cells with 4096 nodes in the uniform-grid test.
To further provide clear and convincing demonstrations of the ac-

curacy and performance of GAMER-2, we directly compare GAMER-2
with two widely adopted AMR codes, FLASH and ENZO, based on
realistic astrophysical simulations running on Blue Waters. First,
we compare GAMER-2 with FLASH in binary cluster merger simula-
tions, which closely follow the numerical setup of ZuHone (2011)
and involve hydrodynamics, self-gravity, and DM. We show that the
physical results obtained by the two codes are in excellent agree-
ment, and GAMER-2 is measured to be 78 − 101 times faster than
FLASH in strong scaling tests using 1–256 nodes. More importantly,
both codes exhibit similar parallel scalability, despite the fact that
the computational time of GAMER-2 has been greatly reduced by
exploiting GPUs. We also measure the strong scaling of GAMER-2
from 16 to 2048 nodes using a set of higher resolution simulations,
and obtain a parallel efficiency of 78 per cent with 128 nodes and
37 per cent with 1024 nodes.

Second, we compare GAMER-2 with ENZO in isolated disc galaxy
simulations, which closely follow the numerical setup of Goldbaum
et al. (2015) and the AGORA High-resolution Galaxy Simulations
Comparison Project (Kim et al. 2016) but with a spatial resolu-
tion of 20 pc. These simulations involve a richer set of physical
modules, including hydrodynamics, self-gravity, DM, advection of

metals, radiative cooling and heating, and stochastic star formation.
Again, we find very good agreement between the physical results
obtained by GAMER-2 and ENZO. To compare the performance, we
also enable GPU acceleration in ENZO for the hydrodynamic solver.
Even so, GAMER-2 is still measured to be ∼4–8 times faster than
ENZO in strong scaling tests using 1–128 nodes. It may be partially
due to the fact that ENZOcurrently does not support asynchronous
GPU kernel execution and CPU–GPU communication. Further in-
vestigation will be conducted in the future. More importantly, this
speedup ratio is approximately a constant of 4–5 with 1–32 nodes
and increases to 5–8 when using more than 32 nodes, suggesting
that GAMER-2 not only runs faster but also scales noticeably better
than ENZO.

GAMER-2 has supported the following features to improve the
parallel scalability:

(i) Hybrid OpenMP/MPI parallelization (see Section 3.2). It re-
duces internode communication and therefore improves the parallel
scalability, especially when using a large number of nodes.

(ii) Fixed patch size. It greatly simplifies the parallel manipula-
tion of AMR hierarchy and load balancing, especially in massively
parallel simulations. Moreover, we do not require duplicating the
entire AMR hierarchy on each MPI process (see Section 3.3).

(iii) Level-by-level load balancing with Hilbert space-filling
curves (see Section 3.3). Especially, we take into account the parti-
cle weights in load balancing (see Fig. 4), and further minimize the
MPI synchronization between grid and particle routines.

GAMER-2 allocates memory pools for both grid and particle data
to alleviate the issue of memory fragmentation and to maximize
memory reuse (see Section 3.4). Moreover, the code minimizes the
GPU memory requirement by storing all the data on the CPU’s main
memory and transferring only a small and fixed amount of patch
data to GPUs (typically several hundreds of MB to a few GB per
GPU) at a time.

We have identified several performance bottlenecks from the de-
tailed timing analysis conducted in this work (e.g. see Figs 13
and 20), including load imbalance due to particles, GRACKLE li-
brary, MPI communication, and CPU performance when preparing
the input data for GPU solvers. To improve performance further, we
are currently investigating the following optimizations:

(i) Transferring the deposited particle mass density on grids in-
stead of individual particles when calculating the total mass density
on levels other than the maximum level. This will greatly reduce the
MPI communication for particles and also improve load balancing.

(ii) Porting some of the particle routines to GPUs.
(iii) MPI non-blocking communication. It will allow overlapping

MPI communication by both CPU and GPU computations.
(iv) GPU-accelerated GRACKLE. GRACKLE computes the chem-

istry and radiative processes on a cell-by-cell basis, which should be
very GPU-friendly because no synchronization and data exchange
between different cells are required. We have obtained an order of
magnitude speedup in preliminary tests.

