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ABSTRACT
Despite considerations of mass-loss from stellar evolution suggesting otherwise, the content
of gas in globular clusters seems poor and hence its measurement very elusive. One way of
constraining the presence of ionized gas in a globular cluster is through its dispersive effects
on the radiation of the millisecond pulsars included in the cluster. This effect led Freire et al.
to the first detection of any kind of gas in a globular cluster in the case of 47 Tucanae. By
exploiting the results of 12 additional years of timing, as well as the observation of new
millisecond pulsars in 47 Tucanae, we revisited this measurement: we first used the entire
set of available timing parameters in order to measure the dynamical properties of the cluster
and the three-dimensional position of the pulsars. Then we applied and tested various gas
distribution models: assuming a constant gas density, we confirmed the detection of ionized
gas with a number density of n = 0.23 ± 0.05 cm−3, larger than the previous determination (at
2σ uncertainty). Models predicting a decreasing density or following the stellar distribution
density are highly disfavoured. We are also able to investigate the presence of an intermediate
mass black hole in the centre of the cluster, showing that is not required by the available data,
with an upper limit for the mass at ∼4000 M�.

Key words: stars: kinematics and dynamics – pulsars: general – ISM: kinematics and dynam-
ics – globular clusters: individual: 47 Tucanae.

1 IN T RO D U C T I O N

Globular clusters (GCs) are known to harbour a very large popula-
tion of pulsars. Currently, 150 pulsars have been found in 28 GCs.1

Almost all of them are millisecond pulsars (MSPs), which have
been recycled during accretion from a binary companion.

In GCs, the number of low-mass X-ray binaries (and their prod-
ucts, MSPs) per unit stellar mass is much greater than in the Galactic
field (Clark 1975). This results from the very high central densities
of the clusters which increases the chance of close stellar encoun-
ters. These encounters can lead to the formation of new binaries
containing a neutron star where accretion can occur and the neutron
star can be recycled. The same processes that form these binaries

� E-mail: f.abbate@campus.unimib.it
1For an up-to-date number visit: http://www.naic.edu/∼pfreire/GCpsr.html

can also destroy (Verbunt & Freire 2014) them or the neutron star
can ablate the companion with its strong wind. For these reasons
many MSPs in GCs are isolated.

Thanks to their abundance and to their rotational stability, MSPs
can be used as unparalleled probes of the gravitational potential and
environment of GCs. MSPs have been used to constrain the prop-
erties of the parent clusters (Anderson 1993; Phinney 1993; Freire
et al. 2003; Prager et al. 2017) and to study the presence of inter-
mediate mass black holes (IMBHs; Freire et al. 2017; Kızıltan,
Baumgardt & Loeb 2017a,b; Perera et al. 2017; Prager et al.
2017).

47 Tucanae (also known as NGC 104, hereafter 47 Tuc) is one
of the most prominent GCs. The main properties of the cluster are
listed in Table 1. The central density has been measured from the
proper motion central velocity dispersion σμ,0 = 0.574 ± 0.005
mas yr−1 (Watkins et al. 2015) and the angular core radius θ c =
26.5 ± 1.16 arcsec (Bellini et al. 2017) using equations (1)–(34) in
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628 F. Abbate et al.

Table 1. Main properties of the GC 47 Tuc.

Parameter Value References

Centre RA (J2000) 00h24m05s.67 ± 0s.07 1
Centre Dec (J2000) −72◦04

′
52′′.62 ± 0′′.26 1

Distance from Sun 4.53 ± 0.04 kpc 2
Metallicity −0.72 dex 3
Mass (8.4 ± 0.4) × 105 M� 4
Tidal radius 42′

.3 (55.4 pc) 3
Core radius 26′′

. 5 (0.58 pc) 4
Age 10.0 ± 0.4 Gyr 5
Escape velocity at core 68.8 km s−1 6
Central velocity
dispersion

0.574 ± 0.005 mas yr−1 7

Central density 75000 ± 2000 M� pc−3 4, 7
Central ICM density 0.067 ± 0.015 cm−3 8

1, McLaughlin et al. (2006); 2, Bogdanov et al. (2016); 3, Harris 1996 (2010
edition); 4, Bellini et al. (2017); 5, Gratton et al. (1997); 6, Gnedin et al.
(2002); 7, Watkins et al. (2015); and 8, Freire et al. (2001b).

Spitzer (1987):

ρ0 = 9σ 2
μ,0

4πGθ2
c

= (7.5 ± 0.2) × 104 M� pc−3; (1)

which is accurate to ∼0.5 per cent for clusters in which the tidal
radius is much larger than the core radius (Freire et al. 2017). This
value is significantly lower than that derived by Freire et al. (2017)
because of the significant difference in θ c. We chose to use the
value of θ c = 26.5 ± 1.16 arcsec (Bellini et al. 2017) as it is the
most recent value obtained combining the surface brightness profile
with the kinematic information both along the line of sight and in
proper motion taken from state-of-the-art Hubble Space Telescope
observations. Radio observations of 47 Tuc led to the discovery of 25
pulsars (Manchester et al. 1990; Robinson et al. 1995; Camilo et al.
2000; Pan et al. 2016) and to the phase-coherent timing solution
of 23 of them (Freire et al. 2001a, 2003; 2017; Ridolfi et al. 2016;
Freire & Ridolfi 2018). All of these pulsars are MSPs and have
0spin periods shorter than 8 ms. Fifteen of them are in binary
systems. Except for 47 Tuc X, they all reside within 1 arcmin of the
centre. Ridolfi et al. (2016) and Freire et al. (2017) also provided
the values of the period derivative, the second period derivate and
proper motion for 22 pulsars. For 10 of the binary pulsars it was
also possible to measure the orbital period derivative.

47 Tuc was the first GC where evidence of the presence of ion-
ized gas was found (Freire et al. 2001b). This discovery was made
possible by the study of the dispersion measure (DM) differences
between each pulsar. The DM causes a frequency-dependent delay
of the time of arrival of the pulses and is caused by the presence of
free electrons along the line of sight.

The DM was seen to be higher for pulsars farther along the
line of sight compared to ones closer to the observer. This was
interpreted as being due to the presence of an ionized component
of constant density of the intracluster medium (ICM). Because of
the large errors it was not possible to discriminate between various
distribution models of the gas.

Despite this detection, there is very little additional evidence of
any kind of interstellar medium inside GCs. This is a long-standing
problem in the astrophysics of GCs (Smith et al. 1990; van Loon
et al. 2006; Barmby et al. 2009). The only certain detection of neutral
gas in a GC was made in M15: an HI cloud of ∼0.3 M� and 9 ± 2 ×
10−4 M� of dust (Evans et al. 2003; Boyer et al. 2006; van Loon
et al. 2006). This amount of gas and dust is very small if compared to

what is expected to be emitted by the evolved stars of the cluster, i.e.
∼10−6 M� yr−1 (McDonald et al. 2011). A fast clearing mechanism
for the dust is necessary to explain the discrepancy between the
observations and the predictions. This clearing mechanism could
be caused by pulsar winds (Spergel 1991), fast winds from red
giants (Smith, Dupree & Strader 2004), classical novae (Moore &
Bildsten 2011), or by white dwarfs (McDonald & Zijlstra 2015).

A more detailed modelling of the gas density could in principle
be used as a tracer of the origin and evolution of the gas itself.
Furthermore, it has been suggested that the distribution of gas could
be influenced by the presence of an intermediate mass black hole
(Pepe & Pellizza 2016), thus allowing us to put additional con-
straints on its presence.

