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Abstract

We perform a three-dimensional triaxial analysis of 16 X-ray regular and 4 high-magnification galaxy clusters
selected from the CLASH survey by combining two-dimensional weak-lensing and central strong-lensing
constraints. In a Bayesian framework, we constrain the intrinsic structure and geometry of each individual
cluster assuming a triaxial Navarro–Frenk–White halo with arbitrary orientations, characterized by the mass
M200c, halo concentration c200c, and triaxial axis ratios ( q qa b), and investigate scaling relations between these
halo structural parameters. From triaxial modeling of the X-ray-selected subsample, we find that the halo
concentration decreases with increasing cluster mass, with a mean concentration of = c 4.82 0.30200c at the
pivot mass = -

M M h10200c
15 1. This is consistent with the result from spherical modeling, = c 4.51 0.14200c .

Independently of the priors, the minor-to-major axis ratio qa of our full sample exhibits a clear deviation from
the spherical configuration ( = q 0.52 0.04a at -

M h1015 1 with uniform priors), with a weak dependence on
the cluster mass. Combining all 20 clusters, we obtain a joint ensemble constraint on the minor-to-major axis
ratio of = -

+q 0.652a 0.078
0.162 and a lower bound on the intermediate-to-major axis ratio of >q 0.63b at the 2σ level

from an analysis with uniform priors. Assuming priors on the axis ratios derived from numerical simulations, we
constrain the degree of triaxiality for the full sample to be  = 0.79 0.03 at -

M h1015 1, indicating a
preference for a prolate geometry of cluster halos. We find no statistical evidence for an orientation bias
( = f 0.93 0.07geo ), which is insensitive to the priors and in agreement with the theoretical expectation for the
CLASH clusters.

Key words: cosmology: observations – dark matter – galaxies: clusters: general – gravitational lensing: weak –

gravitational lensing: strong

1. Introduction

Galaxy clusters are gravitationally dominated by dark matter
and serve as a wealth of ideal laboratories to study structure
formation in the universe. In particular, an accurate mass
estimation of galaxy clusters is crucial not only for utilizing
them as cosmological probes (Bocquet et al. 2015; Mantz
et al. 2015; Planck Collaboration et al. 2015; de Haan
et al. 2016) but also for understanding the root cause of
various astrophysical processes in massive halos, such as
environmental quenching of galaxies (Dressler 1980). Con-
ventionally, the total cluster mass is determined from projected
measurements assuming spherical symmetry. In this context,
N-body simulations in the standard Λ cold dark matter
(LCDM) model established a nearly self-similar form for the
spherically averaged density profile r ( )r of dark-matter halos
(Navarro et al. 1996), which can be characterized by two
parameters—namely the characteristic density and radius of
halos. This two-parameter model gives a satisfactory success in

terms of statistically quantifying the ensemble mass of
observed clusters over a sizable sample (e.g., Umetsu
et al. 2011a, 2014, 2016; Newman et al. 2013; von der Linden
et al. 2014; Hoekstra et al. 2015; Okabe & Smith 2016).
However, cluster halos are predicted to be non-spherical,

with a preference for prolate shapes according to N-body
simulations in the LCDM model (Frenk et al. 1988; Dubinski
& Carlberg 1991; Warren et al. 1992; Jing & Suto 2002).
Besides, the shape of halos is predicted to depend on the
redshift, halo mass, and cluster-centric radius (Bailin &
Steinmetz 2005; Hopkins et al. 2005; Allgood et al. 2006;
Bett et al. 2007; Bonamigo et al. 2015), as well as on baryonic
effects (Flores et al. 2007), large-scale environments (Kasun &
Evrard 2005), and the background cosmology (Allgood
et al. 2006; Despali et al. 2014). Therefore cluster mass
estimates assuming spherical symmetry cause a substantial
scatter around their true mass (e.g., Battaglia et al. 2011).
Importantly, an inappropriate assumption about the cluster
shape and orientation could significantly bias individual mass
measurements (e.g., Oguri et al. 2005). There have been initial
attempts to compare the observed shapes of galaxy clusters
with those predicted by cosmological numerical simulations
(e.g., Oguri et al. 2010), opening up a new avenue of testing
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models of structure formation. It is thus important to perform a
statistical analysis of the shape of clusters by extending cluster
mass determinations beyond spherical modeling.

Compared to the theoretical efforts to characterize the shape
of galaxy clusters in numerical simulations, significantly less
progress has been made on the observational side (De Filippis
et al. 2005; Sereno et al. 2006; Corless et al. 2008; Morandi &
Limousin 2012; Limousin et al. 2013; Umetsu et al. 2015;
Sereno et al. 2017b). Detailed observational work thus far was
subject to case studies instead of a statistical interpretation from
a large cluster sample, because of difficulty in acquiring data
sets that are needed to achieve the required precision.
Moreover, the shape of the total mass distribution in clusters
was often inferred indirectly from observations of the
intracluster medium (ICM) assuming hydrostatic equilibrium;
however, these would be violated in the presence of, for
example, turbulent and bulk motions of hot gas (Lau
et al. 2009; Molnar et al. 2010; Chiu & Molnar 2012).
Astrophysical processes, such as radiative cooling of ICM and
entropy injection from active galactic nuclei, as well as the
cluster dynamical state (Cialone et al. 2017), further complicate
the interpretation of cluster shapes inferred from X-ray or the
Sunyaev–Zel’dovitch Effect (SZE hereafter; Sunyaev &
Zel’dovich 1970, 1972) observations. Thus investigating the
shape of galaxy clusters is observationally challenging.

Gravitational lensing provides direct access to the underlying
mass distribution of galaxy clusters without requiring any
assumptions about their dynamical or physical state. There
have been many successful attempts to determine the cluster
mass by weak lensing (Okabe et al. 2010; von der Linden
et al. 2014; Hoekstra et al. 2015; Medezinski et al. 2017;
Melchior et al. 2017; Schrabback et al. 2018), strong lensing
(Broadhurst et al. 2005a; Richard et al. 2010; Grillo et al. 2015;
Zitrin et al. 2015), and the combination of both (Bradač
et al. 2006; Oguri et al. 2012; Umetsu 2013; Umetsu et al.
2016). With recent progress in controlling systematics in weak
lensing (e.g., intensive calibration against simulations; Bridle
et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015),
together with advances in instrumentation and observing
techniques, we are in a great position to utilize gravitational
lensing with high-quality lensing data.

In this work, we aim to use both weak and strong lensing to
constrain the three-dimensional (3D) structure and shape of
clusters targeted by the CLUster Multi-Probes in Three
Dimensions (CLUMP-3D) program (Sereno et al. 2017b).
Our sample consists of 20 high-mass clusters that were selected
by the Cluster Lensing And Supernova survey with Hubble
(CLASH, hereafter; Postman et al. 2012). Importantly, these 20
clusters were all deeply followed up from the ground and
from space in different wavelengths (Donahue et al. 2014;
Rosati et al. 2014; Umetsu et al. 2014; Czakon et al. 2015),
with the goal of precisely characterizing the cluster mass
distribution. Besides, these clusters have been intensively
studied in previous work in the context of galaxy evolution
(Annunziatella et al. 2014; DeMaio et al. 2015; Gupta
et al. 2016), characterization of strongly lensed arcs (Zitrin
et al. 2015), wide-field weak-lensing analysis (Umetsu et al.
2012, 2014), and exploration of the high-redshift universe
(Zheng et al. 2012; Balestra et al. 2013; Coe et al. 2013; Monna
et al. 2014; McLeod et al. 2016).

In the first paper of the CLUMP-3D program, Sereno et al.
(2017b) carried out a full triaxial analysis of MACSJ1206.2

−0847 using multi-probe data sets from weak-lensing, strong-
lensing, X-ray, and SZE observations, demonstrating the power
of multi-probe cluster analysis. In our companion paper,
Umetsu et al. (2018) present direct reconstructions of the two-
dimensional (2D) matter distribution in the 20 CLASH clusters
from a joint analysis of 2D shear and azimuthally averaged
magnification measurements. This work is the third paper of
the series, where we focus on characterizing the 3D mass
distribution of the 20 CLASH clusters by combining weak and
strong lensing. A multi-probe triaxial analysis of 16 X-ray-
selected CLASH clusters using weak-lensing, strong-lensing,
X-ray, and SZE data sets is presented in another companion
paper (Sereno et al. 2018). We note that even though a joint
analysis of multi-probe data sets can formally achieve a better
precision, studies using gravitational lensing alone have the
advantage of being free from assumptions about baryonic
components in clusters. Therefore both approaches are required
and complementary to each other.
This paper is organized as follows. We will briefly introduce

the basics of gravitational lensing in Section 2. We then describe
the cluster sample and the lensing data products in Section 3.
In Section 4 we outline our methodology for triaxial modeling.
We discuss our results in Section 5, followed by the con-
clusions made in Section 6. Throughout this work, we assume a
flat LCDM cosmological model with W = 0.27m , = ´H h0
100 km s −1Mpc−1 with h=0.7, and s = 0.88 . We define an
ellipsoidal overdensity radius RΔ (e.g., Corless et al. 2009;
Umetsu et al. 2015) such that the mean interior density contained
within an ellipsoidal volume of semimajor axis RΔ is Δ times
the critical density of the universe r ( )zc at the cluster redshift z.
We use D = 200 to define the halo mass, M200c.

9 All quoted
errors are 68% confidence limits (i.e., 1σ) unless otherwise
stated. We use the AB magnitude system. The notation ( )x y,
stands for a uniform distribution between x and y.

2. Theory of Gravitational Lensing

In this section, we briefly review the basics of gravitational
lensing with emphasis on cluster lensing. In this case, we can
approximate the lensing cluster of interest at redshift zd as a
single thin lens embedded in a homogeneous universe where
background sources at redshift >z zd are all lensed. We refer
the readers to Bartelmann and Schneider (2001), Umetsu
(2010), and Hoekstra et al. (2013) for a more complete
overview of gravitational lensing.
To the first order, the deformation of observed background

images due to gravitational lensing can be described by the
lensing Jacobian matrix (see Equation (1)), which is character-
ized by the convergence κ and the shear g g gº + i1 2 at the
position J on the lens plane,

J
k g g
g k g

=
- - -
- - +

⎛
⎝⎜

⎞
⎠⎟( ) ( )J

1
1

, 11 2

2 1

where κ, g1, and g2 are written as linear combinations of second
derivatives of the lensing potential. The convergence Jk( ) is
the surface mass density normalized by the critical surface mass
density for lensing Sc,

J J
k =

S
S

( ) ( ) ( ), 2
c

9 See Equation (11).
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where JS( ) is the surface mass density of the cluster projected
along the line of sight, and

p
S = ( )c

G

D

D D4
, 3c

2
s

l ls

with G as the Newton’s constant, and Dl, Ds, and Dls as the
angular diameter distances between the observer-to-cluster,
observer-to-source, and the cluster-to-source pairs, respec-
tively. The complex shear g is related to the convergence κ by

òJ J J J Jg k= ¢ - ¢ ¢( ) ( ) ( ) ( )d D , 42

where the convolution kernel is defined as º( )yD
p- -( ) ( ∣ ∣ )yy y iy y22

2
1
2

1 2
4 .

