

Publication Year	2018
Acceptance in OA@INAF	2020-10-06T09:21:54Z
Title	VizieR Online Data Catalog: Broad absorption line quasars in LDR1 (Morabito+, 2019)
Authors	Morabito, L. K.; Matthews, J. H.; Best, P. N.; Guerkan, G.; Jarvis, M. J.; et al.
DOI	10.26093/cds/vizier.36220015
Handle	http://hdl.handle.net/20.500.12386/27626
Journal	VizieR Online Data Catalog

Portal Simbad VizieR Aladin X-Match Other Help

J/A+A/622/A15

Broad absorption line quasars in LDR1 (Morabito+, 2019)

The origin of radio emission in broad absorption line quasars:

Results from the LOFAR Two-metre Sky Survey.

Morabito L.K., Matthews J.H., Best P.N., Guerkan G., Jarvis M.J.,

Prandoni I., Duncan K.J., Hardcastle M.J., Kunert-Bajraszewska M.,

Mechev A.P., Mooney S., Sabater J., Roettgering H.J.A., Shimwell T.W.,

Smith D.J.B., Tasse C., Williams W.L.

<Astron. Astrophys. 622, A15 (2019)>

=2019A&A...622A..15M (SIMBAD/NED BibCode)

ADC_Keywords: Galaxies, radio ; Active gal. nuclei ; QSOs

Abstract:

We present a study of the low-frequency radio properties of broad absorption line quasars (BALQSOs) from the LOFAR Two-metre Sky-Survey Data Release 1 (LDR1). The value-added LDR1 catalogue contains Pan-STARRS counterparts, which we match with the Sloan Digital Sky Survey (SDSS) DR7 and DR12 quasar catalogues. We find that BALQSOs are twice as likely to be detected at 144MHz than their non-BAL counterparts, and BALQSOs with low-ionisation species present in their spectra are three times more likely to be detected than those with only high-ionisation species. The BALQSO fraction at 144MHz is constant with increasing radio luminosity, which is inconsistent with previous results at 1.4GHz, indicating that observations at the different frequencies may be tracing different sources of radio emission. We cross-match radio sources between the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey and LDR1, which provides a bridge via the LDR1 Pan-STARRS counterparts to identify BALQSOs in SDSS. Consequently we expand the sample of BALQSOs detected in FIRST by a factor of three. The LDR1-detected BALQSOs in our sample are almost exclusively radio-quiet (logr<2), with radio sizes at 144\$ \$MHz typically less than 200kpc these radio sizes tend to be larger than those at 1.4GHz, suggesting more extended radio emission at low frequencies. We find that although the radio detection fraction increases with increasing balnicity index (BI), there is no correlation between BI and either low-frequency radio power or radio-loudness. This suggests that both radio emission and BI may be linked to the same underlying process, but are spatially distinct phenomena.

Description:

Measured and derived parameters for quasars from the SDSS DR7/DR12 catalogs within the footprint of the LOFAR Two-metre Sky Survey data realease 1 (LDR1). This is a combination of data from SDSS DR7/DR12, with accretion properties from Shen et al., (2011, Cat. $\underline{\text{J/ApJS/194/45}})$ and Kozlowski (2017. Cat. $\underline{\text{J/ApJS/228/9}})$. Radio properties from LDR1 and FIRST are presented.

File Summary:

ReadMe 80 . This file

Ldrlqsos.dat 436 21812 *Measured and derived parameters for quasars from SDSS DR7/DR12 catalogs within the footprint of the LOFAR Two-metre Sky Survey data realease 1 (LDR1) (corrected version)

Note on ldrlqsos.dat: Note that we include all quasars within the LDR1 footprint, but only a subset of them will have LDR1 information.

