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ABSTRACT

We study the combined impact of magnetic mirroring and focusing on the ionization by cosmic
rays (CRs) in dense molecular clouds and circumstellar disks. We show that for effective column
densities of up to ∼ 1025 cm−2 (where ionization is the main mechanism of energy losses by CRs) the
two effects practically cancel each other out, provided the magnetic field strength has a single peak
along field lines. In this case the ionization rate at a given location is controlled solely by attenuation
of interstellar CRs due to energy losses. The situation is very different in the presence of magnetic
pockets – local minima of the field strength, where the CR density and thus ionization can be reduced
drastically. We obtain simple analytical expressions allowing accurate calculation of the ionization
rate in these regions.
Subject headings: cosmic rays – ISM: clouds – plasmas

1. INTRODUCTION

The ionization degree of molecular clouds is a criti-
cal factor in the dynamics of star formation. A small
fraction of ionized species controls the coupling of the
Galactic magnetic field to the predominantly neutral gas
of the cloud, influencing its stability against gravitational
collapse (Mestel & Spitzer 1956), the efficiency of the
fragmentation process (Price & Bate 2008), and the for-
mation of circumstellar disks around young stars (Allen
et al. 2003). The main source of ionization in dark re-
gions of molecular clouds and pre-stellar cores is cosmic
rays (CRs), which initiate a chain of chemical reactions
starting from the collisional ionization of the most abun-
dant species, molecular hydrogen (Yamamoto 2017).

CRs, responsible for the ionization in dense cores and
circumstellar disks, propagate along the local magnetic
field. The magnetic configuration in such objects can
be very complicated (Joos et al. 2012; Li et al. 2013;
Padovani et al. 2013), and the field strength can be much
larger than the interstellar value (Crutcher 2012). The
field strength increases along the field lines converging
into denser central regions, which leads to efficient mir-
roring of the penetrating CRs – their pitch angles in-
crease in response to the growing field until reaching 90◦,
and thus more and more particles are reflected back. On
the other hand, the convergence of field lines results in
the CR focusing. These two competing effects play im-
portant roles in various processes occurring in molecular
clouds (Cesarsky & Völk 1978; Ko 1992; Chandran 2000;
Desch et al. 2004; Padoan & Scalo 2005).

Recently, there have been studies (Padovani & Galli
2011; Padovani et al. 2013) investigating the combined
effect of magnetic mirroring and focusing on the CR ion-
ization in the dense molecular cores. A comprehensive
analysis of the CR propagation in static and collapsing
magnetized clouds has been carried out, by varying the
relative strength of the toroidal/poloidal field compo-
nents and the mass-to-flux ratio. The authors concluded
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that mirroring always dominates over focusing, implying
a reduction of the CR ionization rate by a factor of about
2–3 with respect to the case where these magnetic effects
are neglected. It was also shown that, for large values of
the flux-to-mass ratio, these effects reduce the ionization
in collapsing clouds by more than an order of magnitude,
which can have important consequences for the dynami-
cal evolution and the formation of disks (e.g., Zhao et al.
2018).

The major aim of the present work is to perform a
general analysis of the effects of CR mirroring and focus-
ing in dense cores and circumstellar disks. We identify
universal mechanisms that govern the CR ionization in
such environments, assuming that there is no stochas-
tic change in the pitch angle. This assumption is well
justified, since the field structure normally remains sta-
tionary at a timescale of CR crossing (since the physical
velocity of CRs is typically a few orders of magnitude
larger than the velocity of MHD waves).1 We also make
use of the fact that the small-scale resonant MHD turbu-
lence, which could lead to efficient CR scattering, is com-
pletely damped under such conditions due to frequent
ion-neutral collisions (e.g., Ivlev et al. 2018).

In Section 2 we study the net effect of the mirror-
ing and focusing on the CR density when energy losses
are negligible; we identify two distinct cases, of single-
and multiple-peaked magnetic field strength, and demon-
strate that in the former case the mirroring and focusing
cancel out exactly, while in the latter case a drastic re-
duction of the CR density is possible. In Section 3 we
determine the exact upper and lower bounds for the ion-
ization rate in the two cases; we show that ionization is
practically unaffected for a single-peaked field and is re-
duced for a multiple-peaked field, and provide analytical
expressions for the ionization rate. Finally, in Section 4
we summarize our main findings and briefly discuss im-

1 Fast processes associated with possible magnetic reconnec-
tion (see, e.g., Lazarian 2014), induced in these dense regions by
rotationally-driven MHD turbulence, require separate considera-
tion which is beyond the scope of this paper.
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plications for the relevant astrophysical problems.