Stringent upper limits have been put in the past on the mass of
the central IMBH in 47 Tuc between 1000 and 5000 M� from both
kinematic methods and radio continuum observations (McLaughlin
et al. 2006; Maccarone & Servillat 2008, 2010; Lu & Kong 2011).
Recently a claim of an IMBH of 2200 M� was put forward (Kızıltan
et al. 2017a,b) using pulsar observations. However, using updated
results, Freire et al. (2017) deemed the claim unnecessary; the same
result was obtained by Mann et al. (2018) using detailed measure-
ments of the normal stars in the cluster; and a similar conclusion
was derived for a larger number of GCs from radio continuum sur-
veys (Tremou et al. 2018). An independent method for testing for
the presence of the IMBH might help to solve this question.

The aim of this paper is to test various distribution models for
the ionized gas inside the GC 47 Tuc using the new timing results
presented in Ridolfi et al. (2016), Freire et al. (2017), and Freire &
Ridolfi (2018): they were obtained from a much longer data-span
(16 yr as compared to 4 yr) than that available at the time of the
original detection (Freire et al. 2001b). The analysis is made using
a Markov Chain Monte Carlo (MCMC) algorithm first used to
determine the dynamical parameters of Terzan 5 (Prager et al. 2017).
Since the core radius and the velocity dispersion of 47 Tuc are well
constrained thanks to optical observations, this algorithm can be
used to accurately measure the line-of-sight position of the pulsars
and to test the presence of an IMBH using the equations described
in Section 2. The algorithm itself is described in Section 3. With
the three-dimensional positions of the pulsars and their measured
values of DM, we test the presence of ionized gas with different
distributions in Section 4. In Sections 5 and 6, we discuss the results
and derive the conclusions.

2 TH E O RY

GCs are typically modelled according to the King potential (King
1962). As shown in Miocchi et al. (2013) this model provides an
excellent fit for the surface brightness profile of 47 Tuc. Using
this model we can predict the values of the velocity dispersion,
accelerations, and jerks of the pulsars and compare them with the
observed values in order to derive the line-of-sight positions of the
pulsars.

Throughout the paper the scale radius of the King model, r0, will
be considered equal to the core radius, rc, defined as the radius at
which the projected luminosity density falls to half its central value.
The line-of-sight positions l will be measured from the centre of the
cluster increasing away from the observer.

2.1 Positions

The column density profile of the pulsars in a GC following a King
profile can be well approximated within a few core radii with the
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Internal gas in 47 Tuc 629

formula from Lugger, Cohn & Grindlay (1995):

n(x⊥) = n0

(
1 + x2

⊥
)α/2

, (2)

where n0 is the central density, and x⊥ is the distance from the centre
in the plane of the sky in units of core radii, defined as x⊥ = R⊥/rc.
The power-law index α is linked to mass segregation and it is related
to the mass of the pulsars by the relation α = 1 − 3q, where q is the
ratio between the mass of the pulsar and the dominant mass class
of the cluster (q = Mp/M∗). In the case of pulsars having the same
mass as the dominant mass class we recover α = −2, which is the
value for the single-mass analytical King model (King 1962).

The three-dimensional number density has been calculated by
Grindlay et al. (2002) and is

n(x) ∝ (
1 + x2

)(α−1)/2
, (3)

where x = r/rc and r is the three-dimensional position of the pulsar.
Also in this case, if α = −2, we recover the spatial density profile

of the single mass King model.

2.2 Velocity distribution

The average square velocity of stars in a GC can be obtained from
the King distribution function, which is defined as follows:

fK (E) =
{

ρ1(2πσ 2
vel)

−3/2 (eE/σ 2
vel − 1) E > 0

0 E ≤ 0
, (4)

where E is the relative energy defined as E = � − 1
2 v2, and � is

the gravitational potential energy, ρ1 is a reference density, σ vel is
the central one-dimensional velocity dispersion, and v is the three-
dimensional velocity of the star.

The average square velocity can be recovered by the integral:

〈v2〉 =
∫ ∞

0 v4fK (E)dv∫ ∞
0 v2fK (E)dv

. (5)

The limitation of E > 0 can be implemented by limiting the in-
tegrals from 0 to

√
2�. In this way we find the solution:

〈v2〉 =
3σ 2

vele
�/σ 2

vel erf
(√

�

σ 2
vel

)
− 6√

π

√
�σvel − 4√

πσvel
�3/2 − 8

5
√

π

�5/2

σ 3
vel

e�/σ 2
vel erf

(√
�

σ 2
vel

)
−

√
4�

πσ 2
vel

(
1 + 2�

3σ 2
vel

) ,

(6)

where erf is the Gauss error function.
This expression can be approximated within 20 core radii and

with a maximum error of 2 per cent by the formula:

〈v2〉 =
√

3σvel

[
1 +

(x

6

)2
]−0.2

. (7)

This velocity distribution is valid for the dominant mass class
of the cluster. The mass of the dominant class is close to the main
sequence turn-off that is ∼0.8 M� while pulsars are typically more
massive weighing around 1.4 M�. Since GCs evolve towards energy
equipartition, we should expect the pulsars to have lower veloci-
ties. Bianchini et al. (2016) estimated that the true equipartition is
reached only for stars whose mass M is above a certain equipartition
mass. The velocity dispersion for each mass is

σvel(M) =
⎧⎨
⎩

σvel exp
(
− 1

2
M

Meq

)
if M ≤ Meq

σvel,eq

(
M

Meq

)−1/2
if M > Meq,

(8)

where σvel,eq = σvel exp(− 1
2 ) is the velocity dispersion at the

equipartition mass.

Figure 1. Plot of the acceleration along the line of sight as a function
of the line-of-sight distance from the cluster centre. This plot has been
derived for pulsar 47 Tuc C. al is the measured acceleration for the pulsar
in consideration. To generate this acceleration the pulsar could be located
either at l1 or in l2.

For 47 Tuc, Baldwin et al. (2016) measured the equipartition mass
to be 1.6 M�. So for the pulsars, assuming a mass of ∼1.4 M�, we
obtain that the central velocity dispersion is σ vel,pulsar ∼ 0.65σ vel.
This is the value that must be used in equation (7).

2.3 Acceleration

The acceleration acting on a pulsar inside a GC is due both to
the gravitational potential as modelled by the King profile and to
the perturbations caused by the nearby stars. Prager et al. (2017)
showed in Terzan 5 that the acceleration from the nearest neighbours
is negligible if compared to the mean field acceleration. The same is
considered to be valid also for 47 Tuc. The acceleration for the King
profile was derived explicitly by Freire et al. (2005) and, within a
few core radii, takes the value:

ar (x) = −4πGρcθcx
−2d

[
arcsinh(x) − x√

1 + x2

]
, (9)

where ρc is the central density, θ c is the angular core radius, d is the
distance to the cluster. Projecting this acceleration along the line of
sight we obtain:

ar (l, x) = −4πGρcx
−3l

[
arcsinh(x) − x√

1 + x2

]
, (10)

where l is the line-of-sight component of the position of the pulsar
relative to the centre of the cluster, in core radii.

For a given position in the plane of the sky, x⊥, the acceleration
has a maximum value determined numerically for each line of sight,
at the centre (x⊥ = 0) this is given by (Freire et al. 2017):

al,max(x⊥) = 1.5689
σ 2

μ,0d

θc

. (11)

The proper motion central velocity dispersion, σμ,0, is defined as
in equation (1) and is related to the one-dimensional velocity dis-
persion defined in Section 2.2, σ vel, by the equation: σvel = σμ,0 d .