In general, the observable quantity for weak lensing is not
the gravitational shear g but the reduced shear g in the
subcritical regime,

g
k

=
-

( )g
1

. 5

The reduced shear g remains invariant under the global
transformation, k lk l + -1 and g lg , for any
l ¹ 0. This is referred to as the mass-sheet degeneracy
(Bartelmann & Schneider 2001), which can be broken, for
example, by including the lensing magnification effect.

The lensing magnification is characterized by the inverse
determinant of the Jacobian matrix,

m
k g

=
- -( ) ∣ ∣

( )1

1
. 6

2 2

The magnification factor transforms differently as m l m -2 ,
which can be used to break the mass-sheet degeneracy. In the
subcritical regime where m > 0 and <∣ ∣g 1, the magnification
introduces two competing effects: the reduction (increase) of
observed area on the source plane given a solid angle, and the
amplificatin (deamplification) of flux of background sources.
As a net result, the surface number density of a “flux-limited”
background sample is altered due to the presence of lensing
magnification depending on the intrinsic slope of the back-
ground luminosity function. This effect is known as magnifica-
tion bias (Broadhurst et al. 1995; Taylor et al. 1998).

The effect of magnification bias can be measured by
comparing cumulative number counts of flux-limited back-
ground galaxies with and without gravitational lensing as

m =
<
<

- ( )
( )

( )n m

n m
, 7s2.5 1

0

where <( )n m and <( )n m0 represent the lensed and
unlensed surface number densities of background galaxies
brighter than the apparent magnitude m, respectively, and ºs

<( )d n m dmlog 0 is the logarithmic slope of the cumulative
magnitude distribution. It has been shown that, with a sizable
sample of galaxy clusters, this effect can be solely used to
calibrate the cluster mass proxies (e.g., Hildebrandt et al. 2009;
Ford et al. 2012; Chiu et al. 2016a; Tudorica et al. 2017). By
combining complementary observables of shear and magnifica-
tion, one can break the mass-sheet degeneracy (Broadhurst
et al. 2005b; Umetsu & Broadhurst 2008). In this work, we

combine both observables to derive an unbiased convergence
map for each individual cluster (see Section 3.2).
In the regime of strong lensing, detailed modeling with many

sets of multiple images with known redshifts allows us to
determine the location of critical curves, which then returns
robust estimates of the Einstein mass—that is, the projected
mass enclosed by the critical area Ac of an effective Einstein
radius q p= AEin c (Zitrin et al. 2015),

ò J Jk< = S
J

( ) ( ) ( )
∣ ∣

M r D d . 8
r

SL c l
2 2

In this work, we use strong-lensing constraints in the form of
the enclosed projected mass profile around the effective
Einstein radius. These constraints were obtained by Umetsu
et al. (2016) using detailed lens models constructed by Zitrin
et al. (2015) from a combined strong and weak lensing analysis
of Hubble Space Telescope (HST) observations. We give
further details in Section 3.3.

3. Cluster Sample and Data

We first describe the cluster sample in Section 3.1. The data
products of weak and strong lensing are presented in
Section 3.2 and Section 3.3, respectively.

3.1. Cluster Sample

In this work, we study a sample of 16 X-ray regular and 4
high-magnification galaxy clusters targeted by the CLUMP-3D
program (Sereno et al. 2017b, 2018; Umetsu et al. 2018). Our
sample stems from the CLASH wide-field weak-lensing
analysis of Umetsu et al. (2014), and comprises two
subsamples, both taken from the CLASH survey (Postman
et al. 2012) targeting 25 high-mass clusters. Here, 20 clusters in
the first CLASH subsample were selected to have X-ray
temperatures greater than 5 keV and to have regular X-ray
morphology. Numerical simulations suggest that this subsam-
ple is largely composed of relaxed clusters and free of
orientation bias (Meneghetti et al. 2014). The second subset
of 5 clusters were selected for their high-magnification
properties. These clusters turn out to be dynamically disturbed,
merging systems (Medezinski et al. 2013; Zitrin et al. 2013;
Balestra et al. 2016; Jauzac et al. 2017). Accordingly, modeling
with a single-halo component may not be adequate to describe
the high-magnification subsample (Medezinski et al. 2013), in
contrast to the X-ray-selected subsample that can be well
described by a single Navarro–Frenk–White (Navarro
et al. 1997, hereafter NFW) profile out to large cluster radii
(Umetsu et al. 2016; Umetsu & Diemer 2017). For the sake of
homogeneity, however, we analyze all clusters in the full
sample in a consistent manner. We will also split the sample
into several subsamples and statistically characterize each of
them (see Section 4.3).
This sample spans a factor of »5 in mass ( ´4

< < ´- -
 M h M M h10 20 1014 1

200c
14 1; Umetsu et al.

2016) and a redshift range of < <z0.18 0.69. Following
Umetsu et al. (2014), we adopt the location of the brightest
cluster galaxy (BCG) as the center for each cluster. As
discussed in Umetsu et al. (2014), the rms of positional offsets
between the BCGs and X-ray peaks for the full sample is
≈30 kpc h−1, and it reduces to 10 kp h−1 for the X-ray-
selected subsample. Therefore the effect of miscentering is not
expected to be significant in this work (Johnston et al. 2007;

3
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Umetsu et al. 2011b, 2016). We tabulate the basic information
of our 20 clusters in Table 1.

We note that this sample has been intensively studied in
previous CLASH work, especially by Umetsu et al. (2014,
hereafter U14) and Umetsu et al. (2016, hereafter U16), who
performed reconstructions of the azimuthally averaged surface
mass density profile from weak and weak+strong lensing data,
respectively. Accordingly, both U14 and U16 focused on
spherical mass estimates of these clusters. In this work, we
analyze HST Einstein-mass constraints in combination with 2D
weak-lensing mass maps of Umetsu et al. (2018) reconstructed
from a joint analysis of 2D shear and azimuthally averaged
magnification constraints. We extend the analyses of U14 and
U16 to investigate the 3D structure and shape of the 20 clusters
using combined strong and weak lensing data sets.

3.2. Weak-lensing Data

In this section, we briefly summarize the weak-lensing data
products used in this study, and refer the reader to our
companion paper (Umetsu et al. 2018) for full details. Our
weak-lensing analysis is based on deep multi-band imaging
taken primarily with Suprime-Cam (Miyazaki et al. 2012) on
the Subaru Telescope (typically, 5 Suprime-Cam bands;
Table1 of Umetsu et al. 2014), as obtained by the CLASH
collaboration (Umetsu et al. 2014). For our southernmost
cluster (RX J2248−4431), we used data taken with the Wide-
Field Imager at the ESO 2.2 m MPG/ESO telescope at La Silla
(Gruen et al. 2013). General data products from the CLASH
survey, including the reduced Subaru/Suprime-Cam data,
weight maps, and photometric catalogs, are available at the
Mikulski Archive for Space Telescopes.10 Details of the image

reduction, photometry, background galaxy selection, and the
creation of weak-lensing shear catalogs are presented in
Umetsu et al. (2014).
In our companion paper, Umetsu et al. (2018) have presented

a 2D weak-lensing analysis for the 20 CLASH clusters using
the background-selected shear catalogs and azimuthaly aver-
aged magnification profiles, both published in Umetsu et al.
(2014). In this study, we use pixelized 2D surface mass density
maps obtained in Umetsu et al. (2018) as our weak-lensing
constraints. For each cluster, the mass map is pixelized on a
regular grid of 48×48 pixels covering the central ¢ ´ ¢24 24
region. Umetsu et al. (2018) accounted for various sources of
errors associated with their weak-lensing shear and magnifica-
tion measurements (see their Section 3), including the
covariance due to uncorrelated large-scale structures projected
along the line of sight. All these errors are encoded in the
covariance matrix used in our analysis.
As summarized in Section5.1 of Umetsu et al. (2018), we

quantified major sources of systematic errors in the CLASH
weak-lensing analysis. In particular, we consider the following
systematic effects: (1) dilution of the lensing signal caused by
residual contamination from cluster members ( 2.4% 0.7%),
(2) photometric-redshift bias in estimates of the mean
lensing depth (0.27%), and (3) uncertainty in the shear
calibration factor (5%). These errors add to 5.6% in quadrature.
This corresponds to the mass calibration uncertainty of

G 5.6% 7%, with G  0.75 being the typical value of the
logarithmic derivative of the lensing signal with respect to
cluster mass (Melchior et al. 2017).
On the other hand, by performing a shear–magnification

consistency test, Umetsu et al. (2014) estimated a systematic
uncertainty in the CLASHmass calibration to be 8%. In the
CLUMP-3D program, we conservatively use this value as the
systematic uncertainty in the ensemble mass calibration.

3.3. Strong-lensing Data

Zitrin et al. (2015) obtained detailed lens models for the
CLASH sample using two different parameterizations—one
assuming that light traces mass for both DM and galaxy
components, and the other using an analytical elliptical NFW
form for the DM-halo components. Here we include HST
lensing constraints of Zitrin et al. (2015) to improve modeling
of cluster cores, which are unresolved by the wide-field weak-
lensing observations. Full details of data acquisition, reduction,
and analysis of HST lensing data are fully given in Zitrin et al.
(2015) and U16, to which we refer the reader for more details.
Here we give a brief summary of our HST lensing data.

Specifically, for each cluster except RXJ1532.9+3021 for
which no secure identification of multiple images has been
made (Zitrin et al. 2015), we use enclosed projected mass
constraints <( )M rSL for a set of four fixed integration radii,
=   r 10 , 20 , 30 , and 40 . These constraints are presented in

Table1 of Umetsu et al. (2016). The measurement errors
s <( )M rSL include systematic as well as statistical uncertainties,
by accounting for modeling discrepancies between the two
modeling methods of Zitrin et al. (2015). The integrated signal-
to-noise ratio of the enclosed mass constraints is on average
»12, comparable to that of the weak lensing constraints
Umetsu et al. (2014).

Table 1
Basic Information of the Cluster Sample

Name Redshift aBCG dBCG

Abell383 0.187 02:48:03.40 −03:31:44.9
Abell209 0.206 01:31:52.54 −13:36:40.4
Abell2261 0.224 17:22:27.18 +32:07:57.3
RXJ2129+0005 0.234 21:29:39.96 +00:05:21.2
Abell611 0.288 08:00:56.82 +36:03:23.6
MS2137−2353 0.313 21:40:15.17 −23:39:40.2
RXJ2248−4431 0.348 22:48:43.96 −44:31:51.3
MACSJ1115+0129 0.352 11:15:51.90 +01:29:55.1
MACSJ1931−2635 0.352 19:31:49.62 −26:34:32.9
RXJ1532+3021 0.363 15:32:53.78 +30:20:59.4
MACSJ1720+3536 0.391 17:20:16.78 +35:36:26.5
MACSJ0429−0253 0.399 04:29:36.05 −02:53:06.1
MACSJ1206−0847 0.440 12:06:12.15 −08:48:03.4
MACSJ0329−0211 0.450 03:29:41.56 −02:11:46.1
RXJ1347−1145 0.451 13:47:31.05 −11:45:12.6
MACSJ0744+3927 0.686 07:44:52.82 +39:27:26.9
MACSJ0416−2403 0.396 04:16:08.38 −24:04:20.8
MACSJ1149+2223 0.544 11:49:35.69 +22:23:54.6
MACSJ0717+3745 0.548 07:17:32.63 +37:44:59.7
MACSJ0647+7015 0.584 06:47:50.27 +70:14:55.0

Note. The R.A. aBCG and decl. dBCG of the BCG position are adopted as the
cluster center. The first 16 clusters are taken from the CLASH X-ray-selected
subsample, while the other 4 clusters are from the CLASH high-magnification
subsample.