2. MIRRORING AND FOCUSING WITHOUT LOSSES

Consider the magnetic field threading a molecular
cloud or circumstellar disk (below we use the term
“cloud”), as sketched in Figure 1(a). Let s be the dis-
tance coordinate along a field line, and assume that
outside the cloud there is a constant (interstellar) field
strength Bi. The cloud is surrounded by the interstel-
lar medium with isotropically distributed CRs that can
travel in both directions without energy losses, along any
field line which penetrates the cloud.

In the absence of scattering processes, the pitch angle
α (between the velocity of a CR particle and the field)
satisfies the relation

sin2 α

B(s)
=

sin2 αi

Bi
, (1)

which follows from the adiabatic invariance of the mag-
netic moment of a particle (e.g., Chen 1974). In this case,
the steady-state kinetics of CRs with given momentum p
is characterized by the distribution function f(µ, p, s),2

obeying the equation (Morfill et al. 1976; Cesarsky &
Völk 1978)

µ
∂f

∂s
− (1− µ2)

d ln
√
B

ds

∂f

∂µ
= 0, (2)

where µ ≡ cosα. A general solution of this equation
is any function of (1 − µ2)/B(s), showing that the CR
distribution is conserved for a given magnetic moment.
This conclusion, which naturally follows from the Liou-
ville theorem, implies

f(µ, s) = fi(µi), (3)

where fi(µi) is the distribution function of interstellar
CRs. The local value of µ is determined from Equa-
tion (1),

µ(µi, s) = ±
√

1− B̃(s)(1− µ2
i ) , (4)

where B̃(s) = B(s)/Bi is the magnetic “focusing fac-
tor” (increasing B implies the proportional focusing of
field lines). A monotonic increase of the magnetic field
strength leads to the particle mirroring: interstellar CRs

can reach the position s only if sinαi ≤ 1/
√
B̃(s), i.e., if

|µi| ≥
√

1− 1/B̃(s).

Equation (3) has a simple physical meaning. Using the
relation

∂µ

∂µi
= B̃(s)

µi

µ
, (5)

we obtain f(µ, s)µ δµ = B̃(s)fi(µi)µi δµi. Written in
this form, the equation expresses a conservation of the
differential flux along a field line, with taking into ac-
count that the pitch angle varies with s in accordance
with Equation (1) and that the local particle density is

proportional to the focusing factor B̃(s).

2 For brevity, below we only show arguments of f that are essen-
tial for understanding. We use the normalization such that total
number density of CRs is

∫
dp

∫
f dµ.

Fig. 1.— Panel (a) shows a sketch of a magnetic field line en-
tering a cloud (grey region). Panels (b) and (c) depict sketches
of the magnetic field strength B as a function of distance s along
a field line. Panel (b) shows the single-peaked case discussed in
Section 2.1, panel (c) shows the double-peaked case, Section 2.2.

2.1. Single Maximum of the Field Strength

In this section we assume that B(s) has only one peak
on the interval 0 ≤ s ≤ s0, located at sp, as shown in
Figure 1(b). Consider CRs at 0 < s < sp moving in the
+s direction (referred to as forward-moving particles),
and denote their local distribution by f+. Since B (and
thus α) continuously increase for such particles, f+ is
nonzero for all values of µ between 0 and 1.

Let us calculate the local differential density (per
unit momentum) of forward-moving CRs, n+(p, s) =∫ 1

0
f+ dµ. Using Equation (3), we substitute f+ = fi and

keep in mind that the distribution of interstellar CRs is
isotropic, fi = 1

2ni, where ni(p) is their differential den-

sity. Then the integration over µ yields n+ = 1
2ni. Thus,

the density of forward-moving particles remains constant
and equal to the density of CRs entering the cloud from
the left.

Local CRs also include particles which are moving in
the −s direction (backward-moving particles). Their dis-
tribution f− is a sum of two components: particles with
−µp < µ < 0, which were mirrored before reaching the
peak at s = sp, and particles with −1 ≤ µ < −µp, which
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passed through the peak from the other side.3 Taking
into account that f−(µ, s) = f+(|µ|, s) for the mirrored
particles and using Equation (3) for both components,
we obtain f− = fi and hence n− = 1

2ni.
We conclude that the effects of magnetic mirroring and

focusing cancel exactly when energy losses by CRs are
neglected (i.e., when Equation (2) holds). The distri-
bution of particles does not depend on the location in
a cloud and coincides with the distribution of interstel-
lar CRs, fi (Cesarsky & Völk 1978). For non-relativistic
CRs, the latter is isotropic to a very high degree, and
therefore the local density is equal to the density of CRs
outside the cloud, ni. We note, however, that if fi(µi)
exhibits anisotropy (Parker 1963), the density is not con-
served – it generally increases (decreases) with s if fi has
a maximum (minimum) at |µi| ≈ 1: For example, a beam
concentrated near |µi| ≈ 1 is practically not mirrored, so
the focusing leads to the density increase; on the con-
trary, particles with a completely depleted distribution
near |µi| ≈ 1 are totally mirrored when they reach a
location where the field is sufficiently strong.