(v) Optimization of CPU routines. One important optimization
in GAMER-2 is to allow CPUs and GPUs to work concurrently
(see Section 3.2). Accordingly, depending on the CPU and GPU
specifications, we find that the performance bottleneck may occur
in CPUs when invoking a GPU kernel (since we still rely on CPUs
to prepare the input data for GPUs). It is therefore essential to
optimize the CPU performance further by, for example, improving
the OpenMP parallel efficiency, porting more operations to GPUs,
and optimizing memory access.
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Table 5. Summary of the major differences between GAMER-2 and GAMER-1.

Features GAMER-2 GAMER-1 References

Adaptive time-step Fully supported without requiring the time-step ratio between two

adjacent levels to be a constant

Only supported in pure hydrodynamic simulations and the time-step

ratio between two adjacent levels must be 2

Section 2.1

Fluid solvers Both dimensional split, Riemann-solver-free scheme (RTVD) and

dimensional unsplit, Riemann-solver-based schemes (MHM, VL, and

CTU) with PLM/PPM data reconstructions and various Riemann solvers

RTVD only Section 2.2

Dual energy formalism Supported Unsupported Section 2.2

MHD Supported using the CTU + CT scheme Not supported Zhang et al. (2018)

Poisson solver Adding five buffer zones around each refinement-level patch Multilevel solver that eliminates the pseudo-mass sheets on the patch

interfaces

Section 2.3

Gravity in hydro Operator-unsplit approach operator-split approach Section 2.3

Boundary conditions Fluid: periodic, outflow, reflecting, inflow (i.e. user-defined) Gravity:

periodic, isolated

Fluid: periodic Gravity: periodic Section 2.2, Section 2.3

Particles Supported Unsupported Section 2.4

GRACKLE Supported Unsupported Section 2.5

Bitwise reproducibility Supported Unsupported Section 2.7.1

HDF5 output Supported Unsupported Section 2.7.2

YT data analysis Supported Unsupported Section 2.7.2

Test problem infrastructure Supported Unsupported Section 2.7.3

AMR + GPUs framework Supported (e.g. ψDM simulations) Unsupported Section 2.7.4

Hybrid MPI/OpenMP Supported Unsupported Section 3.2

Parallelization Hilbert curve for load balancing Rectangular domain decomposition Section 3.3

Memory pool Supported Unsupported Section 3.4

Given the excellent performance reported here, it is then essential
to extend the functionality of GAMER-2 so that it can be applied to
a broader range of applications. The following new features are
being or will be investigated in the near future. In addition, since
GAMER-2 is an open-source code, we are also looking forward to
contributions from the community.

(i) New particle features including tracer particles, comoving
coordinates, and multiple species. We also plan to store ‘relative’
instead of absolute particle positions, which can be very helpful for
simulations demanding an extremely large dynamic range.

(ii) Non-Cartesian coordinates.
(iii) Non-ideal hydrodynamics and non-ideal MHD.
(iv) Radiative transfer.
(v) Parallel I/O.
(vi) Testing framework for ensuring the correctness of the code.

Note that GAMER-2 can also run in a ‘CPU-only’ mode us-
ing a hybrid MPI/OpenMP parallelization, for which we sim-
ply replace all GPU solvers by their CPU counterparts paral-
lelized with OpenMP and use the same MPI implementation as
in the GPU-accelerated code. Therefore, GAMER-2 is also suit-
able for CPU-only supercomputers, especially for those with a
larger number of cores per node like Intel Xeon Phi. Hybrid
MPI/OpenMP is essential to achieve optimal performance in such
systems, and it may require further optimization about, for ex-
ample, thread affinity, thread load balancing, and OpenMP nested
parallelism.