The shape of the acceleration along the line of sight is shown
in Fig. 1. For a given acceleration al there are two possible line-
of-sight positions that are compatible. Therefore, using only the
measurement of the acceleration it is not possible to determine
unequivocally the position of the pulsar.

2.4 Measuring accelerations for binary pulsars

The value of the acceleration along the line of sight at the pulsar po-
sition can be recovered by looking at the derivative of the rotational
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630 F. Abbate et al.

period. The measured period derivative can be expressed as:

(
Ṗ

P

)
meas

=
(

Ṗ

P

)
int

+ ac

c
+ ag

c
+ μ2d

c
, (12)

where
(

Ṗ
P

)
int

is the intrinsic spin-down of the pulsar, ac/c is the

acceleration due to the gravitational potential of the cluster, ag/c is
the acceleration due to the Galactic potential, μ2d/c is the Shklovskii
effect (Shklovskii 1970), and μ is the proper motion of the pulsar.
To obtain the acceleration due to cluster gravitational potential we
first need to estimate the other contributions.

The hardest contribution to determine is the intrinsic spin-down of
the pulsar as this quantity cannot be measured directly. In the case of
binary pulsars, however, we can also measure the orbital period and,
in some cases, the orbital period derivative. Since the orbital period
is subjected to the same effects as the rotational period, equation (12)
applies also for this quantity. Gravitational wave emission is the
dominant source of the intrinsic orbital period derivative in most of
the binary systems present in the cluster. As shown in Freire et al.
(2017), the effects of the gravitational wave emission are much
weaker than that of the cluster potential. Therefore,

(
Ṗb

Pb

)
meas

= ac

c
+ ag

c
+ μ2d

c
. (13)

Since we can measure the Galactic potential acceleration and the
Shklovskii effect, a measurement of the orbital period derivative is a
direct measurement of the acceleration due to the cluster potential.

The acceleration from the Galactic potential can be measured
starting from the distance to the Galactic Centre, taken to be R0 =
8.34 ± 0.16 kpc (Reid et al. 2014) and from the rotational speed of
the Galaxy at the Sun position, 	0 = 240 ± 8 km s−1 (Sharma et al.
2014). The acceleration due to the differential Galactic rotation at
the distance of 47 Tuc, d = 4.53 ± 0.08 kpc (Bogdanov et al. 2016)
and its location given in Galactic coordinates (l = 305.8953, b =
−44.8891) is (Nice & Taylor 1995)

ag = − cos(bgal)

(
	2

0

R0

)[
cos(lgal) + β

sin2(lgal) + β2

]
m s−2, (14)

where lgal and bgal are the Galactic coordinates and β =
(d/R0)cos (bgal) − cos (lgal). We obtain ag � −5 × 10−11 m s−2

which is two orders of magnitude smaller than the measured accel-
erations.

The acceleration due to the Shklovskii effect can be measured
directly from the proper motion of the pulsars. For the large majority
of pulsars in 47 Tuc, the proper motion has been measured and the
Shklovskii effect can be calculated. The average acceleration due to
the Shklovskii effect can be estimated by using the proper motion
of the cluster measured with data from Gaia Data Release 2. The
measured proper motion is μRA = 5.2477 ± 0.0016 mas yr−1 and
μDEC = −2.5189 ± 0.0015 mas yr−1 (Gaia Collaboration 2018).
This average acceleration will therefore be �1 × 10−10 m s−2.

Among the binary pulsars known in 47 Tuc there are also four
black widow systems. The long-term timing of some black widows
(Shaifullah et al. 2016) shows very large and unpredictable variabil-
ity of the orbital period. In this case, it is not possible to estimate
the orbital period derivative. Freire et al. (2017) showed that two
black widow systems, 47 Tuc J and O, show such large orbital vari-
ability. However, the other two, 47 Tuc I and R, show small orbital
variability and their period derivative can be described as due to the
cluster acceleration.

2.5 Measuring accelerations for isolated pulsars

For isolated pulsars and for the binaries for which we cannot mea-
sure the orbital period derivative, we need a way to estimate the
intrinsic spin-down. The intrinsic spin-down can be linked to the
surface magnetic field of the pulsar so if we assume that these MSPs
have similar properties to the ones found in the Galactic field, then
we can estimate the surface magnetic field. A list of all the pulsars of
interest can be found in the Australian Telescope National Facility
(ATNF) Pulsar Catalogue2 (Manchester et al. 2005). Prager et al.
(2017) found that the surface magnetic field values of field MSPs
can be fitted with a log-normal probability distribution function with
μlog10(B) = 8.47 and σlog10(B) = 0.33.

The average apparent acceleration caused by the intrinsic spin-
down is ∼1 × 10−9 m s−2. This is a significant contribution when
compared to the range of accelerations due to the GC as can be seen
in Fig. 1.

2.6 Jerks

The effects of the jerks can be measured from the second-order
derivative of the observed period of the pulsar, as described by
Phinney (1993):

P̈

P
= 1

c
ȧ · n, (15)

where n is the direction of the line of sight.
Also, we need to distinguish between the jerk arising from the

mean gravitational potential and the jerk caused by the nearest
neighbours. However, in this case, the two contributions are of
similar magnitude and must be considered together (Prager et al.
2017). The jerk due to the mean field was calculated by Phinney
(1993) to be

ȧmf · n = 4

3
πGρ(r)vl(r), (16)

where vl(r) is the line-of-sight component of the velocity of the
pulsar. A comparison between the maximum jerk caused by the
mean field and the measured jerk for the pulsars in 47 Tuc was done
by Freire et al. (2017).

The jerk caused by the nearest neighbours follows a Lorentzian
distribution with scale parameter given by Prager et al. (2017)

ȧnn = 2πξ

3
G〈m〉σveln, (17)

where ξ � 3.04 is a numerical factor, 〈m〉 is the average mass of
the neighbouring stars, σ vel is the velocity dispersion, and n is the
number density of the stars near the pulsar.

2.7 Effects of an IMBH

The presence of an IMBH in the centre of the cluster will have
an influence on the density distribution of the stars inside a cer-
tain radius, called the influence radius and defined as (Baumgardt,
Makino & Ebisuzaki 2004a):

ri = 3MBH

8πρcr2
c

, (18)

where MBH is the mass of the central black hole.
Outside this radius the distribution is the same as the standard

King model described above. Inside, the dynamics is dominated by

2The full list is available at http://www.atnf.csiro.au/research/pulsar/psrcat/.
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Internal gas in 47 Tuc 631

the black hole and the stars follow a density cusp described by the
power-law distribution:

ρBH ∝ r−1.55, (19)

where the index of the power law is taken from Baumgardt,
Makino & Ebisuzaki (2004b).

This difference in density will cause a difference in the acceler-
ation felt by the pulsars inside or close to the influence radius of a
given black hole.

The equations described above are valid only if the black hole
is taken as fixed at the centre of the cluster. While this is a good
assumption if the IMBH is massive, a black hole of smaller mass
may wander in the central region disrupting the central density cusp.
Therefore, this test is valid only to determine an upper mass limit
on a putative IMBH.

3 M C MC A NA LY SIS

For the analysis of the gas distribution inside a GC we need to ac-
curately know the three-dimensional position of each pulsar within
the cluster itself and compare the predicted DM (in turn dependent
on the adopted distribution model for the gas) with the measured
DM. The position along the line of sight can be estimated using
the formulas shown above. Other parameters, like the core radius,
the central density, the density distribution power-law index, and
the line-of-sight velocities are needed to obtain these results. All of
these parameters are left free. Since all of these parameters, except
for the line-of-sight velocities, are well constrained for this cluster,
the agreement of the estimated values with those presented in the
literature is an indicator of the quality of the fit. The distance of the
cluster is not taken as a parameter of the fit but is taken as fixed.
Trying to consider the distance as a free parameter only resulted in
inconclusive fits.