2.2. Multiple Maxima

If the magnetic field strength has more than one max-
imum along a field line, then the focusing factor is still
B̃(s), but the calculation of the mirroring effect is differ-
ent. Therefore, the particle density is no longer constant
along that field line, as shown below.

Suppose first that B(s) has a “lower” peak Bl at s = sl
and a “higher” peak Bh at s = sh, as in Figure 1(c). If
either B(s) ≥ Bl, or s is not between the two peaks, the
“lower” peak has no effect on the local particle density,
and the results from Section 2.1 are applicable. A more
interesting situation occurs in a magnetic “pocket”, for
sl < s < sh and B(s) < Bl. In this case there are
three groups of particles contributing to the local density:
particles moving in the −s direction that came from s >
s0 and passed through the maximum in B at sh; particles
moving in the +s direction that came from s < 0 and
passed through the maximum in B at sl; and finally those
which came from s < 0, passed through sl, but were
reflected before reaching sh and are now moving in the
−s direction.

The contribution of the first (backward-moving) group
is calculated by integrating fi over −1 ≤ µ < −µh, with
µh =

√
1−B/Bh (see Section 2.1), which yields the

density 1
2ni(1− µh). This result does not depend on the

direction of propagation, and therefore the contribution
of the second (forward-moving) group can be obtained
from the same expression by replacing µh with µl. The
density of the third group of particles is not affected by
their reflection, and thus is calculated by integrating over
µl < µ < µh, which yields 1

2ni(µh − µl). Adding up the
three contributions, we find the local density,

n(s)

ni
= 1−

√
1− B(s)

Bl
. (6)

We see that n/ni does not depend on Bh and is very

3 The value of µp =
√

1 −B/Bp is derived from Equation (4) by

substituting 1 − µ2i = 1/B̃p; the latter follows from the mirroring
condition (µ = 0) at the peak.

sensitive to Bl. For example, a 1% reduction in B from
the “lower” peak value, i.e., B/Bl = 0.99, leads to a 10%
reduction of the local density.

s

B

0 s0

Bi

| |

-

Pocket A

Pocket B Pocket C
A

B C

Fig. 2.— A situation where the magnetic field has multiple max-
ima along the field line. This results in multiple magnetic pockets,
indicated by the shading.

This result can be straightforwardly generalized for the
case of several peaks. Figure 2 illustrates such a situa-
tion, with magnetic pockets indicated by shading. From
the same line of arguments as above it follows that the
local density in each pocket is described by Equation (6),
where Bl should be replaced by the respective value of
the peak field (BA, BB, and BC for pocket A, B, and C).
We notice that Equation (6) remains applicable even if
B(s) has small peaks inside a pocket (as, e.g., for pocket
A).

3. EFFECT OF THE MIRRORING AND FOCUSING ON THE
IONIZATION RATE

In Section 2 we neglected energy losses by CRs and
showed that in this case the magnetic mirroring and fo-
cusing exactly cancel each other, if we assume the field
strength has a single peak along field lines. In particu-
lar, this implies that the ionization in a cloud is not in-
fluenced by the magnetic effects as long as energy losses
do not substantially attenuate CRs (specifically, do not
modify the part of their energy spectrum providing the
main contribution to the ionization, see discussion in Sec-
tion 3.1). Then, irrespective of the strength and config-
uration of the magnetic field in the cloud, the ionization
rate can be calculated using the density of interstellar
CRs (i.e., as if the field strength inside the cloud remains
constant and equal to Bi).

When the CR attenuation caused by energy losses can-
not be neglected, two factors complicate the simple argu-
ment presented above. On the one hand, the density of
forward-moving particles for dB/ds > 0 becomes higher
compared to that in the constant-field case: the pitch an-
gle of such particles continuously increases, which means
that (for a given value of local pitch angle) they have
shorter helical trajectories and therefore suffer less at-
tenuation. On the other hand, the density of backward-
moving mirrored particles is reduced at a given point,
as they have traveled through more column than those
that are still forward-moving. Furthermore, the den-
sity of backward-moving particles passed through the
cloud from the other side is more attenuated than that of
forward-moving particles (unless we consider the central
region of the cloud, where mirroring is less important
and particles come from both sides with a similar atten-
uation).