10 https://archive.stsci.edu/prepds/clash/
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4. Methodology

In this section, we describe our methodology for triaxial
modeling of galaxy clusters. We first describe the formalism for
halo modeling in Section 4.1, and outline Bayesian methods in
Section 4.2. In Section 4.3, we perform Bayesian inference for
individual and ensemble clusters using the combined weak and
strong lensing data sets. In Section 4.4, we examine scaling
relations with halo mass for our clusters.

4.1. Halo Modeling

In this section, we describe triaxial halo modeling based on
the 2D weak-lensing and central HST lensing data sets. To this
end, we closely follow the forward-modeling approach of
Umetsu et al. (2015) and Sereno et al. (2017b). Specifically, we
forward-model the projected cluster lensing observations by
projecting a triaxial NFW halo (Corless et al. 2009) along the
line of sight.

The density profile of the triaxial NFW model is written as a
function of the ellipsoidal radius R as

r
r

=
+

( )
( )( )

( )R
R R R R1

, 9s

s s
2

where rs is the characteristic density, and Rs is the ellipsoidal
scale radius measured along the major axis of the halo
ellipsoid. The ellipsoidal radius R is related to the principal
coordinates (X Y Z, , ) centered on the cluster as

= + + ( )R
X

q

Y

q
Z , 102

2

a
2

2

b
2

2

with qa the minor-to-major axis ratio and qb the intermediate-
to-major axis ratio. By definition, we have  < q q0 1a b .
Equation (9) reduces to the spherical NFW model if =qa

=q 1b .
The M200c mass and the R200c radius for a cluster at redshift

zdare related to each other by

p
r= ( ) ( )M z q q R

4

3
200 . 11200c c d a b 200c

3

On the other hand, M200c can be expressed as

òp r= ( ) ( )M q q R R dR4 . 12
R

200c a b
0

2
200c

We define the concentration parameter c200c as the ratio of the
cluster radius to the scale radius along the major axis,

º ( )c
R

R
. 13200c

200c

s

Combining Equations (11)–(13), one can express rs as

r
r

=
+ - +

( )
( ) ( )

( )
z c

c c c

200

3 ln 1 1
. 14s

c d 200c
3

200c 200c 200c

We specify the radial density profile of the triaxial NFW model
(see Equation (9)) with ( )M c,200c 200c , instead of r( )r,s s .

A triaxial halo is projected onto the lens plane as elliptical
isodensity contours (Stark 1977), which can be specified by the
intrinsic axis ratios (q q,a b) and orientation angles (q f y, , )
defined with respect to the line of sight of the observer.
Following Umetsu et al. (2015) and Sereno et al. (2017a), we
adopt the z–x–z convention of Euler angles (Stark 1977). The

angle θ describes the inclination of the major (Z) axis with
respect to the line of sight.
After a coordinate transformation of the first two Euler

angles, elliptical isodensity contours of the projected ellipsoid
can be described as a function of the elliptical radius ζ, defined
in terms of the observer’s sky coordinates ( , ) as

  z

q
f f q

f f q

f f

q
f f

q

= + +

= + +

= -

= +

= + +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

f
j k l

j
q q q q

k
q q

l
q q

f
q q

1
2 ,

cos
cos sin sin

,

sin cos cos
1 1

,

sin cos
,

sin
sin cos

cos . 15

2 2 2

2
2

a
2

2

b
2

2

a
2

b
2

a
2

b
2

2

a
2

2

b
2

2
2

a
2

2

b
2

2

The third Euler angle ψ represents the rotational degree of
freedom in the sky plane to specify the observer’s coordinate
system.
To sum up, our triaxial NFW model is specified

by seven parameters—namely, halo mass and concentration
(M c,200c 200c), intrinsic axis ratios (q q,a b) characterizing the
intrinsic halo shape, and three Euler angles (q f y, , ) describing
the halo orientation with respect to the line of sight. In this way,
for a given set of the parameters, we can project a triaxial NFW
halo onto the lens plane and compute the surface mass density
at each position.
In this work, we pay special attention to two geometric

quantities that characterize the intrinsic shape and orientation of
clusters. The first quantity is a geometrical factor fgeo that
describes the degree of elongation of the cluster mass
distribution along the line of sight. Specifically, a cluster halo
is elongated along the line of sight if >f 1geo , while it is
elongated in the plane of the sky if <f 1geo . We stress that the
case of =f 1geo does not necessarily correspond to a spherical
halo configuration, but indicates that the halo sizescale along
the line of sight is equal to that in the plane of the sky.
Following Sereno et al. (2010) and Umetsu et al. (2015), we
define fgeo by

x

x

º

=

=
+ - - +

+ + - +

^

^ -

^




⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )
( )

f
L

q

L
q

q q
f

q
j l j l k

j l j l k

,

,

4

4
, 16

geo
s

s
a b

2 2

2 2

1
2

3
4

1
2

where q⊥ is the minor-to-major axis ratio of the projected
ellipsoid, L represents the line of sight half length of the
ellipsoid of ellipsoidal radius =R Rs, and xs is the projected
scale radius (semimajor axis) in the sky plane. That is, for a
given ellipsoid, fgeo is the ratio of the line of sight half length LP
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to the geometric mean of the semimajor and semiminor axes of
the projected isodensity contour.

The second quantity of interest is the degree of triaxiality,  .
Following the definition in Umetsu et al. (2015), the triaxiality
is defined by

 º
-

-
( )

q

q

1

1
. 17b

2

a
2

By construction,  0 1. The degree of triaxiality 
approaches unity, or =q qa b (zero, or qb=1), if the halo
shape is maximally prolate (oblate).

4.2. Bayesian Inference

In what follows, we describe the Bayesian inference
formalism that we used to explore parameter space, given the
combined weak and strong lensing data sets. The joint posterior
probability distribution of model parameters p given data  is
written as

   µ( ∣ ) ( ∣ ) ( ) ( )p p pP , 18

where ( )p denotes the prior distribution of p. In this work,
our model includes up to seven parameters—namely, (M ,200c

q f y)c q q, , , , ,200c a b , depending on modeling approaches (see
below).

The likelihood  ( ∣ )p describes the probability of observing
data  given the model p. Here we explicitly express the data
as

  = { } ( ), , 19SL WL

with  = < =  { ( )∣ }M r r 10 , , 40SL SL , the data vector,
containing a set of enclosed projected mass constraints, and
WL, the concatenated data vector, containing pixelized values
of the weak-lensing mass map. For each cluster, we evaluate
the log-likelihood

     = +( ∣ ) ( ∣ ) ( ∣ ) ( )p p pln ln ln , 20SL SL WL WL

where

 


     

å s
=-

< - <

=- - -

<

-

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ) ( )

( ∣ ) ( ) · · ( )

( )

( )

C

p

p

M r r
ln

1

2
,

ln
1

2
,

21

i

i i

M r
SL SL

SL 2D
2

WL WL WL
T 1

WL

iSL

and the index i runs over the four strong-lensing constraints,
s <( )M riSL is the uncertainty in the enclosed projected mass
estimate <( )M riSL ,  <( )ri2D is the model prediction, and C
represents the error covariance matrix for the weak-lensing
data. In this work, we fit weak-lensing data across the entire

¢ ´ ¢24 24 region centered on the cluster. We checked that
restricting the fitting range to the central ´h h4 Mpc 4 Mpc
region (side length corresponding approximately to twice the
virial radius) does not significantly change the results,
indicating that our analysis is not sensitive to the 2-halo term.
The enclosed projected mass measurements from the HST
lensing analysis impose a set of integrated constraints on the
inner density profile. We note that by doing this, no assumption
is made of azimuthal symmetry or isotropy of the underlying
mass distribution.

We use the python implementation of the affine-invariant
ensemble Markov Chain Monte Carlo (MCMC) sampler,
emcee(Foreman-Mackey et al. 2013), to explore parameter
space. We consider the following three different modeling
approaches: (1) spherical modeling with uniform priors on

Mlog 200c and clog 200c, (2) triaxial modeling with uniform
priors on all parameters, and (3) triaxial modeling incorporating
informative shape priors from cosmological N-body simula-
tions (Bonamigo et al. 2015, hereafter B15). For simplicity, we
refer to these three approaches as Spherical, Triaxial, and
Triaxial+B15 modeling, respectively. Here we briefly describe
each case.

1. Spherical modeling: We float only two parameters
( )M c,200c 200c and fix the remaining parameters
( = =q q 1a b and q f y= = = 0).

2. Triaxial modeling: We use uniform priors on Mlog 200c,
clog 200c, intrinsic shapes (q q,a b), and orientation angles
q f y( )cos , , . We assume the following form of the prior

probability distribution for the intrinsic axis ratios:

  = ´( ) ( ∣ ) ( ) ( )q q q q q, , 22a b b a a

where

 =
- < <⎧⎨⎩( ) ( ) ( )q

q q q1 1 if 1

0, otherwise
, 23a

min min a




=
- <⎧⎨⎩( ∣ ) ( ) ( )q q

q q q1 1 if 1

0, otherwise,
, 24b a

a a b

and =q 0.1min is the lower bound of the minor-to-major
axis ratio (Sereno & Umetsu 2011).

3. Triaxial+B15 modeling: We adopt informative shape
priors from N-body simulations of B15, who character-
ized the distribution of intrinsic axis ratios of N-body
CDM halos as a function of the halo peak height and
redshift. We self-consistently update the shape prior for a
given set of M c,200c 200c, and redshift.

Table 2 summarizes the prior distributions assumed in this
study.

4.3. Modeling Strategy

In this study, we perform both individual and joint ensemble
modeling of clusters. For the latter case, we simultaneously fit a
single density profile to a (sub)sample of clusters. Specifically,
we consider the following five (sub)samples of clusters:

1. Full sample of 20 clusters
2. Low-mass subsample containing the 10 lowest M200c

mass clusters from U14
3. High-mass subsample containing the 10 highest M200c

mass clusters from U14
4. CLASH X-ray-selected subsample of 16 clusters
5. CLASH high-magnification-selected subsample of 4

clusters

For joint ensemble modeling of clusters, we assume that all
clusters have the same mass, concentration, and intrinsic axis
ratios, and fit the orientation angles for each individual cluster.
Specifically, the joint posterior probability distribution for
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ensemble modeling is written as

  µ
Î

( ) ( ) ( ∣ ) ( )q q pP , 25
i

i i
sample

where i runs over all clusters in the (sub)sample, q denotes
the vector containing model parameters (M c q, , ,200c 200c a

q f y Î{ } )q , , ,i i ib i sample , ( )q is the prior distribution of q,
  = { },i i iWL, SL, is the lensing data of the ith clusters, and

q f y= ( )p M c q q, , , , , ,i i i i200c 200c a b is the model of the ith
cluster. The individual and ensemble modeling approaches are
complementary to each other. We will present both results in
Section 5.