The data we use to perform the fit are: the rotational period,
the rotational period derivative, the second-order rotational period
derivative, the orbital period, the orbital period derivative, the po-
sitions of the pulsars projected along the plane of the sky and their
proper motions. Since the formulas are valid only near the cluster
centre we cannot use the information about pulsar 47 Tuc X, which
is about 5 pc away. The total number of pulsars we can use for the fit
is thus 22 (pulsars P and V do not have a phase-connected solution
yet). Pulsar H exhibits a very large jerk, which has been suggested
to be caused by nearby stars, so we cannot use this measurement
for our fit. This brings the total number of parameters of the fit to
46. If we also search for the presence of an IMBH we must also
fit for the mass of the black hole, which brings the total number of
parameters to fit to 47.

The analysis was performed using the EMCEE python package
(Foreman-Mackey et al. 2013), which implements a Markov Chain
Monte Carlo (MCMC) algorithm and returns the best fit parameters
for the desired model.

3.1 Likelihoods

The MCMC algorithm works by looking for the set of parameters
that maximises the likelihood. The likelihood passed to the algo-
rithm is expressed in logarithms and can be seen as the sum of
different log-likelihoods:

L = Lx⊥ + Ll + Laccel + Ljerks + Lvel, (20)

where Lx⊥ is the log-likelihood associated with the pulsar position
in the plane of the sky, Ll is the log-likelihood associated to their

three-dimensional position, Laccel is the log-likelihood due to the
experienced acceleration, Ljerks is the log-likelihood due to the jerk
measurements, and Lvel is the log-likelihood associated with the
velocity measurements.

The log-likelihood associated with the position of the pulsars
on the plane of the sky can be found starting from the number
density distribution of this stellar component on the plane of the sky
(equation 2):

Lx⊥ ∝
∑

i

log10

[(
1 + x2

⊥,i

)α/2
]
, (21)

where i is the index of the summation over all pulsars.
The log-likelihood associated with the three-dimensional position

of the pulsars in the cluster is (equation 3)

Ll ∝
∑

i

log10

[(
1 + x2

⊥,i + l2
i

r2
c

)(α−1)/2
]

. (22)

The acceleration log-likelihood is measured in two different ways
depending on whether the pulsar is in a binary system with a mea-
sured orbital period derivative. If we know the latter, we can directly
probe the acceleration and compare it against the one predicted by
the model (equation 10). The log-likelihood then becomes

Lacc,binary ∝
∑

i

1

2εi

(al,i − a(l|x⊥, θ ))2, (23)

where εi is the uncertainty on the measured acceleration, al, i is the
measured acceleration, and a(l|R⊥, θ ) is the predicted acceleration
for the set of parameters θ .

If the pulsar is isolated or we have no measurement of the orbital
period derivative, we have to estimate the intrinsic spin-down due to
magnetic braking. We first subtract the model acceleration from the
measured (Ṗ /P ) and then check if the residual acceleration could
be due to the intrinsic spin-down. As described in Section 2.5, this
quantity can be linked to the surface magnetic field of the pulsar. The
magnetic fields of Galactic MSPs follow a log-normal distribution
and the log-likelihood becomes:

Lacc,isolated ∝
∑

i

[
1

2σ 2
log10(B)

(log10 B8 − μlog10(B))
2 + log10 B8

]
,

(24)

where B8 is the magnetic field in units of 108 G, whereas σlog10(B) and
μlog10(B) are the parameters of the lognormal fit performed by Prager
et al. (2017) on the Galactic MSPs as described in Section 2.5.

As shown in Section 2.6, the jerk to which a pulsar is subject is
due to both the mean field potential and to nearby stars. The jerk due
to the mean field can be estimated directly from the formulas while
for the stellar contribution only a statistical description is possible.
To estimate the likelihood of measuring a certain value for the jerk
we subtract the mean field component and compute the logarithm
of the probability that the residual is caused by nearby stars. The
log-likelihood becomes

Ljerks =
∑

i

log10

(
ȧnn,i

π

1[
(ȧl,i − ȧmf,i)2 + ȧ2

nn,i

]
)

, (25)

where ȧl,i is the measured jerk, ȧmf,i is the predicted mean field
jerk, and ȧnn,i is the scale parameter of the Lorentzian distribution
(equation 17).

The velocities of the pulsars are distributed according to a
Maxwellian distribution, with a velocity dispersion which can be es-
timated for each pulsar from equation (7). Hence, the log-likelihood
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632 F. Abbate et al.

Figure 2. Triangle plot showing the marginalized probabilities for the den-
sity distribution power-law index α, the central density, ρc, and the core
radius, rc, for the GC 47 Tuc. The errors indicate the 68 per cent credible
intervals.

for the velocity is

Lvel ∝
∑

i

(
−3 log10(〈v2〉i) + 2 log10(vmeas,i) − 3

2

v2
meas,i

〈v2〉2
i

)
. (26)

3.2 Priors

Priors were initially chosen to be flat for all parameters except
for the black hole mass, which can range by orders of magnitude;
therefore a logarithmic prior is more reasonable. However, since the
fit did not converge we decided to put a gaussian prior on the core
radius centred in 0.58 pc and with a standard deviation of 0.03 pc,
as derived from the recent optical study of Bellini et al. (2017).

3.3 Parallel tempering

As shown in Fig. 1 it is possible for two different positions along
a given line of sight to produce the same line-of-sight acceleration.
This generates a bimodal distribution of the line-of-sight position of
a pulsar for every measured acceleration. Since the MCMC could
get stuck on one of the two solutions and not explore the parameter
space properly, we need to address this problem. We opted for a
parallel tempering solution (Marinari & Parisi 1992) which makes
use of chains of different ‘temperatures’ to cover the entire param-
eter space. The ‘higher temperature’ chains are allowed to move
freely while the ‘colder’ chains remain close to the previous values.
Combining chains of different temperatures allows us to properly
explore the parameter space in order to find the global maximum of
the likelihood.

3.4 Fit results

The best fit for parameters of 47 Tuc is shown in Fig. 2. The results
of the fit for the position along the line of sight are reported in
Table 2.

Table 2. Best-fitting parameters for the line-of-sight position of the pulsars.
The distance from the centre of the cluster along the plane of the sky, R⊥,
is also shown together with the DM values. The errors indicate the 68%
credible interval on the posterior distribution.

Pulsar R⊥ (pc) DM (pc cm−3) l (pc)

W 0.087 24.4 ± 0.5 0.40+0.29
−0.06

O 0.106 24.356 ± 0.002 −0.03+0.16
−0.03

Z 0.198 24.4 ± 0.5 0.01+0.08
−0.00

R 0.200 24.361 ± 0.007 −0.22+0.08
−0.15

L 0.214 24.400 ± 0.012 0.24+0.26
−0.07

ab 0.276 24.373 ± 0.020 0.02+0.12
−0.03

F 0.283 24.382 ± 0.005 −0.11+0.22
−0.07

S 0.283 24.376 ± 0.004 0.58+0.17
−0.19

I 0.365 24.429 ± 0.010 0.33+0.15
−0.22

G 0.367 24.436 ± 0.004 0.11+0.16
−0.03

T 0.419 24.411 ± 0.021 −0.28+0.17
−0.22

Y 0.493 24.468 ± 0.004 0.19+0.03
−0.04

aa 0.613 24.971 ± 0.007 0.62+0.23
−0.18

N 0.631 24.574 ± 0.009 0.17+0.28
−0.07

E 0.818 24.236 ± 0.002 −0.54+0.14
−0.12

D 0.854 24.732 ± 0.003 0.04+0.11
−0.02

H 1.012 24.369 ± 0.008 0.10+0.05
−0.07

U 1.237 24.337 ± 0.004 −0.80+0.26
−0.19

Q 1.252 24.265 ± 0.004 −0.33+0.13
−0.12

J 1.342 24.588 ± 0.003 0.54+0.40
−0.25

M 1.409 24.432 ± 0.016 0.66+0.37
−0.19

C 1.620 24.600 ± 0.004 0.75+0.78
−0.28

Figure 3. Cumulative distribution of the projected offset from the cluster
centre. The red line has been obtained integrating equation (2) using the
parameter α found in the MCMC fit. The orange area is the 68 per cent
credible interval.