See also:

```
: The FIRST Survey Catalog, Version 2014Dec17 (Helfand+ 2015)
: QSO properties from SDSS-DR7 (Shen+, 2011)
       VIII/92
J/ApJS/194/45
                   : Physical parameters of ~300000 SDSS-DR12 QSOs (Kozlowski 2017)
J/A+A/598/A104 : LOFAR Two-metre Sky Survey (Shimwell+, 2017)
J/A+A/622/A1
                   : LOFAR Two-metre Sky Survey DR1 source catalog (Shimwell+ 2019)
                  : LOFAR observations XMM-LSS field (Hale+, 2019)
: NGC 3184, 4736, 5055 & 5194 LOFAR & WSRT maps (Heesen+, 2019)
: LoTSS/HETDEX. Optical quasars. I. (Guerkan+, 2019)
J/A+A/622/A4
J/A+A/622/A8
J/A+A/622/A11
J/A+A/622/A13
                  : VLA double-double radio galaxy candidates images
                                                                      (Mahatma+, 2019)
J/A+A/622/A23
                  : LoTSS HCG and MLCG systems (Nikiel-wroczynski+,
                                                                                 2019)
J/A+A/623/A71
                  : LOTSS HETDEX Faraday depth cube (Van Eck+, 2019)
```

Byte-by-byte Description of file: ldr1qsos.dat

Bytes Format Units Label Explanations

1 of 3 9/25/20, 4:11 PM

```
1- 18 A18
                            SDSS
                                        SDSS name From DR12 (HHMMSS.ss+DDMMSS.s)
                                          (SDSS_Name)
                            THINGID
                                        Unique SDSS object id (THINGID
 20- 28
          Ι9
                                        Visually inspected SDSS redshifts (z_v) [0/1] Flag, visual BAL ident (BAL_VI)
 30 - 37
         F8.6
                 ---
     39
         11
                             BALVI
     47
         F7.1
                             BICIVt
                                          Balnicity index for CIV trough (BI_CIVt)
                 km/s
     49
                           LOBALVIMG
                                        [0/1]? Flag, visual LoBAL ident, MgII
         Ι1
                                          (LOBALVTMG)
                           LOBALVIAL
                                        [0/1]? Flag, visual LoBAL ident, AlIII
     51
          Ι1
                                          (LOBAL<sub>VI</sub>AL)
 53- 56
                                        Source of MBh measurement (Mbh_source)
          A4
                             r logMBH
 58- 63
          F6.3
                 [Msun]
                             logMBH
                                        ? logarithm of black hole mass (Mbh)
 65- 70
         F6.3
                 [10-7W]
                             logLbol
                                        ? logarithm of bolometric luminosity
                                          (log_Lbol)
 72- 76 F5.3
                 [10-7W]
                            e_logLbol
                                        ? Error in logarithm of bolometric
                                         {\tt luminosity~(e_{log}Lbol)}
                                        ? logarithm of Eddington ratio (log_edd)
[0/1] Flag, DR7/FIRST match
 78- 83
         F6.3
                             logedd
     85
         Ι1
                             f FIRST
                                          (DR7_{FIRST} detected)
 87-106 E20.6 W/Hz
                             RP20
                                        ? Peak radio power at 1.4GHz - DR7
                                          (DR7_{20cm}peak\_power)
108-127 E20.6 W/Hz
                             e RP20
                                        ? Error in Peak radio power at 1.4GHz
                                        (e_{DR7}20cm_{peak}power)
Source name in LDR1 (Cat. J/A+A/598/A104)
129-150 A22
                             LDR1
                                         catalogue (ILTJHHMMSS.ss+DDMMSS.s)
                                          (LDR1_{Source}Name)
152-167 F16.12 deg
                             RAdea
                                        ? Right ascension of LDR1 source (J2000)
                                         (LDR1_RA)
169-184 F16.13 <u>deg</u>
                             DEdeg
                                          Declination of LDR1 source (J2000)
                                          (LDR1_DEC)
186-203 F18.15 arcsec
                                        ? Deconvolved major axis in LDR1 (DC Maj)
                             Maj
                                        ? LOFAR Galaxy Zoo size in LDR1 (LGZ_Size)
205-222 F18.14
                             Size
                 arcsec
224-242 F19.14 kpc
                             LLS
                                        ? Projected largest linear size (LLS)
                                        [RU] LDR1 resolved or unresolved (Resolved)
    244 A1
                             Res
246-265
         E20.6 W/Hz
                             L144
                                        ? Radio power at 144MHz (L_144)
267-286 E20.6 W/Hz
                             e_L144
                                        ? error in radio power at \overline{144}\text{MHz} (e<sub>L</sub>144)
288-304 F17.15 [<u>-</u>]
                             logR144
                                        ? Radio loudness at 144MHz (log_R144)
                                        Name of LDR1 optical ID (PSO JHHMMSS.sss+DDMMSS.sss)
306-332 A27
                            LDR1opt
                                          (LDR1<sub>opt</sub>ID_name)
334-345 F12.8 <u>deg</u>
                             RAodeg
                                        ? Right ascension of LDR1 optical ID
                                          (LDR1<sub>opt</sub>ID_ra)
347-357 F11.8 <u>deg</u>
                             DEodeg
                                        ? Declination of LDR1 optical ID
                                         (LDR1<sub>opt</sub>ID_dec)
                             FIRST
                                        FIRST source (Cat. VIII/92) matched with
359-374 A16
                                         LDR1 (Cat. J/A+A/598/A104)
                                          (JHHMMSS.s+DDMMSS) (FIRST_Name
                                        ? Total power at 1.4GHz (L_1400) ? Error in total power at 1.4GHz (e_11400)
376-395 E20.6 W/Hz
                            L1400
397-416 E20.6 W/Hz
                             e L1400
418-436 F19.14 kpc
                             FIRSTLLS
                                        ? FIRST projected largest linear size
                                          (FIRST LLS)
```