4.4. Scaling Relation Fitting

Here we describe our Bayesian regression approach to
examining mass scaling relations of various cluster observables
using the results from individual cluster modeling. Specifically,
we investigate the following four scaling relations: (1) con-
centration to mass ( –c M200c 200c) scaling relations, (2) minor
axis ratio to mass ( –q Ma 200c) scaling relations, (3) geometrical
factor to mass ( –f Mgeo 200c) scaling relations, (4) triaxiality to
mass (–M200c) scaling relations. To this end, we use the
following equation:

 



= ´
-



⎛
⎝⎜

⎞
⎠⎟ ( )A

M

M h10
, 26

B
200c

15 1

together with the intrinsic scatter  sº ∣D M200c
, where the

observable  runs over qa, fgeo, and  , respectively. For the
concentration to mass relations, we fit Equation (26) using
logarithmic observables (i.e., clog 200c and Mlog 200c) with log-
normal intrinsic scatter sº ∣Dc c Mlog200c 200c 200c. Note that we
examine these scaling relations with a pivot mass of

= -
M M h10200c

15 1, which is close to the median mass of
our sample, to reduce degeneracies between A and B .

To derive an observable ( ) to mass relation for a given
sample of clusters, we draw 5000 random samples from
MCMC posterior distributions of the clusters. For each random
realization, we fit Equation (26) to data drawn from the
posteriors and obtain a set of the regression parameters
  ( )A B D, , . Finally, we derive the median values and

confidence intervals of the parameters. In this way, we directly
account for the covariance between the observable  and mass
M200c in our Bayesian regression analysis (Chiu et al. 2016b,
2018; Gupta et al. 2017). We have checked that the regression
results are not sensitive to the number of random realizations
used. In our analysis, we have ignored the intrinsic scatter
between weak-lensing and true cluster mass (Sereno &
Ettori 2015).

We perform a regression analysis of observable–mass
scaling relations following this procedure for each of the
Spherical, Triaxial, and Triaxial+B15 modeling approaches.

5. Results and Discussion

In Section 5.1, we first compare our results of spherical
modeling to those obtained by previous CLASH work of U14
and U16. In Sections 5.2–5.5, we present the resulting
observable–mass scaling relations based on individual cluster
modeling. We will also discuss the results of joint ensemble
modeling in these subsections.
In Table 3 we summarize marginalized constraints on the

spherical and triaxial NFW model parameters derived from
the individual and ensemble modeling approaches. Here we
have employed the biweight estimators of Beers et al. (1990) for
the central location and scale of the marginalized posterior
distributions (e.g., Sereno & Umetsu 2011; Umetsu et al. 2014,
2015).11 The regression parameters of various mass scaling
relations are summarized in Table 4. In Figure 1, we show the
joint ensemble constraints on cluster parameters from different
modeling approaches. We also show the results obtained with
and without the HST lensing constraints <( )M rSL to demon-
strate the consistency between the weak and strong lensing data
sets. For the results from individual cluster modeling, we
show the resulting marginalized posterior distributions in
the Appendix.

5.1. Consistency of Spherical Modeling

We compare our results from Spherical modeling of the 20
clusters to those of U14 and U16 for a consistency check. Both
U16 and this work are based on the weak-lensing shear and
magnification data obtained by U14. U16 reconstructed
azimuthally averaged surface mass density profiles of these
individual clusters by combining the weak-lensing data of U14
with the central HST lensing constraints <( )M rSL from Zitrin
et al. (2015).
In both U14 and U16, the NFW mass and concentration

parameters were derived assuming spherical symmetry,
corresponding to the case of Spherical modeling in this work.
Although these three studies share the same data as input to
modeling, the crucial difference of this study is that we directly
fit a model profile to the 2D surface mass density maps of
Umetsu et al. (2018) without azimuthal averaging. This
comparison is thus useful for validating the robustness of our
reconstruction and modeling procedures, for a given data set.

Table 2
Prior Distributions

Modeling ( )Mlog 200c ( )clog 200c qa qb qcos f ψ

Spherical ( )14, 16  -( )1, 1 K K K K K
Triaxial ( )14, 16  -( )1, 1 Equation (23) Equation (24) ( )0, 1  p p-( )2, 2  p p-( )2, 2
Triaxial+B15 ( )14, 16  -( )1, 1 Bonamigo et al. (2015) Bonamigo et al. (2015) ( )0, 1  p p-( )2, 2  p p-( )2, 2

Note. Uniform priors of ( )14, 16 and  -( )1, 1 are used for ( )Mlog 200c and ( )clog 200c , respectively. Masses are expressed in the units of -
M h 1. All parameters

other than M200c and c200c are fixed in Spherical modeling. In Triaxial modeling, we use uniform priors on the shape (qa and qb) and orientation ( qcos , f, and ψ)
parameters. In Triaxial+B15 modeling we assume informative shape priors taken from cosmological numerical simulations of Bonamigo et al. (2015), while keeping
the uniform priors for the orientation parameters.

11 The biweight estimator is robust against skewed distributions, because it
gives a higher weight to points that are close to the central location of a
distribution.
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We begin with the results of individual cluster modeling.
Comparing our M200c mass estimates to those M200c,U16

from U16, we find the mean difference12 in logarithmic mass
of áD ñ = á - ñ = - M M Mlog log log 0.01200c 200c 200c,U16

0.04, which meets the criterion of <8% (or 0.035 dex)
for consistency (see Section 3.2). Similarly, the mean
difference in logarithmic concentration is áD ñ =clog 200c

á - ñ = c clog log 0.04 0.04.200c 200c,U16 Except that we
observe a mild increase (0.04 dex or »10%) in concentration
with respect to U16, our results are in satisfactory agreement
with U16. This comparison with U16 is shown in Figure 2.

Excluding the HST lensing constraints <( )M rSL from
our Spherical modeling results in mass estimates that
are consistent with those from U14 based on the one-
dimensional (1D) weak-lensing analysis, with a mean
difference in logarithmic mass of áD ñMlog 200c,WL =
á - ñ = M Mlog log 0.01 0.04.200c,WL 200c,U14 This is much
smaller than the systematic uncertainty in the overall
mass calibration of 8% (or 0.035 dex). Similarly, the mean
difference in logarithmic concentration with respect to U14 is
áD ñc200c,WL = á - ñ = - c clog log 0.03 0.05.200c,WL 200c,U14
Again, no significant tension with U14 is found, as also shown
in Figure 3.
In what follows, we compare our results from joint ensemble