To quantify the effect of the mirroring and focusing on
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the CR ionization, in Section 3.1 we first put bounds on
the relative increase in the rate of ionization by forward-
moving particles, assuming the field strength has a sin-
gle peak. Then, in Section 3.2 we estimate the ratio of
the ionization due to the mirrored particles to the ion-
ization due to the forward-moving particles. Finally, in
Section 3.3 we calculate a reduction of the ionization rate
in magnetic pockets.

3.1. Ionization by the Forward-Moving Particles

In the presence of continuous energy losses by CRs, the
distribution function is described by the following steady-
state kinetic equation (Skilling & Strong 1976; Cesarsky
& Völk 1978):

vµ
∂f

∂s
− v(1− µ2)

d ln
√
B

ds

∂f

∂µ
+

∂

∂p
(ṗlossf) = 0, (7)

which is obtained by adding a loss term to Equation (2)
(multiplied by the particle velocity v). The loss term is
characterized by the momentum decrease of a particle
per unit time due to inelastic processes, ṗloss < 0.

For further analysis it is convenient to use the particle
kinetic energy E instead of the momentum p. Taking into
account that dE = v dp, we obtain that the respective

distributions are related via f(µ, p, s) = v(E)f̂(µ,E, s) ≡
j(µ,E, s), where j is the so-called energy spectrum of

CRs (and
∫
f̂ dµ is the differential density per unit en-

ergy). One can write the losses due to interaction with
gas particles in the form ṗloss = −ng(s)L(E), where ng
is the local gas number density and L is the loss function
depending solely on the kinetic energy. Then, replacing µ
with the new variable (1−µ2)/B(s) reduces Equation (7)
to

µ̂

ng

∂j

∂s
− ∂

∂E
(Lj) = 0, (8)

where µ̂(µi, s) denotes a function of position for given µi,
as determined by Equation (4).

We point out that Equation (8) can be used as long as
losses do not result in a substantial scattering of a CR
particle along its path (otherwise, a term describing the
pitch-angle diffusion should be added, see Morfill et al.
1976). Indeed, such losses can be treated as a sequence of
instantaneous small reductions of the energy, occurring
during individual collision events with gas particles (and
leading to the corresponding decrease of the Larmor ra-
dius). This treatment is justified since both the time and
the length scales of the collision interactions are incom-
parably smaller than the respective gyration scales of a
CR particle. The assumption of a negligible scattering
is well applicable to the ionization interactions, domi-
nating the energy losses by non-relativistic protons (see,
e.g., Ginzburg & Syrovatskii 1964; Padovani et al. 2009).
In the range of 105 eV. E . 5× 108 eV, the ionization
loss function is accurately approximated by

L(E) = L∗

(
E

E∗

)−d
, (9)

with d ≈ 0.82, L∗ ≈ 1.4×10−14 eV cm2 and E∗ = 105 eV
(Padovani et al. 2018).

By multiplying Equation (8) with L(E), we obtain a
general solution jL = Ψ(x+ y). Here, Ψ is an arbitrary

function with

x(µ, s) =

∫ s ng(s′) ds′

µ̂(µi, s′)
; y(E) =

∫ E dE′

L(E′)
, (10)

where µi(µ, s) = ±
√

1− (1− µ2)/B̃(s) is the inverse of

Equation (4). This means that jL is conserved along
lines of constant x + y. In this section we are assuming
a single-peaked magnetic field profile, as in Figure 1(b),
and all quantities refer to forward-moving particles prop-
agating toward the peak. Hence, the relation to the
isotropic interstellar spectrum ji = vni is given by

j+(µ,E, s)L(E) =
1

2
ji(Ei)L(Ei). (11)

The relation between energy Ei at the cloud bound-
ary and energy E at position s is obtained from Equa-
tion (10),

E1+d
i = E1+d + (1 + d)L∗E

d
∗N+ . (12)

The latter is determined by

N+(µ, s) =

∫ s

0

ng(s′) ds′√
1− b̃(s′, s)(1− µ2)

, (13)

which is the actual column density traversed by a
forward-moving particle on its helical trajectory, depend-
ing on b̃(s′, s) = B(s′)/B(s) ≤ 1.