Acknowledgements:

Leah Morabito, leah.morabito(at)physics.ox.ac.uk

```
References:
```

```
Shimwell et al..
                           Paper I
                                         2019A&A...622A...1S, Cat. J/A+A/622/A1
Williams et al.,
                           Paper II
                                         2019A&A...622A...2W
Duncan et al.,
                           Paper III
                                         2019A&A...622A...3D
Hale et al.,
                           Paper IV
                                         2019A&A...622A...4H, Cat. J/A+A/622/A4
                           Paper V
de Gasperin et al.,
                                         2019A&A...622A...5D
Arias et al.,
                           Paper VI
                                         2019A&A...622A...6A
Emig et al.,
                           Paper VII
Paper VIII
                                         2019A&A...622A...
                                         2019A&A...622A...8H, Cat, J/A+A/622/A8
Heesen et al.
Miskolczi et al.,
                           Paper IX
                                         2019A&A...622A...9M
Croston et al.,
                           Paper X
                                         2019A&A...622A..10C
Gurkan et al.,
                           Paper XI
                                         2019A&A...622A..11G,
                                                               Cat. J/A+A/622/A11
Hardcastle et al.,
                           Paper XII
                                         2019A&A...622A..12H
Mahatma et al.,
                           Paper XIII
                                         2019A&A...622A..13M, Cat. J/A+A/622/A13
Mooney et al.
                           Paper XIV
                                         2019A&A...622A..14M
Morabito et al.
                           Paper XV
                                         2019A&A...622A...15M, Cat. J/A+A/622/A15
O'Sullivan et al.,
                           Paper XVI
                                         2019A&A...622A..160
Sabater et al.,
                           Paper XVII
                                         2019A&A...622A..178
Stacey et al.,
                           Paper XVIII
                                         2019A&A...622A..18S
Botteon et al.,
                           Paper XIX
                                         2019A&A...622A..19B
Hoang et al.,
                           Paper XX
                                         2019A&A...622A..20H
Hoang et al.,
                           Paper XXI
                                         2019A&A...622A..21H
Mandal et al.,
                           Paper XXII
                                         2019A&A...622A..22M,
                                                               Cat J/A+A/622/A22
Nikiel-Wroczynski et al., Paper XXIII
                                         2019A&A...622A..23N,
                                                               Cat \frac{J/A+A/622/A23}{}
Savini et al.,
                           Paper XXIV
                                         2019A&A...622A..24S
Wiber et al.,
                           Paper XXV
                                         2019A&A...622A..25W
```

History:

21-Feb-2019: on-line version 13-Jul-2020: corrected version

(End) Leah Morabito [Oxford, UK], Patricia Vannier [CDS]

20-Aug-2018

The document above follows the rules of the <u>Standard Description for Astronomical Catalogues</u>; from this documentation it is possible to generate f77 program to load files <u>into arrays</u> or <u>line by line</u>

© Université de Strasbourg/CNRS

2 of 3 9/25/20, 4:11 PM

f □ y ○·Contact ⊠

3 of 3