modeling to those from U14 and U16. Since U14 and U16

Table 3
Marginalized Posterior Constraints on Cluster Model Parameters

Spherical Modeling Triaxial Modeling Triaxial+B15 Modeling

Name -

M

M h10
200c

15 1 c200c
-

M

M h10
200c

15 1 c200c qa qb
-

M

M h10
200c

15 1 c200c qa qb

Individual constraints

Abell383 -
+0.385 0.094

0.149
-
+6.7 1.6

1.5
-
+0.40 0.11

0.16
-
+6.9 1.8

1.6
-
+0.82 0.26

0.18 >0.446 -
+0.41 0.12

0.16
-
+6.5 1.7

1.9
-
+0.474 0.098

0.077
-
+0.60 0.11

0.14

Abell209 -
+1.21 0.21

0.27
-
+2.76 0.45

0.44
-
+1.30 0.30

0.43
-
+2.86 0.71

0.69
-
+0.51 0.25

0.11
-
+0.662 0.029

0.337
-
+1.32 0.22

0.42
-
+2.78 0.49

0.72
-
+0.424 0.075

0.071
-
+0.523 0.076

0.141

Abell2261 -
+1.61 0.22

0.24
-
+3.87 0.47

0.50 1.66 0.28 -
+3.86 0.62

0.70
-
+0.67 0.17

0.22 >0.491 -
+1.53 0.26

0.41
-
+3.75 0.85

0.80
-
+0.427 0.065

0.105
-
+0.63 0.13

0.12

RXJ2129+0005 -
+0.46 0.11

0.13
-
+4.9 1.0

1.2
-
+0.46 0.12

0.17 5.0 1.3 -
+0.75 0.16

0.25 >0.519 -
+0.43 0.10

0.15
-
+5.1 1.5

1.2
-
+0.509 0.101

0.075
-
+0.632 0.096

0.145

Abell611 -
+0.90 0.19

0.25
-
+4.36 0.73

0.96
-
+1.00 0.30

0.23
-
+4.9 1.2

1.0
-
+0.48 0.24

0.19 >0.349 -
+0.94 0.24

0.27
-
+4.50 0.86

1.29
-
+0.431 0.083

0.071
-
+0.56 0.11

0.13

MS2137−2353 -
+0.53 0.17

0.18
-
+4.5 1.1

1.7
-
+0.53 0.16

0.22
-
+5.2 1.8

1.3
-
+0.72 0.14

0.28 >0.487 -
+0.51 0.16

0.20
-
+5.2 2.0

1.4
-
+0.474 0.090

0.093
-
+0.64 0.13

0.10

RXJ2248−4431 -
+1.02 0.30

0.27
-
+4.14 0.90

1.25
-
+1.02 0.26

0.41
-
+3.78 0.67

2.02
-
+0.46 0.23

0.24 >0.361 -
+1.00 0.27

0.37
-
+4.5 1.3

1.5
-
+0.384 0.045

0.113
-
+0.592 0.156

0.078

MACSJ1115
+0129

-
+1.26 0.26

0.24
-
+2.89 0.58

0.53
-
+1.21 0.25

0.41
-
+2.90 0.65

0.99
-
+0.45 0.22

0.17 >0.364 -
+1.28 0.29

0.32
-
+3.14 0.72

0.84
-
+0.413 0.072

0.078
-
+0.541 0.095

0.134

MACSJ1931
−2635

-
+0.60 0.12

0.18
-
+7.3 1.5

1.6
-
+0.65 0.16

0.19
-
+7.6 1.7

1.6
-
+0.906 0.426

0.072 >0.399 -
+0.63 0.15

0.23
-
+7.8 1.6

1.7
-
+0.449 0.087

0.081
-
+0.625 0.149

0.095

RXJ1532+3021 -
+0.479 0.092

0.110
-
+6.7 1.2

2.4
-
+0.472 0.089

0.121
-
+6.9 1.6

1.9
-
+0.936 0.299

0.061 >0.480 -
+0.479 0.142

0.087
-
+5.91 0.76

3.01
-
+0.464 0.084

0.093
-
+0.593 0.096

0.158

MACSJ1720
+3536

-
+0.79 0.18

0.14
-
+4.88 0.71

1.12
-
+0.72 0.13

0.25
-
+4.96 0.99

1.42
-
+0.57 0.16

0.32 >0.471 -
+0.80 0.19

0.20
-
+5.4 1.4

1.0
-
+0.446 0.073

0.085
-
+0.556 0.065

0.161

MACSJ0429
−0253

-
+0.60 0.12

0.13
-
+5.6 1.0

1.1
-
+0.562 0.096

0.182
-
+5.7 1.2

1.3
-
+0.934 0.289

0.064 >0.491 -
+0.61 0.15

0.11
-
+5.9 1.5

1.2
-
+0.464 0.080

0.094
-
+0.63 0.13

0.12

MACSJ1206
−0847

-
+1.01 0.20

0.19
-
+5.21 1.08

0.84
-
+0.99 0.18

0.28
-
+5.0 1.1

1.3
-
+0.63 0.11

0.36 >0.480 -
+0.96 0.19

0.27 5.1 1.2 -
+0.426 0.067

0.095
-
+0.569 0.096

0.136

MACSJ0329
−0211

-
+0.706 0.095

0.142
-
+5.70 0.85

1.20
-
+0.86 0.14

0.26
-
+5.0 1.1

1.6
-
+0.34 0.13

0.14
-
+0.526 0.080

0.360
-
+0.87 0.13

0.23 5.6 1.1 -
+0.396 0.057

0.067
-
+0.507 0.092

0.112

RXJ1347−1145 -
+2.18 0.28

0.34
-
+4.09 0.50

0.61
-
+2.64 0.56

0.64
-
+3.44 0.68

1.13
-
+0.38 0.16

0.13
-
+0.499 0.060

0.346
-
+2.65 0.37

0.62
-
+3.82 0.68

0.82
-
+0.372 0.055

0.065
-
+0.510 0.105

0.092

MACSJ0744
+3927

-
+1.64 0.33

0.41
-
+2.68 0.56

0.65
-
+1.37 0.24

0.68
-
+4.02 1.44

0.78
-
+0.25 0.12

0.13 >0.242 -
+1.69 0.41

0.37
-
+3.63 0.85

1.11
-
+0.358 0.068

0.053
-
+0.452 0.092

0.104

MACSJ0416
−2403

-
+0.87 0.14

0.21
-
+2.69 0.46

0.42
-
+0.88 0.14

0.31
-
+2.67 0.62

0.58
-
+0.71 0.26

0.22 >0.445 -
+0.84 0.13

0.32
-
+2.64 0.61

0.63
-
+0.437 0.075

0.096
-
+0.60 0.12

0.13

MACSJ1149
+2223

-
+1.84 0.32

0.43
-
+1.94 0.42

0.39
-
+1.88 0.45

0.67
-
+2.04 0.52

0.59
-
+0.35 0.15

0.16 >0.314 -
+2.01 0.46

0.59
-
+2.21 0.56

0.54
-
+0.372 0.060

0.071 0.50 0.10

MACSJ0717
+3745

-
+2.33 0.34

0.37
-
+1.34 0.16

0.25
-
+2.36 0.61

0.88
-
+1.38 0.34

0.54
-
+0.363 0.176

0.080 >0.292 -
+2.63 0.48

0.70
-
+1.62 0.31

0.36
-
+0.351 0.057

0.064
-
+0.471 0.098

0.097

MACSJ0647
+7015

-
+1.02 0.21

0.30
-
+3.49 0.80

1.01
-
+1.06 0.30

0.27
-
+3.7 1.0

1.2 >0.193 >0.452 -
+0.99 0.25

0.32
-
+3.53 0.85

1.62
-
+0.441 0.091

0.070
-
+0.608 0.132

0.097

Joint ensemble constraints

Full -
+1.089 0.052

0.050
-
+3.42 0.15

0.14
-
+1.07 0.13

0.11
-
+3.26 0.11

0.71
-
+0.652 0.078

0.162 >0.632 -
+1.027 0.100

0.111
-
+3.64 0.24

0.40
-
+0.499 0.056

0.018
-
+0.636 0.045

0.078

Low-mass -
+0.721 0.051

0.052
-
+4.39 0.26

0.30
-
+0.718 0.092

0.090
-
+4.28 0.39

0.71
-
+0.63 0.16

0.13 >0.613 -
+0.659 0.038

0.128
-
+4.72 0.45

0.58
-
+0.467 0.030

0.061
-
+0.666 0.070

0.074

High-mass -
+1.602 0.095

0.096
-
+2.73 0.15

0.14
-
+1.65 0.16

0.15
-
+2.96 0.20

0.35
-
+0.481 0.060

0.089 >0.510 -
+1.68 0.13

0.11
-
+3.07 0.18

0.26
-
+0.409 0.025

0.023
-
+0.509 0.021

0.059

X-ray selected -
+0.962 0.052

0.049
-
+4.18 0.19

0.20 0.99 0.11 -
+3.87 0.11

0.76
-
+0.541 0.092

0.188 >0.631 -
+1.050 0.144

0.048
-
+4.42 0.40

0.41
-
+0.466 0.028

0.035
-
+0.654 0.061

0.054

High
magnification

-
+1.53 0.16

0.13
-
+2.03 0.16

0.19
-
+1.66 0.27

0.14
-
+1.937 0.097

0.406 >0.323 >0.498 -
+1.73 0.20

0.18
-
+2.31 0.23

0.25
-
+0.408 0.045

0.026
-
+0.532 0.056

0.058

Note. The first column lists the cluster name, followed by marginalized posterior constraints on respective parameters from Spherical, Triaxial, and Triaxial+B15
modeling. The cluster masses are expressed in the unit of -

M h1015 1. The first 20 rows show the results of individual modeling, and the last five rows show the results
from joint ensemble modeling. We provide 2σ lower limits on the axis-ratio parameters when they are ill-constrained.

12 We use an unweighted mean here because the uncertainties of this work
and U14/U16 are highly correlated with each other.
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constrained the c–M relation only for the X-ray-selected
subsample, we restrict our ensemble Spherical modeling to
the same 16 X-ray-selected clusters for a fair comparison.

U16 constrained the NFW parameters from the stacked
weak and strong lensing profile as = -

+c 3.76200c 0.27
0.29 and

=  ´ -
( )M M h10.08 0.7 10200c

14 1, respectively. In this

work, joint ensemble Spherical modeling with combined weak
and strong lensing yields = -

+c 4.18200c 0.19
0.20 and =M200c

´-
+ -

( ) M h9.62 100.52
0.49 14 1, consistent with the 1D analysis of

U16 within the quoted uncertainties. Note that this joint
ensemble constraint on c200c from our Spherical modeling is
»10% higher than that from U16 at the 1σ level. This tendency

Table 4
Best-fit Parameters for the Scaling Relations

Full X-ray Selected High Magnification

Modeling A B D A B D A B D

c200c–M200c relation
Spherical 4.03±0.10 −0.65±0.06 0.10±0.01 4.51±0.14 −0.47±0.07 0.05±0.02 2.81±0.24 −0.70±0.15 <0.10
Triaxial 4.41±0.25 −0.49±0.11 0.08±0.05 4.82±0.30 −0.36±0.11 <0.12 3.00±0.65 −0.47±0.32 <0.19
Triaxial+B15 4.33±0.24 −0.48±0.09 0.09±0.04 4.73±0.28 −0.36±0.10 0.04±0.04 3.00±0.58 −0.46±0.26 <0.16

qa–M200c relation

Triaxial 0.52±0.04 −0.36±0.13 0.05±0.05 0.51±0.05 −0.36±0.15 0.05±0.06 0.61±0.13 −0.54±0.35 <0.13
Triaxial+B15 0.44±0.02 −0.14±0.07 <0.06 0.44±0.02 −0.13±0.08 <0.07 0.44±0.06 −0.17±0.17 <0.07

fgeo–M200c relation

Triaxial 0.93±0.07 −0.14±0.15 <0.34 0.92±0.08 −0.14±0.17 <0.35 0.97±0.18 −0.16±0.31 <0.28
Triaxial+B15 0.96±0.07 −0.21±0.12 <0.26 0.94±0.08 −0.21±0.15 <0.29 1.00±0.23 −0.24±0.26 <0.29

 –M200c relation
Triaxial <0.69 0.07±0.19 <0.16 <0.70 0.07±0.22 <0.17 <0.87 0.11±0.56 <0.20
Triaxial+B15 0.79±0.03 0.06±0.07 <0.13 0.79±0.04 0.05±0.08 <0.14 0.80±0.10 0.07±0.16 <0.15

Note. The best-fit parameters for the concentration to mass, minor-to-major axis ratio to mass, geometrical factor to mass, and triaxiality to mass scaling relations are
listed. Each mass scaling relation is characterized by the normalization A , mass slope B , and intrinsic scatter D , where  runs over c200c, qa, fgeo, and  . For the

concentration to mass relation, we use logarithmic observables (i.e., M clog , log200c 200c) for the regression analysis. For the other scaling relations, we use linear
observables without logarithmic transformation. The results of Triaxial and Triaxial+B15 modeling are shown for each scaling relation. Additionally, the results of
Spherical modeling are presented for the concentration to mass relation. For ill-constrained parameters, we give 2σ upper limits.

Figure 1. Joint ensemble constraints on the cluster model parameters from Spherical, Triaxial, and Triaxial+B15 modeling. The results on the mass and concentration
parameters from the Spherical modeling are presented in the left panel for respective subsamples. For the full sample, we show the combined weak+strong lensing
results in black and the weak-lensing-only results in gray. The right panel shows the joint ensemble constraints on the mass, concentration, and two axis ratios from
Triaxial and Triaxial+B15 modeling. The yellow contours in the right panel show the B15 prior distribution for clusters with = -

M M h10200c
15 1 at the sample

median redshift, =z 0.377. For each case, we show the results from the combined weak+strong lensing and weak-lensing-only data.
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is consistent with the case of individual cluster modeling (see
Figure 2). This ensemble constraint is shown in red contours in
the left panel of Figure 1.

From an NFW fit to the stacked weak-lensing profile,
U14 found = -

+c 4.01200c 0.32
0.35 and =  ´( )M 9.4 0.70200c

-
M h1014 1. Our joint ensemble Spherical modeling using the

weak-lensing data alone yields = -
+c 4.15200c 0.27

0.29 and
= ´-

+ -
( )M M h9.66 10200c 0.51

0.53 14 1, showing no significant
discrepancy.

We further compare our spherical mass estimates to those from
Sereno et al. (2018). They obtained cluster masses M200c,S18

from a joint analysis of weak and strong lensing, X-ray, and the
SZE data sets, in both triaxial and spherical approaches.
For the spherical mass comparison, we find a mean difference
in logarithmic mass of á < - < ñ =( ) ( )M R M R200c,S18 200c

( )2 3 % and ( )0 1 % at = -R h1Mpc 1 and -h1.5 Mpc 1,
respectively. This again demonstrates excellent agreement.
On the basis of these consistency tests, we find no significant

tension between the results using different combinations of data
sets (U14, U16, Sereno et al. 2018), ensuring the robustness of
our modeling procedures. We will discuss more results of
Spherical modeling in Section 5.2.

Figure 2. Comparison of cluster mass (left) and concentration (right) estimates between U16 and our Spherical modeling. Both studies use identical sets of HST
lensing constraints <( )M rSL as input for their analyses. The U16 analysis is based on azimuthally averaged weak-lensing constraints, while our analysis is based on
2D weak-lensing data. For each case, the mean difference in the logarithmic observable is indicated by the red dashed line. The gray line indicates the one-to-one
relation.