The posterior distribution of the core radius does not show asym-
metries or deviations from the assumed Gaussian prior. This means
that the fit is not strongly influenced by this parameter. Instead, the
best-fitting result is the value we assumed for the prior.

The power-law index of the density distribution, α, is found to
be −2.8+0.4

−0.7. The errors indicate the 68 per cent credible interval of
the posterior distribution. This value is consistent with the value of
−3.26 ± 0.48 measured in X-rays for the MSPs of 47 Tuc (Heinke
et al. 2005). To check the consistency we also compare, in Fig. 3,
the cumulative distribution of the pulsars in the plane of the sky with
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Internal gas in 47 Tuc 633

Figure 4. One-dimensional velocity dispersion measured from the proper
motion of the pulsars as a function of radius. The pulsars have been divided
in two sets, one inside the core radius and one outside. The error bars show
the 1-σ interval. The green curve shows the predicted trend for stars of
the same mass as the dominant mass class while the orange line shows the
predicted trend for stars of ∼1.4 M�. The two curves are described in
Section 2.2.

the result obtained with equation (2) using the derived power-law
index.

The best-fitting value for the central density is ρc = 8.6+1.3
−0.9 ×

104 M� pc−3. This value is compatible with the previously estimated
central density of (7.5 ± 0.2) × 104 M� pc−3 (Table 1).

From the estimates of the core radius and central density we can
calculate the velocity dispersion through equation (1). We obtain
σμ,0 = 0.60 ± 0.04 mas yr−1, which is compatible with velocity
dispersion measured from the proper motion of the stars (Watkins
et al. 2015). The calculated velocity dispersion can also be compared
with the pulsar proper motions thanks to the equations described in
Section 2.2. The result is shown in Fig. 4 where the velocity dis-
persion is measured separately for the pulsars inside the core radius
and those outside. The pulsars closer to the centre have a velocity
dispersion close to what is expected for their mass. The pulsars out-
side the core radius have higher velocity dispersions than expected
probably because they have not reached energy equipartition.

Since we measured new values for the structural parameters of
47 Tuc, we can also check the plots of the line-of-sight accelera-
tions and jerks. These plots are shown in Fig. 5. When compared
with the similar plots presented in Freire et al. (2017), the main
difference is the acceleration of the pulsar S which now is below the
minimum possible acceleration in absence of the black hole. It is
however still compatible with the limit considering the large errors
on the structural parameters of the cluster. Therefore, all the main
structural parameters estimated for the cluster are compatible with
those previously measured. This gives confidence in the reliability
of the algorithm used and in the line-of-sight positions presented in
Table 2.

In all models we assumed that the cluster was spherically sym-
metric. To verify whether this assumption is consistent with the
results, we perform a Kolmogorov–Smirnoff test to check if the
measured positions along the line of sight are extracted from the
same distribution as the positions along two directions on the plane
of the sky. Both tests with right ascension and declination return
p-values of ∼0.6 so the results are consistent with a spherically
symmetric cluster.

The line-of-sight velocities are not tightly constrained by our
code. They are considered nuisance parameters over which we

Figure 5. The top panel shows the line-of-sight acceleration of the pulsars
as a function of the offset from the centre in units of core radii. The blue
triangle shows the measure of (Ṗ /P )meas which is an upper limit on the
true value of the acceleration. For pulsars in binaries for which a measure of
the orbital period derivative is available we show the measured acceleration
(for a discussion on this see Sections 2.4 and 2.5). The blue curve shows
the maximum and minimum acceleration in absence of a black hole and
the orange area is the 68 per cent credible interval. The bottom panel shows
the line-of-sight jerks as a function of the offset from the centre in units of
core radii. The blue curves show the maximum and minimum jerks due to
the mean field in absence of a black hole. In both panels the vertical dotted
green line is the core radius.

marginalize. As a result we obtain values of line-of-sight veloci-
ties with very large uncertainties.

Furthermore, the posterior distribution of the IMBH mass is
shown in Fig. 6. The peak of the distribution is at zero mass, sug-
gesting that there is no IMBH at the cluster centre. We can derive
an upper limit on the mass by measuring the value that contain
99 per cent of the chains. This limit is at ∼4000 M�.

4 G AS MODEL R ESULTS

By using the information (derived in the previous sections) about
the positions along the line of sight of the pulsars, it is possible to
investigate which model for the distribution of the internal gas better
matches the observed DMs of the 47 Tuc pulsars. We performed a fit
to the data presented in Table 2 with a Bayesian algorithm without
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634 F. Abbate et al.

Figure 6. Plot of the posterior probability on the mass of the central black
hole. The maximum of the distribution is at 0 M� suggesting that a black
hole is not necessary to explain the data. The vertical line is at the mass of
the black hole of 2200 M� proposed by Kızıltan et al. (2017a). We see an
increase in probability close to this value. The upper mass limit above which
the black hole is not compatible with our data is ∼4000 M�.

considering pulsars W and Z, because of their imprecise DMs. That
allows us to compare models with different parameters through the
Bayes factor. This consists of measuring the evidences, which in
Bayesian statistics is the integral along the entire parameter space of
the likelihood. The evidences can then be compared by calculating
the ratio. If the logarithm in base 10 of this ratio is larger than 2, the
model with the highest evidence is strongly favoured.

The line-of-sight positions of the pulsars are not normally dis-
tributed and therefore standard fitting procedures would not work.
To correctly treat their distribution we extracted the values of the
line-of-sight positions at each cycle of the algorithm from the pos-
terior distributions, and built the uncertainty range including the
68 per cent of the posterior density function.

From a given gas density distribution, the contribution DMGC to
the total observed DM due to the GC can be measured with the
following integral for each pulsar:

DMGC =
∫ l

−lT

ng(R⊥, l′)dl′, (27)

where lT is the tidal radius of the cluster, which is assumed as the
maximum radius up to which the gas is present.

4.1 Constant density model

We first tested the hypothesis of a constant gas density in the region
of interest. This is the model that was used by Freire et al. (2001b)
to give the first evidence of ionized gas inside the cluster. Assuming
that the region of interest is uniformly permeated by a gas, we do
not need to consider the position in the plane of the sky. The total
DM for each pulsar is described by the formula:

DM = ngl + DMc, (28)

where ng is the value of the gas density and DMc is the value of the
total DM at a plane that passes through the centre of the cluster and
is perpendicular to the line of sight (assuming no variation of DM
due to the interstellar medium along the various lines of sight to
the GC).