Finally, we emphasize that the great performance and scalabil-
ity of GAMER-2 demonstrated here in both binary cluster merger
and isolated disc galaxy simulations allow one to study various
astrophysical phenomena requiring resolutions that are not realis-
tically attainable previously. For example, for the cluster merger
simulations, we have obtained preliminary results from simulations
with sub-kpc resolution, which will enable us to reduce the numer-
ical viscosity significantly and to investigate the properties of the
turbulent cascade down to a scale where the effects of a physical

viscosity are expected to become relevant. It is also possible to in-
crease the spatial resolution of isolated disc galaxy simulations to
∼5 pc, which will produce a dynamically evolving ISM, undergo-
ing repeated cycles of collapse, star formation, feedback, rarefac-
tion, and recollapse which have been extremely difficult to fully re-
solve in a global galactic-scale simulation over galactic dynamical
times.
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APPENDI X A : POI SSON SOLVER

The Poisson solver of GAMER-2 on the refined patches is substan-
tially different from that of GAMER-1. To smooth out the gravi-
tational potential across patch boundaries, GAMER-2 adds several
buffer zones around each patch (see Fig. 2), while GAMER-1 adopts
a multilevel relaxation scheme to reduce the pseudo-mass sheets on
the patch boundaries (Schive et al. 2010). To compare their accu-
racy, we calculate the potential of a Hernquist profile (Hernquist
1990):

ρ(r) = ρ0

r/r0(1 + r/r0)3
, (A1)

where r0 and ρ0 are the characteristic radius and density, respec-
tively. This profile has a finite mass M = 2πr3

0 ρ0 and an analytical
form of potential:

φanal(r) = − GM

r + r0
, (A2)

where G is the gravitational constant. We adopt G = r0 = ρ0 =
1. The computational domain is cubic with a length L = 100 and
a 643 root grid. A cell on level l is flagged for refinement if its
density exceeds 10−2 × 4l, and we enable six refinement levels to
well resolve r0 by a maximum resolution of ∼2.4 × 10−2. Isolated
boundary conditions for gravity are adopted.

Fig. A1 shows the gravitational potential on a central 5 r0 slice
evaluated by GAMER-2 using five buffer zones. The left- and right-
hand panels show the numerical results φnume and the corresponding
relative errors, φerr ≡ |(φnume − φanal)/φanal)|, respectively. The rel-
ative errors within r � r0 are found to be as low as on the order
of 10−3–10−5, although numerical artefacts introduced by the patch
interfaces are still present.
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Figure A1. Central slice of the gravitational potential of a Hernquist profile. The left-hand panel shows the numerical results evaluated by GAMER-2 using five
buffer zones and six refinement levels. The right-hand panel shows the corresponding relative errors by comparing with the analytical solution, overlaid with
AMR patch outlines.

Figure A2. Volume-weighted numerical errors as a function of radius for
computing the potential of a Hernquist profile. We compare the errors of
different schemes: GAMER-2 with 1 (dashed-double-dotted line), 3 (dotted
line), and 5 (solid line) buffer zones, and GAMER-1 with 50 (dashed–dotted
line) and 100 (dashed line) V-cycle iterations and sibling relaxation steps
(see Schive et al. 2010 for details). GAMER-2 with five buffer zones is found
to provide the most accurate solution within r � r0.

Fig. A2 shows the volume-weighted radial profile of the numer-
ical errors of different schemes. We compare GAMER-2 with Nbuf =
1, 3, and 5 buffer zones and GAMER-1 with Niter = 50 and 100 V-
cycle iterations and sibling relaxation steps (see Schive et al. 2010
for details). It shows that in these cases the numerical accuracy
improves with a larger number of Nbuf or Niter, and GAMER-2 with
Nbuf = 5 provides the most accurate solution within r � r0. We also
find that Nbuf > 5 does not improve accuracy further. In addition, the
gravitational potential of a patch of 83 cells and five ghost zones on
each side consumes ∼46 KB memory per patch in double precision,
which can just fit into the small but fast shared memory of modern
GPUs. Therefore, we adopt Nbuf = 5 by default.
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