The ionization rate at position s due to forward-moving
particles is

ζ+(s) =

∫ 1

0

dµ

∫ ∞
0

j+(µ,E, s)σion(E) dE, (14)

where σion(E) is the ionization cross section. We notice
that the mean energy ε lost by a CR particle per ion-
ization event is practically independent of E (Padovani
et al. 2009). This yields a simple relation,

L(E) ≈ εσion(E). (15)

Therefore, we can use Equations (11), (14), and (15) to
write

ζ+(s) =
1

2ε

∫ 1

0

dµ

∫ ∞
0

ji(Ei)L(Ei) dE, (16)

with Ei(E,µ, s) given by Equation (12).
To continue further, we generally need to assume an ex-

plicit form for ng(s) and B(s). However, we can also con-
sider two limiting cases, which are determined by the be-
havior of B(s) and provide exact lower and upper bounds

on ζ+. The lower bound (L) occurs when b̃(s′, s) = 1 for
0 < s′ < s. In this case Equations (12), (13), and (16)
show that ζ+ is the same as if B = Bi throughout the

whole cloud. The upper bound (U) occurs if b̃(s′, s) = 0
for 0 < s′ < s. In this case, the ionization rate due
to forward-moving particles is increased relative to the
constant-field case, because the CRs have accrued less
column between s′ = 0 and s′ = s. Thus, the ionization
rate by forward-moving particles is always limited in the
range of

ζL ≤ ζ+ ≤ ζU .
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Physically, the lower bound ζL represents propagation
of CRs along a constant magnetic field, where both the
mirroring and focusing are absent, and therefore this is
our reference value of the ionization rate. The upper
bound ζU reflects an extreme situation of all CRs hav-
ing zero pitch angles. Hence, the relative increase of
the ionization rate is conveniently quantified by the ra-
tio R ≡ ζ+/ζL, bounded between unity and ζU/ζL.

In order to calculate the value of Rmax = ζU/ζL, let us
consider a typical model spectrum of the interstellar CRs,
approximately described by a power-law dependence for
the non-relativistic energy range (Ivlev et al. 2015),

ji(E) = j∗

(
E

E∗

)−a
. (17)

We expect the results to be valid at column densities
where Equation (9) is applicable, i.e., where all parti-
cles with Ei . 105 eV have been attenuated, but par-
ticles with Ei & 5 × 108 eV are not attenuated signifi-
cantly. This corresponds to column densities of roughly
1019 cm−2 to 1025 cm−2 (Padovani et al. 2018).

If the value of the spectral index a is sufficiently small,
a < 1−d ≈ 0.2, then the integral over E in Equation (16)
is dominated by larger E. In practice, this means that
ζ+(s) remains approximately constant as long as the
column density is smaller than the stopping range for
E ≈ 5 × 108 eV, where a crossover to the relativistic
spectrum ji ∝ E−2.7 occurs (Ivlev et al. 2015). This
stopping range nicely coincides with the upper limit of
column densities where Equation (9) is still applicable.
Therefore, attenuation of CRs with a < 1 − d does not
(substantially) affect the value of ζ+ at column densities
. 1025 cm−2, and effects of the mirroring and focusing
for such interstellar spectra cancel out, as discussed in
Section 2.

Thus, below we consider interstellar spectra with a >
1 − d ≈ 0.2, for which the ionization at s is dominated
by lower CR energies (viz., by the energies for which
the stopping range is of the order of the column density
at s). By substituting Equations (9), (12), and (17) in
Equation (16), we obtain for the lower ionization bound
(reference value)

ζL(s) =

∫ 1

0

K(µ, s)dµ, (18)

where

K(µ, s) =
j∗L∗
2ε

×
∫ ∞

0

[(
E

E∗

)1+d

+ (1 + d)
L∗
E∗

Neff

µ

]− a+d
1+d

dE, (19)

while for the upper bound we have

ζU(s) = K(1, s). (20)

Here, Neff(s) =
∫ s

0
ng(s′)ds′ is the so-called effective

column density, measured along a field line (see, e.g.,
Padovani et al. 2018). By making the substitution

E′ = µ
1

1+dE into Equation (19), one can easily show
that

K(µ, s) = µ
a+d−1
1+d K(1, s). (21)

Thus, performing the integration over µ in Equation (18),
we find that ζU/ζL does not depend on s and is equal to

Rmax = 1 +
a+ d− 1

1 + d
. (22)

We conclude that, for any density profile and a single-
peaked magnetic field, a combined effect of the mirroring
and focusing is able to increase the ionization rate (rel-
ative to the reference value) by a factor not larger than
Rmax. For realistic values of the spectral index a . 1,
we have Rmax . 1.5; this factor naturally tends to unity
when a = 1− d.

Equation (22) becomes increasingly inaccurate above
a column density of ∼ 1025 cm−2, corresponding to the
stopping range of CR with energies where Equation (9)
is no longer applicable.

