| Publication Year | 2018 | |-----------------------|--| | Acceptance in OA@INAF | 2020-10-13T09:40:00Z | | Title | Rare Treasures in the KiDS Survey | | Authors | TORTORA, CRESCENZO | | DOI | 10.5281/zenodo.1303321 | | Handle | http://hdl.handle.net/20.500.12386/27753 | #### CRESCENZO TORTORA VST in the era of the large sky surveys - Napoli - 06/06/18 KiDS@VST aims to image 1500 square degrees in 4 optical bands (complemented in the NIR with VIKING@VISTA). #### CRESCENZO TORTORA VST in the era of the large sky surveys - Napoli - 06/06/18 #### Towards a census of supercompact massive galaxies in the Kilo Degree Survey C. Tortora, 1* F. La Barbera, 1 N. R. Napolitano, 1 N. Roy, 1,2 M. Radovich, 3 S. Cavuoti, M. Brescia, G. Longo, F. Getman, M. Capaccioli, A. Grado, K. H. Kuijken, ⁴ J. T. A. de Jong, ⁴ J. P. McFarland ⁵ and E. Puddu #### The first sample of spectroscopically confirmed ultra-compact massive galaxies in the Kilo Degree Survey - C. Tortora^{1*}, N.R. Napolitano², M. Spavone², F. La Barbera², G. D'Ago², C. Spiniello², - K. H. Kuijken³, N. Roy^{2,4}, M. A. Raj², S. Cavuoti^{2,4}, M. Brescia², G. Longo⁴, - V. Pota², C. E. Petrillo¹, M. Radovich⁵, F. Getman², L.V.E. Koopmans¹, I. Trujillo^{6,7}, G. Verdoes Kleijn¹, M. Capaccioli⁴, A. Grado², G. Covone⁴, D. Scognamiglio², - C. Blake⁸, K. Glazebrook⁸, S. Joudaki^{8,9,10}, C. Lidman¹¹, C. Wolf¹² # Better Than Before The census of ultra-compact massive galaxies #### Hierarchical scenario and compact galaxies BIG BANG -10 -5 X (kpc) Trujillo et al. 2014 #### Ultra-compact massive galaxies (UCMGs) ## Data analysis #### Photo-z (machine learning, specs to train the network) scatter ~ 0.03 Cavuoti et al. 2015, 2017 #### Stellar masses (SED-fitting, using Lephare program) #### Structural parameters (2DPHOT, Sérsic fit, modelling the PSF) La Barbera et al. 2008; Roy et al., MNRAS submitted #### Some UCMG candidates Complete at z < 0.5 Spectroscopic redshifts Literature New observations #### New observations 28 observed and reduced (TNG-1st, NTT) ~45 observed and to be reduced (TNG-2nd, INT) ~20 to be observed (TNG-3rd) False Positive False Negative C. E. Petrillo, 1* C. Tortora, S. Chatterjee, G. Vernardos, L. V. E. Koopmans, 1 G. Verdoes Kleijn, N. R. Napolitano, G. Covone, P. Schneider, A. Grado² and J. McFarland1 ## Better Than Before The census of gravitational lenses The census of gravitational lenses SLACS: The Sloan Lens ACS Survey www.SLACS.org A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT) Image credit: A. Bolton, for the SLACS team and NASA/ESA Now: ~ 600 lenses known KiDS: ~ 2400 lenses (Petrillo+17) #### Automated search 4214 ## Training sample: an issue CNNs need large "training set"! A few hundred of observed gravitational lenses Mock gravitational lenses ## The strategy ### The lens sample From ~22.000 color selected LRGs in KiDS DR3 (255 sq. deg.), in few minutes the CNN selects **746** lens candidates. We choose the best **56 lenses** with a joint visual inspection. Prediction from LensPop (Collett 2015): ~50 LRG lenses in KiDS DR3 with ER>1.4". ## On-going improvements Morphology and colour Just morphology - ✓ Network architecture - ✓ Sample selection - ✓Survey area (soon 900 sq. deg.; KiDS-DR4) - **√** #### Some new candidates We are putting the basis of the future lens searches ## Spectroscopic follow-up (SALT) Marchetti's talk Napolitano et al. in prep.; Spiniello et al. in prep.