Figure 7. Fit of the density of the gas assuming a model of constant density
throughout the central regions of the cluster. In the top panel the blue points
are associated to the position of the pulsars (l being the distance of each
object from the plane passing through the centre and perpendicular to the
line of sight) and the error bars indicate the 68 per cent confidence interval
on the posterior distribution for the position of the pulsars. The vertical
dashed lines correspond to the core radius. The best fit is the orange line.
The parameters of the best fit are shown in top left corner of the plot. In the
top panel the green points are the distances along the line of sight measured
by Freire et al. (2001b). The red line is the best fit found by these authors.
The bottom panel is a zoom in the central region of the cluster showing only
the new measurements.

Fig. 7 shows the best fit with a value of the density ng = 0.23 ±
0.05 cm−3 and DMc = 24.38 ± 0.02 pc cm−3. In comparison the
values found by Freire et al. (2001b) are ng = 0.067 ± 0.015 cm−3

and DMc = 24.381 ± 0.009 pc cm−3. We find a gas density which is
higher than the previous estimate, although with larger uncertainty.
The values of the line-of-sight positions of the pulsars and the fits
for them are shown in the top panel of Fig. 7. The previous values
are larger than those found with our analysis. This is probably
because of the method used to find the line-of-sight positions of the
pulsars. In particular, Freire et al. (2001b) did not fit for the cluster
parameters and took an average value for the intrinsic spin-down.
Moreover, since the measurements of the second derivative of the
spin period were not available at the time, they had to resolve the
ambiguity of the line-of-sight position arbitrarily.

As can be seen in Fig. 7 there are some pulsars with DM values
very different from the predicted model. We tested whether these
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Internal gas in 47 Tuc 635

outliers had an influence on the fit. We performed the same fitting
procedure using randomly chosen subsets of pulsars. In all cases the
fits returned values of density and of central DM compatible with
the results presented above. So we can conclude that our results are
not heavily influenced by the value of some specific MSPs.

The observed differences of the measured DM from the constant
density model have a standard deviation of ∼0.1 pc cm−3. They
can be considered as arising from local overdensities and underden-
sities inside the cluster or could be due to inhomogeneities in the
interstellar medium (ISM) along the line of sight.

A possible explanation of why pulsar 47 Tuc aa is not well
fitted by our model is that it could be located further back than
we estimated. The probability of the pulsar being located further
than 1.5 pc from the cluster centre is about 4 per cent as measured
from the posterior distribution. Statistically, since we have a sample
of 22 pulsars, there is a good probability that at least one pulsar
would be an outlier at that level.

The region that we are able to probe with the pulsars extends to
about 1 pc from the centre. Assuming that this model is valid only
in this region we calculate a total mass of gas in the inner 1 pc of
0.023 ± 0.005 M�.

4.2 King profile distribution

Another model to be explored is a gas density profile that follows
the same King profile as the stars in the GC, suitably scaled. This
option is motivated by the hypothesis that the observed ionized gas
is released by the winds of massive stars. As shown in equation (3)
with α = −2, the gas density is

ng(R⊥, l) = ng,c

[
1 +

(
R⊥
rc

)2

+
(

l

rc

)2
]−3/2

, (29)

where ng,c is the density of the gas at the centre of the cluster.
Correspondingly, the total DM for each pulsar should be modelled

by the following equation:

DM = ng,c r3
c

r2
c + R2

⊥

(
l√

l2 + R2
⊥ + r2

c

+ lT√
l2
T + R2

⊥ + r2
c

)

+ DMf, (30)

where DMf is the foreground contribution to the total DM.
The best fit for this model is shown in Fig. 8. That implies ng,c =

0.15 ± 0.04 cm−3 and DMf = 24.37 ± 0.01 pc cm−3.
This best fit appears to be much worse than the one reported

in the previous section. The logarithm of the Bayes factor K of
this model with respect to the constant density model is log K ∼
14 000� 2. This means that the model with constant gas density
is strongly favoured to explain the observed data with respect to a
King distribution model for the gas.

4.3 Decreasing model

It has also been suggested that, in the presence of an IMBH in the
centre of the cluster, the gas density profile should be constantly
decreasing (Pepe & Pellizza 2016). We first tested a model in which
the gas density drops as 1/r:

ng(R⊥, l) = ng,1rc√
R2

⊥ + l2
, (31)

where in this case ng,1 corresponds to the density of the gas at one
core radius from the centre.

Figure 8. Fit of the gas density assuming the gas is distributed following
the same King profile as the stars. The plot shows the measured DM versus
the DM predicted by the best fit. The orange line represents the unity line.
In the case of a perfect fit all the points should fall on the orange line.

Figure 9. Fit of the gas density assuming the distribution of the gas is
decreasing as r−1. The plot shows the measured DM versus the DM predicted
by the best fit. The orange line represents the unity line. In the case of a
perfect fit all the points should fall on the orange line.

The corresponding total DM for each pulsar

DM=ng,1rc log
(
(l2 + R2

⊥) + l
) + log

(
(l2

T + R2
⊥) + lT

)+DMf,

(32)

where lT and DMf are same as in the case of a King profile.
The best fit for this model is reported in Fig. 9 with the parameter

ng,1 = 0.10 ± 0.03 cm−3 and DMf = 24.10+0.06
−0.09 pc cm−3.

In this case, the logarithm of the Bayes factor with respect to
the constant gas density model is log K ∼ 10 000 �2. This means
that this model with decreasing density is strongly disfavoured to
explain the observed data. We repeated the exercise for a gas density
scaling as r−h (for h = 2, 3) and always found very large values for
the Bayes factor. In summary, it appears that any models in which
the gas density decreases within a volume of about 1 pc from the
GC centre is significantly disfavoured in comparison with a constant
gas density model.
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636 F. Abbate et al.

5 D ISCUSSION

Our analysis confirms the presence of ionized gas in the central
regions of 47 Tuc, as it was first reported by Freire et al. (2001b). In
addition, we have also been able to compare different distributions
of gas and one with constant density in the central region is strongly
favoured.

McDonald & Zijlstra (2015) suggested that the gas might be
originating from the winds of evolved RGB and AGB stars in the
cluster and it could be completely ionized by the UV radiation of
young white dwarfs (other kinds of stars are not effective, since they
cannot provide enough ionizing photons). According to them, all
the ionizing sources in the cluster support a time averaged ionizing
flux of 2.43 × 1047 photons s−1 with a characteristic temperature
of 65 000 K. This radiation is enough to heat and ionize all the gas
in the cluster. We can check what distribution the gas would follow
in this conditions by assuming an equilibrium between the pressure
forces and the gravity of the cluster.

The gravitational force on a volume element of gas is expressed
by the formula:

fg(r) = −Gρg(r)MKing(r)

r2
, (33)

where ρg(r) is the density of the gas at radius r and MKing(r) is the
total mass contained in the cluster assuming a King distribution.

This force must be balanced by the pressure forces. There are two
types of pressure: a thermal pressure caused by the temperature of
the gas and a radiative pressure driven by the radiation field. This
radiation field can interact with the gas since we assume that it is
ionized. For an ideal gas the thermal pressure is

PT (r) = ng(r)kBT (r), (34)

where kB is the Boltzmann constant. The radiative pressure can be
measured from the assumption that the radiation is a blackbody. In
this case the pressure at the surface of a star is

P� = 4σsb

3c
T 4

R , (35)

where TR is the temperature of the star and σ sb is the Stefan–
Boltzmann constant. The radiation pressure has a dependence on
the distance r from the surface as PR = P�(R�/r)2, where R� is the
radius of the star. If we assume that the radiation is coming from
white dwarfs, the total radiation pressure at a radius r becomes:

PR(r) = P�

(
R�

r

)2

N�(r), (36)

where N�(r) is the number of white dwarfs contained within a radius
r and assuming they follow the same King distribution as the normal
stars.