Figure 3. Same as Figure 2 but showing the comparison between U14 and our Spherical modeling, both using weak lensing alone.
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5.2. Concentration to Mass Relations

From Bayesian regression, we determine the c–M relation for
the 16 X-ray-selected CLASH clusters as

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )c

M

M h
4.51 0.14

10
, 27200c

200c
15 1

0.47 0.07

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )c

M

M h
4.82 0.30

10
, 28200c

200c
15 1

0.36 0.11

and

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )c

M

M h
4.73 0.28

10
, 29200c

200c
15 1

0.36 0.10

with a log-normal intrinsic scatter sº ∣Dc c Mlog200c 200c 200c of
0.05, <0.12 (2σ upper bound), and 0.04using the Spherical,
Triaxial, and Triaxial+B15modeling approaches, respec-
tively. A redshift evolution of the NFW c–M relation,
µ + - ( )c z1 0.668 0.341, was suggested for X-ray-selected

CLASH-like halos in N-body hydrodynamical simulations
(Meneghetti et al. 2014). We find that including the redshift
scaling in regression analysis results in a negligible change in
the inferred regression parameters within the errors. We thus
ignore the redshift dependence of the c–M relation in this
study. In Figure 4, we plot the resulting scaling relations along
with the individual cluster constraints for the X-ray-selected
subsample. The scaling relations obtained for the full sample
and the high-magnification subsample are given in Table 4.

In Figure 4, we see a steep mass dependence of the c–M
relation. Assuming spherical symmetry, we find a mass slope
of = - B 0.47 0.07c200c for the X-ray-selected subsample,
and an even steeper slope of = - B 0.65 0.06c200c for the full
sample. Here we note that this is due in part to our fitting
procedure, in which we do not account for the underlying
distribution of true cluster masses. That is, the steepening of the
intrinsic mass function combined with the selection function
could alter the resulting distribution of true cluster masses
(Sereno & Ettori 2015). Accounting for this effect, U16 found

= - B 0.44 0.19c200c for the same subsample, which is
consistent with our results, but with a much larger uncertainty.
From Triaxial modeling including additional shape and
orientation parameters (with uniform priors), we find a
shallower mass slope of - 0.36 0.11, which is consistent
with the Sphericalmodeling results within the errors.

The normalization of the c–M relation is constrained as
= c 4.51 0.14200c and 4.82 0.30 at the pivot mass of
= -

M M h10200c
15 1 for Spherical and Triaxialmodeling, respec-

tively. We note that, by construction, c200c(Spherical)�
c200c(Triaxial; see Sereno et al. 2018). On the other hand,
employing the informative shape priors from B15 in Triaxial+B15
modeling does not change the results in a significant manner.
Regardless of the priors chosen, the effect of triaxiality has no
significant impact on the resulting c–M relation, so that the
assumption of spherical symmetry is well validated in determining
the overall density structure of the CLASH clusters.

Now we discuss the results of joint ensemble modeling of
the cluster mass and concentration. In the left panel of Figure 1,
we show the weak-lensing-only results in gray and the weak
and strong lensing results in black, both derived for the
full sample of 20 clusters. Joint ensemble constraints for the

X-ray-selected, high-magnification, low-mass, and high-mass
subsamples are also shown in the same panel. We see a clear
trend of decreasing concentration with increasing mass. In
particular, the high-magnification subsample consisting of four
very massive disturbed clusters ( » ´ -

M M h1.5 10200c
15 1)

has »c 2200c , much lower than other similar-mass clusters,
indicating a selection effect. We will further discuss this in
Section 5.2.1.
In Figure 5, we show our joint ensemble constraints on the

mass and concentration parameters for the X-ray-selected
subsample, obtained with three different modeling approaches
(Sphericalblack; Triaxial red; Triaxial+B15blue). In all cases,
we use the weak and strong lensing constraints. From Triaxial
(Triaxial+B15) modeling, we find = -

+c 3.87200c 0.11
0.76 and

=  ´ -
( )M M h0.99 0.11 10200c

15 1 ( = -
+c 4.42200c 0.40

0.41 and
= ´-

+ -
M M h1.050 10200c 0.144

0.048 15 1). Overall, triaxial modeling
results in a concentration that is slightly higher than spherical
modeling at the »7% level, regardless of the chosen priors. As
noted above, it is expected that c200c(Spherical)�
c200c (Triaxial; Sereno et al. 2018). However, this level of
difference is consistent with zero within the errors. Therefore

Figure 4. Concentration to mass scaling relation for the 16 X-ray-selected
CLASH clusters. The results of Spherical, Triaxial, and Triaxial+B15
modeling are shown by black circles, red diamonds, and blue triangles,
respectively. The 1σ confidence levels of the scaling relations are indicated by
the shaded areas. We also plot various results from numerical simulations
(Duffy et al. 2008; Bhattacharya et al. 2013; Diemer & Kravtsov 2015) and
previous observational work (Oguri et al. 2012; Meneghetti et al. 2014; Merten
et al. 2015). The color codes for different authors are noted in the figure. We
multiply the normalization of the c–M relation from Duffy et al. (2008) by 1.2
to account for the different cosmology (see the discussion in the text). The
green star indicates our joint ensemble constraint from Triaxial modeling of the
X-ray selected subsample. The length of the black bar in the lower-left corner
indicates the level of log-normal intrinsic scatter ( sº ∣Dc c Mlog200c 200c 200c) of 7%
at fixed mass, which is predicted by Meneghetti et al. (2014) for the X-ray
selected sample in the CLASH survey (see the text for more details).

11

The Astrophysical Journal, 860:126 (23pp), 2018 June 20 Chiu et al.



we conclude that the spherical symmetry is a well valid
assumption in estimating the concentration of the CLASH
clusters.

5.2.1. Comparisons with Previous Work

We first compare our concentration to mass scaling
relations to that obtained by U16. In U16, the c–M relation
for the X-ray-selected subsample is constrained as µc200c

´-
+ - M3.98 0.35

0.38
200c

0.44 0.19 with a log-normal intrinsic scatter of
s » ∣ 0.056 0.026,c Mlog 200c 200c assuming spherical symmetry.
This is in good agreement with our Spherical modeling (see
Equation (27)) at the  s1 level, in terms of the mass slope
and intrinsic scatter. On the other hand, we find a normal-
ization that is»13% higher than U16. This trend is consistent
with what we found in Section 5.1.

According to Meneghetti et al. (2014), it is expected that the
mean concentration of the X-ray-selected CLASH subsample
recovered from projected lensing measurements is »11%
higher than that for the full population of clusters. Specifically,
the c–M relation predicted for this subsample is13

µ  ´ - ( )c M4.1 0.1200c 200c
0.16 0.11 at their median redshift of

á ñ »z 0.35, with an intrinsic scatter of s »∣ 0.07c Mlog 200c 200c . The
observed normalization ( = A 4.51 0.14c200c ) is thus

( )10 4 % higher than this CLASH prediction. The derived
mass slope ( = - B 0.47 0.07c200c ) is steeper than the CLASH
prediction (Meneghetti et al. 2014) at the s2.4 level. The
predicted scatter is consistent with our measurements, but
considerably smaller than the typical intrinsic scatter,
s »∣ 0.15c Mlog 200c 200c (»0.11), predicted for the full (relaxed)
population of halos in cosmological N-body simulations (e.g.,
Duffy et al. 2008; Bhattacharya et al. 2013). This is consistent
with the expectation that the X-ray-selected CLASH sample is

largely (»70%) composed of regular and highly relaxed
clusters (Meneghetti et al. 2014). The intrinsic scatter is
increased by a factor of »2 if we include the four high-
magnification CLASH clusters (see Table 4).
Next, we compare our results to previous CLASH work of

Merten et al. (2015), who studied 19 X-ray-selected CLASH
clusters. They simultaneously combined HST strong+weak
lensing constraints (specifically, HST shear catalogs plus
locations and redshifts of multiple images) with wide-field
shear catalogs of Umetsu et al. (2014) to reconstruct 2D mass
maps of individual clusters. Weak magnification lensing was
not used in their analysis. Cluster mass estimates were obtained
from spherical NFW fits to azimuthally averaged surface mass
density profiles.14 Assuming spherical symmetry, Merten et al.
(2015) found µ  ´ - ( )c M3.66 0.16 ,200c 200c

0.32 0.18 with a log-
normal intrinsic scatter of 0.07, in good agreement with our
results in terms of the mass slope and intrinsic scatter.
However, the normalization obtained by Merten et al. (2015)
is significantly lower than our results, likely arising from the
different reconstruction methods.
We then compare our results to those of Sereno et al.

(2017a), who carried out a 1D weak-lensing analysis to derive
the c–M relation for SZE-selected clusters from the Planck
survey. Examining their c–M relation with = -

M M h10200c
15 1

and the median redshift of our full sample, á ñ =z 0.377d , we
find = -

+c 4.04 ,200c 2.50
6.59 which is consistent with our Spherical

modeling results for our full sample within large errors.
In addition, we compare our results to Oguri et al. (2012),

who combined strong and weak lensing constraints in a 1D
analysis to derive the c–M relation for a sample of 28
strong-lensing-selected clusters from the Sloan Digital Sky
Survey. The best-fit c–M relation of Oguri et al. (2012) is =cvir

 ´ ´ - - 
( ) ( )M M h7.7 0.6 5 10 ,vir

14 1 0.59 0.12 with a log-
normal intrinsic scatter of s =∣ 0.12c Mlog 200c 200c defined with the
virial overdensity. We convert this relation to that with D = 200
by substituting =M M0.88200c vir and =c C0.83200c vir at =Mvir
´ -

M h5 1014 1 and the median redshift of our full sample,á ñ=zd

0.377. The resulting relation using a pivot mass of -
M h1015 1 is

=  ´ - - 
( ) ( )c M M h4.0 0.3 10 ,200c 200c

15 1 0.59 0.12 in good
agreement with our full-sample results (Table 4).
This comparison is particularly interesting because the Oguri

et al. (2012) sample was selected by the presence of strong-
lensing features, specifically giant arcs. In contrast, the high-
magnification CLASH clusters were selected by their high
lensing magnification properties, with the goal of searching for
strongly lensed galaxies at high redshifts. The giant-arc
selection of Oguri et al. (2012) preferentially selects clusters
that are more centrally concentrated and/or elongated along the
line of sight, resulting in a positive bias in the apparent degree
of concentration relative to the full population of clusters.
Importantly, this bias is predicted to be mass dependent and
more prominent for low-mass clusters (Oguri et al. 2012; e.g.,
estimated concentration being biased high by »80% for

» ´ -
M M h8 10vir

13 1 and 20% for  -
M M h10vir

15 1).
In this work, we find an opposite trend of significantly lower
concentration for high-magnification-selected clusters
(Tables 3 and 4). This is expected for typical merging, high-
mass clusters, where the mass distribution is not as

Figure 5. Joint ensemble constraints on the concentration and mass for the
X-ray-selected subsample of 16 CLASH clusters. The results of Spherical,
Triaxial, and Triaxial+B15modeling are shown in black, red, and blue,
respectively.

13 We use the NFW c–M–z relation predicted for CLASH-like X-ray-selected
clusters taken from Table2 of Meneghetti et al. (2014).