3.2. Contribution of the Mirrored Particles

In the previous section, we only considered the ion-
ization by incoming particles. Now we will estimate the
contribution from the mirrored, backward-moving parti-
cles. We expect this to be less than the ionization rate
by the forward-moving particles, because the mirrored
particles have traveled through a larger column.

Let ζ−(s)/ζ+(s) be a ratio of the ionization due to the
mirrored particles to the ionization due to the forward-
moving particles. Calculation of this ratio is difficult in
general. To make the problem tractable and estimate the
magnitude of the effect, we consider a model for the in-
crease of magnetic field and gas density within the cloud,
in which we let

B̃(s) =
( s
H

)p
; ng(s) = ng∗

( s
H

)q
, (23)

withH being a relevant spatial scale and p and q positive.
Even though Equation (23) yields an unphysical behav-
ior of B(s) for s . H, this region contributes negligibly
compared to the region of interest (s � H), where the
mirroring and focusing effects are strong. In Appendix A
we calculate ζ+(s) and ζ−(s) and demonstrate that their
ratio does not depend on s, and is characterized by the
spectral index a and the ratio

r =
q + 1

p
− 1. (24)

Figure 3 shows ζ−/ζ+ as a function of r, plotted for
different values of a. The behavior is easy to under-
stand: it is a decreasing function, since larger r implies
smaller p or larger q and hence more column between s
and the mirror point (relative to the column between 0
and s). The constraint that p and q are positive means
that r > −1; we have r → −1 for a sharply increasing
field (i.e., for a vanishing column between s and the mir-
ror point), which implies ζ− → ζ+. Larger values of a
cause this decrease to happen more rapidly, as a harder
spectrum means that the ionization rate falls off faster
with increased column depth.

Under the assumption of magnetic flux freezing dur-
ing the cloud collapse, we would expect 1

2 ≤ p/q ≤ 2
3

(Crutcher 2012). Then we can write r = r′ + 1/p, where
1
2 ≤ r

′ ≤ 1.
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Fig. 3.— Ratio of ionization rates due to the mirrored (backward-
moving) and forward-moving CRs, ζ−/ζ+, plotted versus the pa-
rameter r, Equation (24). The curves represent different values of
the spectral index a of interstellar CRs, Equation (17).

3.3. Ionization in magnetic pockets

As discussed in Section 2.2, the CR density can be
drastically reduced at local field minima – magnetic
pockets, where particles experience defocusing relative
to the lower peak Bl, but the mirroring has no effect on
their motion. This fact has profound implications for the
ionization.

Let us first assume that the attenuation in a pocket
is negligible compared to that in the cloud – we call
such pockets “localized”. The ionization rate by forward-

moving particles, ζpock
+ , can be calculated from Equa-

tion (16) where
√

1−B/Bl is used for the lower limit
of the integral over µ (see Section 2.2). The upper ion-

ization bound, ζpock
U (s), for which we set b̃ = 0 in Equa-

tion (13), is readily obtained by following the same steps
as in Section 3.1. This yields

Localized :
ζpock
U

ζL
= Rmax

(
1−

√
1− B

Bl

)
, (25)

where the normalization is by the reference value ζL and
Rmax ≡ ζU/ζL is given by Equation (22). To derive the
lower bound, representing the case of a constant field Bl

outside the pocket, we notice that now b̃ = Bl/B ≥ 1.
Substituting Equation (13) in Equation (16) and intro-
ducing a new variable x = (1 − µ2)Bl/B, after simple
transformations we obtain

ζpock
L

ζL
=

1

2
Rmax

B

Bl

∫ 1

0

(1− x)
1
2 (Rmax−1)√

1− (B/Bl)x
dx. (26)

As expected, this yields ζpock
L → ζL when B → Bl;

for deep regions in the pockets, where B/Bl is small,

from Equations (25) and (26) we derive ζpock
U /ζpock

L ≈
1
2 (Rmax + 1). The latter shows that the relative range
of possible ionization rates in a (deep) pocket is half of
that in the single-peaked case (Section 3.1).

Concerning the ionization by the mirrored particles,
we notice that the value of ζ−/ζ+ is unaffected by the
presence of a localized pocket, since the latter has largely

the same effect on the pitch angle of both mirrored and
forward-moving particles. Hence, their contribution can
be evaluated using the results of Section 3.2.