Therefore, the pressure force per unit volume can be written as

fP = −dP

dr
= −dPT

dr
− dPR

dr
. (37)

All that is needed to solve the differential equation is the temper-
ature of the gas. The latter can be measured by solving the radiative
transfer in the cluster with the given radiation field. We did this
using the software CLOUDY.3 For the first run of the code we as-
sumed gas at the constant density of 0.23 cm−3 and a metallicity
of [Fe/H] = −0.72. We used the temperature distribution found

3Version 17.00 of the code is described by Ferland et al. (2017). Software
can be found at www.nublado.org.

Figure 10. Temperature and density profile for the gas in 47 Tuc as ob-
tained from the CLOUDY run and solving the equation (37). The dashed
vertical black line is the core radius while the green horizontal line is the
estimated value of n = 0.23 cm−3. The orange histogram shows the cumu-
lative distribution of the pulsars analysed in this work. See text for more
details.

this way to solve the equilibrium equation and found the density
distribution of the gas. We reiterated the process until convergence.
The final temperature and density distributions are shown in Fig. 10.
The gas density appears to slightly increase in the central parsec and
then drop outside. However, this distribution can hardly be distin-
guished from a constant density profile when looking at pulsar data,
owing to the uncertainties on the line-of-sight positions and to the
internal scatter of DM. Moreover, the set of pulsars is concentrated
in the central region where the gas density has not yet decreased.
The resulting temperature is able to maintain all the hydrogen and
helium completely ionized and keep the heavier elements at a high
ionization state.

Many assumptions could affect the results above: e.g. the hy-
potheses of an ionizing radiation which is constant in time and that
is produced only at the centre of the cluster could break down. A
more detailed modelling of the equilibrium of the gas, including
secular variations in the energy input, must be considered to better
understand the behaviour and/or the status of equilibrium of the gas.

5.1 IMBH

Kızıltan et al. (2017a) suggested that a IMBH of mass ∼2200 M�
is present in the centre of 47 Tuc. However Freire et al. (2017)
noted that the analysis that led to such claim was performed using a
wrong value of the distance of the GC. Using the correct value for
the distance Freire et al. (2017) claim that the evidence disappears.

Interestingly, we find an increase in probability close to that
same mass (see Fig. 6). The increase in probability at this mass
is only 4 per cent if measured by assuming a linearly decreasing
background. However, since the peak of probability is at a value
close to that measured by Kızıltan et al. (2017a), we might be
sensitive to the same effect.

A black hole of ∼2000 M� in a cluster with a central velocity
dispersion of ∼13 km s−1 would have an influence radius of only
0.05 pc, which is smaller than the radius of the closest pulsars. The
effects of a central black hole on the accelerations could however
still be visible outside the influence radius. As was shown in Fig. 1
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Internal gas in 47 Tuc 637

the acceleration in a King profile has a maximum value that cannot
be surpassed in absence of a black hole. If a black hole is present
this limit would not be so stringent and pulsars could exceed it even
outside the influence radius. As shown in Fig. 5 the accelerations
of the pulsars are contained inside this limit taking into account the
credible intervals. But a number of them have values close to this
limit. Such values are more likely to be obtained in the presence
of a central black hole of a certain mass. So while we found no
significant evidence in favour of the presence of such black hole,
the increase of probability at that mass could be explained by this
phenomenon.

The discrepancy between the probability distribution of the mass
of the black hole obtained in this work and in Kızıltan et al. (2017a)
despite being sensitive to the same effects could be caused by dif-
ferent effects: it could be due to different distances of the cluster but
it could also be caused by different priors on the mass. In this work
we used a logarithmic prior on the mass favouring lower values.
If Kızıltan et al. (2017a) used different assumptions that favoured
higher black hole masses, the peak at ∼2000 M� could have gained
significance.

The presence of a central black hole could further be examined
via the dynamical effects on the pulsars by investigating the effects
on the jerks. However, predictions of how strong this effect might
be are still lacking.

Our results about the shape of the gas density in the central region
of 47 Tuc (a radially decreasing density profile being disfavoured
with respect to a constant density distribution) do not support the
presence of an IMBH at the centre but no mass limit can be given
using this argument as models are not detailed enough. On the other
hand, the estimate of the density and the temperature profile of
the gas (see previous section) opens also the possibility of putting
another independent limit on the mass of the central IMBH. If gas
is present around a black hole it should accrete and emit radiation
from radio to X-rays. Since only upper limits on such radiation
have been derived for 47 Tuc (Lu & Kong 2011), from the theory
of accretion we can derive an upper limit on the mass.

This method has been extensively used in the literature (Ho,
Terashima & Okajima 2003; Maccarone & Servillat 2008; Lu &
Kong 2011) and makes use of the Bondi–Hoyle–Lyttleton theory of
spherical accretion (Hoyle & Lyttleton 1941; Bondi & Hoyle 1944;
Bondi 1952). According to this model, the mass accretion rate on a
black hole of mass MIMBH is

ṀBHL = 4πG2M2
IMBHρgc

−3
s , (38)

where ρg is the density of the gas far from the black hole and cs is the
sound speed far from the black hole. The sound speed for a thermal
gas can be written as cs = √

γ kBT /(μmolmp), where γ = 5/3 is
the adiabatic index and μmol ∼ 1.25 is the mean molecular weight.
Rewriting the accretion rate as a function of the mass of the black
hole and the density and temperature of the gas we obtain [the same
formula in Maccarone (2004) and in Lu & Kong (2011) is reported
with a mistake in the sign of the exponent of the temperature]:

ṀBHL = 3.2 × 1017

(
MBH

2000 M�

)2 (
n

0.2 H cm−3

)

×
(

T

104 K

)−1.5

(g s−1). (39)

The correct value for the accretion rate ṁ must account for the
accretion efficiency (ε) which is around 3 per cent (Maccarone &
Servillat 2008), but can be as low as 0.1 per cent (Ho et al. 2003):
that is because the black hole is supposed to be in a low accretion

regime. This regime is prevalent in the cases where the sound speed
is higher than the velocity dispersion. In our case the sound speed
as measured with the formula reported above is ∼16 km s−1 while
the velocity dispersion is only ∼13 km s−1.

The X-ray luminosity of the black hole can be measured with
the formula LX = ηṁ, where η is the radiative efficiency, which,
for the low luminosity state, can be expressed as 0.5 ṁc4/LEDD

(Maccarone & Servillat 2008). In this equation LEDD = 1.26 ×
1038(MBH/M�) erg s−1 is the Eddington luminosity.

This luminosity can be compared with the observation to give the
maximum possible mass that avoids detection. Usually, however, the
most stringent results are obtained from observations in the radio
band. The flux density in radio at 5 GHz is in turn linked to the
luminosity in X-rays by the following formula (Merloni, Heinz &
di Matteo 2003):

F5 GHz = 10

(
LX

3 × 1031 erg s−1

)0.6 (
MBH

100 M�

)0.78

×
(

d

10 kpc

)−2

(μJy). (40)

Solving for MBH and expressing all quantities as a function of
known parameters, we obtain

MBH = 44.7 (F5GHz)0.39

(
n

0.2 H cm−3

)−0.47 (
T

104 K

)0.7

× ε−0.47

(
d

10 kpc

)0.78

(M�). (41)

With the values for the density and temperature estimated above,
the assumed distance of 47 Tuc and the 3σ upper limit for any radio
flux at 5 GHz (11.1 μJy, Tremou et al. 2018), we obtain ∼550 M�
for the reference ε = 3 per cent case, but also ∼2500 M� for the
more conservative ε = 0.1 per cent hypothesis. In summary, the
limits measured through the thermodynamic properties of the gas
in 47 Tuc in the most conservative case are very close but still
compatible with the claim of an IMBH of mass ∼2200 M� made
by Kızıltan et al. (2017a).