14 In this work, we combine the enclosed projected mass constraints from the
HST lensing analysis of Zitrin et al. (2015) with the wide-field weak-lensing
mass maps from Umetsu et al. (2018), followed by direct model fitting without
azimuthal averaging.
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concentrated as relaxed systems. In fact, our high-magnifica-
tion clusters are found to be dynamically disturbed systems
(Medezinski et al. 2013; Zitrin et al. 2013; Balestra et al. 2016;
Jauzac et al. 2017), where complex merging events are taking
place. Nevertheless, this comparison suggests that clusters
selected by their strong-lensing features tend to be a highly
biased population in terms of their morphology and dynamical
state.

Finally, we compare our joint ensemble constraints (Table 3)
to recent simulation work of Duffy et al. (2008), Bhattacharya
et al. (2013), and Diemer and Kravtsov (2015). Here we
compare their predictions to our results from Sphericalmodel-
ing because they measured halo mass and concentration from
spherically averaged density profiles of simulated halos.
Overall, our conclusions are not altered significantly if
comparing to our triaxial results, given the good agreement
between the spherical and triaxial results, regardless of the
priors chosen.

Duffy et al. (2008) characterized the c–M relation for both
relaxed and full populations of simulated halos at z 2 in the
WMAP5 cosmology (W = 0.258m and =H 0.7190 ). The mean
concentration predicted for the full (relaxed) population of
halos is »c 2.91200c (»3.30) at = -

M M h10200c
15 1 and

=z 0.377d , which is lower than = -
+c 3.42200c 0.15

0.14 ( -
+4.18 0.19

0.20)
by 15% (21%) obtained for our full (X-ray-selected) sample.
This is in line with the finding of Dutton & Macciò (2014) that
the WMAP5 cosmology assumed in Duffy et al. (2008) yields a
concentration that is lower by »20% relative to the Planck
cosmology. Bhattacharya et al. (2013) modeled the halo
concentration as a function of the halo peak height.15 Their
model yields =c 3.59200c and 3.71 at = -

M M h10200c
15 1 for

their full and relaxed samples, respectively, with an intrinsic
scatter of »0.33. Our result for the full sample ( =c200c

-
+3.42 0.15

0.14) is in good agreement with their prediction. Given the
scatter and measurement uncertainty, these values are not in
severe tension with what we measured in this work.

We then compare our results to the model of Diemer and
Kravtsov (2015), who also characterized the halo concentration
as a function of the halo peak height. Their model yields

=c 3.73200c for the typical mass of our sample, »M200c
-

M h1015 1, which shows no tension with our measurement
(black contours in the left panel of Figure 1).

The comparisons we discussed above can be visualized in
Figure 4. To sum up, our results on the c–M relation are in
satisfactory agreement with previous lensing studies. A better
agreement can be achieved once the selection function, the
cosmology adopted, and/or the modeling systematics are taken
into account. We find that the typical values of halo
concentration (Ac200c) range from »c 3200c to »4.5 at

= -
M M h10200c

15 1, largely depending on the sample selec-
tion rather than the modeling assumption on the shape of
clusters.

5.3. Axis Ratio to Mass Relations

Here we present the minor-to-major axis ratio to mass
scaling relation for our full sample of 20 clusters derived using
the Triaxial and Triaxial+B15 modeling approaches

(Equations (30) and (31)):

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )q

M

M h
0.52 0.04

10
, 30a

200c
15 1

0.36 0.13

and

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )q

M

M h
0.44 0.02

10
, 31a

200c
15 1

0.14 0.07

with an intrinsic scatter ∣Dq Ma 200c of 0.05 and
s< ( )0.06 2 upper bound , respectively.

We plot these results in Figure 6 in a similar manner as in
Figure 4. There is no clear difference in the resulting qa–M
relations between the X-ray-selected and high-magnification
subsamples. We thus focus on the results based on the full
sample hereafter. We see from Figure 6 that in Triaxial
modeling, the errors of qa for individual clusters are
considerably large. However, the statistical ensemble behavior
shows that » ( )q 0.52 0.04a at = -

M M h10200c
15 1, and it

scales as µ - q Ma 200c
0.36 0.13 at the s2.7 level, indicating that

more massive clusters tend to be less spherical. On the other
hand, introducing informative shape priors in Triaxial+B15
modeling yields an ensemble average of » ( )q 0.44 0.02a at
the pivot mass = -

M M h10200c
15 1 and a shallower slope of

» - ( )B 0.14 0.07qa
. This corresponds to a marginal shift in

Aqa
and Bqa

at the 2σ and s1.3 levels, respectively, with respect
to the case using uniform priors. On the basis of the results
above, we have detected a non-spherical shape of the clusters.
The average minor-to-major axis ratio qa is »0.5, depending
on the priors used, and it monotonically decreases with
increasing cluster mass at the  s2.7 level.

Figure 6. Minor-to-major axis ratio to mass scaling relation for our cluster
sample. The results of Triaxial and Triaxial+B15 modeling are shown by red
diamonds and blue triangles, respectively. The 16 X-ray-selected (4 high-
magnification) CLASH clusters are indicated by filled (open) markers. The
best-fit scaling relations and their 1σ confidence regions are shown by shaded
areas.

15 The average peak height of our sample is »3.8.
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In Figure 1, we show joint ensemble constraints on the
concentration, mass, and axis ratios for the full sample obtained
with different modeling approaches and data sets. It is seen in
the right panel of Figure 1 that there is no clear correlation
between the shape parameters (i.e., axis ratios) and the overall
structural parameters (i.e., concentration and mass), regardless
of the priors. This is consistent with the implication in
Section 5.2 that the assumption of cluster shapes does not
statistically affect the c–M relation of the CLASH clusters. We
see from the right panel of Figure 1 that including the HST
lensing data <( )M rSL results in a lower concentration, but it
does not alter the axis ratios. Conversely, introducing the
informative shape priors from B15 has an impact on the axis
ratios, but not on the mass and concentration parameters.

We show in Figure 7 our joint ensemble constraints on the
intrinsic shape parameters for our full sample of 20 clusters,
along with the B15 prior distribution. We constrain the minor-to-
major axis ratio as = -

+q 0.652a 0.078
0.162 using uniform priors, which

is higher than the expectation from the B15 prior distribution,
= -

+q 0.412a 0.083
0.095, at the  s1.5 level. Employing the B15 priors

in Triaxial+B15 modeling yields = -
+q 0.499a 0.056

0.018, which is
consistent with the Triaxial constraint at the s1 level, given the
long tail of the posterior distribution.

Furthermore, we compare in Figure 8 our joint ensemble
constraints on qa for the full sample with theoretical
predictions from N-body numerical simulations of Despali
et al. (2014), B15, Suto et al. (2016), and Vega-Ferrero et al.
(2017). Note that we evaluate the theoretical predictions in
Figure 8 at the median redshift of our cluster sample,
á ñ =z 0.377d . We see that our constraints on qa obtained
using uniform priors are in favor of the axis ratio that is higher
than the theoretical predictions. However, this trend is only at
the  s1.5 level and not statistically significant. It is worth
mentioning that including baryonic physics in numerical
simulations results in a rounder shape of galaxy clusters

(Kazantzidis et al. 2004; Bryan et al. 2013; Suto et al. 2017),
which better agrees with our results based on the uniform priors
than the purely N-body simulations. With upcoming large
cluster surveys to dramatically improve statistics, this work
demonstrates an opportunity to constrain the effects of baryonic
feedback on the halo shape by using gravitational lensing.
Conversely, we do not have informative constraints on the

second axis ratio qb in Triaxial modeling with uniform priors (see
Table 3 and the right panel of Figure 1): we can only constrain the
lower bound of qb for the full sample as 0.73, 0.63, and 0.50 at
the 1σ, 2σ, and 3σ levels, respectively. Introducing the B15 priors
in Triaxial+B15 modeling gives = -

+q 0.636b 0.045
0.078, compared to

the expectation from the B15 prior distribution, = -
+q 0.55b 0.11

0.14.
Taking the covariance between qa and qb into account, the
overall discrepancy between our lensing data and the B15 priors is
at the  s2.5 level. Therefore we do not have statistically
significant evidence for a strong tension between the lensing data
and the B15 simulations.
Additionally, we show in Figure 9 joint ensemble constraints

on the axis ratios for the low-mass and high-mass subsamples.
We observe that (1) the discrepancy between the Triaxialmo-
deling and Triaxial+B15 modeling is smaller for the high-mass
samples, and (2) the constraints are significantly stronger for
the high-mass sample, suggesting that the weak constraints on
the shape parameters for the full sample are likely due to the
inclusion of the low-mass clusters.
We note that we currently do not have compelling

constraints on the intrinsic shape (especially qb) of clusters
based on the lensing data alone (using uninformative uniform
priors). Nevertheless, we observe a marginal discrepancy
between the lensing data and simulations, which can be better
examined with a large statistical sample of clusters.

5.4. Geometrical Factor to Mass Relations

We constrain the geometrical factor to mass scaling relation
for our full sample of 20 clusters from Triaxial and Triaxial
+B15 modeling as

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )f

M

M h
0.93 0.07

10
, 32geo

200c
15 1

0.14 0.15

and

=  ´
-

- 



⎛
⎝⎜

⎞
⎠⎟( ) ( )f

M

M h
0.96 0.07

10
, 33geo

200c
15 1

0.21 0.12

with an intrinsic scatter ∣D f Mgeo 200c
of s< ( )0.34 2 upper bound

and s< ( )0.26 2 upper bound , respectively. The geometrical
factor fgeo is a derived quantity from the posterior distributions
of the triaxial NFW parameters according to Equation (16).
Specifically, fgeo is defined as the ratio of the line of sight half
length of a triaxial ellipsoid to the geometric-mean scale radius
of its isodensity contour projected on the sky. Therefore it
represents the degree of line of sight elongation of the mass
distribution. A geometrical factor greater (smaller) than unity
indicates a line of sight excess (deficit) of mass structure.
We show the results of the geometrical factor to mass scaling

relations in Figure 10. Although the geometrical factor is a very
noisy quantity for individual clusters, the ensemble behavior
from the best-fit scaling relations suggests no significant
deviation from random orientations (i.e., fgeois consistent with

Figure 7.Marginalized posterior distributions of the intrinsic axis ratios qa and
qb derived from joint ensemble modeling of our full sample of 20 clusters. The
results of the Triaxial and Triaxial+B15 modeling are shown in red and blue,
respectively. The B15 prior distribution evaluated at the typical mass

= -
M M h10200c

15 1 and the median redshift á ñ =z 0.377d is shown in yellow.
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unity within the quoted 1σ uncertainties) regardless of the
shape priors (uniform or B15). We find no significant evidence
of a dependence of fgeo on cluster mass. A mild trend at the
 s2 level is found when the B15 priors are employed.

We stress that, given the fact that lensing can only probe the
integrated mass along the line of sight, we do not have a
sensitivity to the line of sight elongation of clusters using lensing
data alone (Dietrich et al. 2014). Hence we must rely on external
information (e.g., X-ray/SZE data or simulation priors) to better
constrain the orientation of clusters. With the B15 priors applied

on the axis ratios, we extract the biweight center location of the
marginalized posterior distribution of q( )cos for each cluster
(Section 5). The distribution of q( )cos spans a wide range
between 0.37 and 0.70, with a median value of qá ñ =( )cos 0.55
and a typical biweight scale of »0.30. This corresponds to a
mean inclining angle of qá ñ » - ( ( ) )cos cos 571 , suggesting that
the orientations of our sample are nearly random (i.e., no
orientation bias). This is consistent with our results on the fgeo–M

Figure 8. Comparison between the observational constraints on qa and the theoretical predictions of Despali et al. (2014), B15, Suto et al. (2016), and Vega-Ferrero et al.
(2017) evaluated at the median redshift ofá ñ =z 0.377d . The shaded regions indicate the intrinsic scatter of qa at fixed halo mass predicted by the respective theoretical models.