We can also consider the opposite situation, where the
column density of a magnetic pocket is much larger than
that between the edge of the cloud and the pocket. When
calculating the ionization rate by forward-moving parti-
cles in such “global” pockets, the column accrued exterior
to the peak Bl can be ignored, i.e., one can assume that
interstellar CRs directly enter the pocket. In this case,
the lower ionization bound would be where the magnetic
field in the pocket remains at the peak value Bl up to
position s, where it drops to the value B(s). This is
physically equivalent to the lower bound derived for a lo-
calized pocket, and the ionization rate is therefore given
by Equation (26). For the upper bound, we assume that
the magnetic field in the pocket decreases from Bl to B
right at sl. The corresponding ionization rate can be de-
rived from Equation (18) (which is the lower bound for
the single-peaked field) where, again, the lower limit of

integration is replaced with
√

1−B/Bl. We obtain that
the ionization is reduced by a factor of

Global :
ζpock
U

ζL
= 1−

(
1− B

Bl

) 1
2Rmax

. (27)

From Equations (26) and (27) it follows that the up-
per and lower ionization bounds in global pockets coin-
cide when B → Bl, and tend to the reference value ζL.
The latter is easy to understand, since in this case CRs
propagate along a quasi-constant magnetic field. In deep
regions the difference between local and global pockets
disappear and the upper-bound reduction factors, given
by Equations (25) and (27), tend to the same value of

ζpock
U /ζL ≈ 1

2Rmax(B/Bl) � 1. From Equation (26) we
infer that the lower-bound reduction in this limit is a
factor of 1

2 (Rmax + 1) smaller.
The ionization by mirrored particles is reduced signif-

icantly in a global pocket. Indeed, forward-moving CRs
entering the pocket from one side propagate without mir-
roring until (at least) the other side. A mirrored particle
at a given position accrues on average the column density
of the entire global pocket before returning back. Thus,
the contribution of mirrored particles can be reasonably
neglected.

4. DISCUSSION AND CONCLUSIONS

In order to draw general conclusions about the net
effect of the magnetic mirroring and focusing, let us
start with the single-peaked field profile, sketched in Fig-
ure 1(b), and consider two characteristic situations. One
is when the ionization occurs sufficiently away from the
center of a cloud, where B(s) is still substantially smaller
than the peak value Bp. CRs originating from the other
side of the cloud are negligible in this case, both due
to the strong attenuation and the narrow range of ini-
tial pitch angles that allow the particles to overcome
the mirroring. Based on the results of Sections 3.1 and
3.2, we immediately obtain that the relative increase of
the ionization rate with respect to the reference value
ζL (representing a constant field strength) is equal to
R(1 + ζ−/ζ+), where the upper bound for R is given by
Equation (22) and the lower bound is unity. The other
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situation occurs near the cloud center, where the contri-
bution of the mirrored particles is no longer important,
and the ionization is due to CRs coming from both sides
of the cloud. Then the relative increase of the ionization
rate is simply R. We have shown that for realistic values
of the spectral index a, the total relative increase does
not exceed a factor of 1.5–2.

In the presence of multiple magnetic peaks, illustrated
in Figure 1(c), these conclusions remain unchanged ev-
erywhere except for the regions of local field minima –
magnetic pockets, where the ionization can be decreased
drastically. In Section 3.3 we show that the ionization de-
crease is described by a reduction factor for which we also
consider two characteristic situations: localized pockets
with column small compared to that between the pocket
and the cloud edge, and the opposite situation of “global”
pockets. In the former case, for practical purposes one
can employ Equation (25) for the reduction factor; for
global pockets, the reduction is given by Equation (27).
For pockets with intermediate column densities it is not
crucial which formula is used, since they differ at most
by a factor of ≤ Rmax.

Calculations of the ionization rate in dense molecular
clouds and circumstellar disks inevitably contain signif-
icant intrinsic uncertainties. These are primarily associ-
ated with poor knowledge of the gas distribution and the
configuration of magnetic field lines in the cores, both
leading in uncertainties in the effective column density
Neff and, hence, in the reference ionization rate ζL(Neff).
The analysis presented above shows that, compared to
these uncertainties, the variations due to the CR mir-
roring and focusing are negligible and therefore can be
safely neglected – as long as the field has a single-peaked
profile. Within the magnetic pockets, the derived analyt-
ical formulas should be used to accurately calculate the
relative decrease of the ionization rate in these regions.

The results of this paper were derived for effective
column densities of up to Neff ∼ 1025 cm−2. Remark-
ably, Padovani et al. (2018) have recently shown that at
Neff & 3×1025 cm−2 the CR ionization is driven by indi-
rect processes, mediated by secondary photons, and then
the magnetic field plays no role at all. This allows us to
conclude that the mirroring and focusing do not signifi-
cantly affect the ionization outside the magnetic pockets
at any column density.