6 C O N C L U S I O N S

In this paper, we used the new timing results of the MSPs asso-
ciated with the GC 47 Tuc to perform a detailed modelling of the
dynamics of the cluster. We measured the properties of the cluster,
found an upper limit on the mass of a possible IMBH at the centre
and the position along the line of sight of the pulsars. By using
this information and the observed DMs of the pulsars, we tested
the presence of ionized gas following different distributions. The
model with the highest statistical likelihood has a constant density
distribution in the region populated by the pulsars, with a density of
ng = 0.23 ± 0.05 cm−3. Other models invoking a gas density distri-
bution that follows the stellar distribution or a radially decreasing
distribution are disfavoured.

The proposed explanation for how a region of constant gas density
can be maintained in the centre of the cluster is that the thermal and
the radiative pressure provides the necessary support against the
gravitational collapse. However, more detailed modelling of the gas
injection and of the energy input must be developed to test this
model.

Finally, we used the derived information about the density and
temperature profiles for the gas in order to put upper limits on the
mass of a putative IMBH at the centre of 47 Tuc. The presence of a
massive central black hole in 47 Tuc will also be better constrained
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in the future when the effects of an IMBH on the jerks of the pulsars
close enough to the latter are included.
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Bogdanov S., Heinke C. O., Özel F., Güver T., 2016, ApJ, 831, 184
Bondi H., 1952, MNRAS, 112, 195
Bondi H., Hoyle F., 1944, MNRAS, 104, 273
Boyer M. L., Woodward C. E., van Loon J. T., Gordon K. D., Evans A.,

Gehrz R. D., Helton L. A., Polomski E. F., 2006, AJ, 132, 1415
Camilo F., Lorimer D. R., Freire P., Lyne A. G., Manchester R. N., 2000,

ApJ, 535, 975
Clark G. W., 1975, ApJ, 199, L143
Evans A., Stickel M., van Loon J. T., Eyres S. P. S., Hopwood M. E. L.,

Penny A. J., 2003, A&A, 408, L9
Ferland G. J. et al., 2017, RMxAA, 53, 385
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,

306
Freire P. C. C., Ridolfi A., 2018, MNRAS, 476, 4794
Freire P. C., Camilo F., Lorimer D. R., Lyne A. G., Manchester R. N.,

D’Amico N., 2001a, MNRAS, 326, 901
Freire P. C., Kramer M., Lyne A. G., Camilo F., Manchester R. N., D’Amico

N., 2001b, ApJ, 557, L105
Freire P. C., Camilo F., Kramer M., Lorimer D. R., Lyne A. G., Manchester

R. N., D’Amico N., 2003, MNRAS, 340, 1359
Freire P. C. C., Hessels J. W. T., Nice D. J., Ransom S. M., Lorimer D. R.,

Stairs I. H., 2005, ApJ, 621, 959
Freire P. C. C. et al., 2017, MNRAS, 471, 857
Gaia Collaboration, Helmi A., van Leeuwen F., McMillan P. J., Massari

D., Antoja T., Robin A. C., Lindegren L., Bastian U., Arenou F. Gaia
Collaboration, et al. 2018, A&A, 616, A12

Gnedin O. Y., Zhao H., Pringle J. E., Fall S. M., Livio M., Meylan G., 2002,
ApJ, 568, L23

Gratton R. G., Fusi Pecci F., Carretta E., Clementini G., Corsi C. E., Lattanzi
M., 1997, ApJ, 491, 749

Grindlay J. E., Camilo F., Heinke C. O., Edmonds P. D., Cohn H., Lugger
P., 2002, ApJ, 581, 470

Harris W. E., 1996, AJ, 112, 1487
Heinke C. O., Grindlay J. E., Edmonds P. D., Cohn H. N., Lugger P. M.,

Camilo F., Bogdanov S., Freire P. C., 2005, ApJ, 625, 796
Ho L. C., Terashima Y., Okajima T., 2003, ApJ, 587, L35
Hoyle F., Lyttleton R. A., 1941, MNRAS, 101, 227
King I., 1962, AJ, 67, 471
Kızıltan B., Baumgardt H., Loeb A., 2017a, Nature, 542, 203
Kızıltan B., Baumgardt H., Loeb A., 2017b, Nature, 545, 510
Lugger P. M., Cohn H. N., Grindlay J. E., 1995, ApJ, 439, 191
Lu T.-N., Kong A. K. H., 2011, ApJ, 729, L25
Maccarone T. J., 2004, MNRAS, 351, 1049
Maccarone T. J., Servillat M., 2008, MNRAS, 389, 379
Maccarone T. J., Servillat M., 2010, MNRAS, 408, 2511
Manchester R. N., Lyne A. G., Johnston S., D’Amico N., Lim J., Kniffen

D. A., 1990, Nature, 345, 598
Manchester R. N., Hobbs G. B., Teoh A., Hobbs M., 2005, AJ, 129, 1993
Mann C. et al., 2018, preprint (arXiv:1807.03307)
Marinari E., Parisi G., 1992, Europhys. Lett., 19, 451
McDonald I., Zijlstra A. A., 2015, MNRAS, 446, 2226
McDonald I., Boyer M. L., van Loon J. T., Zijlstra A. A., 2011, ApJ, 730,

71
McLaughlin D. E., Anderson J., Meylan G., Gebhardt K., Pryor C., Minniti

D., Phinney S., 2006, ApJS, 166, 249
Merloni A., Heinz S., di Matteo T., 2003, MNRAS, 345, 1057
Miocchi P. et al., 2013, ApJ, 774, 151
Moore K., Bildsten L., 2011, ApJ, 728, 81
Nice D. J., Taylor J. H., 1995, ApJ, 441, 429
Pan Z., Hobbs G., Li D., Ridolfi A., Wang P., Freire P., 2016, MNRAS, 459,

L26
Pepe C., Pellizza L. J., 2016, MNRAS, 460, 2542
Perera B. B. P. et al., 2017, MNRAS, 468, 2114
Phinney E. S., 1993, in Djorgovski S. G., Meylan G., eds, ASP Conf. Ser.

Vol. 50, Structure and Dynamics of Globular Clusters. Astron. Soc. Pac.,
San Francisco, p. 141

Prager B. J., Ransom S. M., Freire P. C. C., Hessels J. W. T., Stairs I. H.,
Arras P., Cadelano M., 2017, ApJ, 845, 148

Reid M. J. et al., 2014, ApJ, 783, 130
Ridolfi A. et al., 2016, MNRAS, 462, 2918
Robinson C., Lyne A. G., Manchester R. N., Bailes M., D’Amico N., John-

ston S., 1995, MNRAS, 274, 547
Shaifullah G. et al., 2016, MNRAS, 462, 1029
Sharma S. et al., 2014, ApJ, 793, 51
Shklovskii I. S., 1970, Sov. Astron., 13, 562
Smith G. H., Wood P. R., Faulkner D. J., Wright A. E., 1990, ApJ, 353, 168
Smith G. H., Dupree A. K., Strader J., 2004, PASP, 116, 819
Spergel D. N., 1991, Nature, 352, 221
Spitzer L., 1987, Dynamical Evolution of Globular Clusters, Princeton Univ.

Press, Princeton
Tremou E. et al., 2018, ApJ, 862, 16
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