Figure 9. Marginalized posterior distributions of the intrinsic axis ratios qa and qb
derived from joint ensemble modeling of the low-mass and high-mass subsamples.
The results of the Triaxial and Triaxial+B15 modeling for the low (high) mass
subsample are shown in red and yellow (black and gray), respectively.

Figure 10. Geometrical factor ( fgeo) to mass scaling relation. The results of
Triaxial and Triaxial+B15 modeling are shown by red diamonds and blue
triangles, respectively. The 16 X-ray-selected (4 high-magnification) CLASH
clusters are indicated by filled (open) markers. The best-fit scaling relations and
their 1σ confidence regions are shown by shaded areas. The gray thin line
indicates =f 1geo .
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relation (Table 4) regardless of the chosen sample, and in line
with the theoretical expectation for the X-ray-selected CLASH
clusters (Meneghetti et al. 2014). It is worth mentioning that a
positive bias at a level of –3% 6% was suggested in the mass
estimates of stacked weak-lensing measurements for optically
selected clusters (Dietrich et al. 2014), while there is no clear
indication of orientation bias for our clusters that are largely
selected by their X-ray properties.

5.5. Triaxiality to Mass Relations

The degree of triaxiality  is a quantity derived from the
posterior distributions of the intrinsic axis ratios (Equation (17)).
A prolate mass distribution (i.e., =q qa b) has  = 1, while a
oblate shape (i.e., < =q q 1a b ) has  = 0.

We stress again that we can only constrain the lower bound
of the second axis ratio qb and thus the upper bound on the
degree of triaxiality  from Triaxial modeling when using
uniform priors. Accordingly, we only present the 2σ upper
bound for the results from Triaxial modeling. The 2σ upper
bound on the  –M relation from Triaxial modeling is

 < ´
-





⎛
⎝⎜

⎞
⎠⎟ ( )M

M h
0.69

10
, 34200c

15 1

0.07 0.19

while the best-fit –M relation from Triaxial+B15 modeling is

 =  ´
-





⎛
⎝⎜

⎞
⎠⎟( ) ( )M

M h
0.79 0.03

10
, 35200c

15 1

0.06 0.07

with an intrinsic scatter of s< ( )0.13 2 upper bound . We show
the results of the  –M relation as well as the individual cluster
constraints in Figure 11.

In Figure 11, a clear offset in the normalization A is seen
between the Triaxial and Triaxial+B15 modeling results: The
degree of triaxiality is constrained as  » 0.79 0.03 at
the pivot mass = -

M M h10200c
15 1 using the B15 priors, and

the offset in the normalization relative to the Triaxial results is
at the s»3 level. This discrepancy is strongly driven by the fact
that we can only constrain the lower bound of the intermediate-
to-major axis ratio qb from Triaxial modeling, resulting in a
nearly flat distribution of  . This can be further seen in
Figure 12, where we plot  against cluster mass using the
posteriors joint ensemble modeling (full, X-ray-selected, and
high-magnification samples). Without the B15 priors,  is
essentially unconstrained by the lensing data alone. On the
other hand, employing the B15 priors gives  » 0.8, implying
a prolate configuration of the CLASH clusters. We find that the
posterior constraints on the mass slope are not sensitive to the
chosen prior (  »B 0.07), although the uncertainties are too
large to claim a significant mass dependence. Even though the
CLASH clusters exhibit non-spherical shapes, we echo that
spherical symmetry is a well-validated assumption in estimat-
ing the cluster mass and concentration (see Section 5.2).

6. Conclusions

In this paper, we have combined the wide-field weak-lensing
mass maps obtained by Umetsu et al. (2018) with the central
CLASH-HST lensing constraints (Zitrin et al. 2015; Umetsu
et al. 2016) to perform three-dimensional modeling of the
intrinsic mass distribution for a sample of 16 X-ray-selected
and 4 high-magnification clusters targeted by the CLASH
survey. These clusters span a mass range of ´4

 < ´- -
 M h M M h10 20 1014 1

200c
14 1 and a redshift range

of < <z0.18 0.7, with a median redshift of »0.377.
Specifically, we have forward-modeled these lensing data sets

Figure 11. Triaxiality to mass scaling relation. The results of Triaxial and
Triaxial+B15 modeling are shown by red diamonds and blue triangles,
respectively. The 16 X-ray-selected (4 high-magnification) CLASH clusters are
indicated by filled (open) markers. The 1σ confidence region of the Triaxial
+B15 modeling is shown by the blue shaded area. The 2σ upper bound of the
scaling relation from the Triaxial modeling is indicated by the red shaded area.

Figure 12. Constraints on the degree of triaxiality  and cluster mass M200c

from joint ensemble modeling of different cluster subsamples. Using
uninformative uniform priors, the constraints on  from Triaxial modeling
are shown in gray (yellow, light blue) for the full (X-ray selected, high-
magnification) sample. Using the B15 priors, the constraints on  are shown in
black (red, dark blue) for the full (X-ray selected, high-magnification) sample.
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assuming a triaxial NFW halo in a Bayesian framework, and
constrained the mass M200c, concentration c200c, intrinsic axis
ratios (minor-to-major ratio qa and intermediate-to-major ratio
qb), and orientation angles. For the case of triaxial modeling, we
considered either uniform priors on all parameters or, alterna-
tively, informative shape priors on qa and qb taken from
cosmological N-body simulations (Bonamigo et al. 2015). We
have also performed spherical NFW modeling with the M200cand
c200c parameters, while fixing the other parameters to the spherical
configuration. We performed Bayesian modeling of both
individual and ensemble clusters using the combined weak and
strong lensing data sets. With the observed constraints on each
individual cluster, we have investigated mass scaling relations of
the halo concentration c200c, the minor-to-major axis ratio qa, the
geometrical factor fgeo, and the degree of triaxiality  .

Our results show that the halo concentration decreases with
increasing mass, as found by previous work assuming spherical
symmetry. The results are insensitive to both the assumed
cluster geometry (spherical or triaxial) and the chosen shape
prior. However, we find that the selection of clusters plays an
important role. The four high-magnification CLASH clusters
( » ´ -

M M h1.5 10200c
15 1) have a significantly low concen-

tration, compared to the X-ray-selected CLASH subsample.
For the 16 X-ray-selected CLASH clusters, we find a mean
concentration of = c 4.82 0.30200c at the pivot mass

= -
M M h10200c

15 1, and it scales as - M200c
0.36 0.11 according to

triaxial modeling with uniform priors. On the other hand,
jointly modeling this subsample assuming a triaxial NFW halo,
we obtain joint ensemble constraints of = -

+c 3.87200c 0.11
0.76 and

=  ´ -
( )M M h0.99 0.11 10200c

15 1. Our results are consis-
tent with previous work from observations and simulations. A
better agreement can be achieved if accounting for the sample
selection, geometry of clusters, the background cosmology
adopted, and the choice of the priors. The results from triaxial
modeling are in good agreement with those from spherical
modeling within the errors, suggesting that the assumption of
spherical symmetry is well validated in estimating the overall
mass profile of the CLASH clusters, even though we do
observe evidence of aspherical shapes of clusters.

When using uninformative uniform priors, we obtain joint
ensemble constraints on the minor-to-major axis ratio of

= -
+q 0.652a 0.078

0.162 at the typical mass = -
M M h10200c

15 1 for
our full sample of 20 CLASH clusters. Conversely, only a lower
bound on the intermediate-to-major axis ratio qb is obtained as

>q 0.632b at the 2σ level. Using the B15 priors gives improved
joint ensemble constraints of = -

+q 0.499a 0.056
0.018 and =qb

-
+0.636 0.045

0.078, respectively. The resulting qa–M relation suggests
that qa decreases with increasing halo mass as - M200c

0.36 0.13 and
- M200c

0.14 0.07 based on the results with the uniform and B15 priors,
respectively. Overall, no significant tension is seen between the
lensing data and the numerical predictions from B15 in terms of
the intrinsic cluster axis ratios. Our results suggest that we
currently do not have strong constraints ( s3 ) on the intrinsic
shape of clusters based on gravitational lensing alone, unless
informative shape priors are employed.

We have also studied the geometrical factor fgeo, an indicator
of the line of sight elongation of cluster mass distributions. We
find that our sample shows no significant deviation from
isotropic, random orientations: = f 0.93 0.07geo and

= f 0.96 0.07geo based on the uniform and B15 priors,
respectively. The results are in agreement with the theoretical

expectation for the CLASH clusters dominated by relaxed
systems (Meneghetti et al. 2014). No significant mass
dependence of fgeo is seen, regardless of the chosen prior.
The average inclination angle θ between the cluster major axis
and the line of sight is qá ñ » 57 , suggesting again that there is
no evidence of orientation bias for the CLASH clusters.
Finally, the degree of triaxiality for our sample is constrained

as  = 0.79 0.03 at the pivot mass = -
M M h10200c

15 1

using the B15 priors, suggesting that the geometry of our
sample is close to the prolate configuration ( = 1) rather than
the oblate one ( = 0). However, we stress that this result
strongly depends on the choice of the shape priors. With the
uniform priors, we can only constrain the upper bound of  as
 < 0.69 at the 2σ level. No significant mass trend of triaxiality
is observed in our sample, regardless of the priors.
We have presented a statistical three-dimensional analysis of a

sizable sample of high-mass galaxy clusters using high-quality
weak and strong lensing data sets. We observed clear evidence of
a departure from spherical symmetry in our sample of 20 clusters.
On the other hand, we find that the assumption of spherical
symmetry is still well validated in terms of determining the overall
mass profile (such as concentration and mass) if the sample is free
from orientation bias. We find increasingly promising constraints
on the intrinsic shape parameters with increasing halo mass or
with increasing size of the cluster sample. Therefore it will be very
desirable to extend this type of analysis to large, well-controlled
samples of clusters defined from ongoing large-sky surveys, such
as the Subaru Hyper Suprime-Cam survey (Miyazaki 2015) and
the Dark Energy Survey (Flaugher 2005).
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Appendix
Individual Posterior Constraints

For each cluster, we show in Figure 13 the marginalized
posterior distributions of model parameters from Spherical,
Triaxial, and Triaxial+B15 modeling approaches (indicated by
red, blue, and green areas, respectively).
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Figure 13. Constraints on the cluster model parameters derived for each individual cluster with the Spherical, Triaxial, and Triaxial+B15 modeling approaches,
showing marginalized 1D (histograms) and 2D (68% and 95% confidence level contour plots) posterior distributions. Seven parameters

q f y( )M c q q, , , , cos , ,200c 200c a b are shown for the triaxial cases, while only the mass and concentration parameters (M200c and c200c) are presented for the
Spherical modeling.
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Figure 13. (Continued.)
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Figure 13. (Continued.)
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Figure 13. (Continued.)
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Figure 13. (Continued.)
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