We note that Padovani & Galli (2011) performed a
numerical study of the CR mirroring and focusing for a
specified density and magnetic field distribution, valid

for a molecular cloud core in magnetostatic equilib-
rium. They also reached the conclusion that there was a
near-cancelation of the magnetic mirroring and focusing
terms. In detail, however, there appears to be a mi-
nor discrepancy with the present results – specifically,
they find some reduction in the ionization rate due to
the combined effect of mirroring and focusing, whereas
we find a slight increase in the ionization rate. This dis-
crepancy arises from their overestimate of the reduction

of CR flux by mirroring (by the factor of 1−
√

1− 1/B̃

rather than 1/B̃), and by their assumption that CRs
lose all their kinetic energy in approaching the mirror
point. The latter assumption was relaxed by Padovani
et al. 2013, who studied the propagation of CRs along the
magnetic field for a rotating collapsing core with differ-
ent initial conditions (mass-to-flux ratio, angle between
the mean magnetic field direction and the rotation axis).
The severe reduction of the CR ionization rate, reported
in this paper for certain regions, was attributed to the
stronger effect of mirroring with respect to focusing. In
fact, preliminary analysis of their simulation data shows
this strong reduction to be due to the presence of mag-
netic pockets, which is fully consistent with the results
presented in Section 3.3.

To summarize, the effects of magnetic mirroring and
focusing on the local CR density practically cancel each
other out if there are no magnetic pockets. This implies
we can safely use available numerical results for CR ion-
ization (calculated neglecting these magnetic effects) and
simply assume the CR propagation along field lines. For
situations where magnetic pockets are present, the ion-
ization rate can be greatly reduced. We obtained simple
expressions allowing accurate calculation of the ioniza-
tion in localized or global pockets. In a separate paper,
we plan to investigate conditions under which magnetic
pockets may form, and study their effect on non-ideal
MHD processes occurring in dense cores and disks. Also,
we will analyze the role of the CR diffusion along the
magnetic field, caused by CR collisions with particles of
the medium or by their (resonant and non-resonant) in-
teraction with fluctuating field.
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APPENDIX

APPENDIX A
IONIZATION DUE TO THE MIRRORED PARTICLES

Let N+(µ, s) and N−(µ, s) be the column densities accrued at position s by, respectively, the forward-moving and
mirrored particles having the local pitch-angle cosine of ±µ. The corresponding ionization rates ζ+(s) and ζ−(s) can
be derived from Equation (16).

Substituting Equation (12) in Equation (16) and introducing new variable E′ = [(1 + d)(L∗/E∗)N±]
− 1

1+d E, we
decouple N± from the resulting integrals over energy. For our purpose it is convenient to replace the integration over
µ with the integration over µi, by using Equation (5). For locations in the cloud where B(s)� Bi one can set µi ≈ 1

and 1− µ2
i ≈ α2

i , so that µ ≈ ±
√

1− B̃(s)α2
i . Using the initial energy spectrum (17), we obtain

ζ±(s) = T (s)

∫ 1/B̃(s)

0

N1−Rmax
±

dα2
i√

1− B̃(s)α2
i

, (A1)
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where T (s) is a common pre-factor andRmax is given by Equation (22). In the same approximation, from Equation (13)
we obtain

N+(αi, s) =

∫ s

0

ng(s′) ds′√
1− B̃(s′)α2

i

.

Then, we assume B̃(s) and ng(s) to be given by Equation (23), and introduce x = (s/H)pα2
i and x′ = (s′/H)pα2

i .
This yields

N+ =
ng∗H

pα
2(r+1)
i

∫ x

0

x′r dx′√
1− x′

, (A2)

where r = (q + 1)/p− 1. Similarly, we write

N− = N+ +
2ng∗H

pα
2(r+1)
i

∫ 1

x

x′r dx′√
1− x′

, (A3)

where we used the fact that x′ = 1 is the mirror point. Finally, substituting Equations (A2) and (A3) in Equation (A1),
we derive

ζ+(s) = T ′(s)

∫ 1

0

[
1

xr+1

∫ x

0

x′r dx′√
1− x′

]1−Rmax dx√
1− x

,

and

ζ−(s) = T ′(s)

∫ 1

0

[
1

xr+1

(∫ x

0

x′r dx′√
1− x′

+ 2

∫ 1

x

x′r dx′√
1− x′

)]1−Rmax
dx√
1− x

,

where T ′(s) is a (new) common pre-factor. We conclude that the ratio ζ−/ζ+ does not depend on s. The ratio is
obviously smaller than unity (since Rmax(a) > 1), and is a function of parameters r and a.
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